4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
8 #include <linux/capability.h>
9 #include <linux/mman.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
24 int can_do_mlock(void)
26 if (capable(CAP_IPC_LOCK
))
28 if (current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
!= 0)
32 EXPORT_SYMBOL(can_do_mlock
);
34 #ifdef CONFIG_UNEVICTABLE_LRU
36 * Mlocked pages are marked with PageMlocked() flag for efficient testing
37 * in vmscan and, possibly, the fault path; and to support semi-accurate
40 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
41 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
42 * The unevictable list is an LRU sibling list to the [in]active lists.
43 * PageUnevictable is set to indicate the unevictable state.
45 * When lazy mlocking via vmscan, it is important to ensure that the
46 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
47 * may have mlocked a page that is being munlocked. So lazy mlock must take
48 * the mmap_sem for read, and verify that the vma really is locked
53 * LRU accounting for clear_page_mlock()
55 void __clear_page_mlock(struct page
*page
)
57 VM_BUG_ON(!PageLocked(page
));
59 if (!page
->mapping
) { /* truncated ? */
63 dec_zone_page_state(page
, NR_MLOCK
);
64 count_vm_event(UNEVICTABLE_PGCLEARED
);
65 if (!isolate_lru_page(page
)) {
66 putback_lru_page(page
);
69 * We lost the race. the page already moved to evictable list.
71 if (PageUnevictable(page
))
72 count_vm_event(UNEVICTABLE_PGSTRANDED
);
77 * Mark page as mlocked if not already.
78 * If page on LRU, isolate and putback to move to unevictable list.
80 void mlock_vma_page(struct page
*page
)
82 BUG_ON(!PageLocked(page
));
84 if (!TestSetPageMlocked(page
)) {
85 inc_zone_page_state(page
, NR_MLOCK
);
86 count_vm_event(UNEVICTABLE_PGMLOCKED
);
87 if (!isolate_lru_page(page
))
88 putback_lru_page(page
);
93 * called from munlock()/munmap() path with page supposedly on the LRU.
95 * Note: unlike mlock_vma_page(), we can't just clear the PageMlocked
96 * [in try_to_munlock()] and then attempt to isolate the page. We must
97 * isolate the page to keep others from messing with its unevictable
98 * and mlocked state while trying to munlock. However, we pre-clear the
99 * mlocked state anyway as we might lose the isolation race and we might
100 * not get another chance to clear PageMlocked. If we successfully
101 * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
102 * mapping the page, it will restore the PageMlocked state, unless the page
103 * is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(),
104 * perhaps redundantly.
105 * If we lose the isolation race, and the page is mapped by other VM_LOCKED
106 * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
107 * either of which will restore the PageMlocked state by calling
108 * mlock_vma_page() above, if it can grab the vma's mmap sem.
110 static void munlock_vma_page(struct page
*page
)
112 BUG_ON(!PageLocked(page
));
114 if (TestClearPageMlocked(page
)) {
115 dec_zone_page_state(page
, NR_MLOCK
);
116 if (!isolate_lru_page(page
)) {
117 int ret
= try_to_munlock(page
);
119 * did try_to_unlock() succeed or punt?
121 if (ret
== SWAP_SUCCESS
|| ret
== SWAP_AGAIN
)
122 count_vm_event(UNEVICTABLE_PGMUNLOCKED
);
124 putback_lru_page(page
);
127 * We lost the race. let try_to_unmap() deal
128 * with it. At least we get the page state and
129 * mlock stats right. However, page is still on
130 * the noreclaim list. We'll fix that up when
131 * the page is eventually freed or we scan the
134 if (PageUnevictable(page
))
135 count_vm_event(UNEVICTABLE_PGSTRANDED
);
137 count_vm_event(UNEVICTABLE_PGMUNLOCKED
);
143 * __mlock_vma_pages_range() - mlock/munlock a range of pages in the vma.
145 * @start: start address
147 * @mlock: 0 indicate munlock, otherwise mlock.
149 * If @mlock == 0, unlock an mlocked range;
150 * else mlock the range of pages. This takes care of making the pages present ,
153 * return 0 on success, negative error code on error.
155 * vma->vm_mm->mmap_sem must be held for at least read.
157 static long __mlock_vma_pages_range(struct vm_area_struct
*vma
,
158 unsigned long start
, unsigned long end
,
161 struct mm_struct
*mm
= vma
->vm_mm
;
162 unsigned long addr
= start
;
163 struct page
*pages
[16]; /* 16 gives a reasonable batch */
164 int nr_pages
= (end
- start
) / PAGE_SIZE
;
168 VM_BUG_ON(start
& ~PAGE_MASK
);
169 VM_BUG_ON(end
& ~PAGE_MASK
);
170 VM_BUG_ON(start
< vma
->vm_start
);
171 VM_BUG_ON(end
> vma
->vm_end
);
172 VM_BUG_ON((!rwsem_is_locked(&mm
->mmap_sem
)) &&
173 (atomic_read(&mm
->mm_users
) != 0));
176 * mlock: don't page populate if page has PROT_NONE permission.
