e1000e: disable ASPM L1 on 82573
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / filemap.c
blob3760bdc5af652050e39318bf3c777ef663c8211a
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
44 #include <asm/mman.h>
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 * Lock ordering:
61 * ->i_mmap_lock (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
66 * ->i_mutex
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 * ->mmap_sem
70 * ->i_mmap_lock
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 * ->i_mutex
81 * ->i_alloc_sem (various)
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 * ->task->proc_lock
106 * ->dcache_lock (proc_pid_lookup)
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
110 * ->i_mmap_lock
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe. The caller must hold the mapping's tree_lock.
118 void __remove_from_page_cache(struct page *page)
120 struct address_space *mapping = page->mapping;
122 radix_tree_delete(&mapping->page_tree, page->index);
123 page->mapping = NULL;
124 mapping->nrpages--;
125 __dec_zone_page_state(page, NR_FILE_PAGES);
126 if (PageSwapBacked(page))
127 __dec_zone_page_state(page, NR_SHMEM);
128 BUG_ON(page_mapped(page));
131 * Some filesystems seem to re-dirty the page even after
132 * the VM has canceled the dirty bit (eg ext3 journaling).
134 * Fix it up by doing a final dirty accounting check after
135 * having removed the page entirely.
137 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138 dec_zone_page_state(page, NR_FILE_DIRTY);
139 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
143 void remove_from_page_cache(struct page *page)
145 struct address_space *mapping = page->mapping;
147 BUG_ON(!PageLocked(page));
149 spin_lock_irq(&mapping->tree_lock);
150 __remove_from_page_cache(page);
151 spin_unlock_irq(&mapping->tree_lock);
152 mem_cgroup_uncharge_cache_page(page);
155 static int sync_page(void *word)
157 struct address_space *mapping;
158 struct page *page;
160 page = container_of((unsigned long *)word, struct page, flags);
163 * page_mapping() is being called without PG_locked held.
164 * Some knowledge of the state and use of the page is used to
165 * reduce the requirements down to a memory barrier.
166 * The danger here is of a stale page_mapping() return value
167 * indicating a struct address_space different from the one it's
168 * associated with when it is associated with one.
169 * After smp_mb(), it's either the correct page_mapping() for
170 * the page, or an old page_mapping() and the page's own
171 * page_mapping() has gone NULL.
172 * The ->sync_page() address_space operation must tolerate
173 * page_mapping() going NULL. By an amazing coincidence,
174 * this comes about because none of the users of the page
175 * in the ->sync_page() methods make essential use of the
176 * page_mapping(), merely passing the page down to the backing
177 * device's unplug functions when it's non-NULL, which in turn
178 * ignore it for all cases but swap, where only page_private(page) is
179 * of interest. When page_mapping() does go NULL, the entire
180 * call stack gracefully ignores the page and returns.
181 * -- wli
183 smp_mb();
184 mapping = page_mapping(page);
185 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
186 mapping->a_ops->sync_page(page);
187 io_schedule();
188 return 0;
191 static int sync_page_killable(void *word)
193 sync_page(word);
194 return fatal_signal_pending(current) ? -EINTR : 0;
198 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
199 * @mapping: address space structure to write
200 * @start: offset in bytes where the range starts
201 * @end: offset in bytes where the range ends (inclusive)
202 * @sync_mode: enable synchronous operation
204 * Start writeback against all of a mapping's dirty pages that lie
205 * within the byte offsets <start, end> inclusive.
207 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
208 * opposed to a regular memory cleansing writeback. The difference between
209 * these two operations is that if a dirty page/buffer is encountered, it must
210 * be waited upon, and not just skipped over.
212 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
213 loff_t end, int sync_mode)
215 int ret;
216 struct writeback_control wbc = {
217 .sync_mode = sync_mode,
218 .nr_to_write = LONG_MAX,
219 .range_start = start,
220 .range_end = end,
223 if (!mapping_cap_writeback_dirty(mapping))
224 return 0;
226 ret = do_writepages(mapping, &wbc);
227 return ret;
230 static inline int __filemap_fdatawrite(struct address_space *mapping,
231 int sync_mode)
233 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
236 int filemap_fdatawrite(struct address_space *mapping)
238 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
240 EXPORT_SYMBOL(filemap_fdatawrite);
242 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
243 loff_t end)
245 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
247 EXPORT_SYMBOL(filemap_fdatawrite_range);
250 * filemap_flush - mostly a non-blocking flush
251 * @mapping: target address_space
253 * This is a mostly non-blocking flush. Not suitable for data-integrity
254 * purposes - I/O may not be started against all dirty pages.
256 int filemap_flush(struct address_space *mapping)
258 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
260 EXPORT_SYMBOL(filemap_flush);
263 * filemap_fdatawait_range - wait for writeback to complete
264 * @mapping: address space structure to wait for
265 * @start_byte: offset in bytes where the range starts
266 * @end_byte: offset in bytes where the range ends (inclusive)
268 * Walk the list of under-writeback pages of the given address space
269 * in the given range and wait for all of them.
271 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
272 loff_t end_byte)
274 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
275 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
276 struct pagevec pvec;
277 int nr_pages;
278 int ret = 0;
280 if (end_byte < start_byte)
281 return 0;
283 pagevec_init(&pvec, 0);
284 while ((index <= end) &&
285 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
286 PAGECACHE_TAG_WRITEBACK,
287 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
288 unsigned i;
290 for (i = 0; i < nr_pages; i++) {
291 struct page *page = pvec.pages[i];
293 /* until radix tree lookup accepts end_index */
294 if (page->index > end)
295 continue;
297 wait_on_page_writeback(page);
298 if (PageError(page))
299 ret = -EIO;
301 pagevec_release(&pvec);
302 cond_resched();
305 /* Check for outstanding write errors */
306 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
307 ret = -ENOSPC;
308 if (test_and_clear_bit(AS_EIO, &mapping->flags))
309 ret = -EIO;
311 return ret;
313 EXPORT_SYMBOL(filemap_fdatawait_range);
316 * filemap_fdatawait - wait for all under-writeback pages to complete
317 * @mapping: address space structure to wait for
319 * Walk the list of under-writeback pages of the given address space
320 * and wait for all of them.
322 int filemap_fdatawait(struct address_space *mapping)
324 loff_t i_size = i_size_read(mapping->host);
326 if (i_size == 0)
327 return 0;
329 return filemap_fdatawait_range(mapping, 0, i_size - 1);
331 EXPORT_SYMBOL(filemap_fdatawait);
333 int filemap_write_and_wait(struct address_space *mapping)
335 int err = 0;
337 if (mapping->nrpages) {
338 err = filemap_fdatawrite(mapping);
340 * Even if the above returned error, the pages may be
341 * written partially (e.g. -ENOSPC), so we wait for it.
342 * But the -EIO is special case, it may indicate the worst
343 * thing (e.g. bug) happened, so we avoid waiting for it.
345 if (err != -EIO) {
346 int err2 = filemap_fdatawait(mapping);
347 if (!err)
348 err = err2;
351 return err;
353 EXPORT_SYMBOL(filemap_write_and_wait);
356 * filemap_write_and_wait_range - write out & wait on a file range
357 * @mapping: the address_space for the pages
358 * @lstart: offset in bytes where the range starts
359 * @lend: offset in bytes where the range ends (inclusive)
361 * Write out and wait upon file offsets lstart->lend, inclusive.
363 * Note that `lend' is inclusive (describes the last byte to be written) so
364 * that this function can be used to write to the very end-of-file (end = -1).
366 int filemap_write_and_wait_range(struct address_space *mapping,
367 loff_t lstart, loff_t lend)
369 int err = 0;
371 if (mapping->nrpages) {
372 err = __filemap_fdatawrite_range(mapping, lstart, lend,
373 WB_SYNC_ALL);
374 /* See comment of filemap_write_and_wait() */
375 if (err != -EIO) {
376 int err2 = filemap_fdatawait_range(mapping,
377 lstart, lend);
378 if (!err)
379 err = err2;
382 return err;
384 EXPORT_SYMBOL(filemap_write_and_wait_range);
387 * add_to_page_cache_locked - add a locked page to the pagecache
388 * @page: page to add
389 * @mapping: the page's address_space
390 * @offset: page index
391 * @gfp_mask: page allocation mode
393 * This function is used to add a page to the pagecache. It must be locked.
