2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 * Copyright (C) 2008-2009 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/workqueue.h>
33 #include <linux/delay.h>
34 #include <linux/clk.h>
35 #include <linux/err.h>
36 #include <linux/amba/bus.h>
37 #include <linux/amba/pl022.h>
39 #include <linux/slab.h>
40 #include <linux/dmaengine.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/scatterlist.h>
43 #include <linux/pm_runtime.h>
46 * This macro is used to define some register default values.
47 * reg is masked with mask, the OR:ed with an (again masked)
48 * val shifted sb steps to the left.
50 #define SSP_WRITE_BITS(reg, val, mask, sb) \
51 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54 * This macro is also used to define some default values.
55 * It will just shift val by sb steps to the left and mask
56 * the result with mask.
58 #define GEN_MASK_BITS(val, mask, sb) \
59 (((val)<<(sb)) & (mask))
62 #define DO_NOT_DRIVE_TX 1
64 #define DO_NOT_QUEUE_DMA 0
71 * Macros to access SSP Registers with their offsets
73 #define SSP_CR0(r) (r + 0x000)
74 #define SSP_CR1(r) (r + 0x004)
75 #define SSP_DR(r) (r + 0x008)
76 #define SSP_SR(r) (r + 0x00C)
77 #define SSP_CPSR(r) (r + 0x010)
78 #define SSP_IMSC(r) (r + 0x014)
79 #define SSP_RIS(r) (r + 0x018)
80 #define SSP_MIS(r) (r + 0x01C)
81 #define SSP_ICR(r) (r + 0x020)
82 #define SSP_DMACR(r) (r + 0x024)
83 #define SSP_ITCR(r) (r + 0x080)
84 #define SSP_ITIP(r) (r + 0x084)
85 #define SSP_ITOP(r) (r + 0x088)
86 #define SSP_TDR(r) (r + 0x08C)
88 #define SSP_PID0(r) (r + 0xFE0)
89 #define SSP_PID1(r) (r + 0xFE4)
90 #define SSP_PID2(r) (r + 0xFE8)
91 #define SSP_PID3(r) (r + 0xFEC)
93 #define SSP_CID0(r) (r + 0xFF0)
94 #define SSP_CID1(r) (r + 0xFF4)
95 #define SSP_CID2(r) (r + 0xFF8)
96 #define SSP_CID3(r) (r + 0xFFC)
99 * SSP Control Register 0 - SSP_CR0
101 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
102 #define SSP_CR0_MASK_FRF (0x3UL << 4)
103 #define SSP_CR0_MASK_SPO (0x1UL << 6)
104 #define SSP_CR0_MASK_SPH (0x1UL << 7)
105 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
108 * The ST version of this block moves som bits
109 * in SSP_CR0 and extends it to 32 bits
111 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
112 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
113 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
114 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
117 * SSP Control Register 0 - SSP_CR1
119 #define SSP_CR1_MASK_LBM (0x1UL << 0)
120 #define SSP_CR1_MASK_SSE (0x1UL << 1)
121 #define SSP_CR1_MASK_MS (0x1UL << 2)
122 #define SSP_CR1_MASK_SOD (0x1UL << 3)
125 * The ST version of this block adds some bits
128 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
129 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
130 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
131 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
132 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
133 /* This one is only in the PL023 variant */
134 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
137 * SSP Status Register - SSP_SR
139 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
140 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
141 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
142 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
143 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
146 * SSP Clock Prescale Register - SSP_CPSR
148 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
151 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
153 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
154 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
155 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
156 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
159 * SSP Raw Interrupt Status Register - SSP_RIS
161 /* Receive Overrun Raw Interrupt status */
162 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
163 /* Receive Timeout Raw Interrupt status */
164 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
165 /* Receive FIFO Raw Interrupt status */
166 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
167 /* Transmit FIFO Raw Interrupt status */
168 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
171 * SSP Masked Interrupt Status Register - SSP_MIS
173 /* Receive Overrun Masked Interrupt status */
174 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
175 /* Receive Timeout Masked Interrupt status */
176 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
177 /* Receive FIFO Masked Interrupt status */
178 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
179 /* Transmit FIFO Masked Interrupt status */
180 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
183 * SSP Interrupt Clear Register - SSP_ICR
185 /* Receive Overrun Raw Clear Interrupt bit */
186 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
187 /* Receive Timeout Clear Interrupt bit */
188 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
191 * SSP DMA Control Register - SSP_DMACR
193 /* Receive DMA Enable bit */
194 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
195 /* Transmit DMA Enable bit */
196 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
199 * SSP Integration Test control Register - SSP_ITCR
201 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
202 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
205 * SSP Integration Test Input Register - SSP_ITIP
207 #define ITIP_MASK_SSPRXD (0x1UL << 0)
208 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
209 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
210 #define ITIP_MASK_RXDMAC (0x1UL << 3)
211 #define ITIP_MASK_TXDMAC (0x1UL << 4)
212 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
215 * SSP Integration Test output Register - SSP_ITOP
217 #define ITOP_MASK_SSPTXD (0x1UL << 0)
218 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
219 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
220 #define ITOP_MASK_SSPOEn (0x1UL << 3)
221 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
222 #define ITOP_MASK_RORINTR (0x1UL << 5)
223 #define ITOP_MASK_RTINTR (0x1UL << 6)
224 #define ITOP_MASK_RXINTR (0x1UL << 7)
225 #define ITOP_MASK_TXINTR (0x1UL << 8)
226 #define ITOP_MASK_INTR (0x1UL << 9)
227 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
228 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
229 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
230 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
233 * SSP Test Data Register - SSP_TDR
235 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
239 * we use the spi_message.state (void *) pointer to
240 * hold a single state value, that's why all this
241 * (void *) casting is done here.
