x86_64: Untangle asm/hpet.h from asm/timex.h
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / char / rtc.c
blobec6b65ec69ea6f1726e400667c2462c5af7d5028
1 /*
2 * Real Time Clock interface for Linux
4 * Copyright (C) 1996 Paul Gortmaker
6 * This driver allows use of the real time clock (built into
7 * nearly all computers) from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
11 * The ioctls can be used to set the interrupt behaviour and
12 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 * interface can be used to make use of these timer interrupts,
14 * be they interval or alarm based.
16 * The /dev/rtc interface will block on reads until an interrupt
17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of
20 * interrupts since the last read in the remaining high bytes. The
21 * /dev/rtc interface can also be used with the select(2) call.
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
28 * Based on other minimal char device drivers, like Alan's
29 * watchdog, Ted's random, etc. etc.
31 * 1.07 Paul Gortmaker.
32 * 1.08 Miquel van Smoorenburg: disallow certain things on the
33 * DEC Alpha as the CMOS clock is also used for other things.
34 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35 * 1.09a Pete Zaitcev: Sun SPARC
36 * 1.09b Jeff Garzik: Modularize, init cleanup
37 * 1.09c Jeff Garzik: SMP cleanup
38 * 1.10 Paul Barton-Davis: add support for async I/O
39 * 1.10a Andrea Arcangeli: Alpha updates
40 * 1.10b Andrew Morton: SMP lock fix
41 * 1.10c Cesar Barros: SMP locking fixes and cleanup
42 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
44 * 1.11 Takashi Iwai: Kernel access functions
45 * rtc_register/rtc_unregister/rtc_control
46 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 * CONFIG_HPET_EMULATE_RTC
49 * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
50 * 1.12ac Alan Cox: Allow read access to the day of week register
53 #define RTC_VERSION "1.12ac"
56 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
57 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
58 * design of the RTC, we don't want two different things trying to
59 * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
60 * this driver.)
63 #include <linux/interrupt.h>
64 #include <linux/module.h>
65 #include <linux/kernel.h>
66 #include <linux/types.h>
67 #include <linux/miscdevice.h>
68 #include <linux/ioport.h>
69 #include <linux/fcntl.h>
70 #include <linux/mc146818rtc.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/proc_fs.h>
74 #include <linux/seq_file.h>
75 #include <linux/spinlock.h>
76 #include <linux/sysctl.h>
77 #include <linux/wait.h>
78 #include <linux/bcd.h>
79 #include <linux/delay.h>
81 #include <asm/current.h>
82 #include <asm/uaccess.h>
83 #include <asm/system.h>
85 #ifdef CONFIG_X86
86 #include <asm/hpet.h>
87 #endif
89 #ifdef CONFIG_SPARC32
90 #include <linux/pci.h>
91 #include <asm/ebus.h>
93 static unsigned long rtc_port;
94 static int rtc_irq = PCI_IRQ_NONE;
95 #endif
97 #ifdef CONFIG_HPET_RTC_IRQ
98 #undef RTC_IRQ
99 #endif
101 #ifdef RTC_IRQ
102 static int rtc_has_irq = 1;
103 #endif
105 #ifndef CONFIG_HPET_EMULATE_RTC
106 #define is_hpet_enabled() 0
107 #define hpet_set_alarm_time(hrs, min, sec) 0
108 #define hpet_set_periodic_freq(arg) 0
109 #define hpet_mask_rtc_irq_bit(arg) 0
110 #define hpet_set_rtc_irq_bit(arg) 0
111 #define hpet_rtc_timer_init() do { } while (0)
112 #define hpet_rtc_dropped_irq() 0
113 #ifdef RTC_IRQ
114 static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
116 return 0;
118 #endif
119 #else
120 extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id);
121 #endif
124 * We sponge a minor off of the misc major. No need slurping
125 * up another valuable major dev number for this. If you add
126 * an ioctl, make sure you don't conflict with SPARC's RTC
127 * ioctls.
130 static struct fasync_struct *rtc_async_queue;
132 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
134 #ifdef RTC_IRQ
135 static void rtc_dropped_irq(unsigned long data);
137 static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
138 #endif
140 static ssize_t rtc_read(struct file *file, char __user *buf,
141 size_t count, loff_t *ppos);
143 static int rtc_ioctl(struct inode *inode, struct file *file,
144 unsigned int cmd, unsigned long arg);
146 #ifdef RTC_IRQ
147 static unsigned int rtc_poll(struct file *file, poll_table *wait);
148 #endif
150 static void get_rtc_alm_time (struct rtc_time *alm_tm);
151 #ifdef RTC_IRQ
152 static void set_rtc_irq_bit_locked(unsigned char bit);
153 static void mask_rtc_irq_bit_locked(unsigned char bit);
155 static inline void set_rtc_irq_bit(unsigned char bit)
157 spin_lock_irq(&rtc_lock);
158 set_rtc_irq_bit_locked(bit);
159 spin_unlock_irq(&rtc_lock);
162 static void mask_rtc_irq_bit(unsigned char bit)
164 spin_lock_irq(&rtc_lock);
165 mask_rtc_irq_bit_locked(bit);
166 spin_unlock_irq(&rtc_lock);
168 #endif
170 #ifdef CONFIG_PROC_FS
171 static int rtc_proc_open(struct inode *inode, struct file *file);
172 #endif
175 * Bits in rtc_status. (6 bits of room for future expansion)
178 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
179 #define RTC_TIMER_ON 0x02 /* missed irq timer active */
182 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
183 * protected by the big kernel lock. However, ioctl can still disable the timer
184 * in rtc_status and then with del_timer after the interrupt has read
185 * rtc_status but before mod_timer is called, which would then reenable the
186 * timer (but you would need to have an awful timing before you'd trip on it)
188 static unsigned long rtc_status = 0; /* bitmapped status byte. */
189 static unsigned long rtc_freq = 0; /* Current periodic IRQ rate */
190 static unsigned long rtc_irq_data = 0; /* our output to the world */
191 static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
193 #ifdef RTC_IRQ
195 * rtc_task_lock nests inside rtc_lock.