394 * This function does not add the page to the LRU. The caller must do that.
396 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
397 pgoff_t offset, gfp_t gfp_mask)
399 int error;
401 VM_BUG_ON(!PageLocked(page));
403 error = mem_cgroup_cache_charge(page, current->mm,
404 gfp_mask & GFP_RECLAIM_MASK);
405 if (error)
406 goto out;
408 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
409 if (error == 0) {
410 page_cache_get(page);
411 page->mapping = mapping;
412 page->index = offset;
414 spin_lock_irq(&mapping->tree_lock);
415 error = radix_tree_insert(&mapping->page_tree, offset, page);
416 if (likely(!error)) {
417 mapping->nrpages++;
418 __inc_zone_page_state(page, NR_FILE_PAGES);
419 if (PageSwapBacked(page))
420 __inc_zone_page_state(page, NR_SHMEM);
421 spin_unlock_irq(&mapping->tree_lock);
422 } else {
423 page->mapping = NULL;
424 spin_unlock_irq(&mapping->tree_lock);
425 mem_cgroup_uncharge_cache_page(page);
426 page_cache_release(page);
428 radix_tree_preload_end();
429 } else
430 mem_cgroup_uncharge_cache_page(page);
431 out:
432 return error;
434 EXPORT_SYMBOL(add_to_page_cache_locked);
436 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
437 pgoff_t offset, gfp_t gfp_mask)
439 int ret;
442 * Splice_read and readahead add shmem/tmpfs pages into the page cache
443 * before shmem_readpage has a chance to mark them as SwapBacked: they
444 * need to go on the anon lru below, and mem_cgroup_cache_charge
445 * (called in add_to_page_cache) needs to know where they're going too.
447 if (mapping_cap_swap_backed(mapping))
448 SetPageSwapBacked(page);
450 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
451 if (ret == 0) {
452 if (page_is_file_cache(page))
453 lru_cache_add_file(page);
454 else
455 lru_cache_add_anon(page);
457 return ret;
459 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
461 #ifdef CONFIG_NUMA
462 struct page *__page_cache_alloc(gfp_t gfp)
464 if (cpuset_do_page_mem_spread()) {
465 int n = cpuset_mem_spread_node();
466 return alloc_pages_exact_node(n, gfp, 0);
468 return alloc_pages(gfp, 0);
470 EXPORT_SYMBOL(__page_cache_alloc);
471 #endif
473 static int __sleep_on_page_lock(void *word)
475 io_schedule();
476 return 0;
480 * In order to wait for pages to become available there must be
481 * waitqueues associated with pages. By using a hash table of
482 * waitqueues where the bucket discipline is to maintain all
483 * waiters on the same queue and wake all when any of the pages
484 * become available, and for the woken contexts to check to be
485 * sure the appropriate page became available, this saves space
486 * at a cost of "thundering herd" phenomena during rare hash
487 * collisions.
489 static wait_queue_head_t *page_waitqueue(struct page *page)
491 const struct zone *zone = page_zone(page);
493 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
496 static inline void wake_up_page(struct page *page, int bit)
498 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
501 void wait_on_page_bit(struct page *page, int bit_nr)
503 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
505 if (test_bit(bit_nr, &page->flags))
506 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
507 TASK_UNINTERRUPTIBLE);
509 EXPORT_SYMBOL(wait_on_page_bit);
512 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
513 * @page: Page defining the wait queue of interest
514 * @waiter: Waiter to add to the queue
516 * Add an arbitrary @waiter to the wait queue for the nominated @page.
518 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
520 wait_queue_head_t *q = page_waitqueue(page);
521 unsigned long flags;
523 spin_lock_irqsave(&q->lock, flags);
524 __add_wait_queue(q, waiter);
525 spin_unlock_irqrestore(&q->lock, flags);
527 EXPORT_SYMBOL_GPL(add_page_wait_queue);
530 * unlock_page - unlock a locked page
531 * @page: the page
533 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
534 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
535 * mechananism between PageLocked pages and PageWriteback pages is shared.
536 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
538 * The mb is necessary to enforce ordering between the clear_bit and the read
539 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
541 void unlock_page(struct page *page)
543 VM_BUG_ON(!PageLocked(page));
544 clear_bit_unlock(PG_locked, &page->flags);
545 smp_mb__after_clear_bit();
546 wake_up_page(page, PG_locked);
548 EXPORT_SYMBOL(unlock_page);
551 * end_page_writeback - end writeback against a page
552 * @page: the page
554 void end_page_writeback(struct page *page)
556 if (TestClearPageReclaim(page))
557 rotate_reclaimable_page(page);
559 if (!test_clear_page_writeback(page))
560 BUG();
562 smp_mb__after_clear_bit();
563 wake_up_page(page, PG_writeback);
565 EXPORT_SYMBOL(end_page_writeback);
568 * __lock_page - get a lock on the page, assuming we need to sleep to get it
569 * @page: the page to lock
571 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
572 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
573 * chances are that on the second loop, the block layer's plug list is empty,
574 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
576 void __lock_page(struct page *page)
578 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
580 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
581 TASK_UNINTERRUPTIBLE);
583 EXPORT_SYMBOL(__lock_page);
585 int __lock_page_killable(struct page *page)
587 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
589 return __wait_on_bit_lock(page_waitqueue(page), &wait,
590 sync_page_killable, TASK_KILLABLE);
592 EXPORT_SYMBOL_GPL(__lock_page_killable);
595 * __lock_page_nosync - get a lock on the page, without calling sync_page()
596 * @page: the page to lock
598 * Variant of lock_page that does not require the caller to hold a reference
599 * on the page's mapping.
601 void __lock_page_nosync(struct page *page)
603 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
604 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
605 TASK_UNINTERRUPTIBLE);
609 * find_get_page - find and get a page reference
610 * @mapping: the address_space to search
611 * @offset: the page index
613 * Is there a pagecache struct page at the given (mapping, offset) tuple?
614 * If yes, increment its refcount and return it; if no, return NULL.
616 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
618 void **pagep;
619 struct page *page;
621 rcu_read_lock();
622 repeat:
623 page = NULL;
624 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
625 if (pagep) {
626 page = radix_tree_deref_slot(pagep);
627 if (unlikely(!page || page == RADIX_TREE_RETRY))
628 goto repeat;
630 if (!page_cache_get_speculative(page))
631 goto repeat;
634 * Has the page moved?
635 * This is part of the lockless pagecache protocol. See
636 * include/linux/pagemap.h for details.
638 if (unlikely(page != *pagep)) {
639 page_cache_release(page);
640 goto repeat;
643 rcu_read_unlock();
645 return page;
647 EXPORT_SYMBOL(find_get_page);
650 * find_lock_page - locate, pin and lock a pagecache page
651 * @mapping: the address_space to search
652 * @offset: the page index
654 * Locates the desired pagecache page, locks it, increments its reference
655 * count and returns its address.
657 * Returns zero if the page was not present. find_lock_page() may sleep.
659 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
661 struct page *page;
663 repeat:
664 page = find_get_page(mapping, offset);
665 if (page) {
666 lock_page(page);
667 /* Has the page been truncated? */
668 if (unlikely(page->mapping != mapping)) {
669 unlock_page(page);
670 page_cache_release(page);
671 goto repeat;
673 VM_BUG_ON(page->index != offset);
675 return page;
677 EXPORT_SYMBOL(find_lock_page);
680 * find_or_create_page - locate or add a pagecache page
681 * @mapping: the page's address_space
682 * @index: the page's index into the mapping
683 * @gfp_mask: page allocation mode
685 * Locates a page in the pagecache. If the page is not present, a new page
686 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
687 * LRU list. The returned page is locked and has its reference count
688 * incremented.
690 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
691 * allocation!
693 * find_or_create_page() returns the desired page's address, or zero on
694 * memory exhaustion.