243 #define STATE_START ((void *) 0)
244 #define STATE_RUNNING ((void *) 1)
245 #define STATE_DONE ((void *) 2)
246 #define STATE_ERROR ((void *) -1)
249 * SSP State - Whether Enabled or Disabled
251 #define SSP_DISABLED (0)
252 #define SSP_ENABLED (1)
255 * SSP DMA State - Whether DMA Enabled or Disabled
257 #define SSP_DMA_DISABLED (0)
258 #define SSP_DMA_ENABLED (1)
263 #define SSP_DEFAULT_CLKRATE 0x2
264 #define SSP_DEFAULT_PRESCALE 0x40
267 * SSP Clock Parameter ranges
269 #define CPSDVR_MIN 0x02
270 #define CPSDVR_MAX 0xFE
275 * SSP Interrupt related Macros
277 #define DEFAULT_SSP_REG_IMSC 0x0UL
278 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
281 #define CLEAR_ALL_INTERRUPTS 0x3
283 #define SPI_POLLING_TIMEOUT 1000
286 * The type of reading going on on this chip
296 * The type of writing going on on this chip
306 * struct vendor_data - vendor-specific config parameters
307 * for PL022 derivates
308 * @fifodepth: depth of FIFOs (both)
309 * @max_bpw: maximum number of bits per word
310 * @unidir: supports unidirection transfers
311 * @extended_cr: 32 bit wide control register 0 with extra
312 * features and extra features in CR1 as found in the ST variants
313 * @pl023: supports a subset of the ST extensions called "PL023"
325 * struct pl022 - This is the private SSP driver data structure
326 * @adev: AMBA device model hookup
327 * @vendor: vendor data for the IP block
328 * @phybase: the physical memory where the SSP device resides
329 * @virtbase: the virtual memory where the SSP is mapped
330 * @clk: outgoing clock "SPICLK" for the SPI bus
331 * @master: SPI framework hookup
332 * @master_info: controller-specific data from machine setup
333 * @workqueue: a workqueue on which any spi_message request is queued
334 * @pump_messages: work struct for scheduling work to the workqueue
335 * @queue_lock: spinlock to syncronise access to message queue
336 * @queue: message queue
337 * @busy: workqueue is busy
338 * @running: workqueue is running
339 * @pump_transfers: Tasklet used in Interrupt Transfer mode
340 * @cur_msg: Pointer to current spi_message being processed
341 * @cur_transfer: Pointer to current spi_transfer
342 * @cur_chip: pointer to current clients chip(assigned from controller_state)
343 * @next_msg_cs_active: the next message in the queue has been examined
344 * and it was found that it uses the same chip select as the previous
345 * message, so we left it active after the previous transfer, and it's
347 * @tx: current position in TX buffer to be read
348 * @tx_end: end position in TX buffer to be read
349 * @rx: current position in RX buffer to be written
350 * @rx_end: end position in RX buffer to be written
351 * @read: the type of read currently going on
352 * @write: the type of write currently going on
353 * @exp_fifo_level: expected FIFO level
354 * @dma_rx_channel: optional channel for RX DMA
355 * @dma_tx_channel: optional channel for TX DMA
356 * @sgt_rx: scattertable for the RX transfer
357 * @sgt_tx: scattertable for the TX transfer
358 * @dummypage: a dummy page used for driving data on the bus with DMA
361 struct amba_device
*adev
;
362 struct vendor_data
*vendor
;
363 resource_size_t phybase
;
364 void __iomem
*virtbase
;
366 struct spi_master
*master
;
367 struct pl022_ssp_controller
*master_info
;
368 /* Driver message queue */
369 struct workqueue_struct
*workqueue
;
370 struct work_struct pump_messages
;
371 spinlock_t queue_lock
;
372 struct list_head queue
;
375 /* Message transfer pump */
376 struct tasklet_struct pump_transfers
;
377 struct spi_message
*cur_msg
;
378 struct spi_transfer
*cur_transfer
;
379 struct chip_data
*cur_chip
;
380 bool next_msg_cs_active
;
385 enum ssp_reading read
;
386 enum ssp_writing write
;
388 enum ssp_rx_level_trig rx_lev_trig
;
389 enum ssp_tx_level_trig tx_lev_trig
;
391 #ifdef CONFIG_DMA_ENGINE
392 struct dma_chan
*dma_rx_channel
;
393 struct dma_chan
*dma_tx_channel
;
394 struct sg_table sgt_rx
;
395 struct sg_table sgt_tx
;
401 * struct chip_data - To maintain runtime state of SSP for each client chip
402 * @cr0: Value of control register CR0 of SSP - on later ST variants this
403 * register is 32 bits wide rather than just 16
404 * @cr1: Value of control register CR1 of SSP
405 * @dmacr: Value of DMA control Register of SSP
406 * @cpsr: Value of Clock prescale register
407 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
408 * @enable_dma: Whether to enable DMA or not
409 * @read: function ptr to be used to read when doing xfer for this chip
410 * @write: function ptr to be used to write when doing xfer for this chip
411 * @cs_control: chip select callback provided by chip
412 * @xfer_type: polling/interrupt/DMA
414 * Runtime state of the SSP controller, maintained per chip,
415 * This would be set according to the current message that would be served
424 enum ssp_reading read
;
425 enum ssp_writing write
;
426 void (*cs_control
) (u32 command
);
431 * null_cs_control - Dummy chip select function
432 * @command: select/delect the chip
434 * If no chip select function is provided by client this is used as dummy
437 static void null_cs_control(u32 command
)
439 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command
);
443 * giveback - current spi_message is over, schedule next message and call
444 * callback of this message. Assumes that caller already
445 * set message->status; dma and pio irqs are blocked
446 * @pl022: SSP driver private data structure
448 static void giveback(struct pl022
*pl022
)
450 struct spi_transfer
*last_transfer
;
452 struct spi_message
*msg
;
453 pl022
->next_msg_cs_active
= false;
455 last_transfer
= list_entry(pl022
->cur_msg
->transfers
.prev
,
459 /* Delay if requested before any change in chip select */
460 if (last_transfer
->delay_usecs
)
462 * FIXME: This runs in interrupt context.
463 * Is this really smart?
465 udelay(last_transfer
->delay_usecs
);
467 if (!last_transfer
->cs_change
) {
468 struct spi_message
*next_msg
;
471 * cs_change was not set. We can keep the chip select
472 * enabled if there is message in the queue and it is
473 * for the same spi device.
475 * We cannot postpone this until pump_messages, because
476 * after calling msg->complete (below) the driver that
477 * sent the current message could be unloaded, which
478 * could invalidate the cs_control() callback...