197 static DEFINE_SPINLOCK(rtc_task_lock);
198 static rtc_task_t *rtc_callback = NULL;
199 #endif
202 * If this driver ever becomes modularised, it will be really nice
203 * to make the epoch retain its value across module reload...
206 static unsigned long epoch = 1900; /* year corresponding to 0x00 */
208 static const unsigned char days_in_mo[] =
209 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
212 * Returns true if a clock update is in progress
214 static inline unsigned char rtc_is_updating(void)
216 unsigned long flags;
217 unsigned char uip;
219 spin_lock_irqsave(&rtc_lock, flags);
220 uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
221 spin_unlock_irqrestore(&rtc_lock, flags);
222 return uip;
225 #ifdef RTC_IRQ
227 * A very tiny interrupt handler. It runs with IRQF_DISABLED set,
228 * but there is possibility of conflicting with the set_rtc_mmss()
229 * call (the rtc irq and the timer irq can easily run at the same
230 * time in two different CPUs). So we need to serialize
231 * accesses to the chip with the rtc_lock spinlock that each
232 * architecture should implement in the timer code.
233 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
236 irqreturn_t rtc_interrupt(int irq, void *dev_id)
239 * Can be an alarm interrupt, update complete interrupt,
240 * or a periodic interrupt. We store the status in the
241 * low byte and the number of interrupts received since
242 * the last read in the remainder of rtc_irq_data.
245 spin_lock (&rtc_lock);
246 rtc_irq_data += 0x100;
247 rtc_irq_data &= ~0xff;
248 if (is_hpet_enabled()) {
250 * In this case it is HPET RTC interrupt handler
251 * calling us, with the interrupt information
252 * passed as arg1, instead of irq.
254 rtc_irq_data |= (unsigned long)irq & 0xF0;
255 } else {
256 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
259 if (rtc_status & RTC_TIMER_ON)
260 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
262 spin_unlock (&rtc_lock);
264 /* Now do the rest of the actions */
265 spin_lock(&rtc_task_lock);
266 if (rtc_callback)
267 rtc_callback->func(rtc_callback->private_data);
268 spin_unlock(&rtc_task_lock);
269 wake_up_interruptible(&rtc_wait);
271 kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
273 return IRQ_HANDLED;
275 #endif
278 * sysctl-tuning infrastructure.
280 static ctl_table rtc_table[] = {
282 .ctl_name = CTL_UNNUMBERED,
283 .procname = "max-user-freq",
284 .data = &rtc_max_user_freq,
285 .maxlen = sizeof(int),
286 .mode = 0644,
287 .proc_handler = &proc_dointvec,
289 { .ctl_name = 0 }
292 static ctl_table rtc_root[] = {
294 .ctl_name = CTL_UNNUMBERED,
295 .procname = "rtc",
296 .mode = 0555,
297 .child = rtc_table,
299 { .ctl_name = 0 }
302 static ctl_table dev_root[] = {
304 .ctl_name = CTL_DEV,
305 .procname = "dev",
306 .mode = 0555,
307 .child = rtc_root,
309 { .ctl_name = 0 }
312 static struct ctl_table_header *sysctl_header;
314 static int __init init_sysctl(void)
316 sysctl_header = register_sysctl_table(dev_root);
317 return 0;
320 static void __exit cleanup_sysctl(void)
322 unregister_sysctl_table(sysctl_header);
326 * Now all the various file operations that we export.
329 static ssize_t rtc_read(struct file *file, char __user *buf,
330 size_t count, loff_t *ppos)
332 #ifndef RTC_IRQ
333 return -EIO;
334 #else
335 DECLARE_WAITQUEUE(wait, current);
336 unsigned long data;
337 ssize_t retval;
339 if (rtc_has_irq == 0)
340 return -EIO;
343 * Historically this function used to assume that sizeof(unsigned long)
344 * is the same in userspace and kernelspace. This lead to problems
345 * for configurations with multiple ABIs such a the MIPS o32 and 64
346 * ABIs supported on the same kernel. So now we support read of both
347 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
348 * userspace ABI.
