4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
8 #include <linux/capability.h>
9 #include <linux/mman.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
24 int can_do_mlock(void)
26 if (capable(CAP_IPC_LOCK
))
28 if (rlimit(RLIMIT_MEMLOCK
) != 0)
32 EXPORT_SYMBOL(can_do_mlock
);
35 * Mlocked pages are marked with PageMlocked() flag for efficient testing
36 * in vmscan and, possibly, the fault path; and to support semi-accurate
39 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
40 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41 * The unevictable list is an LRU sibling list to the [in]active lists.
42 * PageUnevictable is set to indicate the unevictable state.
44 * When lazy mlocking via vmscan, it is important to ensure that the
45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46 * may have mlocked a page that is being munlocked. So lazy mlock must take
47 * the mmap_sem for read, and verify that the vma really is locked
52 * LRU accounting for clear_page_mlock()
54 void __clear_page_mlock(struct page
*page
)
56 VM_BUG_ON(!PageLocked(page
));
58 if (!page
->mapping
) { /* truncated ? */
62 dec_zone_page_state(page
, NR_MLOCK
);
63 count_vm_event(UNEVICTABLE_PGCLEARED
);
64 if (!isolate_lru_page(page
)) {
65 putback_lru_page(page
);
68 * We lost the race. the page already moved to evictable list.
70 if (PageUnevictable(page
))
71 count_vm_event(UNEVICTABLE_PGSTRANDED
);
76 * Mark page as mlocked if not already.
77 * If page on LRU, isolate and putback to move to unevictable list.
79 void mlock_vma_page(struct page
*page
)
81 BUG_ON(!PageLocked(page
));
83 if (!TestSetPageMlocked(page
)) {
84 inc_zone_page_state(page
, NR_MLOCK
);
85 count_vm_event(UNEVICTABLE_PGMLOCKED
);
86 if (!isolate_lru_page(page
))
87 putback_lru_page(page
);
92 * munlock_vma_page - munlock a vma page
93 * @page - page to be unlocked
95 * called from munlock()/munmap() path with page supposedly on the LRU.
96 * When we munlock a page, because the vma where we found the page is being
97 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
98 * page locked so that we can leave it on the unevictable lru list and not
99 * bother vmscan with it. However, to walk the page's rmap list in
100 * try_to_munlock() we must isolate the page from the LRU. If some other
101 * task has removed the page from the LRU, we won't be able to do that.
102 * So we clear the PageMlocked as we might not get another chance. If we
103 * can't isolate the page, we leave it for putback_lru_page() and vmscan
104 * [page_referenced()/try_to_unmap()] to deal with.
106 void munlock_vma_page(struct page
*page
)
108 BUG_ON(!PageLocked(page
));
110 if (TestClearPageMlocked(page
)) {
111 dec_zone_page_state(page
, NR_MLOCK
);
112 if (!isolate_lru_page(page
)) {
113 int ret
= try_to_munlock(page
);
115 * did try_to_unlock() succeed or punt?
117 if (ret
!= SWAP_MLOCK
)
118 count_vm_event(UNEVICTABLE_PGMUNLOCKED
);
120 putback_lru_page(page
);
123 * Some other task has removed the page from the LRU.
124 * putback_lru_page() will take care of removing the
125 * page from the unevictable list, if necessary.
126 * vmscan [page_referenced()] will move the page back
127 * to the unevictable list if some other vma has it
130 if (PageUnevictable(page
))
131 count_vm_event(UNEVICTABLE_PGSTRANDED
);
133 count_vm_event(UNEVICTABLE_PGMUNLOCKED
);
138 /* Is the vma a continuation of the stack vma above it? */
139 static inline int vma_stack_continue(struct vm_area_struct
*vma
, unsigned long addr
)
141 return vma
&& (vma
->vm_end
== addr
) && (vma
->vm_flags
& VM_GROWSDOWN
);
144 static inline int stack_guard_page(struct vm_area_struct
*vma
, unsigned long addr
)
146 return (vma
->vm_flags
& VM_GROWSDOWN
) &&
147 (vma
->vm_start
== addr
) &&
148 !vma_stack_continue(vma
->vm_prev
, addr
);
152 * __mlock_vma_pages_range() - mlock a range of pages in the vma.
154 * @start: start address
157 * This takes care of making the pages present too.
159 * return 0 on success, negative error code on error.
161 * vma->vm_mm->mmap_sem must be held for at least read.
