ocfs2: Add FITRIM ioctl.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / fork.c
blob2b44d82b8237f6fb8e98cef8cff1c5cb84620efb
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/ksm.h>
54 #include <linux/acct.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/freezer.h>
58 #include <linux/delayacct.h>
59 #include <linux/taskstats_kern.h>
60 #include <linux/random.h>
61 #include <linux/tty.h>
62 #include <linux/proc_fs.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
72 #include <asm/pgtable.h>
73 #include <asm/pgalloc.h>
74 #include <asm/uaccess.h>
75 #include <asm/mmu_context.h>
76 #include <asm/cacheflush.h>
77 #include <asm/tlbflush.h>
79 #include <trace/events/sched.h>
82 * Protected counters by write_lock_irq(&tasklist_lock)
84 unsigned long total_forks; /* Handle normal Linux uptimes. */
85 int nr_threads; /* The idle threads do not count.. */
87 int max_threads; /* tunable limit on nr_threads */
89 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
91 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
93 #ifdef CONFIG_PROVE_RCU
94 int lockdep_tasklist_lock_is_held(void)
96 return lockdep_is_held(&tasklist_lock);
98 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
99 #endif /* #ifdef CONFIG_PROVE_RCU */
101 int nr_processes(void)
103 int cpu;
104 int total = 0;
106 for_each_possible_cpu(cpu)
107 total += per_cpu(process_counts, cpu);
109 return total;
112 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
113 # define alloc_task_struct_node(node) \
114 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
115 # define free_task_struct(tsk) \
116 kmem_cache_free(task_struct_cachep, (tsk))
117 static struct kmem_cache *task_struct_cachep;
118 #endif
120 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
121 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
122 int node)
124 #ifdef CONFIG_DEBUG_STACK_USAGE
125 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
126 #else
127 gfp_t mask = GFP_KERNEL;
128 #endif
129 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
131 return page ? page_address(page) : NULL;
134 static inline void free_thread_info(struct thread_info *ti)
136 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
138 #endif
140 /* SLAB cache for signal_struct structures (tsk->signal) */
141 static struct kmem_cache *signal_cachep;
143 /* SLAB cache for sighand_struct structures (tsk->sighand) */
144 struct kmem_cache *sighand_cachep;
146 /* SLAB cache for files_struct structures (tsk->files) */
147 struct kmem_cache *files_cachep;
149 /* SLAB cache for fs_struct structures (tsk->fs) */
150 struct kmem_cache *fs_cachep;
152 /* SLAB cache for vm_area_struct structures */
153 struct kmem_cache *vm_area_cachep;
155 /* SLAB cache for mm_struct structures (tsk->mm) */
156 static struct kmem_cache *mm_cachep;
158 static void account_kernel_stack(struct thread_info *ti, int account)
160 struct zone *zone = page_zone(virt_to_page(ti));
162 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
165 void free_task(struct task_struct *tsk)
167 prop_local_destroy_single(&tsk->dirties);
168 account_kernel_stack(tsk->stack, -1);
169 free_thread_info(tsk->stack);
170 rt_mutex_debug_task_free(tsk);
171 ftrace_graph_exit_task(tsk);
172 free_task_struct(tsk);
174 EXPORT_SYMBOL(free_task);
176 static inline void free_signal_struct(struct signal_struct *sig)
178 taskstats_tgid_free(sig);
179 sched_autogroup_exit(sig);
180 kmem_cache_free(signal_cachep, sig);
183 static inline void put_signal_struct(struct signal_struct *sig)
185 if (atomic_dec_and_test(&sig->sigcnt))
186 free_signal_struct(sig);
189 void __put_task_struct(struct task_struct *tsk)
191 WARN_ON(!tsk->exit_state);
192 WARN_ON(atomic_read(&tsk->usage));
193 WARN_ON(tsk == current);
195 exit_creds(tsk);
196 delayacct_tsk_free(tsk);
197 put_signal_struct(tsk->signal);
199 if (!profile_handoff_task(tsk))
200 free_task(tsk);
202 EXPORT_SYMBOL_GPL(__put_task_struct);
205 * macro override instead of weak attribute alias, to workaround
206 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
208 #ifndef arch_task_cache_init
209 #define arch_task_cache_init()
210 #endif
212 void __init fork_init(unsigned long mempages)
214 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
215 #ifndef ARCH_MIN_TASKALIGN
216 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
217 #endif
218 /* create a slab on which task_structs can be allocated */
219 task_struct_cachep =
220 kmem_cache_create("task_struct", sizeof(struct task_struct),
221 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
222 #endif
224 /* do the arch specific task caches init */
225 arch_task_cache_init();
228 * The default maximum number of threads is set to a safe
229 * value: the thread structures can take up at most half
230 * of memory.