350 if (count != sizeof(unsigned int) && count != sizeof(unsigned long))
351 return -EINVAL;
353 add_wait_queue(&rtc_wait, &wait);
355 do {
356 /* First make it right. Then make it fast. Putting this whole
357 * block within the parentheses of a while would be too
358 * confusing. And no, xchg() is not the answer. */
360 __set_current_state(TASK_INTERRUPTIBLE);
362 spin_lock_irq (&rtc_lock);
363 data = rtc_irq_data;
364 rtc_irq_data = 0;
365 spin_unlock_irq (&rtc_lock);
367 if (data != 0)
368 break;
370 if (file->f_flags & O_NONBLOCK) {
371 retval = -EAGAIN;
372 goto out;
374 if (signal_pending(current)) {
375 retval = -ERESTARTSYS;
376 goto out;
378 schedule();
379 } while (1);
381 if (count == sizeof(unsigned int))
382 retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int);
383 else
384 retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long);
385 if (!retval)
386 retval = count;
387 out:
388 __set_current_state(TASK_RUNNING);
389 remove_wait_queue(&rtc_wait, &wait);
391 return retval;
392 #endif
395 static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
397 struct rtc_time wtime;
399 #ifdef RTC_IRQ
400 if (rtc_has_irq == 0) {
401 switch (cmd) {
402 case RTC_AIE_OFF:
403 case RTC_AIE_ON:
404 case RTC_PIE_OFF:
405 case RTC_PIE_ON:
406 case RTC_UIE_OFF:
407 case RTC_UIE_ON:
408 case RTC_IRQP_READ:
409 case RTC_IRQP_SET:
410 return -EINVAL;
413 #endif
415 switch (cmd) {
416 #ifdef RTC_IRQ
417 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
419 mask_rtc_irq_bit(RTC_AIE);
420 return 0;
422 case RTC_AIE_ON: /* Allow alarm interrupts. */
424 set_rtc_irq_bit(RTC_AIE);
425 return 0;
427 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
429 unsigned long flags; /* can be called from isr via rtc_control() */
430 spin_lock_irqsave (&rtc_lock, flags);
431 mask_rtc_irq_bit_locked(RTC_PIE);
432 if (rtc_status & RTC_TIMER_ON) {
433 rtc_status &= ~RTC_TIMER_ON;
434 del_timer(&rtc_irq_timer);
436 spin_unlock_irqrestore (&rtc_lock, flags);
437 return 0;
439 case RTC_PIE_ON: /* Allow periodic ints */
441 unsigned long flags; /* can be called from isr via rtc_control() */
443 * We don't really want Joe User enabling more
444 * than 64Hz of interrupts on a multi-user machine.
446 if (!kernel && (rtc_freq > rtc_max_user_freq) &&
447 (!capable(CAP_SYS_RESOURCE)))
448 return -EACCES;
450 spin_lock_irqsave (&rtc_lock, flags);
451 if (!(rtc_status & RTC_TIMER_ON)) {
452 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
453 2*HZ/100);
454 rtc_status |= RTC_TIMER_ON;
456 set_rtc_irq_bit_locked(RTC_PIE);
457 spin_unlock_irqrestore (&rtc_lock, flags);
458 return 0;
460 case RTC_UIE_OFF: /* Mask ints from RTC updates. */
462 mask_rtc_irq_bit(RTC_UIE);
463 return 0;
465 case RTC_UIE_ON: /* Allow ints for RTC updates. */
467 set_rtc_irq_bit(RTC_UIE);
468 return 0;
470 #endif
471 case RTC_ALM_READ: /* Read the present alarm time */
474 * This returns a struct rtc_time. Reading >= 0xc0
475 * means "don't care" or "match all". Only the tm_hour,
476 * tm_min, and tm_sec values are filled in.
478 memset(&wtime, 0, sizeof(struct rtc_time));
479 get_rtc_alm_time(&wtime);
480 break;
482 case RTC_ALM_SET: /* Store a time into the alarm */
485 * This expects a struct rtc_time. Writing 0xff means
486 * "don't care" or "match all". Only the tm_hour,
487 * tm_min and tm_sec are used.