177 * munlock: the pages always do munlock althrough
178 * its has PROT_NONE permission.
181 gup_flags
|= GUP_FLAGS_IGNORE_VMA_PERMISSIONS
;
183 if (vma
->vm_flags
& VM_WRITE
)
184 gup_flags
|= GUP_FLAGS_WRITE
;
186 while (nr_pages
> 0) {
192 * get_user_pages makes pages present if we are
193 * setting mlock. and this extra reference count will
194 * disable migration of this page. However, page may
195 * still be truncated out from under us.
197 ret
= __get_user_pages(current
, mm
, addr
,
198 min_t(int, nr_pages
, ARRAY_SIZE(pages
)),
199 gup_flags
, pages
, NULL
);
201 * This can happen for, e.g., VM_NONLINEAR regions before
202 * a page has been allocated and mapped at a given offset,
203 * or for addresses that map beyond end of a file.
204 * We'll mlock the the pages if/when they get faulted in.
210 * We know the vma is there, so the only time
211 * we cannot get a single page should be an
212 * error (ret < 0) case.
218 lru_add_drain(); /* push cached pages to LRU */
220 for (i
= 0; i
< ret
; i
++) {
221 struct page
*page
= pages
[i
];
225 * Because we lock page here and migration is blocked
226 * by the elevated reference, we need only check for
227 * page truncation (file-cache only).
231 mlock_vma_page(page
);
233 munlock_vma_page(page
);
236 put_page(page
); /* ref from get_user_pages() */
239 * here we assume that get_user_pages() has given us
240 * a list of virtually contiguous pages.
242 addr
+= PAGE_SIZE
; /* for next get_user_pages() */
248 return ret
; /* count entire vma as locked_vm */
252 * convert get_user_pages() return value to posix mlock() error
254 static int __mlock_posix_error_return(long retval
)
256 if (retval
== -EFAULT
)
258 else if (retval
== -ENOMEM
)
263 #else /* CONFIG_UNEVICTABLE_LRU */
266 * Just make pages present if VM_LOCKED. No-op if unlocking.
268 static long __mlock_vma_pages_range(struct vm_area_struct
*vma
,
269 unsigned long start
, unsigned long end
,
272 if (mlock
&& (vma
->vm_flags
& VM_LOCKED
))
273 return make_pages_present(start
, end
);
277 static inline int __mlock_posix_error_return(long retval
)
282 #endif /* CONFIG_UNEVICTABLE_LRU */
285 * mlock_vma_pages_range() - mlock pages in specified vma range.
286 * @vma - the vma containing the specfied address range
287 * @start - starting address in @vma to mlock
288 * @end - end address [+1] in @vma to mlock
290 * For mmap()/mremap()/expansion of mlocked vma.
292 * return 0 on success for "normal" vmas.
294 * return number of pages [> 0] to be removed from locked_vm on success
297 * return negative error if vma spanning @start-@range disappears while
298 * mmap semaphore is dropped. Unlikely?
300 long mlock_vma_pages_range(struct vm_area_struct
*vma
,
301 unsigned long start
, unsigned long end
)
303 struct mm_struct
*mm
= vma
->vm_mm
;
304 int nr_pages
= (end
- start
) / PAGE_SIZE
;
305 BUG_ON(!(vma
->vm_flags
& VM_LOCKED
));
308 * filter unlockable vmas
310 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
313 if (!((vma
->vm_flags
& (VM_DONTEXPAND
| VM_RESERVED
)) ||
314 is_vm_hugetlb_page(vma
) ||
315 vma
== get_gate_vma(current
))) {
317 downgrade_write(&mm
->mmap_sem
);
319 error
= __mlock_vma_pages_range(vma
, start
, end
, 1);
321 up_read(&mm
->mmap_sem
);
322 /* vma can change or disappear */
323 down_write(&mm
->mmap_sem
);
324 vma
= find_vma(mm
, start
);
325 /* non-NULL vma must contain @start, but need to check @end */
326 if (!vma
|| end
> vma
->vm_end
)
329 return 0; /* hide other errors from mmap(), et al */
333 * User mapped kernel pages or huge pages:
334 * make these pages present to populate the ptes, but
335 * fall thru' to reset VM_LOCKED--no need to unlock, and
336 * return nr_pages so these don't get counted against task's
337 * locked limit. huge pages are already counted against
340 make_pages_present(start
, end
);
343 vma
->vm_flags
&= ~VM_LOCKED
; /* and don't come back! */
344 return nr_pages
; /* error or pages NOT mlocked */
349 * munlock_vma_pages_range() - munlock all pages in the vma range.'