232 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
235 * we need to allow at least 20 threads to boot a system
237 if(max_threads < 20)
238 max_threads = 20;
240 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
241 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
242 init_task.signal->rlim[RLIMIT_SIGPENDING] =
243 init_task.signal->rlim[RLIMIT_NPROC];
246 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
247 struct task_struct *src)
249 *dst = *src;
250 return 0;
253 static struct task_struct *dup_task_struct(struct task_struct *orig)
255 struct task_struct *tsk;
256 struct thread_info *ti;
257 unsigned long *stackend;
258 int node = tsk_fork_get_node(orig);
259 int err;
261 prepare_to_copy(orig);
263 tsk = alloc_task_struct_node(node);
264 if (!tsk)
265 return NULL;
267 ti = alloc_thread_info_node(tsk, node);
268 if (!ti) {
269 free_task_struct(tsk);
270 return NULL;
273 err = arch_dup_task_struct(tsk, orig);
274 if (err)
275 goto out;
277 tsk->stack = ti;
279 err = prop_local_init_single(&tsk->dirties);
280 if (err)
281 goto out;
283 setup_thread_stack(tsk, orig);
284 clear_user_return_notifier(tsk);
285 clear_tsk_need_resched(tsk);
286 stackend = end_of_stack(tsk);
287 *stackend = STACK_END_MAGIC; /* for overflow detection */
289 #ifdef CONFIG_CC_STACKPROTECTOR
290 tsk->stack_canary = get_random_int();
291 #endif
293 /* One for us, one for whoever does the "release_task()" (usually parent) */
294 atomic_set(&tsk->usage,2);
295 atomic_set(&tsk->fs_excl, 0);
296 #ifdef CONFIG_BLK_DEV_IO_TRACE
297 tsk->btrace_seq = 0;
298 #endif
299 tsk->splice_pipe = NULL;
301 account_kernel_stack(ti, 1);
303 return tsk;
305 out:
306 free_thread_info(ti);
307 free_task_struct(tsk);
308 return NULL;
311 #ifdef CONFIG_MMU
312 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
314 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
315 struct rb_node **rb_link, *rb_parent;
316 int retval;
317 unsigned long charge;
318 struct mempolicy *pol;
320 down_write(&oldmm->mmap_sem);
321 flush_cache_dup_mm(oldmm);
323 * Not linked in yet - no deadlock potential:
325 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
327 mm->locked_vm = 0;
328 mm->mmap = NULL;
329 mm->mmap_cache = NULL;
330 mm->free_area_cache = oldmm->mmap_base;
331 mm->cached_hole_size = ~0UL;
332 mm->map_count = 0;
333 cpumask_clear(mm_cpumask(mm));
334 mm->mm_rb = RB_ROOT;
335 rb_link = &mm->mm_rb.rb_node;
336 rb_parent = NULL;
337 pprev = &mm->mmap;
338 retval = ksm_fork(mm, oldmm);
339 if (retval)
340 goto out;
341 retval = khugepaged_fork(mm, oldmm);
342 if (retval)
343 goto out;
345 prev = NULL;
346 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
347 struct file *file;
349 if (mpnt->vm_flags & VM_DONTCOPY) {
350 long pages = vma_pages(mpnt);
351 mm->total_vm -= pages;
352 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
353 -pages);
354 continue;
356 charge = 0;
357 if (mpnt->vm_flags & VM_ACCOUNT) {
358 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
359 if (security_vm_enough_memory(len))
360 goto fail_nomem;
361 charge = len;
363 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
364 if (!tmp)
365 goto fail_nomem;
366 *tmp = *mpnt;
367 INIT_LIST_HEAD(&tmp->anon_vma_chain);
368 pol = mpol_dup(vma_policy(mpnt));
369 retval = PTR_ERR(pol);
370 if (IS_ERR(pol))
371 goto fail_nomem_policy;
372 vma_set_policy(tmp, pol);
373 tmp->vm_mm = mm;
374 if (anon_vma_fork(tmp, mpnt))
375 goto fail_nomem_anon_vma_fork;
376 tmp->vm_flags &= ~VM_LOCKED;
377 tmp->vm_next = tmp->vm_prev = NULL;
378 file = tmp->vm_file;
379 if (file) {
380 struct inode *inode = file->f_path.dentry->d_inode;
381 struct address_space *mapping = file->f_mapping;
383 get_file(file);
384 if (tmp->vm_flags & VM_DENYWRITE)
385 atomic_dec(&inode->i_writecount);
386 spin_lock(&mapping->i_mmap_lock);
387 if (tmp->vm_flags & VM_SHARED)
388 mapping->i_mmap_writable++;
389 tmp->vm_truncate_count = mpnt->vm_truncate_count;
390 flush_dcache_mmap_lock(mapping);
391 /* insert tmp into the share list, just after mpnt */
392 vma_prio_tree_add(tmp, mpnt);
393 flush_dcache_mmap_unlock(mapping);
394 spin_unlock(&mapping->i_mmap_lock);
398 * Clear hugetlb-related page reserves for children. This only
399 * affects MAP_PRIVATE mappings. Faults generated by the child
400 * are not guaranteed to succeed, even if read-only
402 if (is_vm_hugetlb_page(tmp))
403 reset_vma_resv_huge_pages(tmp);
406 * Link in the new vma and copy the page table entries.
408 *pprev = tmp;
409 pprev = &tmp->vm_next;
410 tmp->vm_prev = prev;
411 prev = tmp;
413 __vma_link_rb(mm, tmp, rb_link, rb_parent);
414 rb_link = &tmp->vm_rb.rb_right;
415 rb_parent = &tmp->vm_rb;
417 mm->map_count++;
418 retval = copy_page_range(mm, oldmm, mpnt);
420 if (tmp->vm_ops && tmp->vm_ops->open)
421 tmp->vm_ops->open(tmp);
423 if (retval)
424 goto out;
426 /* a new mm has just been created */
427 arch_dup_mmap(oldmm, mm);
428 retval = 0;
429 out:
430 up_write(&mm->mmap_sem);
431 flush_tlb_mm(oldmm);
432 up_write(&oldmm->mmap_sem);
433 return retval;
434 fail_nomem_anon_vma_fork:
435 mpol_put(pol);
436 fail_nomem_policy:
437 kmem_cache_free(vm_area_cachep, tmp);
438 fail_nomem:
439 retval = -ENOMEM;
440 vm_unacct_memory(charge);
441 goto out;
444 static inline int mm_alloc_pgd(struct mm_struct * mm)
446 mm->pgd = pgd_alloc(mm);
447 if (unlikely(!mm->pgd))
448 return -ENOMEM;
449 return 0;
452 static inline void mm_free_pgd(struct mm_struct * mm)
454 pgd_free(mm, mm->pgd);
456 #else
457 #define dup_mmap(mm, oldmm) (0)
458 #define mm_alloc_pgd(mm) (0)
459 #define mm_free_pgd(mm)
460 #endif /* CONFIG_MMU */
462 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
464 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
465 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
467 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
469 static int __init coredump_filter_setup(char *s)
471 default_dump_filter =
472 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
473 MMF_DUMP_FILTER_MASK;
474 return 1;
477 __setup("coredump_filter=", coredump_filter_setup);
479 #include <linux/init_task.h>
481 static void mm_init_aio(struct mm_struct *mm)
483 #ifdef CONFIG_AIO
484 spin_lock_init(&mm->ioctx_lock);
485 INIT_HLIST_HEAD(&mm->ioctx_list);
486 #endif
489 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
491 atomic_set(&mm->mm_users, 1);
492 atomic_set(&mm->mm_count, 1);
493 init_rwsem(&mm->mmap_sem);
494 INIT_LIST_HEAD(&mm->mmlist);
495 mm->flags = (current->mm) ?