489 unsigned char hrs, min, sec;
490 struct rtc_time alm_tm;
492 if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
493 sizeof(struct rtc_time)))
494 return -EFAULT;
496 hrs = alm_tm.tm_hour;
497 min = alm_tm.tm_min;
498 sec = alm_tm.tm_sec;
500 spin_lock_irq(&rtc_lock);
501 if (hpet_set_alarm_time(hrs, min, sec)) {
503 * Fallthru and set alarm time in CMOS too,
504 * so that we will get proper value in RTC_ALM_READ
507 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
508 RTC_ALWAYS_BCD)
510 if (sec < 60) BIN_TO_BCD(sec);
511 else sec = 0xff;
513 if (min < 60) BIN_TO_BCD(min);
514 else min = 0xff;
516 if (hrs < 24) BIN_TO_BCD(hrs);
517 else hrs = 0xff;
519 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
520 CMOS_WRITE(min, RTC_MINUTES_ALARM);
521 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
522 spin_unlock_irq(&rtc_lock);
524 return 0;
526 case RTC_RD_TIME: /* Read the time/date from RTC */
528 memset(&wtime, 0, sizeof(struct rtc_time));
529 rtc_get_rtc_time(&wtime);
530 break;
532 case RTC_SET_TIME: /* Set the RTC */
534 struct rtc_time rtc_tm;
535 unsigned char mon, day, hrs, min, sec, leap_yr;
536 unsigned char save_control, save_freq_select;
537 unsigned int yrs;
538 #ifdef CONFIG_MACH_DECSTATION
539 unsigned int real_yrs;
540 #endif
542 if (!capable(CAP_SYS_TIME))
543 return -EACCES;
545 if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
546 sizeof(struct rtc_time)))
547 return -EFAULT;
549 yrs = rtc_tm.tm_year + 1900;
550 mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
551 day = rtc_tm.tm_mday;
552 hrs = rtc_tm.tm_hour;
553 min = rtc_tm.tm_min;
554 sec = rtc_tm.tm_sec;
556 if (yrs < 1970)
557 return -EINVAL;
559 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
561 if ((mon > 12) || (day == 0))
562 return -EINVAL;
564 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
565 return -EINVAL;
567 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
568 return -EINVAL;
570 if ((yrs -= epoch) > 255) /* They are unsigned */
571 return -EINVAL;
573 spin_lock_irq(&rtc_lock);
574 #ifdef CONFIG_MACH_DECSTATION
575 real_yrs = yrs;
576 yrs = 72;
579 * We want to keep the year set to 73 until March
580 * for non-leap years, so that Feb, 29th is handled
581 * correctly.
583 if (!leap_yr && mon < 3) {
584 real_yrs--;
585 yrs = 73;
587 #endif
588 /* These limits and adjustments are independent of
589 * whether the chip is in binary mode or not.
591 if (yrs > 169) {
592 spin_unlock_irq(&rtc_lock);
593 return -EINVAL;
595 if (yrs >= 100)
596 yrs -= 100;
598 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
599 || RTC_ALWAYS_BCD) {
600 BIN_TO_BCD(sec);
601 BIN_TO_BCD(min);
602 BIN_TO_BCD(hrs);
603 BIN_TO_BCD(day);
604 BIN_TO_BCD(mon);
605 BIN_TO_BCD(yrs);
608 save_control = CMOS_READ(RTC_CONTROL);
609 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
610 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
611 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
613 #ifdef CONFIG_MACH_DECSTATION
614 CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
615 #endif
616 CMOS_WRITE(yrs, RTC_YEAR);
617 CMOS_WRITE(mon, RTC_MONTH);
618 CMOS_WRITE(day, RTC_DAY_OF_MONTH);
619 CMOS_WRITE(hrs, RTC_HOURS);
620 CMOS_WRITE(min, RTC_MINUTES);
621 CMOS_WRITE(sec, RTC_SECONDS);
623 CMOS_WRITE(save_control, RTC_CONTROL);
624 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
626 spin_unlock_irq(&rtc_lock);
627 return 0;
629 #ifdef RTC_IRQ
630 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
632 return put_user(rtc_freq, (unsigned long __user *)arg);
634 case RTC_IRQP_SET: /* Set periodic IRQ rate. */
636 int tmp = 0;
637 unsigned char val;
638 unsigned long flags; /* can be called from isr via rtc_control() */
641 * The max we can do is 8192Hz.
643 if ((arg < 2) || (arg > 8192))
644 return -EINVAL;
646 * We don't really want Joe User generating more
647 * than 64Hz of interrupts on a multi-user machine.
649 if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE)))
650 return -EACCES;
652 while (arg > (1<<tmp))
653 tmp++;
656 * Check that the input was really a power of 2.
658 if (arg != (1<<tmp))
659 return -EINVAL;
661 spin_lock_irqsave(&rtc_lock, flags);
662 if (hpet_set_periodic_freq(arg)) {
663 spin_unlock_irqrestore(&rtc_lock, flags);
664 return 0;
666 rtc_freq = arg;
668 val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
669 val |= (16 - tmp);
670 CMOS_WRITE(val, RTC_FREQ_SELECT);
671 spin_unlock_irqrestore(&rtc_lock, flags);
672 return 0;
674 #endif
675 case RTC_EPOCH_READ: /* Read the epoch. */
677 return put_user (epoch, (unsigned long __user *)arg);
679 case RTC_EPOCH_SET: /* Set the epoch. */
682 * There were no RTC clocks before 1900.
684 if (arg < 1900)
685 return -EINVAL;
687 if (!capable(CAP_SYS_TIME))
688 return -EACCES;
690 epoch = arg;
691 return 0;
693 default:
694 return -ENOTTY;
696 return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
699 static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
700 unsigned long arg)
702 return rtc_do_ioctl(cmd, arg, 0);
706 * We enforce only one user at a time here with the open/close.