481 /* get a pointer to the next message, if any */
482 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
483 if (list_empty(&pl022
->queue
))
486 next_msg
= list_entry(pl022
->queue
.next
,
487 struct spi_message
, queue
);
488 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
491 * see if the next and current messages point
492 * to the same spi device.
494 if (next_msg
&& next_msg
->spi
!= pl022
->cur_msg
->spi
)
496 if (!next_msg
|| pl022
->cur_msg
->state
== STATE_ERROR
)
497 pl022
->cur_chip
->cs_control(SSP_CHIP_DESELECT
);
499 pl022
->next_msg_cs_active
= true;
502 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
503 msg
= pl022
->cur_msg
;
504 pl022
->cur_msg
= NULL
;
505 pl022
->cur_transfer
= NULL
;
506 pl022
->cur_chip
= NULL
;
507 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
508 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
512 msg
->complete(msg
->context
);
516 * flush - flush the FIFO to reach a clean state
517 * @pl022: SSP driver private data structure
519 static int flush(struct pl022
*pl022
)
521 unsigned long limit
= loops_per_jiffy
<< 1;
523 dev_dbg(&pl022
->adev
->dev
, "flush\n");
525 while (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
526 readw(SSP_DR(pl022
->virtbase
));
527 } while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_BSY
) && limit
--);
529 pl022
->exp_fifo_level
= 0;
535 * restore_state - Load configuration of current chip
536 * @pl022: SSP driver private data structure
538 static void restore_state(struct pl022
*pl022
)
540 struct chip_data
*chip
= pl022
->cur_chip
;
542 if (pl022
->vendor
->extended_cr
)
543 writel(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
545 writew(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
546 writew(chip
->cr1
, SSP_CR1(pl022
->virtbase
));
547 writew(chip
->dmacr
, SSP_DMACR(pl022
->virtbase
));
548 writew(chip
->cpsr
, SSP_CPSR(pl022
->virtbase
));
549 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
550 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
554 * Default SSP Register Values
556 #define DEFAULT_SSP_REG_CR0 ( \
557 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
558 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
559 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
560 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
561 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
564 /* ST versions have slightly different bit layout */
565 #define DEFAULT_SSP_REG_CR0_ST ( \
566 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
567 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
568 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
569 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
570 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
571 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
572 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
575 /* The PL023 version is slightly different again */
576 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
577 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
578 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
579 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
580 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
583 #define DEFAULT_SSP_REG_CR1 ( \
584 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
585 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
586 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
587 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
590 /* ST versions extend this register to use all 16 bits */
591 #define DEFAULT_SSP_REG_CR1_ST ( \
592 DEFAULT_SSP_REG_CR1 | \
593 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
594 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
595 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
596 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
597 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
601 * The PL023 variant has further differences: no loopback mode, no microwire
602 * support, and a new clock feedback delay setting.
604 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
605 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
606 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
607 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
608 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
609 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
610 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
611 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
612 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
615 #define DEFAULT_SSP_REG_CPSR ( \
616 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
619 #define DEFAULT_SSP_REG_DMACR (\
620 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
621 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
625 * load_ssp_default_config - Load default configuration for SSP
626 * @pl022: SSP driver private data structure
628 static void load_ssp_default_config(struct pl022
*pl022
)
630 if (pl022
->vendor
->pl023
) {
631 writel(DEFAULT_SSP_REG_CR0_ST_PL023
, SSP_CR0(pl022
->virtbase
));
632 writew(DEFAULT_SSP_REG_CR1_ST_PL023
, SSP_CR1(pl022
->virtbase
));
633 } else if (pl022
->vendor
->extended_cr
) {
634 writel(DEFAULT_SSP_REG_CR0_ST
, SSP_CR0(pl022
->virtbase
));
635 writew(DEFAULT_SSP_REG_CR1_ST
, SSP_CR1(pl022
->virtbase
));
637 writew(DEFAULT_SSP_REG_CR0
, SSP_CR0(pl022
->virtbase
));
638 writew(DEFAULT_SSP_REG_CR1
, SSP_CR1(pl022
->virtbase
));
640 writew(DEFAULT_SSP_REG_DMACR
, SSP_DMACR(pl022
->virtbase
));
641 writew(DEFAULT_SSP_REG_CPSR
, SSP_CPSR(pl022
->virtbase
));
642 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
643 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
647 * This will write to TX and read from RX according to the parameters
650 static void readwriter(struct pl022
*pl022
)
654 * The FIFO depth is different between primecell variants.
655 * I believe filling in too much in the FIFO might cause
656 * errons in 8bit wide transfers on ARM variants (just 8 words
657 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
659 * To prevent this issue, the TX FIFO is only filled to the
660 * unused RX FIFO fill length, regardless of what the TX
661 * FIFO status flag indicates.
663 dev_dbg(&pl022
->adev
->dev
,
664 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
665 __func__
, pl022
->rx
, pl022
->rx_end
, pl022
->tx
, pl022
->tx_end
);
667 /* Read as much as you can */
668 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
669 && (pl022
->rx
< pl022
->rx_end
)) {
670 switch (pl022
->read
) {
672 readw(SSP_DR(pl022
->virtbase
));
675 *(u8
*) (pl022
->rx
) =
676 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
679 *(u16
*) (pl022
->rx
) =
680 (u16
) readw(SSP_DR(pl022
->virtbase
));
683 *(u32
*) (pl022
->rx
) =
684 readl(SSP_DR(pl022
->virtbase
));
687 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
688 pl022
->exp_fifo_level
--;
691 * Write as much as possible up to the RX FIFO size
693 while ((pl022
->exp_fifo_level
< pl022
->vendor
->fifodepth
)
694 && (pl022
->tx
< pl022
->tx_end
)) {
695 switch (pl022
->write
) {
697 writew(0x0, SSP_DR(pl022
->virtbase
));
700 writew(*(u8
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
703 writew((*(u16
*) (pl022
->tx
)), SSP_DR(pl022
->virtbase
));
706 writel(*(u32
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
709 pl022
->tx
+= (pl022
->cur_chip
->n_bytes
);
710 pl022
->exp_fifo_level
++;
712 * This inner reader takes care of things appearing in the RX
713 * FIFO as we're transmitting. This will happen a lot since the
714 * clock starts running when you put things into the TX FIFO,
715 * and then things are continuously clocked into the RX FIFO.