496 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
497 mm->core_state = NULL;
498 mm->nr_ptes = 0;
499 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
500 spin_lock_init(&mm->page_table_lock);
501 mm->free_area_cache = TASK_UNMAPPED_BASE;
502 mm->cached_hole_size = ~0UL;
503 mm_init_aio(mm);
504 mm_init_owner(mm, p);
505 atomic_set(&mm->oom_disable_count, 0);
507 if (likely(!mm_alloc_pgd(mm))) {
508 mm->def_flags = 0;
509 mmu_notifier_mm_init(mm);
510 return mm;
513 free_mm(mm);
514 return NULL;
518 * Allocate and initialize an mm_struct.
520 struct mm_struct * mm_alloc(void)
522 struct mm_struct * mm;
524 mm = allocate_mm();
525 if (mm) {
526 memset(mm, 0, sizeof(*mm));
527 mm = mm_init(mm, current);
529 return mm;
533 * Called when the last reference to the mm
534 * is dropped: either by a lazy thread or by
535 * mmput. Free the page directory and the mm.
537 void __mmdrop(struct mm_struct *mm)
539 BUG_ON(mm == &init_mm);
540 mm_free_pgd(mm);
541 destroy_context(mm);
542 mmu_notifier_mm_destroy(mm);
543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
544 VM_BUG_ON(mm->pmd_huge_pte);
545 #endif
546 free_mm(mm);
548 EXPORT_SYMBOL_GPL(__mmdrop);
551 * Decrement the use count and release all resources for an mm.
553 void mmput(struct mm_struct *mm)
555 might_sleep();
557 if (atomic_dec_and_test(&mm->mm_users)) {
558 exit_aio(mm);
559 ksm_exit(mm);
560 khugepaged_exit(mm); /* must run before exit_mmap */
561 exit_mmap(mm);
562 set_mm_exe_file(mm, NULL);
563 if (!list_empty(&mm->mmlist)) {
564 spin_lock(&mmlist_lock);
565 list_del(&mm->mmlist);
566 spin_unlock(&mmlist_lock);
568 put_swap_token(mm);
569 if (mm->binfmt)
570 module_put(mm->binfmt->module);
571 mmdrop(mm);
574 EXPORT_SYMBOL_GPL(mmput);
577 * get_task_mm - acquire a reference to the task's mm
579 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
580 * this kernel workthread has transiently adopted a user mm with use_mm,
581 * to do its AIO) is not set and if so returns a reference to it, after
582 * bumping up the use count. User must release the mm via mmput()
583 * after use. Typically used by /proc and ptrace.
585 struct mm_struct *get_task_mm(struct task_struct *task)
587 struct mm_struct *mm;
589 task_lock(task);
590 mm = task->mm;
591 if (mm) {
592 if (task->flags & PF_KTHREAD)
593 mm = NULL;
594 else
595 atomic_inc(&mm->mm_users);
597 task_unlock(task);
598 return mm;
600 EXPORT_SYMBOL_GPL(get_task_mm);
602 /* Please note the differences between mmput and mm_release.
603 * mmput is called whenever we stop holding onto a mm_struct,
604 * error success whatever.
606 * mm_release is called after a mm_struct has been removed
607 * from the current process.
609 * This difference is important for error handling, when we
610 * only half set up a mm_struct for a new process and need to restore
611 * the old one. Because we mmput the new mm_struct before
612 * restoring the old one. . .
613 * Eric Biederman 10 January 1998
615 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
617 struct completion *vfork_done = tsk->vfork_done;
619 /* Get rid of any futexes when releasing the mm */
620 #ifdef CONFIG_FUTEX
621 if (unlikely(tsk->robust_list)) {
622 exit_robust_list(tsk);
623 tsk->robust_list = NULL;
625 #ifdef CONFIG_COMPAT
626 if (unlikely(tsk->compat_robust_list)) {
627 compat_exit_robust_list(tsk);
628 tsk->compat_robust_list = NULL;
630 #endif
631 if (unlikely(!list_empty(&tsk->pi_state_list)))
632 exit_pi_state_list(tsk);
633 #endif
635 /* Get rid of any cached register state */
636 deactivate_mm(tsk, mm);
638 /* notify parent sleeping on vfork() */
639 if (vfork_done) {
640 tsk->vfork_done = NULL;
641 complete(vfork_done);
645 * If we're exiting normally, clear a user-space tid field if
646 * requested. We leave this alone when dying by signal, to leave
647 * the value intact in a core dump, and to save the unnecessary
648 * trouble otherwise. Userland only wants this done for a sys_exit.
650 if (tsk->clear_child_tid) {
651 if (!(tsk->flags & PF_SIGNALED) &&
652 atomic_read(&mm->mm_users) > 1) {
654 * We don't check the error code - if userspace has
655 * not set up a proper pointer then tough luck.
657 put_user(0, tsk->clear_child_tid);
658 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
659 1, NULL, NULL, 0);
661 tsk->clear_child_tid = NULL;
666 * Allocate a new mm structure and copy contents from the
667 * mm structure of the passed in task structure.