707 * Also clear the previous interrupt data on an open, and clean
708 * up things on a close.
711 /* We use rtc_lock to protect against concurrent opens. So the BKL is not
712 * needed here. Or anywhere else in this driver. */
713 static int rtc_open(struct inode *inode, struct file *file)
715 spin_lock_irq (&rtc_lock);
717 if(rtc_status & RTC_IS_OPEN)
718 goto out_busy;
720 rtc_status |= RTC_IS_OPEN;
722 rtc_irq_data = 0;
723 spin_unlock_irq (&rtc_lock);
724 return 0;
726 out_busy:
727 spin_unlock_irq (&rtc_lock);
728 return -EBUSY;
731 static int rtc_fasync (int fd, struct file *filp, int on)
734 return fasync_helper (fd, filp, on, &rtc_async_queue);
737 static int rtc_release(struct inode *inode, struct file *file)
739 #ifdef RTC_IRQ
740 unsigned char tmp;
742 if (rtc_has_irq == 0)
743 goto no_irq;
746 * Turn off all interrupts once the device is no longer
747 * in use, and clear the data.
750 spin_lock_irq(&rtc_lock);
751 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
752 tmp = CMOS_READ(RTC_CONTROL);
753 tmp &= ~RTC_PIE;
754 tmp &= ~RTC_AIE;
755 tmp &= ~RTC_UIE;
756 CMOS_WRITE(tmp, RTC_CONTROL);
757 CMOS_READ(RTC_INTR_FLAGS);
759 if (rtc_status & RTC_TIMER_ON) {
760 rtc_status &= ~RTC_TIMER_ON;
761 del_timer(&rtc_irq_timer);
763 spin_unlock_irq(&rtc_lock);
765 if (file->f_flags & FASYNC) {
766 rtc_fasync (-1, file, 0);
768 no_irq:
769 #endif
771 spin_lock_irq (&rtc_lock);
772 rtc_irq_data = 0;
773 rtc_status &= ~RTC_IS_OPEN;
774 spin_unlock_irq (&rtc_lock);
775 return 0;
778 #ifdef RTC_IRQ
779 /* Called without the kernel lock - fine */
780 static unsigned int rtc_poll(struct file *file, poll_table *wait)
782 unsigned long l;
784 if (rtc_has_irq == 0)
785 return 0;
787 poll_wait(file, &rtc_wait, wait);
789 spin_lock_irq (&rtc_lock);
790 l = rtc_irq_data;
791 spin_unlock_irq (&rtc_lock);
793 if (l != 0)
794 return POLLIN | POLLRDNORM;
795 return 0;
797 #endif
800 * exported stuffs
803 EXPORT_SYMBOL(rtc_register);
804 EXPORT_SYMBOL(rtc_unregister);
805 EXPORT_SYMBOL(rtc_control);
807 int rtc_register(rtc_task_t *task)
809 #ifndef RTC_IRQ
810 return -EIO;
811 #else
812 if (task == NULL || task->func == NULL)
813 return -EINVAL;
814 spin_lock_irq(&rtc_lock);
815 if (rtc_status & RTC_IS_OPEN) {
816 spin_unlock_irq(&rtc_lock);
817 return -EBUSY;
819 spin_lock(&rtc_task_lock);
820 if (rtc_callback) {
821 spin_unlock(&rtc_task_lock);
822 spin_unlock_irq(&rtc_lock);
823 return -EBUSY;
825 rtc_status |= RTC_IS_OPEN;
826 rtc_callback = task;
827 spin_unlock(&rtc_task_lock);
828 spin_unlock_irq(&rtc_lock);
829 return 0;
830 #endif
833 int rtc_unregister(rtc_task_t *task)
835 #ifndef RTC_IRQ
836 return -EIO;
837 #else
838 unsigned char tmp;
840 spin_lock_irq(&rtc_lock);
841 spin_lock(&rtc_task_lock);
842 if (rtc_callback != task) {
843 spin_unlock(&rtc_task_lock);
844 spin_unlock_irq(&rtc_lock);
845 return -ENXIO;
847 rtc_callback = NULL;
849 /* disable controls */
850 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
851 tmp = CMOS_READ(RTC_CONTROL);
852 tmp &= ~RTC_PIE;
853 tmp &= ~RTC_AIE;
854 tmp &= ~RTC_UIE;
855 CMOS_WRITE(tmp, RTC_CONTROL);
856 CMOS_READ(RTC_INTR_FLAGS);
858 if (rtc_status & RTC_TIMER_ON) {
859 rtc_status &= ~RTC_TIMER_ON;
860 del_timer(&rtc_irq_timer);
862 rtc_status &= ~RTC_IS_OPEN;
863 spin_unlock(&rtc_task_lock);
864 spin_unlock_irq(&rtc_lock);
865 return 0;
866 #endif
869 int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
871 #ifndef RTC_IRQ
872 return -EIO;
873 #else
874 unsigned long flags;
875 if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
876 return -EINVAL;
877 spin_lock_irqsave(&rtc_task_lock, flags);
878 if (rtc_callback != task) {
879 spin_unlock_irqrestore(&rtc_task_lock, flags);
880 return -ENXIO;
882 spin_unlock_irqrestore(&rtc_task_lock, flags);
883 return rtc_do_ioctl(cmd, arg, 1);
884 #endif
889 * The various file operations we support.