717 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
718 && (pl022
->rx
< pl022
->rx_end
)) {
719 switch (pl022
->read
) {
721 readw(SSP_DR(pl022
->virtbase
));
724 *(u8
*) (pl022
->rx
) =
725 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
728 *(u16
*) (pl022
->rx
) =
729 (u16
) readw(SSP_DR(pl022
->virtbase
));
732 *(u32
*) (pl022
->rx
) =
733 readl(SSP_DR(pl022
->virtbase
));
736 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
737 pl022
->exp_fifo_level
--;
741 * When we exit here the TX FIFO should be full and the RX FIFO
747 * next_transfer - Move to the Next transfer in the current spi message
748 * @pl022: SSP driver private data structure
750 * This function moves though the linked list of spi transfers in the
751 * current spi message and returns with the state of current spi
752 * message i.e whether its last transfer is done(STATE_DONE) or
753 * Next transfer is ready(STATE_RUNNING)
755 static void *next_transfer(struct pl022
*pl022
)
757 struct spi_message
*msg
= pl022
->cur_msg
;
758 struct spi_transfer
*trans
= pl022
->cur_transfer
;
760 /* Move to next transfer */
761 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
762 pl022
->cur_transfer
=
763 list_entry(trans
->transfer_list
.next
,
764 struct spi_transfer
, transfer_list
);
765 return STATE_RUNNING
;
771 * This DMA functionality is only compiled in if we have
772 * access to the generic DMA devices/DMA engine.
774 #ifdef CONFIG_DMA_ENGINE
775 static void unmap_free_dma_scatter(struct pl022
*pl022
)
777 /* Unmap and free the SG tables */
778 dma_unmap_sg(pl022
->dma_tx_channel
->device
->dev
, pl022
->sgt_tx
.sgl
,
779 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
780 dma_unmap_sg(pl022
->dma_rx_channel
->device
->dev
, pl022
->sgt_rx
.sgl
,
781 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
782 sg_free_table(&pl022
->sgt_rx
);
783 sg_free_table(&pl022
->sgt_tx
);
786 static void dma_callback(void *data
)
788 struct pl022
*pl022
= data
;
789 struct spi_message
*msg
= pl022
->cur_msg
;
791 BUG_ON(!pl022
->sgt_rx
.sgl
);
795 * Optionally dump out buffers to inspect contents, this is
796 * good if you want to convince yourself that the loopback
797 * read/write contents are the same, when adopting to a new
801 struct scatterlist
*sg
;
804 dma_sync_sg_for_cpu(&pl022
->adev
->dev
,
809 for_each_sg(pl022
->sgt_rx
.sgl
, sg
, pl022
->sgt_rx
.nents
, i
) {
810 dev_dbg(&pl022
->adev
->dev
, "SPI RX SG ENTRY: %d", i
);
811 print_hex_dump(KERN_ERR
, "SPI RX: ",
819 for_each_sg(pl022
->sgt_tx
.sgl
, sg
, pl022
->sgt_tx
.nents
, i
) {
820 dev_dbg(&pl022
->adev
->dev
, "SPI TX SG ENTRY: %d", i
);
821 print_hex_dump(KERN_ERR
, "SPI TX: ",
832 unmap_free_dma_scatter(pl022
);
834 /* Update total bytes transferred */
835 msg
->actual_length
+= pl022
->cur_transfer
->len
;
836 if (pl022
->cur_transfer
->cs_change
)
838 cs_control(SSP_CHIP_DESELECT
);
840 /* Move to next transfer */
841 msg
->state
= next_transfer(pl022
);
842 tasklet_schedule(&pl022
->pump_transfers
);
845 static void setup_dma_scatter(struct pl022
*pl022
,
848 struct sg_table
*sgtab
)
850 struct scatterlist
*sg
;
851 int bytesleft
= length
;
857 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
859 * If there are less bytes left than what fits
860 * in the current page (plus page alignment offset)
861 * we just feed in this, else we stuff in as much
864 if (bytesleft
< (PAGE_SIZE
- offset_in_page(bufp
)))
865 mapbytes
= bytesleft
;
867 mapbytes
= PAGE_SIZE
- offset_in_page(bufp
);
868 sg_set_page(sg
, virt_to_page(bufp
),
869 mapbytes
, offset_in_page(bufp
));
871 bytesleft
-= mapbytes
;
872 dev_dbg(&pl022
->adev
->dev
,
873 "set RX/TX target page @ %p, %d bytes, %d left\n",
874 bufp
, mapbytes
, bytesleft
);
877 /* Map the dummy buffer on every page */
878 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
879 if (bytesleft
< PAGE_SIZE
)
880 mapbytes
= bytesleft
;
882 mapbytes
= PAGE_SIZE
;
883 sg_set_page(sg
, virt_to_page(pl022
->dummypage
),
885 bytesleft
-= mapbytes
;
886 dev_dbg(&pl022
->adev
->dev
,
887 "set RX/TX to dummy page %d bytes, %d left\n",
888 mapbytes
, bytesleft
);
896 * configure_dma - configures the channels for the next transfer
897 * @pl022: SSP driver's private data structure
899 static int configure_dma(struct pl022
*pl022
)
901 struct dma_slave_config rx_conf
= {
902 .src_addr
= SSP_DR(pl022
->phybase
),
903 .direction
= DMA_DEV_TO_MEM
,
905 struct dma_slave_config tx_conf
= {
906 .dst_addr
= SSP_DR(pl022
->phybase
),
907 .direction
= DMA_MEM_TO_DEV
,
911 int rx_sglen
, tx_sglen
;
912 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
913 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
914 struct dma_async_tx_descriptor
*rxdesc
;
915 struct dma_async_tx_descriptor
*txdesc
;
917 /* Check that the channels are available */
918 if (!rxchan
|| !txchan
)
922 * If supplied, the DMA burstsize should equal the FIFO trigger level.