669 struct mm_struct *dup_mm(struct task_struct *tsk)
671 struct mm_struct *mm, *oldmm = current->mm;
672 int err;
674 if (!oldmm)
675 return NULL;
677 mm = allocate_mm();
678 if (!mm)
679 goto fail_nomem;
681 memcpy(mm, oldmm, sizeof(*mm));
683 /* Initializing for Swap token stuff */
684 mm->token_priority = 0;
685 mm->last_interval = 0;
687 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
688 mm->pmd_huge_pte = NULL;
689 #endif
691 if (!mm_init(mm, tsk))
692 goto fail_nomem;
694 if (init_new_context(tsk, mm))
695 goto fail_nocontext;
697 dup_mm_exe_file(oldmm, mm);
699 err = dup_mmap(mm, oldmm);
700 if (err)
701 goto free_pt;
703 mm->hiwater_rss = get_mm_rss(mm);
704 mm->hiwater_vm = mm->total_vm;
706 if (mm->binfmt && !try_module_get(mm->binfmt->module))
707 goto free_pt;
709 return mm;
711 free_pt:
712 /* don't put binfmt in mmput, we haven't got module yet */
713 mm->binfmt = NULL;
714 mmput(mm);
716 fail_nomem:
717 return NULL;
719 fail_nocontext:
721 * If init_new_context() failed, we cannot use mmput() to free the mm
722 * because it calls destroy_context()
724 mm_free_pgd(mm);
725 free_mm(mm);
726 return NULL;
729 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
731 struct mm_struct * mm, *oldmm;
732 int retval;
734 tsk->min_flt = tsk->maj_flt = 0;
735 tsk->nvcsw = tsk->nivcsw = 0;
736 #ifdef CONFIG_DETECT_HUNG_TASK
737 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
738 #endif
740 tsk->mm = NULL;
741 tsk->active_mm = NULL;
744 * Are we cloning a kernel thread?
746 * We need to steal a active VM for that..
748 oldmm = current->mm;
749 if (!oldmm)
750 return 0;
752 if (clone_flags & CLONE_VM) {
753 atomic_inc(&oldmm->mm_users);
754 mm = oldmm;
755 goto good_mm;
758 retval = -ENOMEM;
759 mm = dup_mm(tsk);
760 if (!mm)
761 goto fail_nomem;
763 good_mm:
764 /* Initializing for Swap token stuff */
765 mm->token_priority = 0;
766 mm->last_interval = 0;
767 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
768 atomic_inc(&mm->oom_disable_count);
770 tsk->mm = mm;
771 tsk->active_mm = mm;
772 return 0;
774 fail_nomem:
775 return retval;
778 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
780 struct fs_struct *fs = current->fs;
781 if (clone_flags & CLONE_FS) {
782 /* tsk->fs is already what we want */
783 spin_lock(&fs->lock);
784 if (fs->in_exec) {
785 spin_unlock(&fs->lock);
786 return -EAGAIN;
788 fs->users++;
789 spin_unlock(&fs->lock);
790 return 0;
792 tsk->fs = copy_fs_struct(fs);
793 if (!tsk->fs)
794 return -ENOMEM;
795 return 0;
798 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
800 struct files_struct *oldf, *newf;
801 int error = 0;
804 * A background process may not have any files ...
806 oldf = current->files;
807 if (!oldf)
808 goto out;
810 if (clone_flags & CLONE_FILES) {
811 atomic_inc(&oldf->count);
812 goto out;
815 newf = dup_fd(oldf, &error);
816 if (!newf)
817 goto out;
819 tsk->files = newf;
820 error = 0;
821 out:
822 return error;
825 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
827 #ifdef CONFIG_BLOCK
828 struct io_context *ioc = current->io_context;
830 if (!ioc)
831 return 0;
833 * Share io context with parent, if CLONE_IO is set
835 if (clone_flags & CLONE_IO) {
836 tsk->io_context = ioc_task_link(ioc);
837 if (unlikely(!tsk->io_context))
838 return -ENOMEM;
839 } else if (ioprio_valid(ioc->ioprio)) {
840 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
841 if (unlikely(!tsk->io_context))
842 return -ENOMEM;
844 tsk->io_context->ioprio = ioc->ioprio;
846 #endif
847 return 0;
850 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
852 struct sighand_struct *sig;
854 if (clone_flags & CLONE_SIGHAND) {
855 atomic_inc(&current->sighand->count);
856 return 0;
858 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
859 rcu_assign_pointer(tsk->sighand, sig);
860 if (!sig)
861 return -ENOMEM;
862 atomic_set(&sig->count, 1);
863 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
864 return 0;
867 void __cleanup_sighand(struct sighand_struct *sighand)
869 if (atomic_dec_and_test(&sighand->count))
870 kmem_cache_free(sighand_cachep, sighand);
875 * Initialize POSIX timer handling for a thread group.