163 static long __mlock_vma_pages_range(struct vm_area_struct
*vma
,
164 unsigned long start
, unsigned long end
)
166 struct mm_struct
*mm
= vma
->vm_mm
;
167 unsigned long addr
= start
;
168 struct page
*pages
[16]; /* 16 gives a reasonable batch */
169 int nr_pages
= (end
- start
) / PAGE_SIZE
;
173 VM_BUG_ON(start
& ~PAGE_MASK
);
174 VM_BUG_ON(end
& ~PAGE_MASK
);
175 VM_BUG_ON(start
< vma
->vm_start
);
176 VM_BUG_ON(end
> vma
->vm_end
);
177 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
179 gup_flags
= FOLL_TOUCH
| FOLL_GET
;
180 if (vma
->vm_flags
& VM_WRITE
)
181 gup_flags
|= FOLL_WRITE
;
183 /* We don't try to access the guard page of a stack vma */
184 if (stack_guard_page(vma
, start
)) {
189 while (nr_pages
> 0) {
195 * get_user_pages makes pages present if we are
196 * setting mlock. and this extra reference count will
197 * disable migration of this page. However, page may
198 * still be truncated out from under us.
200 ret
= __get_user_pages(current
, mm
, addr
,
201 min_t(int, nr_pages
, ARRAY_SIZE(pages
)),
202 gup_flags
, pages
, NULL
);
204 * This can happen for, e.g., VM_NONLINEAR regions before
205 * a page has been allocated and mapped at a given offset,
206 * or for addresses that map beyond end of a file.
207 * We'll mlock the pages if/when they get faulted in.
212 lru_add_drain(); /* push cached pages to LRU */
214 for (i
= 0; i
< ret
; i
++) {
215 struct page
*page
= pages
[i
];
219 * That preliminary check is mainly to avoid
220 * the pointless overhead of lock_page on the
221 * ZERO_PAGE: which might bounce very badly if
222 * there is contention. However, we're still
223 * dirtying its cacheline with get/put_page:
224 * we'll add another __get_user_pages flag to
225 * avoid it if that case turns out to matter.
229 * Because we lock page here and migration is
230 * blocked by the elevated reference, we need
231 * only check for file-cache page truncation.
234 mlock_vma_page(page
);
237 put_page(page
); /* ref from get_user_pages() */
240 addr
+= ret
* PAGE_SIZE
;
245 return ret
; /* 0 or negative error code */
249 * convert get_user_pages() return value to posix mlock() error
251 static int __mlock_posix_error_return(long retval
)
253 if (retval
== -EFAULT
)
255 else if (retval
== -ENOMEM
)
261 * mlock_vma_pages_range() - mlock pages in specified vma range.
262 * @vma - the vma containing the specfied address range
263 * @start - starting address in @vma to mlock
264 * @end - end address [+1] in @vma to mlock
266 * For mmap()/mremap()/expansion of mlocked vma.
268 * return 0 on success for "normal" vmas.
270 * return number of pages [> 0] to be removed from locked_vm on success
273 long mlock_vma_pages_range(struct vm_area_struct
*vma
,
274 unsigned long start
, unsigned long end
)
276 int nr_pages
= (end
- start
) / PAGE_SIZE
;
277 BUG_ON(!(vma
->vm_flags
& VM_LOCKED
));
280 * filter unlockable vmas
282 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
285 if (!((vma
->vm_flags
& (VM_DONTEXPAND
| VM_RESERVED
)) ||
286 is_vm_hugetlb_page(vma
) ||
287 vma
== get_gate_vma(current
))) {
289 __mlock_vma_pages_range(vma
, start
, end
);
291 /* Hide errors from mmap() and other callers */
296 * User mapped kernel pages or huge pages:
297 * make these pages present to populate the ptes, but
298 * fall thru' to reset VM_LOCKED--no need to unlock, and
299 * return nr_pages so these don't get counted against task's
300 * locked limit. huge pages are already counted against
303 make_pages_present(start
, end
);
306 vma
->vm_flags
&= ~VM_LOCKED
; /* and don't come back! */
307 return nr_pages
; /* error or pages NOT mlocked */
311 * munlock_vma_pages_range() - munlock all pages in the vma range.'
312 * @vma - vma containing range to be munlock()ed.
313 * @start - start address in @vma of the range
314 * @end - end of range in @vma.
316 * For mremap(), munmap() and exit().
318 * Called with @vma VM_LOCKED.