696 struct page *find_or_create_page(struct address_space *mapping,
697 pgoff_t index, gfp_t gfp_mask)
699 struct page *page;
700 int err;
701 repeat:
702 page = find_lock_page(mapping, index);
703 if (!page) {
704 page = __page_cache_alloc(gfp_mask);
705 if (!page)
706 return NULL;
708 * We want a regular kernel memory (not highmem or DMA etc)
709 * allocation for the radix tree nodes, but we need to honour
710 * the context-specific requirements the caller has asked for.
711 * GFP_RECLAIM_MASK collects those requirements.
713 err = add_to_page_cache_lru(page, mapping, index,
714 (gfp_mask & GFP_RECLAIM_MASK));
715 if (unlikely(err)) {
716 page_cache_release(page);
717 page = NULL;
718 if (err == -EEXIST)
719 goto repeat;
722 return page;
724 EXPORT_SYMBOL(find_or_create_page);
727 * find_get_pages - gang pagecache lookup
728 * @mapping: The address_space to search
729 * @start: The starting page index
730 * @nr_pages: The maximum number of pages
731 * @pages: Where the resulting pages are placed
733 * find_get_pages() will search for and return a group of up to
734 * @nr_pages pages in the mapping. The pages are placed at @pages.
735 * find_get_pages() takes a reference against the returned pages.
737 * The search returns a group of mapping-contiguous pages with ascending
738 * indexes. There may be holes in the indices due to not-present pages.
740 * find_get_pages() returns the number of pages which were found.
742 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
743 unsigned int nr_pages, struct page **pages)
745 unsigned int i;
746 unsigned int ret;
747 unsigned int nr_found;
749 rcu_read_lock();
750 restart:
751 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
752 (void ***)pages, start, nr_pages);
753 ret = 0;
754 for (i = 0; i < nr_found; i++) {
755 struct page *page;
756 repeat:
757 page = radix_tree_deref_slot((void **)pages[i]);
758 if (unlikely(!page))
759 continue;
761 * this can only trigger if nr_found == 1, making livelock
762 * a non issue.
764 if (unlikely(page == RADIX_TREE_RETRY))
765 goto restart;
767 if (!page_cache_get_speculative(page))
768 goto repeat;
770 /* Has the page moved? */
771 if (unlikely(page != *((void **)pages[i]))) {
772 page_cache_release(page);
773 goto repeat;
776 pages[ret] = page;
777 ret++;
779 rcu_read_unlock();
780 return ret;
784 * find_get_pages_contig - gang contiguous pagecache lookup
785 * @mapping: The address_space to search
786 * @index: The starting page index
787 * @nr_pages: The maximum number of pages
788 * @pages: Where the resulting pages are placed
790 * find_get_pages_contig() works exactly like find_get_pages(), except
791 * that the returned number of pages are guaranteed to be contiguous.
793 * find_get_pages_contig() returns the number of pages which were found.
795 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
796 unsigned int nr_pages, struct page **pages)
798 unsigned int i;
799 unsigned int ret;
800 unsigned int nr_found;
802 rcu_read_lock();
803 restart:
804 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
805 (void ***)pages, index, nr_pages);
806 ret = 0;
807 for (i = 0; i < nr_found; i++) {
808 struct page *page;
809 repeat:
810 page = radix_tree_deref_slot((void **)pages[i]);
811 if (unlikely(!page))
812 continue;
814 * this can only trigger if nr_found == 1, making livelock
815 * a non issue.
817 if (unlikely(page == RADIX_TREE_RETRY))
818 goto restart;
820 if (page->mapping == NULL || page->index != index)
821 break;
823 if (!page_cache_get_speculative(page))
824 goto repeat;
826 /* Has the page moved? */
827 if (unlikely(page != *((void **)pages[i]))) {
828 page_cache_release(page);
829 goto repeat;
832 pages[ret] = page;
833 ret++;
834 index++;
836 rcu_read_unlock();
837 return ret;
839 EXPORT_SYMBOL(find_get_pages_contig);
842 * find_get_pages_tag - find and return pages that match @tag
843 * @mapping: the address_space to search
844 * @index: the starting page index
845 * @tag: the tag index
846 * @nr_pages: the maximum number of pages
847 * @pages: where the resulting pages are placed
849 * Like find_get_pages, except we only return pages which are tagged with
850 * @tag. We update @index to index the next page for the traversal.
852 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
853 int tag, unsigned int nr_pages, struct page **pages)
855 unsigned int i;
856 unsigned int ret;
857 unsigned int nr_found;
859 rcu_read_lock();
860 restart:
861 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
862 (void ***)pages, *index, nr_pages, tag);
863 ret = 0;
864 for (i = 0; i < nr_found; i++) {
865 struct page *page;
866 repeat:
867 page = radix_tree_deref_slot((void **)pages[i]);
868 if (unlikely(!page))
869 continue;
871 * this can only trigger if nr_found == 1, making livelock
872 * a non issue.
874 if (unlikely(page == RADIX_TREE_RETRY))
875 goto restart;
877 if (!page_cache_get_speculative(page))
878 goto repeat;
880 /* Has the page moved? */
881 if (unlikely(page != *((void **)pages[i]))) {
882 page_cache_release(page);
883 goto repeat;
886 pages[ret] = page;
887 ret++;
889 rcu_read_unlock();
891 if (ret)
892 *index = pages[ret - 1]->index + 1;
894 return ret;
896 EXPORT_SYMBOL(find_get_pages_tag);
899 * grab_cache_page_nowait - returns locked page at given index in given cache
900 * @mapping: target address_space
901 * @index: the page index
903 * Same as grab_cache_page(), but do not wait if the page is unavailable.
904 * This is intended for speculative data generators, where the data can
905 * be regenerated if the page couldn't be grabbed. This routine should
906 * be safe to call while holding the lock for another page.
908 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
909 * and deadlock against the caller's locked page.
911 struct page *
912 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
914 struct page *page = find_get_page(mapping, index);
916 if (page) {
917 if (trylock_page(page))
918 return page;
919 page_cache_release(page);
920 return NULL;
922 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
923 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
924 page_cache_release(page);
925 page = NULL;
927 return page;
929 EXPORT_SYMBOL(grab_cache_page_nowait);
932 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
933 * a _large_ part of the i/o request. Imagine the worst scenario:
935 * ---R__________________________________________B__________
936 * ^ reading here ^ bad block(assume 4k)
938 * read(R) => miss => readahead(R...B) => media error => frustrating retries
939 * => failing the whole request => read(R) => read(R+1) =>
940 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
941 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
942 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
944 * It is going insane. Fix it by quickly scaling down the readahead size.
946 static void shrink_readahead_size_eio(struct file *filp,
947 struct file_ra_state *ra)
949 ra->ra_pages /= 4;
953 * do_generic_file_read - generic file read routine
954 * @filp: the file to read
955 * @ppos: current file position
956 * @desc: read_descriptor
957 * @actor: read method
959 * This is a generic file read routine, and uses the
960 * mapping->a_ops->readpage() function for the actual low-level stuff.
962 * This is really ugly. But the goto's actually try to clarify some
963 * of the logic when it comes to error handling etc.
965 static void do_generic_file_read(struct file *filp, loff_t *ppos,
966 read_descriptor_t *desc, read_actor_t actor)
968 struct address_space *mapping = filp->f_mapping;
969 struct inode *inode = mapping->host;
970 struct file_ra_state *ra = &filp->f_ra;
971 pgoff_t index;
972 pgoff_t last_index;
973 pgoff_t prev_index;
974 unsigned long offset; /* offset into pagecache page */
975 unsigned int prev_offset;
976 int error;
978 index = *ppos >> PAGE_CACHE_SHIFT;
979 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
980 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
981 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
982 offset = *ppos & ~PAGE_CACHE_MASK;
984 for (;;) {
985 struct page *page;
986 pgoff_t end_index;
987 loff_t isize;
988 unsigned long nr, ret;
990 cond_resched();
991 find_page:
992 page = find_get_page(mapping, index);
993 if (!page) {
994 page_cache_sync_readahead(mapping,
995 ra, filp,
996 index, last_index - index);
997 page = find_get_page(mapping, index);
998 if (unlikely(page == NULL))
999 goto no_cached_page;
1001 if (PageReadahead(page)) {
1002 page_cache_async_readahead(mapping,
1003 ra, filp, page,
1004 index, last_index - index);
1006 if (!PageUptodate(page)) {
1007 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1008 !mapping->a_ops->is_partially_uptodate)
1009 goto page_not_up_to_date;
1010 if (!trylock_page(page))
1011 goto page_not_up_to_date;
1012 if (!mapping->a_ops->is_partially_uptodate(page,
1013 desc, offset))
1014 goto page_not_up_to_date_locked;
1015 unlock_page(page);
1017 page_ok:
1019 * i_size must be checked after we know the page is Uptodate.