923 * Notice that the DMA engine uses one-to-one mapping. Since we can
924 * not trigger on 2 elements this needs explicit mapping rather than
927 switch (pl022
->rx_lev_trig
) {
928 case SSP_RX_1_OR_MORE_ELEM
:
929 rx_conf
.src_maxburst
= 1;
931 case SSP_RX_4_OR_MORE_ELEM
:
932 rx_conf
.src_maxburst
= 4;
934 case SSP_RX_8_OR_MORE_ELEM
:
935 rx_conf
.src_maxburst
= 8;
937 case SSP_RX_16_OR_MORE_ELEM
:
938 rx_conf
.src_maxburst
= 16;
940 case SSP_RX_32_OR_MORE_ELEM
:
941 rx_conf
.src_maxburst
= 32;
944 rx_conf
.src_maxburst
= pl022
->vendor
->fifodepth
>> 1;
948 switch (pl022
->tx_lev_trig
) {
949 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
950 tx_conf
.dst_maxburst
= 1;
952 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
953 tx_conf
.dst_maxburst
= 4;
955 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
956 tx_conf
.dst_maxburst
= 8;
958 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
959 tx_conf
.dst_maxburst
= 16;
961 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
962 tx_conf
.dst_maxburst
= 32;
965 tx_conf
.dst_maxburst
= pl022
->vendor
->fifodepth
>> 1;
969 switch (pl022
->read
) {
971 /* Use the same as for writing */
972 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
975 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
978 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
981 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
985 switch (pl022
->write
) {
987 /* Use the same as for reading */
988 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
991 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
994 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
997 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1001 /* SPI pecularity: we need to read and write the same width */
1002 if (rx_conf
.src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
1003 rx_conf
.src_addr_width
= tx_conf
.dst_addr_width
;
1004 if (tx_conf
.dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
1005 tx_conf
.dst_addr_width
= rx_conf
.src_addr_width
;
1006 BUG_ON(rx_conf
.src_addr_width
!= tx_conf
.dst_addr_width
);
1008 dmaengine_slave_config(rxchan
, &rx_conf
);
1009 dmaengine_slave_config(txchan
, &tx_conf
);
1011 /* Create sglists for the transfers */
1012 pages
= DIV_ROUND_UP(pl022
->cur_transfer
->len
, PAGE_SIZE
);
1013 dev_dbg(&pl022
->adev
->dev
, "using %d pages for transfer\n", pages
);
1015 ret
= sg_alloc_table(&pl022
->sgt_rx
, pages
, GFP_ATOMIC
);
1017 goto err_alloc_rx_sg
;
1019 ret
= sg_alloc_table(&pl022
->sgt_tx
, pages
, GFP_ATOMIC
);
1021 goto err_alloc_tx_sg
;
1023 /* Fill in the scatterlists for the RX+TX buffers */
1024 setup_dma_scatter(pl022
, pl022
->rx
,
1025 pl022
->cur_transfer
->len
, &pl022
->sgt_rx
);
1026 setup_dma_scatter(pl022
, pl022
->tx
,
1027 pl022
->cur_transfer
->len
, &pl022
->sgt_tx
);
1029 /* Map DMA buffers */
1030 rx_sglen
= dma_map_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
1031 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
1035 tx_sglen
= dma_map_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
1036 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1040 /* Send both scatterlists */
1041 rxdesc
= rxchan
->device
->device_prep_slave_sg(rxchan
,
1045 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1049 txdesc
= txchan
->device
->device_prep_slave_sg(txchan
,
1053 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1057 /* Put the callback on the RX transfer only, that should finish last */
1058 rxdesc
->callback
= dma_callback
;
1059 rxdesc
->callback_param
= pl022
;
1061 /* Submit and fire RX and TX with TX last so we're ready to read! */
1062 dmaengine_submit(rxdesc
);
1063 dmaengine_submit(txdesc
);
1064 dma_async_issue_pending(rxchan
);
1065 dma_async_issue_pending(txchan
);
1070 dmaengine_terminate_all(txchan
);
1072 dmaengine_terminate_all(rxchan
);
1073 dma_unmap_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
1074 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1076 dma_unmap_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
1077 pl022
->sgt_tx
.nents
, DMA_FROM_DEVICE
);
1079 sg_free_table(&pl022
->sgt_tx
);
1081 sg_free_table(&pl022
->sgt_rx
);
1086 static int __init
pl022_dma_probe(struct pl022
*pl022
)
1088 dma_cap_mask_t mask
;
1090 /* Try to acquire a generic DMA engine slave channel */
1092 dma_cap_set(DMA_SLAVE
, mask
);
1094 * We need both RX and TX channels to do DMA, else do none
1097 pl022
->dma_rx_channel
= dma_request_channel(mask
,
1098 pl022
->master_info
->dma_filter
,
1099 pl022
->master_info
->dma_rx_param
);
1100 if (!pl022
->dma_rx_channel
) {
1101 dev_dbg(&pl022
->adev
->dev
, "no RX DMA channel!\n");
1105 pl022
->dma_tx_channel
= dma_request_channel(mask
,
1106 pl022
->master_info
->dma_filter
,
1107 pl022
->master_info
->dma_tx_param
);
1108 if (!pl022
->dma_tx_channel
) {
1109 dev_dbg(&pl022
->adev
->dev
, "no TX DMA channel!\n");
1113 pl022
->dummypage
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1114 if (!pl022
->dummypage
) {
1115 dev_dbg(&pl022
->adev
->dev
, "no DMA dummypage!\n");
1116 goto err_no_dummypage
;
1119 dev_info(&pl022
->adev
->dev
, "setup for DMA on RX %s, TX %s\n",
1120 dma_chan_name(pl022
->dma_rx_channel
),
1121 dma_chan_name(pl022
->dma_tx_channel
));
1126 dma_release_channel(pl022
->dma_tx_channel
);
1128 dma_release_channel(pl022
->dma_rx_channel
);
1129 pl022
->dma_rx_channel
= NULL
;
1131 dev_err(&pl022
->adev
->dev
,
1132 "Failed to work in dma mode, work without dma!\n");
1136 static void terminate_dma(struct pl022
*pl022
)
1138 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
1139 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
1141 dmaengine_terminate_all(rxchan
);
1142 dmaengine_terminate_all(txchan
);
1143 unmap_free_dma_scatter(pl022
);
1146 static void pl022_dma_remove(struct pl022
*pl022
)
1149 terminate_dma(pl022
);
1150 if (pl022
->dma_tx_channel
)
1151 dma_release_channel(pl022
->dma_tx_channel
);
1152 if (pl022
->dma_rx_channel
)
1153 dma_release_channel(pl022
->dma_rx_channel
);
1154 kfree(pl022
->dummypage
);
1158 static inline int configure_dma(struct pl022
*pl022
)
1163 static inline int pl022_dma_probe(struct pl022
*pl022
)
1168 static inline void pl022_dma_remove(struct pl022
*pl022
)
1174 * pl022_interrupt_handler - Interrupt handler for SSP controller
1176 * This function handles interrupts generated for an interrupt based transfer.