350 * @vma - vma containing range to be munlock()ed.
351 * @start - start address in @vma of the range
352 * @end - end of range in @vma.
354 * For mremap(), munmap() and exit().
356 * Called with @vma VM_LOCKED.
358 * Returns with VM_LOCKED cleared. Callers must be prepared to
361 * We don't save and restore VM_LOCKED here because pages are
362 * still on lru. In unmap path, pages might be scanned by reclaim
363 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
364 * free them. This will result in freeing mlocked pages.
366 void munlock_vma_pages_range(struct vm_area_struct
*vma
,
367 unsigned long start
, unsigned long end
)
369 vma
->vm_flags
&= ~VM_LOCKED
;
370 __mlock_vma_pages_range(vma
, start
, end
, 0);
374 * mlock_fixup - handle mlock[all]/munlock[all] requests.
376 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
377 * munlock is a no-op. However, for some special vmas, we go ahead and
378 * populate the ptes via make_pages_present().
380 * For vmas that pass the filters, merge/split as appropriate.
382 static int mlock_fixup(struct vm_area_struct
*vma
, struct vm_area_struct
**prev
,
383 unsigned long start
, unsigned long end
, unsigned int newflags
)
385 struct mm_struct
*mm
= vma
->vm_mm
;
389 int lock
= newflags
& VM_LOCKED
;
391 if (newflags
== vma
->vm_flags
||
392 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
393 goto out
; /* don't set VM_LOCKED, don't count */
395 if ((vma
->vm_flags
& (VM_DONTEXPAND
| VM_RESERVED
)) ||
396 is_vm_hugetlb_page(vma
) ||
397 vma
== get_gate_vma(current
)) {
399 make_pages_present(start
, end
);
400 goto out
; /* don't set VM_LOCKED, don't count */
403 pgoff
= vma
->vm_pgoff
+ ((start
- vma
->vm_start
) >> PAGE_SHIFT
);
404 *prev
= vma_merge(mm
, *prev
, start
, end
, newflags
, vma
->anon_vma
,
405 vma
->vm_file
, pgoff
, vma_policy(vma
));
411 if (start
!= vma
->vm_start
) {
412 ret
= split_vma(mm
, vma
, start
, 1);
417 if (end
!= vma
->vm_end
) {
418 ret
= split_vma(mm
, vma
, end
, 0);
425 * Keep track of amount of locked VM.
427 nr_pages
= (end
- start
) >> PAGE_SHIFT
;
429 nr_pages
= -nr_pages
;
430 mm
->locked_vm
+= nr_pages
;
433 * vm_flags is protected by the mmap_sem held in write mode.
434 * It's okay if try_to_unmap_one unmaps a page just after we
435 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
437 vma
->vm_flags
= newflags
;
441 * mmap_sem is currently held for write. Downgrade the write
442 * lock to a read lock so that other faults, mmap scans, ...
443 * while we fault in all pages.
445 downgrade_write(&mm
->mmap_sem
);
447 ret
= __mlock_vma_pages_range(vma
, start
, end
, 1);
450 * Need to reacquire mmap sem in write mode, as our callers
451 * expect this. We have no support for atomically upgrading
452 * a sem to write, so we need to check for ranges while sem
455 up_read(&mm
->mmap_sem
);
456 /* vma can change or disappear */
457 down_write(&mm
->mmap_sem
);
458 *prev
= find_vma(mm
, start
);
459 /* non-NULL *prev must contain @start, but need to check @end */
460 if (!(*prev
) || end
> (*prev
)->vm_end
)
463 mm
->locked_vm
-= ret
;
466 ret
= __mlock_posix_error_return(ret
); /* translate if needed */
469 * TODO: for unlocking, pages will already be resident, so
470 * we don't need to wait for allocations/reclaim/pagein, ...