320 * Returns with VM_LOCKED cleared. Callers must be prepared to
323 * We don't save and restore VM_LOCKED here because pages are
324 * still on lru. In unmap path, pages might be scanned by reclaim
325 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
326 * free them. This will result in freeing mlocked pages.
328 void munlock_vma_pages_range(struct vm_area_struct
*vma
,
329 unsigned long start
, unsigned long end
)
334 vma
->vm_flags
&= ~VM_LOCKED
;
336 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
339 * Although FOLL_DUMP is intended for get_dump_page(),
340 * it just so happens that its special treatment of the
341 * ZERO_PAGE (returning an error instead of doing get_page)
342 * suits munlock very well (and if somehow an abnormal page
343 * has sneaked into the range, we won't oops here: great).
345 page
= follow_page(vma
, addr
, FOLL_GET
| FOLL_DUMP
);
346 if (page
&& !IS_ERR(page
)) {
349 * Like in __mlock_vma_pages_range(),
350 * because we lock page here and migration is
351 * blocked by the elevated reference, we need
352 * only check for file-cache page truncation.
355 munlock_vma_page(page
);
364 * mlock_fixup - handle mlock[all]/munlock[all] requests.
366 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
367 * munlock is a no-op. However, for some special vmas, we go ahead and
368 * populate the ptes via make_pages_present().
370 * For vmas that pass the filters, merge/split as appropriate.
372 static int mlock_fixup(struct vm_area_struct
*vma
, struct vm_area_struct
**prev
,
373 unsigned long start
, unsigned long end
, unsigned int newflags
)
375 struct mm_struct
*mm
= vma
->vm_mm
;
379 int lock
= newflags
& VM_LOCKED
;
381 if (newflags
== vma
->vm_flags
||
382 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
383 goto out
; /* don't set VM_LOCKED, don't count */
385 if ((vma
->vm_flags
& (VM_DONTEXPAND
| VM_RESERVED
)) ||
386 is_vm_hugetlb_page(vma
) ||
387 vma
== get_gate_vma(current
)) {
389 make_pages_present(start
, end
);
390 goto out
; /* don't set VM_LOCKED, don't count */
393 pgoff
= vma
->vm_pgoff
+ ((start
- vma
->vm_start
) >> PAGE_SHIFT
);
394 *prev
= vma_merge(mm
, *prev
, start
, end
, newflags
, vma
->anon_vma
,
395 vma
->vm_file
, pgoff
, vma_policy(vma
));
401 if (start
!= vma
->vm_start
) {
402 ret
= split_vma(mm
, vma
, start
, 1);
407 if (end
!= vma
->vm_end
) {
408 ret
= split_vma(mm
, vma
, end
, 0);
415 * Keep track of amount of locked VM.
417 nr_pages
= (end
- start
) >> PAGE_SHIFT
;
419 nr_pages
= -nr_pages
;
420 mm
->locked_vm
+= nr_pages
;
423 * vm_flags is protected by the mmap_sem held in write mode.
424 * It's okay if try_to_unmap_one unmaps a page just after we
425 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
429 vma
->vm_flags
= newflags
;
430 ret
= __mlock_vma_pages_range(vma
, start
, end
);
432 ret
= __mlock_posix_error_return(ret
);
434 munlock_vma_pages_range(vma
, start
, end
);
442 static int do_mlock(unsigned long start
, size_t len
, int on
)
444 unsigned long nstart
, end
, tmp
;
445 struct vm_area_struct
* vma
, * prev
;
448 len
= PAGE_ALIGN(len
);
454 vma
= find_vma_prev(current
->mm
, start
, &prev
);
455 if (!vma
|| vma
->vm_start
> start
)
458 if (start
> vma
->vm_start
)
461 for (nstart
= start
; ; ) {
462 unsigned int newflags
;
464 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
466 newflags
= vma
->vm_flags
| VM_LOCKED
;
468 newflags
&= ~VM_LOCKED
;
473 error
= mlock_fixup(vma
, &prev
, nstart
, tmp
, newflags
);
477 if (nstart
< prev
->vm_end
)
478 nstart
= prev
->vm_end
;
483 if (!vma
|| vma
->vm_start
!= nstart
) {