1177 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1178 * current message's state as STATE_ERROR and schedule the tasklet
1179 * pump_transfers which will do the postprocessing of the current message by
1180 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1181 * more data, and writes data in TX FIFO till it is not full. If we complete
1182 * the transfer we move to the next transfer and schedule the tasklet.
1184 static irqreturn_t
pl022_interrupt_handler(int irq
, void *dev_id
)
1186 struct pl022
*pl022
= dev_id
;
1187 struct spi_message
*msg
= pl022
->cur_msg
;
1191 if (unlikely(!msg
)) {
1192 dev_err(&pl022
->adev
->dev
,
1193 "bad message state in interrupt handler");
1198 /* Read the Interrupt Status Register */
1199 irq_status
= readw(SSP_MIS(pl022
->virtbase
));
1201 if (unlikely(!irq_status
))
1205 * This handles the FIFO interrupts, the timeout
1206 * interrupts are flatly ignored, they cannot be
1209 if (unlikely(irq_status
& SSP_MIS_MASK_RORMIS
)) {
1211 * Overrun interrupt - bail out since our Data has been
1214 dev_err(&pl022
->adev
->dev
, "FIFO overrun\n");
1215 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RFF
)
1216 dev_err(&pl022
->adev
->dev
,
1217 "RXFIFO is full\n");
1218 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_TNF
)
1219 dev_err(&pl022
->adev
->dev
,
1220 "TXFIFO is full\n");
1223 * Disable and clear interrupts, disable SSP,
1224 * mark message with bad status so it can be
1227 writew(DISABLE_ALL_INTERRUPTS
,
1228 SSP_IMSC(pl022
->virtbase
));
1229 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1230 writew((readw(SSP_CR1(pl022
->virtbase
)) &
1231 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
1232 msg
->state
= STATE_ERROR
;
1234 /* Schedule message queue handler */
1235 tasklet_schedule(&pl022
->pump_transfers
);
1241 if ((pl022
->tx
== pl022
->tx_end
) && (flag
== 0)) {
1243 /* Disable Transmit interrupt, enable receive interrupt */
1244 writew((readw(SSP_IMSC(pl022
->virtbase
)) &
1245 ~SSP_IMSC_MASK_TXIM
) | SSP_IMSC_MASK_RXIM
,
1246 SSP_IMSC(pl022
->virtbase
));
1250 * Since all transactions must write as much as shall be read,
1251 * we can conclude the entire transaction once RX is complete.
1252 * At this point, all TX will always be finished.
1254 if (pl022
->rx
>= pl022
->rx_end
) {
1255 writew(DISABLE_ALL_INTERRUPTS
,
1256 SSP_IMSC(pl022
->virtbase
));
1257 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1258 if (unlikely(pl022
->rx
> pl022
->rx_end
)) {
1259 dev_warn(&pl022
->adev
->dev
, "read %u surplus "
1260 "bytes (did you request an odd "
1261 "number of bytes on a 16bit bus?)\n",
1262 (u32
) (pl022
->rx
- pl022
->rx_end
));
1264 /* Update total bytes transferred */
1265 msg
->actual_length
+= pl022
->cur_transfer
->len
;
1266 if (pl022
->cur_transfer
->cs_change
)
1268 cs_control(SSP_CHIP_DESELECT
);
1269 /* Move to next transfer */
1270 msg
->state
= next_transfer(pl022
);
1271 tasklet_schedule(&pl022
->pump_transfers
);
1279 * This sets up the pointers to memory for the next message to
1280 * send out on the SPI bus.
1282 static int set_up_next_transfer(struct pl022
*pl022
,
1283 struct spi_transfer
*transfer
)
1287 /* Sanity check the message for this bus width */
1288 residue
= pl022
->cur_transfer
->len
% pl022
->cur_chip
->n_bytes
;
1289 if (unlikely(residue
!= 0)) {
1290 dev_err(&pl022
->adev
->dev
,
1291 "message of %u bytes to transmit but the current "
1292 "chip bus has a data width of %u bytes!\n",
1293 pl022
->cur_transfer
->len
,
1294 pl022
->cur_chip
->n_bytes
);
1295 dev_err(&pl022
->adev
->dev
, "skipping this message\n");
1298 pl022
->tx
= (void *)transfer
->tx_buf
;
1299 pl022
->tx_end
= pl022
->tx
+ pl022
->cur_transfer
->len
;
1300 pl022
->rx
= (void *)transfer
->rx_buf
;
1301 pl022
->rx_end
= pl022
->rx
+ pl022
->cur_transfer
->len
;
1303 pl022
->tx
? pl022
->cur_chip
->write
: WRITING_NULL
;
1304 pl022
->read
= pl022
->rx
? pl022
->cur_chip
->read
: READING_NULL
;
1309 * pump_transfers - Tasklet function which schedules next transfer
1310 * when running in interrupt or DMA transfer mode.
1311 * @data: SSP driver private data structure
1314 static void pump_transfers(unsigned long data
)
1316 struct pl022
*pl022
= (struct pl022
*) data
;
1317 struct spi_message
*message
= NULL
;
1318 struct spi_transfer
*transfer
= NULL
;
1319 struct spi_transfer
*previous
= NULL
;
1321 /* Get current state information */
1322 message
= pl022
->cur_msg
;
1323 transfer
= pl022
->cur_transfer
;
1325 /* Handle for abort */
1326 if (message
->state
== STATE_ERROR
) {
1327 message
->status
= -EIO
;
1332 /* Handle end of message */
1333 if (message
->state
== STATE_DONE
) {
1334 message
->status
= 0;
1339 /* Delay if requested at end of transfer before CS change */
1340 if (message
->state
== STATE_RUNNING
) {
1341 previous
= list_entry(transfer
->transfer_list
.prev
,
1342 struct spi_transfer
,
1344 if (previous
->delay_usecs
)
1346 * FIXME: This runs in interrupt context.