1021 * Checking i_size after the check allows us to calculate
1022 * the correct value for "nr", which means the zero-filled
1023 * part of the page is not copied back to userspace (unless
1024 * another truncate extends the file - this is desired though).
1027 isize = i_size_read(inode);
1028 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1029 if (unlikely(!isize || index > end_index)) {
1030 page_cache_release(page);
1031 goto out;
1034 /* nr is the maximum number of bytes to copy from this page */
1035 nr = PAGE_CACHE_SIZE;
1036 if (index == end_index) {
1037 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1038 if (nr <= offset) {
1039 page_cache_release(page);
1040 goto out;
1043 nr = nr - offset;
1045 /* If users can be writing to this page using arbitrary
1046 * virtual addresses, take care about potential aliasing
1047 * before reading the page on the kernel side.
1049 if (mapping_writably_mapped(mapping))
1050 flush_dcache_page(page);
1053 * When a sequential read accesses a page several times,
1054 * only mark it as accessed the first time.
1056 if (prev_index != index || offset != prev_offset)
1057 mark_page_accessed(page);
1058 prev_index = index;
1061 * Ok, we have the page, and it's up-to-date, so
1062 * now we can copy it to user space...
1064 * The actor routine returns how many bytes were actually used..
1065 * NOTE! This may not be the same as how much of a user buffer
1066 * we filled up (we may be padding etc), so we can only update
1067 * "pos" here (the actor routine has to update the user buffer
1068 * pointers and the remaining count).
1070 ret = actor(desc, page, offset, nr);
1071 offset += ret;
1072 index += offset >> PAGE_CACHE_SHIFT;
1073 offset &= ~PAGE_CACHE_MASK;
1074 prev_offset = offset;
1076 page_cache_release(page);
1077 if (ret == nr && desc->count)
1078 continue;
1079 goto out;
1081 page_not_up_to_date:
1082 /* Get exclusive access to the page ... */
1083 error = lock_page_killable(page);
1084 if (unlikely(error))
1085 goto readpage_error;
1087 page_not_up_to_date_locked:
1088 /* Did it get truncated before we got the lock? */
1089 if (!page->mapping) {
1090 unlock_page(page);
1091 page_cache_release(page);
1092 continue;
1095 /* Did somebody else fill it already? */
1096 if (PageUptodate(page)) {
1097 unlock_page(page);
1098 goto page_ok;
1101 readpage:
1103 * A previous I/O error may have been due to temporary
1104 * failures, eg. multipath errors.
1105 * PG_error will be set again if readpage fails.
1107 ClearPageError(page);
1108 /* Start the actual read. The read will unlock the page. */
1109 error = mapping->a_ops->readpage(filp, page);
1111 if (unlikely(error)) {
1112 if (error == AOP_TRUNCATED_PAGE) {
1113 page_cache_release(page);
1114 goto find_page;
1116 goto readpage_error;
1119 if (!PageUptodate(page)) {
1120 error = lock_page_killable(page);
1121 if (unlikely(error))
1122 goto readpage_error;
1123 if (!PageUptodate(page)) {
1124 if (page->mapping == NULL) {
1126 * invalidate_mapping_pages got it
1128 unlock_page(page);
1129 page_cache_release(page);
1130 goto find_page;
1132 unlock_page(page);
1133 shrink_readahead_size_eio(filp, ra);
1134 error = -EIO;
1135 goto readpage_error;
1137 unlock_page(page);
1140 goto page_ok;
1142 readpage_error:
1143 /* UHHUH! A synchronous read error occurred. Report it */
1144 desc->error = error;
1145 page_cache_release(page);
1146 goto out;
1148 no_cached_page:
1150 * Ok, it wasn't cached, so we need to create a new
1151 * page..
1153 page = page_cache_alloc_cold(mapping);
1154 if (!page) {
1155 desc->error = -ENOMEM;
1156 goto out;
1158 error = add_to_page_cache_lru(page, mapping,
1159 index, GFP_KERNEL);
1160 if (error) {
1161 page_cache_release(page);
1162 if (error == -EEXIST)
1163 goto find_page;
1164 desc->error = error;
1165 goto out;
1167 goto readpage;
1170 out:
1171 ra->prev_pos = prev_index;
1172 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1173 ra->prev_pos |= prev_offset;
1175 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1176 file_accessed(filp);
1179 int file_read_actor(read_descriptor_t *desc, struct page *page,
1180 unsigned long offset, unsigned long size)
1182 char *kaddr;
1183 unsigned long left, count = desc->count;
1185 if (size > count)
1186 size = count;
1189 * Faults on the destination of a read are common, so do it before
1190 * taking the kmap.
1192 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1193 kaddr = kmap_atomic(page, KM_USER0);
1194 left = __copy_to_user_inatomic(desc->arg.buf,
1195 kaddr + offset, size);
1196 kunmap_atomic(kaddr, KM_USER0);
1197 if (left == 0)
1198 goto success;
1201 /* Do it the slow way */
1202 kaddr = kmap(page);
1203 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1204 kunmap(page);
1206 if (left) {
1207 size -= left;
1208 desc->error = -EFAULT;
1210 success:
1211 desc->count = count - size;
1212 desc->written += size;
1213 desc->arg.buf += size;
1214 return size;
1218 * Performs necessary checks before doing a write
1219 * @iov: io vector request
1220 * @nr_segs: number of segments in the iovec
1221 * @count: number of bytes to write
1222 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1224 * Adjust number of segments and amount of bytes to write (nr_segs should be
1225 * properly initialized first). Returns appropriate error code that caller
1226 * should return or zero in case that write should be allowed.
1228 int generic_segment_checks(const struct iovec *iov,
1229 unsigned long *nr_segs, size_t *count, int access_flags)
1231 unsigned long seg;
1232 size_t cnt = 0;
1233 for (seg = 0; seg < *nr_segs; seg++) {
1234 const struct iovec *iv = &iov[seg];
1237 * If any segment has a negative length, or the cumulative
1238 * length ever wraps negative then return -EINVAL.
1240 cnt += iv->iov_len;
1241 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1242 return -EINVAL;
1243 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1244 continue;
1245 if (seg == 0)
1246 return -EFAULT;
1247 *nr_segs = seg;
1248 cnt -= iv->iov_len; /* This segment is no good */
1249 break;
1251 *count = cnt;
1252 return 0;
1254 EXPORT_SYMBOL(generic_segment_checks);
1257 * generic_file_aio_read - generic filesystem read routine
1258 * @iocb: kernel I/O control block
1259 * @iov: io vector request
1260 * @nr_segs: number of segments in the iovec
1261 * @pos: current file position
1263 * This is the "read()" routine for all filesystems
1264 * that can use the page cache directly.