892 static const struct file_operations rtc_fops = {
893 .owner = THIS_MODULE,
894 .llseek = no_llseek,
895 .read = rtc_read,
896 #ifdef RTC_IRQ
897 .poll = rtc_poll,
898 #endif
899 .ioctl = rtc_ioctl,
900 .open = rtc_open,
901 .release = rtc_release,
902 .fasync = rtc_fasync,
905 static struct miscdevice rtc_dev = {
906 .minor = RTC_MINOR,
907 .name = "rtc",
908 .fops = &rtc_fops,
911 #ifdef CONFIG_PROC_FS
912 static const struct file_operations rtc_proc_fops = {
913 .owner = THIS_MODULE,
914 .open = rtc_proc_open,
915 .read = seq_read,
916 .llseek = seq_lseek,
917 .release = single_release,
919 #endif
921 static int __init rtc_init(void)
923 #ifdef CONFIG_PROC_FS
924 struct proc_dir_entry *ent;
925 #endif
926 #if defined(__alpha__) || defined(__mips__)
927 unsigned int year, ctrl;
928 char *guess = NULL;
929 #endif
930 #ifdef CONFIG_SPARC32
931 struct linux_ebus *ebus;
932 struct linux_ebus_device *edev;
933 #else
934 void *r;
935 #ifdef RTC_IRQ
936 irq_handler_t rtc_int_handler_ptr;
937 #endif
938 #endif
940 #ifdef CONFIG_SPARC32
941 for_each_ebus(ebus) {
942 for_each_ebusdev(edev, ebus) {
943 if(strcmp(edev->prom_node->name, "rtc") == 0) {
944 rtc_port = edev->resource[0].start;
945 rtc_irq = edev->irqs[0];
946 goto found;
950 rtc_has_irq = 0;
951 printk(KERN_ERR "rtc_init: no PC rtc found\n");
952 return -EIO;
954 found:
955 if (rtc_irq == PCI_IRQ_NONE) {
956 rtc_has_irq = 0;
957 goto no_irq;
961 * XXX Interrupt pin #7 in Espresso is shared between RTC and
962 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
964 if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc", (void *)&rtc_port)) {
965 rtc_has_irq = 0;
966 printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
967 return -EIO;
969 no_irq:
970 #else
971 if (RTC_IOMAPPED)
972 r = request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
973 else
974 r = request_mem_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
975 if (!r) {
976 #ifdef RTC_IRQ
977 rtc_has_irq = 0;
978 #endif
979 printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
980 (long)(RTC_PORT(0)));
981 return -EIO;
984 #ifdef RTC_IRQ
985 if (is_hpet_enabled()) {
986 rtc_int_handler_ptr = hpet_rtc_interrupt;
987 } else {
988 rtc_int_handler_ptr = rtc_interrupt;
991 if(request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED, "rtc", NULL)) {
992 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
993 rtc_has_irq = 0;
994 printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
995 if (RTC_IOMAPPED)
996 release_region(RTC_PORT(0), RTC_IO_EXTENT);
997 else
998 release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
999 return -EIO;
1001 hpet_rtc_timer_init();
1003 #endif
1005 #endif /* CONFIG_SPARC32 vs. others */
1007 if (misc_register(&rtc_dev)) {
1008 #ifdef RTC_IRQ
1009 free_irq(RTC_IRQ, NULL);
1010 rtc_has_irq = 0;
1011 #endif
1012 release_region(RTC_PORT(0), RTC_IO_EXTENT);
1013 return -ENODEV;
1016 #ifdef CONFIG_PROC_FS
1017 ent = create_proc_entry("driver/rtc", 0, NULL);
1018 if (ent)
1019 ent->proc_fops = &rtc_proc_fops;
1020 else
1021 printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1022 #endif
1024 #if defined(__alpha__) || defined(__mips__)
1025 rtc_freq = HZ;
1027 /* Each operating system on an Alpha uses its own epoch.