1347 * Is this really smart?
1349 udelay(previous
->delay_usecs
);
1351 /* Reselect chip select only if cs_change was requested */
1352 if (previous
->cs_change
)
1353 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1356 message
->state
= STATE_RUNNING
;
1359 if (set_up_next_transfer(pl022
, transfer
)) {
1360 message
->state
= STATE_ERROR
;
1361 message
->status
= -EIO
;
1365 /* Flush the FIFOs and let's go! */
1368 if (pl022
->cur_chip
->enable_dma
) {
1369 if (configure_dma(pl022
)) {
1370 dev_dbg(&pl022
->adev
->dev
,
1371 "configuration of DMA failed, fall back to interrupt mode\n");
1372 goto err_config_dma
;
1378 /* enable all interrupts except RX */
1379 writew(ENABLE_ALL_INTERRUPTS
& ~SSP_IMSC_MASK_RXIM
, SSP_IMSC(pl022
->virtbase
));
1382 static void do_interrupt_dma_transfer(struct pl022
*pl022
)
1385 * Default is to enable all interrupts except RX -
1386 * this will be enabled once TX is complete
1388 u32 irqflags
= ENABLE_ALL_INTERRUPTS
& ~SSP_IMSC_MASK_RXIM
;
1390 /* Enable target chip, if not already active */
1391 if (!pl022
->next_msg_cs_active
)
1392 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1394 if (set_up_next_transfer(pl022
, pl022
->cur_transfer
)) {
1396 pl022
->cur_msg
->state
= STATE_ERROR
;
1397 pl022
->cur_msg
->status
= -EIO
;
1401 /* If we're using DMA, set up DMA here */
1402 if (pl022
->cur_chip
->enable_dma
) {
1403 /* Configure DMA transfer */
1404 if (configure_dma(pl022
)) {
1405 dev_dbg(&pl022
->adev
->dev
,
1406 "configuration of DMA failed, fall back to interrupt mode\n");
1407 goto err_config_dma
;
1409 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1410 irqflags
= DISABLE_ALL_INTERRUPTS
;
1413 /* Enable SSP, turn on interrupts */
1414 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1415 SSP_CR1(pl022
->virtbase
));
1416 writew(irqflags
, SSP_IMSC(pl022
->virtbase
));
1419 static void do_polling_transfer(struct pl022
*pl022
)
1421 struct spi_message
*message
= NULL
;
1422 struct spi_transfer
*transfer
= NULL
;
1423 struct spi_transfer
*previous
= NULL
;
1424 struct chip_data
*chip
;
1425 unsigned long time
, timeout
;
1427 chip
= pl022
->cur_chip
;
1428 message
= pl022
->cur_msg
;
1430 while (message
->state
!= STATE_DONE
) {
1431 /* Handle for abort */
1432 if (message
->state
== STATE_ERROR
)
1434 transfer
= pl022
->cur_transfer
;
1436 /* Delay if requested at end of transfer */
1437 if (message
->state
== STATE_RUNNING
) {
1439 list_entry(transfer
->transfer_list
.prev
,
1440 struct spi_transfer
, transfer_list
);
1441 if (previous
->delay_usecs
)
1442 udelay(previous
->delay_usecs
);
1443 if (previous
->cs_change
)
1444 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1447 message
->state
= STATE_RUNNING
;
1448 if (!pl022
->next_msg_cs_active
)
1449 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1452 /* Configuration Changing Per Transfer */
1453 if (set_up_next_transfer(pl022
, transfer
)) {
1455 message
->state
= STATE_ERROR
;
1458 /* Flush FIFOs and enable SSP */
1460 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1461 SSP_CR1(pl022
->virtbase
));
1463 dev_dbg(&pl022
->adev
->dev
, "polling transfer ongoing ...\n");
1465 timeout
= jiffies
+ msecs_to_jiffies(SPI_POLLING_TIMEOUT
);
1466 while (pl022
->tx
< pl022
->tx_end
|| pl022
->rx
< pl022
->rx_end
) {
1469 if (time_after(time
, timeout
)) {
1470 dev_warn(&pl022
->adev
->dev
,
1471 "%s: timeout!\n", __func__
);
1472 message
->state
= STATE_ERROR
;
1478 /* Update total byte transferred */
1479 message
->actual_length
+= pl022
->cur_transfer
->len
;
1480 if (pl022
->cur_transfer
->cs_change
)
1481 pl022
->cur_chip
->cs_control(SSP_CHIP_DESELECT
);
1482 /* Move to next transfer */
1483 message
->state
= next_transfer(pl022
);
1486 /* Handle end of message */
1487 if (message
->state
== STATE_DONE
)
1488 message
->status
= 0;
1490 message
->status
= -EIO
;
1497 * pump_messages - Workqueue function which processes spi message queue
1498 * @data: pointer to private data of SSP driver
1500 * This function checks if there is any spi message in the queue that
1501 * needs processing and delegate control to appropriate function
1502 * do_polling_transfer()/do_interrupt_dma_transfer()
1503 * based on the kind of the transfer
1506 static void pump_messages(struct work_struct
*work
)
1508 struct pl022
*pl022
=
1509 container_of(work
, struct pl022
, pump_messages
);
1510 unsigned long flags
;
1511 bool was_busy
= false;
1513 /* Lock queue and check for queue work */
1514 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1515 if (list_empty(&pl022
->queue
) || !pl022
->running
) {
1517 /* nothing more to do - disable spi/ssp and power off */
1518 writew((readw(SSP_CR1(pl022
->virtbase
)) &
1519 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
1521 if (pl022
->master_info
->autosuspend_delay
> 0) {
1522 pm_runtime_mark_last_busy(&pl022
->adev
->dev
);
1523 pm_runtime_put_autosuspend(&pl022
->adev
->dev
);
1525 pm_runtime_put(&pl022
->adev
->dev
);
1528 pl022
->busy
= false;
1529 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1533 /* Make sure we are not already running a message */
1534 if (pl022
->cur_msg
) {
1535 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1538 /* Extract head of queue */
1540 list_entry(pl022
->queue
.next
, struct spi_message
, queue
);
1542 list_del_init(&pl022
->cur_msg
->queue
);
1547 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1549 /* Initial message state */
1550 pl022
->cur_msg
->state
= STATE_START
;
1551 pl022
->cur_transfer
= list_entry(pl022
->cur_msg
->transfers
.next
,
1552 struct spi_transfer
, transfer_list
);
1554 /* Setup the SPI using the per chip configuration */
1555 pl022
->cur_chip
= spi_get_ctldata(pl022
->cur_msg
->spi
);
1558 * We enable the core voltage and clocks here, then the clocks
1559 * and core will be disabled when this workqueue is run again
1560 * and there is no more work to be done.