877 static void posix_cpu_timers_init_group(struct signal_struct *sig)
879 unsigned long cpu_limit;
881 /* Thread group counters. */
882 thread_group_cputime_init(sig);
884 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
885 if (cpu_limit != RLIM_INFINITY) {
886 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
887 sig->cputimer.running = 1;
890 /* The timer lists. */
891 INIT_LIST_HEAD(&sig->cpu_timers[0]);
892 INIT_LIST_HEAD(&sig->cpu_timers[1]);
893 INIT_LIST_HEAD(&sig->cpu_timers[2]);
896 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
898 struct signal_struct *sig;
900 if (clone_flags & CLONE_THREAD)
901 return 0;
903 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
904 tsk->signal = sig;
905 if (!sig)
906 return -ENOMEM;
908 sig->nr_threads = 1;
909 atomic_set(&sig->live, 1);
910 atomic_set(&sig->sigcnt, 1);
911 init_waitqueue_head(&sig->wait_chldexit);
912 if (clone_flags & CLONE_NEWPID)
913 sig->flags |= SIGNAL_UNKILLABLE;
914 sig->curr_target = tsk;
915 init_sigpending(&sig->shared_pending);
916 INIT_LIST_HEAD(&sig->posix_timers);
918 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
919 sig->real_timer.function = it_real_fn;
921 task_lock(current->group_leader);
922 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
923 task_unlock(current->group_leader);
925 posix_cpu_timers_init_group(sig);
927 tty_audit_fork(sig);
928 sched_autogroup_fork(sig);
930 sig->oom_adj = current->signal->oom_adj;
931 sig->oom_score_adj = current->signal->oom_score_adj;
932 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
934 mutex_init(&sig->cred_guard_mutex);
936 return 0;
939 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
941 unsigned long new_flags = p->flags;
943 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
944 new_flags |= PF_FORKNOEXEC;
945 new_flags |= PF_STARTING;
946 p->flags = new_flags;
947 clear_freeze_flag(p);
950 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
952 current->clear_child_tid = tidptr;
954 return task_pid_vnr(current);
957 static void rt_mutex_init_task(struct task_struct *p)
959 raw_spin_lock_init(&p->pi_lock);
960 #ifdef CONFIG_RT_MUTEXES
961 plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
962 p->pi_blocked_on = NULL;
963 #endif
966 #ifdef CONFIG_MM_OWNER
967 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
969 mm->owner = p;
971 #endif /* CONFIG_MM_OWNER */
974 * Initialize POSIX timer handling for a single task.
976 static void posix_cpu_timers_init(struct task_struct *tsk)
978 tsk->cputime_expires.prof_exp = cputime_zero;
979 tsk->cputime_expires.virt_exp = cputime_zero;
980 tsk->cputime_expires.sched_exp = 0;
981 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
982 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
983 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
987 * This creates a new process as a copy of the old one,
988 * but does not actually start it yet.
990 * It copies the registers, and all the appropriate
991 * parts of the process environment (as per the clone
992 * flags). The actual kick-off is left to the caller.
994 static struct task_struct *copy_process(unsigned long clone_flags,
995 unsigned long stack_start,
996 struct pt_regs *regs,
997 unsigned long stack_size,
998 int __user *child_tidptr,
999 struct pid *pid,
1000 int trace)
1002 int retval;
1003 struct task_struct *p;
1004 int cgroup_callbacks_done = 0;
1006 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1007 return ERR_PTR(-EINVAL);
1010 * Thread groups must share signals as well, and detached threads
1011 * can only be started up within the thread group.
1013 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1014 return ERR_PTR(-EINVAL);
1017 * Shared signal handlers imply shared VM. By way of the above,
1018 * thread groups also imply shared VM. Blocking this case allows
1019 * for various simplifications in other code.
1021 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1022 return ERR_PTR(-EINVAL);
1025 * Siblings of global init remain as zombies on exit since they are
1026 * not reaped by their parent (swapper). To solve this and to avoid
1027 * multi-rooted process trees, prevent global and container-inits
1028 * from creating siblings.
1030 if ((clone_flags & CLONE_PARENT) &&
1031 current->signal->flags & SIGNAL_UNKILLABLE)
1032 return ERR_PTR(-EINVAL);
1034 retval = security_task_create(clone_flags);
1035 if (retval)
1036 goto fork_out;
1038 retval = -ENOMEM;
1039 p = dup_task_struct(current);
1040 if (!p)
1041 goto fork_out;
1043 ftrace_graph_init_task(p);
1045 rt_mutex_init_task(p);
1047 #ifdef CONFIG_PROVE_LOCKING
1048 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1049 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1050 #endif
1051 retval = -EAGAIN;
1052 if (atomic_read(&p->real_cred->user->processes) >=
1053 task_rlimit(p, RLIMIT_NPROC)) {
1054 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1055 p->real_cred->user != INIT_USER)
1056 goto bad_fork_free;
1059 retval = copy_creds(p, clone_flags);
1060 if (retval < 0)
1061 goto bad_fork_free;
1064 * If multiple threads are within copy_process(), then this check
1065 * triggers too late. This doesn't hurt, the check is only there
1066 * to stop root fork bombs.