1028 Let's try to guess which one we are using now. */
1030 if (rtc_is_updating() != 0)
1031 msleep(20);
1033 spin_lock_irq(&rtc_lock);
1034 year = CMOS_READ(RTC_YEAR);
1035 ctrl = CMOS_READ(RTC_CONTROL);
1036 spin_unlock_irq(&rtc_lock);
1038 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1039 BCD_TO_BIN(year); /* This should never happen... */
1041 if (year < 20) {
1042 epoch = 2000;
1043 guess = "SRM (post-2000)";
1044 } else if (year >= 20 && year < 48) {
1045 epoch = 1980;
1046 guess = "ARC console";
1047 } else if (year >= 48 && year < 72) {
1048 epoch = 1952;
1049 guess = "Digital UNIX";
1050 #if defined(__mips__)
1051 } else if (year >= 72 && year < 74) {
1052 epoch = 2000;
1053 guess = "Digital DECstation";
1054 #else
1055 } else if (year >= 70) {
1056 epoch = 1900;
1057 guess = "Standard PC (1900)";
1058 #endif
1060 if (guess)
1061 printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch);
1062 #endif
1063 #ifdef RTC_IRQ
1064 if (rtc_has_irq == 0)
1065 goto no_irq2;
1067 spin_lock_irq(&rtc_lock);
1068 rtc_freq = 1024;
1069 if (!hpet_set_periodic_freq(rtc_freq)) {
1070 /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
1071 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
1073 spin_unlock_irq(&rtc_lock);
1074 no_irq2:
1075 #endif
1077 (void) init_sysctl();
1079 printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1081 return 0;
1084 static void __exit rtc_exit (void)
1086 cleanup_sysctl();
1087 remove_proc_entry ("driver/rtc", NULL);
1088 misc_deregister(&rtc_dev);
1090 #ifdef CONFIG_SPARC32
1091 if (rtc_has_irq)
1092 free_irq (rtc_irq, &rtc_port);
1093 #else
1094 if (RTC_IOMAPPED)
1095 release_region(RTC_PORT(0), RTC_IO_EXTENT);
1096 else
1097 release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
1098 #ifdef RTC_IRQ
1099 if (rtc_has_irq)
1100 free_irq (RTC_IRQ, NULL);
1101 #endif
1102 #endif /* CONFIG_SPARC32 */
1105 module_init(rtc_init);
1106 module_exit(rtc_exit);
1108 #ifdef RTC_IRQ
1110 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1111 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1112 * Since the interrupt handler doesn't get called, the IRQ status
1113 * byte doesn't get read, and the RTC stops generating interrupts.
1114 * A timer is set, and will call this function if/when that happens.
1115 * To get it out of this stalled state, we just read the status.
1116 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1117 * (You *really* shouldn't be trying to use a non-realtime system
1118 * for something that requires a steady > 1KHz signal anyways.)
1121 static void rtc_dropped_irq(unsigned long data)
1123 unsigned long freq;
1125 spin_lock_irq (&rtc_lock);
1127 if (hpet_rtc_dropped_irq()) {
1128 spin_unlock_irq(&rtc_lock);
1129 return;
1132 /* Just in case someone disabled the timer from behind our back... */
1133 if (rtc_status & RTC_TIMER_ON)
1134 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1136 rtc_irq_data += ((rtc_freq/HZ)<<8);
1137 rtc_irq_data &= ~0xff;
1138 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
1140 freq = rtc_freq;
1142 spin_unlock_irq(&rtc_lock);
1144 if (printk_ratelimit())
1145 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq);
1147 /* Now we have new data */
1148 wake_up_interruptible(&rtc_wait);
1150 kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
1152 #endif
1154 #ifdef CONFIG_PROC_FS
1156 * Info exported via "/proc/driver/rtc".
1159 static int rtc_proc_show(struct seq_file *seq, void *v)
1161 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1162 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1163 struct rtc_time tm;
1164 unsigned char batt, ctrl;
1165 unsigned long freq;
1167 spin_lock_irq(&rtc_lock);
1168 batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1169 ctrl = CMOS_READ(RTC_CONTROL);
1170 freq = rtc_freq;
1171 spin_unlock_irq(&rtc_lock);
1174 rtc_get_rtc_time(&tm);
1177 * There is no way to tell if the luser has the RTC set for local
1178 * time or for Universal Standard Time (GMT). Probably local though.
1180 seq_printf(seq,
1181 "rtc_time\t: %02d:%02d:%02d\n"
1182 "rtc_date\t: %04d-%02d-%02d\n"
1183 "rtc_epoch\t: %04lu\n",
1184 tm.tm_hour, tm.tm_min, tm.tm_sec,
1185 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1187 get_rtc_alm_time(&tm);
1190 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1191 * match any value for that particular field. Values that are
1192 * greater than a valid time, but less than 0xc0 shouldn't appear.