1266 ssize_t
1267 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1268 unsigned long nr_segs, loff_t pos)
1270 struct file *filp = iocb->ki_filp;
1271 ssize_t retval;
1272 unsigned long seg;
1273 size_t count;
1274 loff_t *ppos = &iocb->ki_pos;
1276 count = 0;
1277 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1278 if (retval)
1279 return retval;
1281 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1282 if (filp->f_flags & O_DIRECT) {
1283 loff_t size;
1284 struct address_space *mapping;
1285 struct inode *inode;
1287 mapping = filp->f_mapping;
1288 inode = mapping->host;
1289 if (!count)
1290 goto out; /* skip atime */
1291 size = i_size_read(inode);
1292 if (pos < size) {
1293 retval = filemap_write_and_wait_range(mapping, pos,
1294 pos + iov_length(iov, nr_segs) - 1);
1295 if (!retval) {
1296 retval = mapping->a_ops->direct_IO(READ, iocb,
1297 iov, pos, nr_segs);
1299 if (retval > 0)
1300 *ppos = pos + retval;
1301 if (retval) {
1302 file_accessed(filp);
1303 goto out;
1308 for (seg = 0; seg < nr_segs; seg++) {
1309 read_descriptor_t desc;
1311 desc.written = 0;
1312 desc.arg.buf = iov[seg].iov_base;
1313 desc.count = iov[seg].iov_len;
1314 if (desc.count == 0)
1315 continue;
1316 desc.error = 0;
1317 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1318 retval += desc.written;
1319 if (desc.error) {
1320 retval = retval ?: desc.error;
1321 break;
1323 if (desc.count > 0)
1324 break;
1326 out:
1327 return retval;
1329 EXPORT_SYMBOL(generic_file_aio_read);
1331 static ssize_t
1332 do_readahead(struct address_space *mapping, struct file *filp,
1333 pgoff_t index, unsigned long nr)
1335 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1336 return -EINVAL;
1338 force_page_cache_readahead(mapping, filp, index, nr);
1339 return 0;
1342 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1344 ssize_t ret;
1345 struct file *file;
1347 ret = -EBADF;
1348 file = fget(fd);
1349 if (file) {
1350 if (file->f_mode & FMODE_READ) {
1351 struct address_space *mapping = file->f_mapping;
1352 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1353 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1354 unsigned long len = end - start + 1;
1355 ret = do_readahead(mapping, file, start, len);
1357 fput(file);
1359 return ret;
1361 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1362 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1364 return SYSC_readahead((int) fd, offset, (size_t) count);
1366 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1367 #endif
1369 #ifdef CONFIG_MMU
1371 * page_cache_read - adds requested page to the page cache if not already there
1372 * @file: file to read
1373 * @offset: page index
1375 * This adds the requested page to the page cache if it isn't already there,
1376 * and schedules an I/O to read in its contents from disk.
1378 static int page_cache_read(struct file *file, pgoff_t offset)
1380 struct address_space *mapping = file->f_mapping;
1381 struct page *page;
1382 int ret;
1384 do {
1385 page = page_cache_alloc_cold(mapping);
1386 if (!page)
1387 return -ENOMEM;
1389 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1390 if (ret == 0)
1391 ret = mapping->a_ops->readpage(file, page);
1392 else if (ret == -EEXIST)
1393 ret = 0; /* losing race to add is OK */
1395 page_cache_release(page);
1397 } while (ret == AOP_TRUNCATED_PAGE);
1399 return ret;
1402 #define MMAP_LOTSAMISS (100)
1405 * Synchronous readahead happens when we don't even find
1406 * a page in the page cache at all.
1408 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1409 struct file_ra_state *ra,
1410 struct file *file,
1411 pgoff_t offset)
1413 unsigned long ra_pages;
1414 struct address_space *mapping = file->f_mapping;
1416 /* If we don't want any read-ahead, don't bother */
1417 if (VM_RandomReadHint(vma))
1418 return;
1420 if (VM_SequentialReadHint(vma) ||
1421 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1422 page_cache_sync_readahead(mapping, ra, file, offset,
1423 ra->ra_pages);
1424 return;
1427 if (ra->mmap_miss < INT_MAX)
1428 ra->mmap_miss++;
1431 * Do we miss much more than hit in this file? If so,
1432 * stop bothering with read-ahead. It will only hurt.
1434 if (ra->mmap_miss > MMAP_LOTSAMISS)
1435 return;
1438 * mmap read-around
1440 ra_pages = max_sane_readahead(ra->ra_pages);
1441 if (ra_pages) {
1442 ra->start = max_t(long, 0, offset - ra_pages/2);
1443 ra->size = ra_pages;
1444 ra->async_size = 0;
1445 ra_submit(ra, mapping, file);
1450 * Asynchronous readahead happens when we find the page and PG_readahead,
1451 * so we want to possibly extend the readahead further..
1453 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1454 struct file_ra_state *ra,
1455 struct file *file,
1456 struct page *page,
1457 pgoff_t offset)
1459 struct address_space *mapping = file->f_mapping;
1461 /* If we don't want any read-ahead, don't bother */
1462 if (VM_RandomReadHint(vma))
1463 return;
1464 if (ra->mmap_miss > 0)
1465 ra->mmap_miss--;
1466 if (PageReadahead(page))
1467 page_cache_async_readahead(mapping, ra, file,
1468 page, offset, ra->ra_pages);
1472 * filemap_fault - read in file data for page fault handling
1473 * @vma: vma in which the fault was taken
1474 * @vmf: struct vm_fault containing details of the fault
1476 * filemap_fault() is invoked via the vma operations vector for a
1477 * mapped memory region to read in file data during a page fault.
1479 * The goto's are kind of ugly, but this streamlines the normal case of having
1480 * it in the page cache, and handles the special cases reasonably without
1481 * having a lot of duplicated code.
1483 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1485 int error;
1486 struct file *file = vma->vm_file;
1487 struct address_space *mapping = file->f_mapping;
1488 struct file_ra_state *ra = &file->f_ra;
1489 struct inode *inode = mapping->host;
1490 pgoff_t offset = vmf->pgoff;
1491 struct page *page;
1492 pgoff_t size;
1493 int ret = 0;
1495 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1496 if (offset >= size)
1497 return VM_FAULT_SIGBUS;
1500 * Do we have something in the page cache already?
1502 page = find_get_page(mapping, offset);
1503 if (likely(page)) {
1505 * We found the page, so try async readahead before
1506 * waiting for the lock.
1508 do_async_mmap_readahead(vma, ra, file, page, offset);
1509 lock_page(page);
1511 /* Did it get truncated? */
1512 if (unlikely(page->mapping != mapping)) {
1513 unlock_page(page);
1514 put_page(page);
1515 goto no_cached_page;
1517 } else {
1518 /* No page in the page cache at all */
1519 do_sync_mmap_readahead(vma, ra, file, offset);
1520 count_vm_event(PGMAJFAULT);
1521 ret = VM_FAULT_MAJOR;
1522 retry_find:
1523 page = find_lock_page(mapping, offset);
1524 if (!page)
1525 goto no_cached_page;
1529 * We have a locked page in the page cache, now we need to check
1530 * that it's up-to-date. If not, it is going to be due to an error.
1532 if (unlikely(!PageUptodate(page)))
1533 goto page_not_uptodate;
1536 * Found the page and have a reference on it.
1537 * We must recheck i_size under page lock.
1539 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1540 if (unlikely(offset >= size)) {
1541 unlock_page(page);
1542 page_cache_release(page);
1543 return VM_FAULT_SIGBUS;
1546 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1547 vmf->page = page;
1548 return ret | VM_FAULT_LOCKED;
1550 no_cached_page:
1552 * We're only likely to ever get here if MADV_RANDOM is in
1553 * effect.
1555 error = page_cache_read(file, offset);
1558 * The page we want has now been added to the page cache.
1559 * In the unlikely event that someone removed it in the
1560 * meantime, we'll just come back here and read it again.
1562 if (error >= 0)
1563 goto retry_find;
1566 * An error return from page_cache_read can result if the
1567 * system is low on memory, or a problem occurs while trying
1568 * to schedule I/O.
1570 if (error == -ENOMEM)
1571 return VM_FAULT_OOM;
1572 return VM_FAULT_SIGBUS;
1574 page_not_uptodate:
1576 * Umm, take care of errors if the page isn't up-to-date.
1577 * Try to re-read it _once_. We do this synchronously,
1578 * because there really aren't any performance issues here
1579 * and we need to check for errors.