471 * However, unlocking a very large region can still take a
472 * while. Should we downgrade the semaphore for both lock
475 __mlock_vma_pages_range(vma
, start
, end
, 0);
483 static int do_mlock(unsigned long start
, size_t len
, int on
)
485 unsigned long nstart
, end
, tmp
;
486 struct vm_area_struct
* vma
, * prev
;
489 len
= PAGE_ALIGN(len
);
495 vma
= find_vma_prev(current
->mm
, start
, &prev
);
496 if (!vma
|| vma
->vm_start
> start
)
499 if (start
> vma
->vm_start
)
502 for (nstart
= start
; ; ) {
503 unsigned int newflags
;
505 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
507 newflags
= vma
->vm_flags
| VM_LOCKED
;
509 newflags
&= ~VM_LOCKED
;
514 error
= mlock_fixup(vma
, &prev
, nstart
, tmp
, newflags
);
518 if (nstart
< prev
->vm_end
)
519 nstart
= prev
->vm_end
;
524 if (!vma
|| vma
->vm_start
!= nstart
) {
532 asmlinkage
long sys_mlock(unsigned long start
, size_t len
)
534 unsigned long locked
;
535 unsigned long lock_limit
;
541 lru_add_drain_all(); /* flush pagevec */
543 down_write(¤t
->mm
->mmap_sem
);
544 len
= PAGE_ALIGN(len
+ (start
& ~PAGE_MASK
));
547 locked
= len
>> PAGE_SHIFT
;
548 locked
+= current
->mm
->locked_vm
;
550 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
551 lock_limit
>>= PAGE_SHIFT
;
553 /* check against resource limits */
554 if ((locked
<= lock_limit
) || capable(CAP_IPC_LOCK
))
555 error
= do_mlock(start
, len
, 1);
556 up_write(¤t
->mm
->mmap_sem
);
560 asmlinkage
long sys_munlock(unsigned long start
, size_t len
)
564 down_write(¤t
->mm
->mmap_sem
);
565 len
= PAGE_ALIGN(len
+ (start
& ~PAGE_MASK
));
567 ret
= do_mlock(start
, len
, 0);
568 up_write(¤t
->mm
->mmap_sem
);
572 static int do_mlockall(int flags
)
574 struct vm_area_struct
* vma
, * prev
= NULL
;
575 unsigned int def_flags
= 0;
577 if (flags
& MCL_FUTURE
)
578 def_flags
= VM_LOCKED
;
579 current
->mm
->def_flags
= def_flags
;
580 if (flags
== MCL_FUTURE
)
583 for (vma
= current
->mm
->mmap
; vma
; vma
= prev
->vm_next
) {
584 unsigned int newflags
;
586 newflags
= vma
->vm_flags
| VM_LOCKED
;
587 if (!(flags
& MCL_CURRENT
))
588 newflags
&= ~VM_LOCKED
;
591 mlock_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
, newflags
);
597 asmlinkage
long sys_mlockall(int flags
)
599 unsigned long lock_limit
;
602 if (!flags
|| (flags
& ~(MCL_CURRENT
| MCL_FUTURE
)))
609 lru_add_drain_all(); /* flush pagevec */
611 down_write(¤t
->mm
->mmap_sem
);
613 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
614 lock_limit
>>= PAGE_SHIFT
;
617 if (!(flags
& MCL_CURRENT
) || (current
->mm
->total_vm
<= lock_limit
) ||
618 capable(CAP_IPC_LOCK
))
619 ret
= do_mlockall(flags
);
620 up_write(¤t
->mm
->mmap_sem
);
625 asmlinkage
long sys_munlockall(void)
629 down_write(¤t
->mm
->mmap_sem
);
630 ret
= do_mlockall(0);
631 up_write(¤t
->mm
->mmap_sem
);
636 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
637 * shm segments) get accounted against the user_struct instead.
639 static DEFINE_SPINLOCK(shmlock_user_lock
);
641 int user_shm_lock(size_t size
, struct user_struct
*user
)
643 unsigned long lock_limit
, locked
;
646 locked
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
647 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
648 if (lock_limit
== RLIM_INFINITY
)
650 lock_limit
>>= PAGE_SHIFT
;
651 spin_lock(&shmlock_user_lock
);
653 locked
+ user
->locked_shm
> lock_limit
&& !capable(CAP_IPC_LOCK
))
656 user
->locked_shm
+= locked
;
659 spin_unlock(&shmlock_user_lock
);
663 void user_shm_unlock(size_t size
, struct user_struct
*user
)
665 spin_lock(&shmlock_user_lock
);
666 user
->locked_shm
-= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
667 spin_unlock(&shmlock_user_lock
);
671 void *alloc_locked_buffer(size_t size
)
673 unsigned long rlim
, vm
, pgsz
;
676 pgsz
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
678 down_write(¤t
->mm
->mmap_sem
);
680 rlim
= current
->signal
->rlim
[RLIMIT_AS
].rlim_cur
>> PAGE_SHIFT
;
681 vm
= current
->mm
->total_vm
+ pgsz
;
685 rlim
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
>> PAGE_SHIFT
;
686 vm
= current
->mm
->locked_vm
+ pgsz
;
690 buffer
= kzalloc(size
, GFP_KERNEL
);
694 current
->mm
->total_vm
+= pgsz
;
695 current
->mm
->locked_vm
+= pgsz
;
698 up_write(¤t
->mm
->mmap_sem
);
702 void free_locked_buffer(void *buffer
, size_t size
)
704 unsigned long pgsz
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
706 down_write(¤t
->mm
->mmap_sem
);
708 current
->mm
->total_vm
-= pgsz
;
709 current
->mm
->locked_vm
-= pgsz
;
711 up_write(¤t
->mm
->mmap_sem
);