1194 seq_puts(seq, "alarm\t\t: ");
1195 if (tm.tm_hour <= 24)
1196 seq_printf(seq, "%02d:", tm.tm_hour);
1197 else
1198 seq_puts(seq, "**:");
1200 if (tm.tm_min <= 59)
1201 seq_printf(seq, "%02d:", tm.tm_min);
1202 else
1203 seq_puts(seq, "**:");
1205 if (tm.tm_sec <= 59)
1206 seq_printf(seq, "%02d\n", tm.tm_sec);
1207 else
1208 seq_puts(seq, "**\n");
1210 seq_printf(seq,
1211 "DST_enable\t: %s\n"
1212 "BCD\t\t: %s\n"
1213 "24hr\t\t: %s\n"
1214 "square_wave\t: %s\n"
1215 "alarm_IRQ\t: %s\n"
1216 "update_IRQ\t: %s\n"
1217 "periodic_IRQ\t: %s\n"
1218 "periodic_freq\t: %ld\n"
1219 "batt_status\t: %s\n",
1220 YN(RTC_DST_EN),
1221 NY(RTC_DM_BINARY),
1222 YN(RTC_24H),
1223 YN(RTC_SQWE),
1224 YN(RTC_AIE),
1225 YN(RTC_UIE),
1226 YN(RTC_PIE),
1227 freq,
1228 batt ? "okay" : "dead");
1230 return 0;
1231 #undef YN
1232 #undef NY
1235 static int rtc_proc_open(struct inode *inode, struct file *file)
1237 return single_open(file, rtc_proc_show, NULL);
1239 #endif
1241 void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1243 unsigned long uip_watchdog = jiffies, flags;
1244 unsigned char ctrl;
1245 #ifdef CONFIG_MACH_DECSTATION
1246 unsigned int real_year;
1247 #endif
1250 * read RTC once any update in progress is done. The update
1251 * can take just over 2ms. We wait 20ms. There is no need to
1252 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1253 * If you need to know *exactly* when a second has started, enable
1254 * periodic update complete interrupts, (via ioctl) and then
1255 * immediately read /dev/rtc which will block until you get the IRQ.
1256 * Once the read clears, read the RTC time (again via ioctl). Easy.
1259 while (rtc_is_updating() != 0 && jiffies - uip_watchdog < 2*HZ/100)
1260 cpu_relax();
1263 * Only the values that we read from the RTC are set. We leave
1264 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1265 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1266 * only updated by the RTC when initially set to a non-zero value.
1268 spin_lock_irqsave(&rtc_lock, flags);
1269 rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1270 rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1271 rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1272 rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1273 rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1274 rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1275 /* Only set from 2.6.16 onwards */
1276 rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1278 #ifdef CONFIG_MACH_DECSTATION
1279 real_year = CMOS_READ(RTC_DEC_YEAR);
1280 #endif
1281 ctrl = CMOS_READ(RTC_CONTROL);
1282 spin_unlock_irqrestore(&rtc_lock, flags);
1284 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1286 BCD_TO_BIN(rtc_tm->tm_sec);
1287 BCD_TO_BIN(rtc_tm->tm_min);
1288 BCD_TO_BIN(rtc_tm->tm_hour);
1289 BCD_TO_BIN(rtc_tm->tm_mday);
1290 BCD_TO_BIN(rtc_tm->tm_mon);
1291 BCD_TO_BIN(rtc_tm->tm_year);
1292 BCD_TO_BIN(rtc_tm->tm_wday);
1295 #ifdef CONFIG_MACH_DECSTATION
1296 rtc_tm->tm_year += real_year - 72;
1297 #endif
1300 * Account for differences between how the RTC uses the values
1301 * and how they are defined in a struct rtc_time;
1303 if ((rtc_tm->tm_year += (epoch - 1900)) <= 69)
1304 rtc_tm->tm_year += 100;
1306 rtc_tm->tm_mon--;
1309 static void get_rtc_alm_time(struct rtc_time *alm_tm)
1311 unsigned char ctrl;
1314 * Only the values that we read from the RTC are set. That
1315 * means only tm_hour, tm_min, and tm_sec.
1317 spin_lock_irq(&rtc_lock);
1318 alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1319 alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1320 alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1321 ctrl = CMOS_READ(RTC_CONTROL);
1322 spin_unlock_irq(&rtc_lock);
1324 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1326 BCD_TO_BIN(alm_tm->tm_sec);
1327 BCD_TO_BIN(alm_tm->tm_min);
1328 BCD_TO_BIN(alm_tm->tm_hour);
1332 #ifdef RTC_IRQ
1334 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1335 * Rumour has it that if you frob the interrupt enable/disable
1336 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1337 * ensure you actually start getting interrupts. Probably for
1338 * compatibility with older/broken chipset RTC implementations.
1339 * We also clear out any old irq data after an ioctl() that
1340 * meddles with the interrupt enable/disable bits.
1343 static void mask_rtc_irq_bit_locked(unsigned char bit)
1345 unsigned char val;
1347 if (hpet_mask_rtc_irq_bit(bit))
1348 return;
1349 val = CMOS_READ(RTC_CONTROL);
1350 val &= ~bit;
1351 CMOS_WRITE(val, RTC_CONTROL);
1352 CMOS_READ(RTC_INTR_FLAGS);
1354 rtc_irq_data = 0;
1357 static void set_rtc_irq_bit_locked(unsigned char bit)
1359 unsigned char val;
1361 if (hpet_set_rtc_irq_bit(bit))
1362 return;
1363 val = CMOS_READ(RTC_CONTROL);
1364 val |= bit;
1365 CMOS_WRITE(val, RTC_CONTROL);
1366 CMOS_READ(RTC_INTR_FLAGS);
1368 rtc_irq_data = 0;
1370 #endif
1372 MODULE_AUTHOR("Paul Gortmaker");
1373 MODULE_LICENSE("GPL");
1374 MODULE_ALIAS_MISCDEV(RTC_MINOR);