1581 ClearPageError(page);
1582 error = mapping->a_ops->readpage(file, page);
1583 if (!error) {
1584 wait_on_page_locked(page);
1585 if (!PageUptodate(page))
1586 error = -EIO;
1588 page_cache_release(page);
1590 if (!error || error == AOP_TRUNCATED_PAGE)
1591 goto retry_find;
1593 /* Things didn't work out. Return zero to tell the mm layer so. */
1594 shrink_readahead_size_eio(file, ra);
1595 return VM_FAULT_SIGBUS;
1597 EXPORT_SYMBOL(filemap_fault);
1599 const struct vm_operations_struct generic_file_vm_ops = {
1600 .fault = filemap_fault,
1603 /* This is used for a general mmap of a disk file */
1605 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1607 struct address_space *mapping = file->f_mapping;
1609 if (!mapping->a_ops->readpage)
1610 return -ENOEXEC;
1611 file_accessed(file);
1612 vma->vm_ops = &generic_file_vm_ops;
1613 vma->vm_flags |= VM_CAN_NONLINEAR;
1614 return 0;
1618 * This is for filesystems which do not implement ->writepage.
1620 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1622 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1623 return -EINVAL;
1624 return generic_file_mmap(file, vma);
1626 #else
1627 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1629 return -ENOSYS;
1631 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1633 return -ENOSYS;
1635 #endif /* CONFIG_MMU */
1637 EXPORT_SYMBOL(generic_file_mmap);
1638 EXPORT_SYMBOL(generic_file_readonly_mmap);
1640 static struct page *__read_cache_page(struct address_space *mapping,
1641 pgoff_t index,
1642 int (*filler)(void *,struct page*),
1643 void *data,
1644 gfp_t gfp)
1646 struct page *page;
1647 int err;
1648 repeat:
1649 page = find_get_page(mapping, index);
1650 if (!page) {
1651 page = __page_cache_alloc(gfp | __GFP_COLD);
1652 if (!page)
1653 return ERR_PTR(-ENOMEM);
1654 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1655 if (unlikely(err)) {
1656 page_cache_release(page);
1657 if (err == -EEXIST)
1658 goto repeat;
1659 /* Presumably ENOMEM for radix tree node */
1660 return ERR_PTR(err);
1662 err = filler(data, page);
1663 if (err < 0) {
1664 page_cache_release(page);
1665 page = ERR_PTR(err);
1668 return page;
1671 static struct page *do_read_cache_page(struct address_space *mapping,
1672 pgoff_t index,
1673 int (*filler)(void *,struct page*),
1674 void *data,
1675 gfp_t gfp)
1678 struct page *page;
1679 int err;
1681 retry:
1682 page = __read_cache_page(mapping, index, filler, data, gfp);
1683 if (IS_ERR(page))
1684 return page;
1685 if (PageUptodate(page))
1686 goto out;
1688 lock_page(page);
1689 if (!page->mapping) {
1690 unlock_page(page);
1691 page_cache_release(page);
1692 goto retry;
1694 if (PageUptodate(page)) {
1695 unlock_page(page);
1696 goto out;
1698 err = filler(data, page);
1699 if (err < 0) {
1700 page_cache_release(page);
1701 return ERR_PTR(err);
1703 out:
1704 mark_page_accessed(page);
1705 return page;
1709 * read_cache_page_async - read into page cache, fill it if needed
1710 * @mapping: the page's address_space
1711 * @index: the page index
1712 * @filler: function to perform the read
1713 * @data: destination for read data
1715 * Same as read_cache_page, but don't wait for page to become unlocked
1716 * after submitting it to the filler.
1718 * Read into the page cache. If a page already exists, and PageUptodate() is
1719 * not set, try to fill the page but don't wait for it to become unlocked.
1721 * If the page does not get brought uptodate, return -EIO.
1723 struct page *read_cache_page_async(struct address_space *mapping,
1724 pgoff_t index,
1725 int (*filler)(void *,struct page*),
1726 void *data)
1728 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1730 EXPORT_SYMBOL(read_cache_page_async);
1732 static struct page *wait_on_page_read(struct page *page)
1734 if (!IS_ERR(page)) {
1735 wait_on_page_locked(page);
1736 if (!PageUptodate(page)) {
1737 page_cache_release(page);
1738 page = ERR_PTR(-EIO);
1741 return page;
1745 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1746 * @mapping: the page's address_space
1747 * @index: the page index
1748 * @gfp: the page allocator flags to use if allocating
1750 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1751 * any new page allocations done using the specified allocation flags. Note
1752 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1753 * expect to do this atomically or anything like that - but you can pass in
1754 * other page requirements.
1756 * If the page does not get brought uptodate, return -EIO.
1758 struct page *read_cache_page_gfp(struct address_space *mapping,
1759 pgoff_t index,
1760 gfp_t gfp)
1762 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1764 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1766 EXPORT_SYMBOL(read_cache_page_gfp);
1769 * read_cache_page - read into page cache, fill it if needed
1770 * @mapping: the page's address_space
1771 * @index: the page index
1772 * @filler: function to perform the read
1773 * @data: destination for read data
1775 * Read into the page cache. If a page already exists, and PageUptodate() is
1776 * not set, try to fill the page then wait for it to become unlocked.
1778 * If the page does not get brought uptodate, return -EIO.
1780 struct page *read_cache_page(struct address_space *mapping,
1781 pgoff_t index,
1782 int (*filler)(void *,struct page*),
1783 void *data)
1785 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1787 EXPORT_SYMBOL(read_cache_page);
1790 * The logic we want is
1792 * if suid or (sgid and xgrp)
1793 * remove privs
1795 int should_remove_suid(struct dentry *dentry)
1797 mode_t mode = dentry->d_inode->i_mode;
1798 int kill = 0;
1800 /* suid always must be killed */
1801 if (unlikely(mode & S_ISUID))
1802 kill = ATTR_KILL_SUID;
1805 * sgid without any exec bits is just a mandatory locking mark; leave
1806 * it alone. If some exec bits are set, it's a real sgid; kill it.
1808 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1809 kill |= ATTR_KILL_SGID;
1811 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1812 return kill;
1814 return 0;
1816 EXPORT_SYMBOL(should_remove_suid);
1818 static int __remove_suid(struct dentry *dentry, int kill)
1820 struct iattr newattrs;
1822 newattrs.ia_valid = ATTR_FORCE | kill;
1823 return notify_change(dentry, &newattrs);
1826 int file_remove_suid(struct file *file)
1828 struct dentry *dentry = file->f_path.dentry;
1829 int killsuid = should_remove_suid(dentry);
1830 int killpriv = security_inode_need_killpriv(dentry);
1831 int error = 0;
1833 if (killpriv < 0)
1834 return killpriv;
1835 if (killpriv)
1836 error = security_inode_killpriv(dentry);
1837 if (!error && killsuid)
1838 error = __remove_suid(dentry, killsuid);
1840 return error;
1842 EXPORT_SYMBOL(file_remove_suid);
1844 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1845 const struct iovec *iov, size_t base, size_t bytes)
1847 size_t copied = 0, left = 0;
1849 while (bytes) {
1850 char __user *buf = iov->iov_base + base;
1851 int copy = min(bytes, iov->iov_len - base);
1853 base = 0;
1854 left = __copy_from_user_inatomic(vaddr, buf, copy);
1855 copied += copy;
1856 bytes -= copy;
1857 vaddr += copy;
1858 iov++;
1860 if (unlikely(left))
1861 break;
1863 return copied - left;
1867 * Copy as much as we can into the page and return the number of bytes which
1868 * were successfully copied. If a fault is encountered then return the number of
1869 * bytes which were copied.
1871 size_t iov_iter_copy_from_user_atomic(struct page *page,
1872 struct iov_iter *i, unsigned long offset, size_t bytes)
1874 char *kaddr;
1875 size_t copied;
1877 BUG_ON(!in_atomic());
1878 kaddr = kmap_atomic(page, KM_USER0);
1879 if (likely(i->nr_segs == 1)) {
1880 int left;
1881 char __user *buf = i->iov->iov_base + i->iov_offset;
1882 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1883 copied = bytes - left;
1884 } else {
1885 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1886 i->iov, i->iov_offset, bytes);
1888 kunmap_atomic(kaddr, KM_USER0);
1890 return copied;
1892 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1895 * This has the same sideeffects and return value as
1896 * iov_iter_copy_from_user_atomic().
1897 * The difference is that it attempts to resolve faults.
1898 * Page must not be locked.