1068 retval = -EAGAIN;
1069 if (nr_threads >= max_threads)
1070 goto bad_fork_cleanup_count;
1072 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1073 goto bad_fork_cleanup_count;
1075 p->did_exec = 0;
1076 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1077 copy_flags(clone_flags, p);
1078 INIT_LIST_HEAD(&p->children);
1079 INIT_LIST_HEAD(&p->sibling);
1080 rcu_copy_process(p);
1081 p->vfork_done = NULL;
1082 spin_lock_init(&p->alloc_lock);
1084 init_sigpending(&p->pending);
1086 p->utime = cputime_zero;
1087 p->stime = cputime_zero;
1088 p->gtime = cputime_zero;
1089 p->utimescaled = cputime_zero;
1090 p->stimescaled = cputime_zero;
1091 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1092 p->prev_utime = cputime_zero;
1093 p->prev_stime = cputime_zero;
1094 #endif
1095 #if defined(SPLIT_RSS_COUNTING)
1096 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1097 #endif
1099 p->default_timer_slack_ns = current->timer_slack_ns;
1101 task_io_accounting_init(&p->ioac);
1102 acct_clear_integrals(p);
1104 posix_cpu_timers_init(p);
1106 do_posix_clock_monotonic_gettime(&p->start_time);
1107 p->real_start_time = p->start_time;
1108 monotonic_to_bootbased(&p->real_start_time);
1109 p->io_context = NULL;
1110 p->audit_context = NULL;
1111 cgroup_fork(p);
1112 #ifdef CONFIG_NUMA
1113 p->mempolicy = mpol_dup(p->mempolicy);
1114 if (IS_ERR(p->mempolicy)) {
1115 retval = PTR_ERR(p->mempolicy);
1116 p->mempolicy = NULL;
1117 goto bad_fork_cleanup_cgroup;
1119 mpol_fix_fork_child_flag(p);
1120 #endif
1121 #ifdef CONFIG_TRACE_IRQFLAGS
1122 p->irq_events = 0;
1123 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1124 p->hardirqs_enabled = 1;
1125 #else
1126 p->hardirqs_enabled = 0;
1127 #endif
1128 p->hardirq_enable_ip = 0;
1129 p->hardirq_enable_event = 0;
1130 p->hardirq_disable_ip = _THIS_IP_;
1131 p->hardirq_disable_event = 0;
1132 p->softirqs_enabled = 1;
1133 p->softirq_enable_ip = _THIS_IP_;
1134 p->softirq_enable_event = 0;
1135 p->softirq_disable_ip = 0;
1136 p->softirq_disable_event = 0;
1137 p->hardirq_context = 0;
1138 p->softirq_context = 0;
1139 #endif
1140 #ifdef CONFIG_LOCKDEP
1141 p->lockdep_depth = 0; /* no locks held yet */
1142 p->curr_chain_key = 0;
1143 p->lockdep_recursion = 0;
1144 #endif
1146 #ifdef CONFIG_DEBUG_MUTEXES
1147 p->blocked_on = NULL; /* not blocked yet */
1148 #endif
1149 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1150 p->memcg_batch.do_batch = 0;
1151 p->memcg_batch.memcg = NULL;
1152 #endif
1154 /* Perform scheduler related setup. Assign this task to a CPU. */
1155 sched_fork(p);
1157 retval = perf_event_init_task(p);
1158 if (retval)
1159 goto bad_fork_cleanup_policy;
1161 if ((retval = audit_alloc(p)))
1162 goto bad_fork_cleanup_policy;
1163 /* copy all the process information */
1164 if ((retval = copy_semundo(clone_flags, p)))
1165 goto bad_fork_cleanup_audit;
1166 if ((retval = copy_files(clone_flags, p)))
1167 goto bad_fork_cleanup_semundo;
1168 if ((retval = copy_fs(clone_flags, p)))
1169 goto bad_fork_cleanup_files;
1170 if ((retval = copy_sighand(clone_flags, p)))
1171 goto bad_fork_cleanup_fs;
1172 if ((retval = copy_signal(clone_flags, p)))
1173 goto bad_fork_cleanup_sighand;
1174 if ((retval = copy_mm(clone_flags, p)))
1175 goto bad_fork_cleanup_signal;
1176 if ((retval = copy_namespaces(clone_flags, p)))
1177 goto bad_fork_cleanup_mm;
1178 if ((retval = copy_io(clone_flags, p)))
1179 goto bad_fork_cleanup_namespaces;
1180 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1181 if (retval)
1182 goto bad_fork_cleanup_io;
1184 if (pid != &init_struct_pid) {
1185 retval = -ENOMEM;
1186 pid = alloc_pid(p->nsproxy->pid_ns);
1187 if (!pid)
1188 goto bad_fork_cleanup_io;
1191 p->pid = pid_nr(pid);
1192 p->tgid = p->pid;
1193 if (clone_flags & CLONE_THREAD)
1194 p->tgid = current->tgid;
1196 if (current->nsproxy != p->nsproxy) {
1197 retval = ns_cgroup_clone(p, pid);
1198 if (retval)
1199 goto bad_fork_free_pid;
1202 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1204 * Clear TID on mm_release()?
1206 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1207 #ifdef CONFIG_BLOCK
1208 p->plug = NULL;
1209 #endif
1210 #ifdef CONFIG_FUTEX
1211 p->robust_list = NULL;
1212 #ifdef CONFIG_COMPAT
1213 p->compat_robust_list = NULL;
1214 #endif
1215 INIT_LIST_HEAD(&p->pi_state_list);
1216 p->pi_state_cache = NULL;
1217 #endif
1219 * sigaltstack should be cleared when sharing the same VM
1221 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1222 p->sas_ss_sp = p->sas_ss_size = 0;
1225 * Syscall tracing and stepping should be turned off in the
1226 * child regardless of CLONE_PTRACE.
1228 user_disable_single_step(p);
1229 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1230 #ifdef TIF_SYSCALL_EMU
1231 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1232 #endif
1233 clear_all_latency_tracing(p);
1235 /* ok, now we should be set up.. */
1236 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1237 p->pdeath_signal = 0;
1238 p->exit_state = 0;
1241 * Ok, make it visible to the rest of the system.
1242 * We dont wake it up yet.
1244 p->group_leader = p;
1245 INIT_LIST_HEAD(&p->thread_group);
1247 /* Now that the task is set up, run cgroup callbacks if
1248 * necessary. We need to run them before the task is visible
1249 * on the tasklist. */
1250 cgroup_fork_callbacks(p);
1251 cgroup_callbacks_done = 1;
1253 /* Need tasklist lock for parent etc handling! */
1254 write_lock_irq(&tasklist_lock);
1256 /* CLONE_PARENT re-uses the old parent */
1257 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1258 p->real_parent = current->real_parent;
1259 p->parent_exec_id = current->parent_exec_id;
1260 } else {
1261 p->real_parent = current;
1262 p->parent_exec_id = current->self_exec_id;
1265 spin_lock(&current->sighand->siglock);
1268 * Process group and session signals need to be delivered to just the
1269 * parent before the fork or both the parent and the child after the
1270 * fork. Restart if a signal comes in before we add the new process to
1271 * it's process group.
1272 * A fatal signal pending means that current will exit, so the new
1273 * thread can't slip out of an OOM kill (or normal SIGKILL).