491 SYSCALL_DEFINE2(mlock
, unsigned long, start
, size_t, len
)
493 unsigned long locked
;
494 unsigned long lock_limit
;
500 lru_add_drain_all(); /* flush pagevec */
502 down_write(¤t
->mm
->mmap_sem
);
503 len
= PAGE_ALIGN(len
+ (start
& ~PAGE_MASK
));
506 locked
= len
>> PAGE_SHIFT
;
507 locked
+= current
->mm
->locked_vm
;
509 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
510 lock_limit
>>= PAGE_SHIFT
;
512 /* check against resource limits */
513 if ((locked
<= lock_limit
) || capable(CAP_IPC_LOCK
))
514 error
= do_mlock(start
, len
, 1);
515 up_write(¤t
->mm
->mmap_sem
);
519 SYSCALL_DEFINE2(munlock
, unsigned long, start
, size_t, len
)
523 down_write(¤t
->mm
->mmap_sem
);
524 len
= PAGE_ALIGN(len
+ (start
& ~PAGE_MASK
));
526 ret
= do_mlock(start
, len
, 0);
527 up_write(¤t
->mm
->mmap_sem
);
531 static int do_mlockall(int flags
)
533 struct vm_area_struct
* vma
, * prev
= NULL
;
534 unsigned int def_flags
= 0;
536 if (flags
& MCL_FUTURE
)
537 def_flags
= VM_LOCKED
;
538 current
->mm
->def_flags
= def_flags
;
539 if (flags
== MCL_FUTURE
)
542 for (vma
= current
->mm
->mmap
; vma
; vma
= prev
->vm_next
) {
543 unsigned int newflags
;
545 newflags
= vma
->vm_flags
| VM_LOCKED
;
546 if (!(flags
& MCL_CURRENT
))
547 newflags
&= ~VM_LOCKED
;
550 mlock_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
, newflags
);
556 SYSCALL_DEFINE1(mlockall
, int, flags
)
558 unsigned long lock_limit
;
561 if (!flags
|| (flags
& ~(MCL_CURRENT
| MCL_FUTURE
)))
568 lru_add_drain_all(); /* flush pagevec */
570 down_write(¤t
->mm
->mmap_sem
);
572 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
573 lock_limit
>>= PAGE_SHIFT
;
576 if (!(flags
& MCL_CURRENT
) || (current
->mm
->total_vm
<= lock_limit
) ||
577 capable(CAP_IPC_LOCK
))
578 ret
= do_mlockall(flags
);
579 up_write(¤t
->mm
->mmap_sem
);
584 SYSCALL_DEFINE0(munlockall
)
588 down_write(¤t
->mm
->mmap_sem
);
589 ret
= do_mlockall(0);
590 up_write(¤t
->mm
->mmap_sem
);
595 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
596 * shm segments) get accounted against the user_struct instead.
598 static DEFINE_SPINLOCK(shmlock_user_lock
);
600 int user_shm_lock(size_t size
, struct user_struct
*user
)
602 unsigned long lock_limit
, locked
;
605 locked
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
606 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
607 if (lock_limit
== RLIM_INFINITY
)
609 lock_limit
>>= PAGE_SHIFT
;
610 spin_lock(&shmlock_user_lock
);
612 locked
+ user
->locked_shm
> lock_limit
&& !capable(CAP_IPC_LOCK
))
615 user
->locked_shm
+= locked
;
618 spin_unlock(&shmlock_user_lock
);
622 void user_shm_unlock(size_t size
, struct user_struct
*user
)
624 spin_lock(&shmlock_user_lock
);
625 user
->locked_shm
-= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
626 spin_unlock(&shmlock_user_lock
);
630 int account_locked_memory(struct mm_struct
*mm
, struct rlimit
*rlim
,
633 unsigned long lim
, vm
, pgsz
;
636 pgsz
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
638 down_write(&mm
->mmap_sem
);
640 lim
= ACCESS_ONCE(rlim
[RLIMIT_AS
].rlim_cur
) >> PAGE_SHIFT
;
641 vm
= mm
->total_vm
+ pgsz
;
645 lim
= ACCESS_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
) >> PAGE_SHIFT
;
646 vm
= mm
->locked_vm
+ pgsz
;
650 mm
->total_vm
+= pgsz
;
651 mm
->locked_vm
+= pgsz
;
655 up_write(&mm
->mmap_sem
);
659 void refund_locked_memory(struct mm_struct
*mm
, size_t size
)
661 unsigned long pgsz
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
663 down_write(&mm
->mmap_sem
);
665 mm
->total_vm
-= pgsz
;
666 mm
->locked_vm
-= pgsz
;
668 up_write(&mm
->mmap_sem
);