1900 size_t iov_iter_copy_from_user(struct page *page,
1901 struct iov_iter *i, unsigned long offset, size_t bytes)
1903 char *kaddr;
1904 size_t copied;
1906 kaddr = kmap(page);
1907 if (likely(i->nr_segs == 1)) {
1908 int left;
1909 char __user *buf = i->iov->iov_base + i->iov_offset;
1910 left = __copy_from_user(kaddr + offset, buf, bytes);
1911 copied = bytes - left;
1912 } else {
1913 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1914 i->iov, i->iov_offset, bytes);
1916 kunmap(page);
1917 return copied;
1919 EXPORT_SYMBOL(iov_iter_copy_from_user);
1921 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1923 BUG_ON(i->count < bytes);
1925 if (likely(i->nr_segs == 1)) {
1926 i->iov_offset += bytes;
1927 i->count -= bytes;
1928 } else {
1929 const struct iovec *iov = i->iov;
1930 size_t base = i->iov_offset;
1933 * The !iov->iov_len check ensures we skip over unlikely
1934 * zero-length segments (without overruning the iovec).
1936 while (bytes || unlikely(i->count && !iov->iov_len)) {
1937 int copy;
1939 copy = min(bytes, iov->iov_len - base);
1940 BUG_ON(!i->count || i->count < copy);
1941 i->count -= copy;
1942 bytes -= copy;
1943 base += copy;
1944 if (iov->iov_len == base) {
1945 iov++;
1946 base = 0;
1949 i->iov = iov;
1950 i->iov_offset = base;
1953 EXPORT_SYMBOL(iov_iter_advance);
1956 * Fault in the first iovec of the given iov_iter, to a maximum length
1957 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1958 * accessed (ie. because it is an invalid address).
1960 * writev-intensive code may want this to prefault several iovecs -- that
1961 * would be possible (callers must not rely on the fact that _only_ the
1962 * first iovec will be faulted with the current implementation).
1964 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1966 char __user *buf = i->iov->iov_base + i->iov_offset;
1967 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1968 return fault_in_pages_readable(buf, bytes);
1970 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1973 * Return the count of just the current iov_iter segment.
1975 size_t iov_iter_single_seg_count(struct iov_iter *i)
1977 const struct iovec *iov = i->iov;
1978 if (i->nr_segs == 1)
1979 return i->count;
1980 else
1981 return min(i->count, iov->iov_len - i->iov_offset);
1983 EXPORT_SYMBOL(iov_iter_single_seg_count);
1986 * Performs necessary checks before doing a write
1988 * Can adjust writing position or amount of bytes to write.
1989 * Returns appropriate error code that caller should return or
1990 * zero in case that write should be allowed.
1992 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1994 struct inode *inode = file->f_mapping->host;
1995 unsigned long limit = rlimit(RLIMIT_FSIZE);
1997 if (unlikely(*pos < 0))
1998 return -EINVAL;
2000 if (!isblk) {
2001 /* FIXME: this is for backwards compatibility with 2.4 */
2002 if (file->f_flags & O_APPEND)
2003 *pos = i_size_read(inode);
2005 if (limit != RLIM_INFINITY) {
2006 if (*pos >= limit) {
2007 send_sig(SIGXFSZ, current, 0);
2008 return -EFBIG;
2010 if (*count > limit - (typeof(limit))*pos) {
2011 *count = limit - (typeof(limit))*pos;
2017 * LFS rule
2019 if (unlikely(*pos + *count > MAX_NON_LFS &&
2020 !(file->f_flags & O_LARGEFILE))) {
2021 if (*pos >= MAX_NON_LFS) {
2022 return -EFBIG;
2024 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2025 *count = MAX_NON_LFS - (unsigned long)*pos;
2030 * Are we about to exceed the fs block limit ?
2032 * If we have written data it becomes a short write. If we have
2033 * exceeded without writing data we send a signal and return EFBIG.
2034 * Linus frestrict idea will clean these up nicely..
2036 if (likely(!isblk)) {
2037 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2038 if (*count || *pos > inode->i_sb->s_maxbytes) {
2039 return -EFBIG;
2041 /* zero-length writes at ->s_maxbytes are OK */
2044 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2045 *count = inode->i_sb->s_maxbytes - *pos;
2046 } else {
2047 #ifdef CONFIG_BLOCK
2048 loff_t isize;
2049 if (bdev_read_only(I_BDEV(inode)))
2050 return -EPERM;
2051 isize = i_size_read(inode);
2052 if (*pos >= isize) {
2053 if (*count || *pos > isize)
2054 return -ENOSPC;
2057 if (*pos + *count > isize)
2058 *count = isize - *pos;
2059 #else
2060 return -EPERM;
2061 #endif
2063 return 0;
2065 EXPORT_SYMBOL(generic_write_checks);
2067 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2068 loff_t pos, unsigned len, unsigned flags,
2069 struct page **pagep, void **fsdata)
2071 const struct address_space_operations *aops = mapping->a_ops;
2073 return aops->write_begin(file, mapping, pos, len, flags,
2074 pagep, fsdata);
2076 EXPORT_SYMBOL(pagecache_write_begin);
2078 int pagecache_write_end(struct file *file, struct address_space *mapping,
2079 loff_t pos, unsigned len, unsigned copied,
2080 struct page *page, void *fsdata)
2082 const struct address_space_operations *aops = mapping->a_ops;
2084 mark_page_accessed(page);
2085 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2087 EXPORT_SYMBOL(pagecache_write_end);
2089 ssize_t
2090 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2091 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2092 size_t count, size_t ocount)
2094 struct file *file = iocb->ki_filp;
2095 struct address_space *mapping = file->f_mapping;
2096 struct inode *inode = mapping->host;
2097 ssize_t written;
2098 size_t write_len;
2099 pgoff_t end;
2101 if (count != ocount)
2102 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2104 write_len = iov_length(iov, *nr_segs);
2105 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2107 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2108 if (written)
2109 goto out;
2112 * After a write we want buffered reads to be sure to go to disk to get
2113 * the new data. We invalidate clean cached page from the region we're
2114 * about to write. We do this *before* the write so that we can return
2115 * without clobbering -EIOCBQUEUED from ->direct_IO().
2117 if (mapping->nrpages) {
2118 written = invalidate_inode_pages2_range(mapping,
2119 pos >> PAGE_CACHE_SHIFT, end);
2121 * If a page can not be invalidated, return 0 to fall back
2122 * to buffered write.
2124 if (written) {
2125 if (written == -EBUSY)
2126 return 0;
2127 goto out;
2131 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2134 * Finally, try again to invalidate clean pages which might have been
2135 * cached by non-direct readahead, or faulted in by get_user_pages()
2136 * if the source of the write was an mmap'ed region of the file
2137 * we're writing. Either one is a pretty crazy thing to do,
2138 * so we don't support it 100%. If this invalidation
2139 * fails, tough, the write still worked...
2141 if (mapping->nrpages) {
2142 invalidate_inode_pages2_range(mapping,
2143 pos >> PAGE_CACHE_SHIFT, end);
2146 if (written > 0) {
2147 loff_t end = pos + written;
2148 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2149 i_size_write(inode, end);
2150 mark_inode_dirty(inode);
2152 *ppos = end;
2154 out:
2155 return written;
2157 EXPORT_SYMBOL(generic_file_direct_write);
2160 * Find or create a page at the given pagecache position. Return the locked
2161 * page. This function is specifically for buffered writes.
2163 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2164 pgoff_t index, unsigned flags)
2166 int status;
2167 struct page *page;
2168 gfp_t gfp_notmask = 0;
2169 if (flags & AOP_FLAG_NOFS)
2170 gfp_notmask = __GFP_FS;
2171 repeat:
2172 page = find_lock_page(mapping, index);
2173 if (likely(page))
2174 return page;
2176 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2177 if (!page)
2178 return NULL;
2179 status = add_to_page_cache_lru(page, mapping, index,
2180 GFP_KERNEL & ~gfp_notmask);
2181 if (unlikely(status)) {
2182 page_cache_release(page);
2183 if (status == -EEXIST)
2184 goto repeat;
2185 return NULL;
2187 return page;
2189 EXPORT_SYMBOL(grab_cache_page_write_begin);
2191 static ssize_t generic_perform_write(struct file *file,
2192 struct iov_iter *i, loff_t pos)
2194 struct address_space *mapping = file->f_mapping;
2195 const struct address_space_operations *a_ops = mapping->a_ops;
2196 long status = 0;
2197 ssize_t written = 0;
2198 unsigned int flags = 0;
2201 * Copies from kernel address space cannot fail (NFSD is a big user).