1275 recalc_sigpending();
1276 if (signal_pending(current)) {
1277 spin_unlock(&current->sighand->siglock);
1278 write_unlock_irq(&tasklist_lock);
1279 retval = -ERESTARTNOINTR;
1280 goto bad_fork_free_pid;
1283 if (clone_flags & CLONE_THREAD) {
1284 current->signal->nr_threads++;
1285 atomic_inc(&current->signal->live);
1286 atomic_inc(&current->signal->sigcnt);
1287 p->group_leader = current->group_leader;
1288 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1291 if (likely(p->pid)) {
1292 tracehook_finish_clone(p, clone_flags, trace);
1294 if (thread_group_leader(p)) {
1295 if (is_child_reaper(pid))
1296 p->nsproxy->pid_ns->child_reaper = p;
1298 p->signal->leader_pid = pid;
1299 p->signal->tty = tty_kref_get(current->signal->tty);
1300 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1301 attach_pid(p, PIDTYPE_SID, task_session(current));
1302 list_add_tail(&p->sibling, &p->real_parent->children);
1303 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1304 __this_cpu_inc(process_counts);
1306 attach_pid(p, PIDTYPE_PID, pid);
1307 nr_threads++;
1310 total_forks++;
1311 spin_unlock(&current->sighand->siglock);
1312 write_unlock_irq(&tasklist_lock);
1313 proc_fork_connector(p);
1314 cgroup_post_fork(p);
1315 perf_event_fork(p);
1316 return p;
1318 bad_fork_free_pid:
1319 if (pid != &init_struct_pid)
1320 free_pid(pid);
1321 bad_fork_cleanup_io:
1322 if (p->io_context)
1323 exit_io_context(p);
1324 bad_fork_cleanup_namespaces:
1325 exit_task_namespaces(p);
1326 bad_fork_cleanup_mm:
1327 if (p->mm) {
1328 task_lock(p);
1329 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1330 atomic_dec(&p->mm->oom_disable_count);
1331 task_unlock(p);
1332 mmput(p->mm);
1334 bad_fork_cleanup_signal:
1335 if (!(clone_flags & CLONE_THREAD))
1336 free_signal_struct(p->signal);
1337 bad_fork_cleanup_sighand:
1338 __cleanup_sighand(p->sighand);
1339 bad_fork_cleanup_fs:
1340 exit_fs(p); /* blocking */
1341 bad_fork_cleanup_files:
1342 exit_files(p); /* blocking */
1343 bad_fork_cleanup_semundo:
1344 exit_sem(p);
1345 bad_fork_cleanup_audit:
1346 audit_free(p);
1347 bad_fork_cleanup_policy:
1348 perf_event_free_task(p);
1349 #ifdef CONFIG_NUMA
1350 mpol_put(p->mempolicy);
1351 bad_fork_cleanup_cgroup:
1352 #endif
1353 cgroup_exit(p, cgroup_callbacks_done);
1354 delayacct_tsk_free(p);
1355 module_put(task_thread_info(p)->exec_domain->module);
1356 bad_fork_cleanup_count:
1357 atomic_dec(&p->cred->user->processes);
1358 exit_creds(p);
1359 bad_fork_free:
1360 free_task(p);
1361 fork_out:
1362 return ERR_PTR(retval);
1365 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1367 memset(regs, 0, sizeof(struct pt_regs));
1368 return regs;
1371 static inline void init_idle_pids(struct pid_link *links)
1373 enum pid_type type;
1375 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1376 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1377 links[type].pid = &init_struct_pid;
1381 struct task_struct * __cpuinit fork_idle(int cpu)
1383 struct task_struct *task;
1384 struct pt_regs regs;
1386 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1387 &init_struct_pid, 0);
1388 if (!IS_ERR(task)) {
1389 init_idle_pids(task->pids);
1390 init_idle(task, cpu);
1393 return task;
1397 * Ok, this is the main fork-routine.
1399 * It copies the process, and if successful kick-starts
1400 * it and waits for it to finish using the VM if required.
1402 long do_fork(unsigned long clone_flags,
1403 unsigned long stack_start,
1404 struct pt_regs *regs,
1405 unsigned long stack_size,
1406 int __user *parent_tidptr,
1407 int __user *child_tidptr)
1409 struct task_struct *p;
1410 int trace = 0;
1411 long nr;
1414 * Do some preliminary argument and permissions checking before we
1415 * actually start allocating stuff
1417 if (clone_flags & CLONE_NEWUSER) {
1418 if (clone_flags & CLONE_THREAD)
1419 return -EINVAL;
1420 /* hopefully this check will go away when userns support is
1421 * complete
1423 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1424 !capable(CAP_SETGID))
1425 return -EPERM;
1429 * When called from kernel_thread, don't do user tracing stuff.
1431 if (likely(user_mode(regs)))
1432 trace = tracehook_prepare_clone(clone_flags);
1434 p = copy_process(clone_flags, stack_start, regs, stack_size,
1435 child_tidptr, NULL, trace);
1437 * Do this prior waking up the new thread - the thread pointer
1438 * might get invalid after that point, if the thread exits quickly.
1440 if (!IS_ERR(p)) {
1441 struct completion vfork;
1443 trace_sched_process_fork(current, p);
1445 nr = task_pid_vnr(p);
1447 if (clone_flags & CLONE_PARENT_SETTID)
1448 put_user(nr, parent_tidptr);
1450 if (clone_flags & CLONE_VFORK) {
1451 p->vfork_done = &vfork;
1452 init_completion(&vfork);
1455 audit_finish_fork(p);
1456 tracehook_report_clone(regs, clone_flags, nr, p);
1459 * We set PF_STARTING at creation in case tracing wants to
1460 * use this to distinguish a fully live task from one that
1461 * hasn't gotten to tracehook_report_clone() yet. Now we
1462 * clear it and set the child going.