2203 if (segment_eq(get_fs(), KERNEL_DS))
2204 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2206 do {
2207 struct page *page;
2208 pgoff_t index; /* Pagecache index for current page */
2209 unsigned long offset; /* Offset into pagecache page */
2210 unsigned long bytes; /* Bytes to write to page */
2211 size_t copied; /* Bytes copied from user */
2212 void *fsdata;
2214 offset = (pos & (PAGE_CACHE_SIZE - 1));
2215 index = pos >> PAGE_CACHE_SHIFT;
2216 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2217 iov_iter_count(i));
2219 again:
2222 * Bring in the user page that we will copy from _first_.
2223 * Otherwise there's a nasty deadlock on copying from the
2224 * same page as we're writing to, without it being marked
2225 * up-to-date.
2227 * Not only is this an optimisation, but it is also required
2228 * to check that the address is actually valid, when atomic
2229 * usercopies are used, below.
2231 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2232 status = -EFAULT;
2233 break;
2236 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2237 &page, &fsdata);
2238 if (unlikely(status))
2239 break;
2241 if (mapping_writably_mapped(mapping))
2242 flush_dcache_page(page);
2244 pagefault_disable();
2245 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2246 pagefault_enable();
2247 flush_dcache_page(page);
2249 mark_page_accessed(page);
2250 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2251 page, fsdata);
2252 if (unlikely(status < 0))
2253 break;
2254 copied = status;
2256 cond_resched();
2258 iov_iter_advance(i, copied);
2259 if (unlikely(copied == 0)) {
2261 * If we were unable to copy any data at all, we must
2262 * fall back to a single segment length write.
2264 * If we didn't fallback here, we could livelock
2265 * because not all segments in the iov can be copied at
2266 * once without a pagefault.
2268 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2269 iov_iter_single_seg_count(i));
2270 goto again;
2272 pos += copied;
2273 written += copied;
2275 balance_dirty_pages_ratelimited(mapping);
2277 } while (iov_iter_count(i));
2279 return written ? written : status;
2282 ssize_t
2283 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2284 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2285 size_t count, ssize_t written)
2287 struct file *file = iocb->ki_filp;
2288 ssize_t status;
2289 struct iov_iter i;
2291 iov_iter_init(&i, iov, nr_segs, count, written);
2292 status = generic_perform_write(file, &i, pos);
2294 if (likely(status >= 0)) {
2295 written += status;
2296 *ppos = pos + status;
2299 return written ? written : status;
2301 EXPORT_SYMBOL(generic_file_buffered_write);
2304 * __generic_file_aio_write - write data to a file
2305 * @iocb: IO state structure (file, offset, etc.)
2306 * @iov: vector with data to write
2307 * @nr_segs: number of segments in the vector
2308 * @ppos: position where to write
2310 * This function does all the work needed for actually writing data to a
2311 * file. It does all basic checks, removes SUID from the file, updates
2312 * modification times and calls proper subroutines depending on whether we
2313 * do direct IO or a standard buffered write.
2315 * It expects i_mutex to be grabbed unless we work on a block device or similar
2316 * object which does not need locking at all.
2318 * This function does *not* take care of syncing data in case of O_SYNC write.
2319 * A caller has to handle it. This is mainly due to the fact that we want to
2320 * avoid syncing under i_mutex.
2322 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2323 unsigned long nr_segs, loff_t *ppos)
2325 struct file *file = iocb->ki_filp;
2326 struct address_space * mapping = file->f_mapping;
2327 size_t ocount; /* original count */
2328 size_t count; /* after file limit checks */
2329 struct inode *inode = mapping->host;
2330 loff_t pos;
2331 ssize_t written;
2332 ssize_t err;
2334 ocount = 0;
2335 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2336 if (err)
2337 return err;
2339 count = ocount;
2340 pos = *ppos;
2342 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2344 /* We can write back this queue in page reclaim */
2345 current->backing_dev_info = mapping->backing_dev_info;
2346 written = 0;
2348 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2349 if (err)
2350 goto out;
2352 if (count == 0)
2353 goto out;
2355 err = file_remove_suid(file);
2356 if (err)
2357 goto out;
2359 file_update_time(file);
2361 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2362 if (unlikely(file->f_flags & O_DIRECT)) {
2363 loff_t endbyte;
2364 ssize_t written_buffered;
2366 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2367 ppos, count, ocount);
2368 if (written < 0 || written == count)
2369 goto out;
2371 * direct-io write to a hole: fall through to buffered I/O
2372 * for completing the rest of the request.
2374 pos += written;
2375 count -= written;
2376 written_buffered = generic_file_buffered_write(iocb, iov,
2377 nr_segs, pos, ppos, count,
2378 written);
2380 * If generic_file_buffered_write() retuned a synchronous error
2381 * then we want to return the number of bytes which were
2382 * direct-written, or the error code if that was zero. Note
2383 * that this differs from normal direct-io semantics, which
2384 * will return -EFOO even if some bytes were written.
2386 if (written_buffered < 0) {
2387 err = written_buffered;
2388 goto out;
2392 * We need to ensure that the page cache pages are written to
2393 * disk and invalidated to preserve the expected O_DIRECT
2394 * semantics.
2396 endbyte = pos + written_buffered - written - 1;
2397 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2398 if (err == 0) {
2399 written = written_buffered;
2400 invalidate_mapping_pages(mapping,
2401 pos >> PAGE_CACHE_SHIFT,
2402 endbyte >> PAGE_CACHE_SHIFT);
2403 } else {
2405 * We don't know how much we wrote, so just return
2406 * the number of bytes which were direct-written
2409 } else {
2410 written = generic_file_buffered_write(iocb, iov, nr_segs,
2411 pos, ppos, count, written);
2413 out:
2414 current->backing_dev_info = NULL;
2415 return written ? written : err;
2417 EXPORT_SYMBOL(__generic_file_aio_write);
2420 * generic_file_aio_write - write data to a file
2421 * @iocb: IO state structure
2422 * @iov: vector with data to write
2423 * @nr_segs: number of segments in the vector
2424 * @pos: position in file where to write
2426 * This is a wrapper around __generic_file_aio_write() to be used by most
2427 * filesystems. It takes care of syncing the file in case of O_SYNC file
2428 * and acquires i_mutex as needed.
2430 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2431 unsigned long nr_segs, loff_t pos)
2433 struct file *file = iocb->ki_filp;
2434 struct inode *inode = file->f_mapping->host;
2435 ssize_t ret;
2437 BUG_ON(iocb->ki_pos != pos);
2439 mutex_lock(&inode->i_mutex);
2440 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2441 mutex_unlock(&inode->i_mutex);
2443 if (ret > 0 || ret == -EIOCBQUEUED) {
2444 ssize_t err;
2446 err = generic_write_sync(file, pos, ret);
2447 if (err < 0 && ret > 0)
2448 ret = err;
2450 return ret;
2452 EXPORT_SYMBOL(generic_file_aio_write);
2455 * try_to_release_page() - release old fs-specific metadata on a page
2457 * @page: the page which the kernel is trying to free
2458 * @gfp_mask: memory allocation flags (and I/O mode)
2460 * The address_space is to try to release any data against the page
2461 * (presumably at page->private). If the release was successful, return `1'.
2462 * Otherwise return zero.
2464 * This may also be called if PG_fscache is set on a page, indicating that the
2465 * page is known to the local caching routines.
2467 * The @gfp_mask argument specifies whether I/O may be performed to release
2468 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2471 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2473 struct address_space * const mapping = page->mapping;
2475 BUG_ON(!PageLocked(page));
2476 if (PageWriteback(page))
2477 return 0;
2479 if (mapping && mapping->a_ops->releasepage)
2480 return mapping->a_ops->releasepage(page, gfp_mask);
2481 return try_to_free_buffers(page);
2484 EXPORT_SYMBOL(try_to_release_page);