1464 p->flags &= ~PF_STARTING;
1466 wake_up_new_task(p);
1468 tracehook_report_clone_complete(trace, regs,
1469 clone_flags, nr, p);
1471 if (clone_flags & CLONE_VFORK) {
1472 freezer_do_not_count();
1473 wait_for_completion(&vfork);
1474 freezer_count();
1475 tracehook_report_vfork_done(p, nr);
1477 } else {
1478 nr = PTR_ERR(p);
1480 return nr;
1483 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1484 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1485 #endif
1487 static void sighand_ctor(void *data)
1489 struct sighand_struct *sighand = data;
1491 spin_lock_init(&sighand->siglock);
1492 init_waitqueue_head(&sighand->signalfd_wqh);
1495 void __init proc_caches_init(void)
1497 sighand_cachep = kmem_cache_create("sighand_cache",
1498 sizeof(struct sighand_struct), 0,
1499 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1500 SLAB_NOTRACK, sighand_ctor);
1501 signal_cachep = kmem_cache_create("signal_cache",
1502 sizeof(struct signal_struct), 0,
1503 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1504 files_cachep = kmem_cache_create("files_cache",
1505 sizeof(struct files_struct), 0,
1506 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1507 fs_cachep = kmem_cache_create("fs_cache",
1508 sizeof(struct fs_struct), 0,
1509 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1510 mm_cachep = kmem_cache_create("mm_struct",
1511 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1512 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1513 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1514 mmap_init();
1518 * Check constraints on flags passed to the unshare system call.
1520 static int check_unshare_flags(unsigned long unshare_flags)
1522 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1523 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1524 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1525 return -EINVAL;
1527 * Not implemented, but pretend it works if there is nothing to
1528 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1529 * needs to unshare vm.
1531 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1532 /* FIXME: get_task_mm() increments ->mm_users */
1533 if (atomic_read(&current->mm->mm_users) > 1)
1534 return -EINVAL;
1537 return 0;
1541 * Unshare the filesystem structure if it is being shared
1543 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1545 struct fs_struct *fs = current->fs;
1547 if (!(unshare_flags & CLONE_FS) || !fs)
1548 return 0;
1550 /* don't need lock here; in the worst case we'll do useless copy */
1551 if (fs->users == 1)
1552 return 0;
1554 *new_fsp = copy_fs_struct(fs);
1555 if (!*new_fsp)
1556 return -ENOMEM;
1558 return 0;
1562 * Unshare file descriptor table if it is being shared
1564 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1566 struct files_struct *fd = current->files;
1567 int error = 0;
1569 if ((unshare_flags & CLONE_FILES) &&
1570 (fd && atomic_read(&fd->count) > 1)) {
1571 *new_fdp = dup_fd(fd, &error);
1572 if (!*new_fdp)
1573 return error;
1576 return 0;
1580 * unshare allows a process to 'unshare' part of the process
1581 * context which was originally shared using clone. copy_*
1582 * functions used by do_fork() cannot be used here directly
1583 * because they modify an inactive task_struct that is being
1584 * constructed. Here we are modifying the current, active,
1585 * task_struct.
1587 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1589 struct fs_struct *fs, *new_fs = NULL;
1590 struct files_struct *fd, *new_fd = NULL;
1591 struct nsproxy *new_nsproxy = NULL;
1592 int do_sysvsem = 0;
1593 int err;
1595 err = check_unshare_flags(unshare_flags);
1596 if (err)
1597 goto bad_unshare_out;
1600 * If unsharing namespace, must also unshare filesystem information.
1602 if (unshare_flags & CLONE_NEWNS)
1603 unshare_flags |= CLONE_FS;
1605 * CLONE_NEWIPC must also detach from the undolist: after switching
1606 * to a new ipc namespace, the semaphore arrays from the old
1607 * namespace are unreachable.
1609 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1610 do_sysvsem = 1;
1611 if ((err = unshare_fs(unshare_flags, &new_fs)))
1612 goto bad_unshare_out;
1613 if ((err = unshare_fd(unshare_flags, &new_fd)))
1614 goto bad_unshare_cleanup_fs;
1615 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1616 new_fs)))
1617 goto bad_unshare_cleanup_fd;
1619 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1620 if (do_sysvsem) {
1622 * CLONE_SYSVSEM is equivalent to sys_exit().
1624 exit_sem(current);
1627 if (new_nsproxy) {
1628 switch_task_namespaces(current, new_nsproxy);
1629 new_nsproxy = NULL;
1632 task_lock(current);
1634 if (new_fs) {
1635 fs = current->fs;
1636 spin_lock(&fs->lock);
1637 current->fs = new_fs;
1638 if (--fs->users)
1639 new_fs = NULL;
1640 else
1641 new_fs = fs;
1642 spin_unlock(&fs->lock);
1645 if (new_fd) {
1646 fd = current->files;
1647 current->files = new_fd;
1648 new_fd = fd;
1651 task_unlock(current);
1654 if (new_nsproxy)
1655 put_nsproxy(new_nsproxy);
1657 bad_unshare_cleanup_fd:
1658 if (new_fd)
1659 put_files_struct(new_fd);
1661 bad_unshare_cleanup_fs:
1662 if (new_fs)
1663 free_fs_struct(new_fs);
1665 bad_unshare_out:
1666 return err;
1670 * Helper to unshare the files of the current task.
1671 * We don't want to expose copy_files internals to
1672 * the exec layer of the kernel.
1675 int unshare_files(struct files_struct **displaced)
1677 struct task_struct *task = current;
1678 struct files_struct *copy = NULL;
1679 int error;
1681 error = unshare_fd(CLONE_FILES, &copy);
1682 if (error || !copy) {
1683 *displaced = NULL;
1684 return error;
1686 *displaced = task->files;
1687 task_lock(task);
1688 task->files = copy;
1689 task_unlock(task);
1690 return 0;