1562 pm_runtime_get_sync(&pl022
->adev
->dev
);
1564 restore_state(pl022
);
1567 if (pl022
->cur_chip
->xfer_type
== POLLING_TRANSFER
)
1568 do_polling_transfer(pl022
);
1570 do_interrupt_dma_transfer(pl022
);
1573 static int __init
init_queue(struct pl022
*pl022
)
1575 INIT_LIST_HEAD(&pl022
->queue
);
1576 spin_lock_init(&pl022
->queue_lock
);
1578 pl022
->running
= false;
1579 pl022
->busy
= false;
1581 tasklet_init(&pl022
->pump_transfers
, pump_transfers
,
1582 (unsigned long)pl022
);
1584 INIT_WORK(&pl022
->pump_messages
, pump_messages
);
1585 pl022
->workqueue
= create_singlethread_workqueue(
1586 dev_name(pl022
->master
->dev
.parent
));
1587 if (pl022
->workqueue
== NULL
)
1593 static int start_queue(struct pl022
*pl022
)
1595 unsigned long flags
;
1597 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1599 if (pl022
->running
|| pl022
->busy
) {
1600 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1604 pl022
->running
= true;
1605 pl022
->cur_msg
= NULL
;
1606 pl022
->cur_transfer
= NULL
;
1607 pl022
->cur_chip
= NULL
;
1608 pl022
->next_msg_cs_active
= false;
1609 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1611 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1616 static int stop_queue(struct pl022
*pl022
)
1618 unsigned long flags
;
1619 unsigned limit
= 500;
1622 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1624 /* This is a bit lame, but is optimized for the common execution path.
1625 * A wait_queue on the pl022->busy could be used, but then the common
1626 * execution path (pump_messages) would be required to call wake_up or
1627 * friends on every SPI message. Do this instead */
1628 while ((!list_empty(&pl022
->queue
) || pl022
->busy
) && limit
--) {
1629 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1631 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1634 if (!list_empty(&pl022
->queue
) || pl022
->busy
)
1637 pl022
->running
= false;
1639 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1644 static int destroy_queue(struct pl022
*pl022
)
1648 status
= stop_queue(pl022
);
1649 /* we are unloading the module or failing to load (only two calls
1650 * to this routine), and neither call can handle a return value.
1651 * However, destroy_workqueue calls flush_workqueue, and that will
1652 * block until all work is done. If the reason that stop_queue
1653 * timed out is that the work will never finish, then it does no
1654 * good to call destroy_workqueue, so return anyway. */
1658 destroy_workqueue(pl022
->workqueue
);
1663 static int verify_controller_parameters(struct pl022
*pl022
,
1664 struct pl022_config_chip
const *chip_info
)
1666 if ((chip_info
->iface
< SSP_INTERFACE_MOTOROLA_SPI
)
1667 || (chip_info
->iface
> SSP_INTERFACE_UNIDIRECTIONAL
)) {
1668 dev_err(&pl022
->adev
->dev
,
1669 "interface is configured incorrectly\n");
1672 if ((chip_info
->iface
== SSP_INTERFACE_UNIDIRECTIONAL
) &&
1673 (!pl022
->vendor
->unidir
)) {
1674 dev_err(&pl022
->adev
->dev
,
1675 "unidirectional mode not supported in this "
1676 "hardware version\n");
1679 if ((chip_info
->hierarchy
!= SSP_MASTER
)
1680 && (chip_info
->hierarchy
!= SSP_SLAVE
)) {
1681 dev_err(&pl022
->adev
->dev
,
1682 "hierarchy is configured incorrectly\n");
1685 if ((chip_info
->com_mode
!= INTERRUPT_TRANSFER
)
1686 && (chip_info
->com_mode
!= DMA_TRANSFER
)
1687 && (chip_info
->com_mode
!= POLLING_TRANSFER
)) {
1688 dev_err(&pl022
->adev
->dev
,
1689 "Communication mode is configured incorrectly\n");
1692 switch (chip_info
->rx_lev_trig
) {
1693 case SSP_RX_1_OR_MORE_ELEM
:
1694 case SSP_RX_4_OR_MORE_ELEM
:
1695 case SSP_RX_8_OR_MORE_ELEM
:
1696 /* These are always OK, all variants can handle this */
1698 case SSP_RX_16_OR_MORE_ELEM
:
1699 if (pl022
->vendor
->fifodepth
< 16) {
1700 dev_err(&pl022
->adev
->dev
,
1701 "RX FIFO Trigger Level is configured incorrectly\n");
1705 case SSP_RX_32_OR_MORE_ELEM
:
1706 if (pl022
->vendor
->fifodepth
< 32) {
1707 dev_err(&pl022
->adev
->dev
,
1708 "RX FIFO Trigger Level is configured incorrectly\n");
1713 dev_err(&pl022
->adev
->dev
,
1714 "RX FIFO Trigger Level is configured incorrectly\n");
1718 switch (chip_info
->tx_lev_trig
) {
1719 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
1720 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
1721 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
1722 /* These are always OK, all variants can handle this */
1724 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
1725 if (pl022
->vendor
->fifodepth
< 16) {
1726 dev_err(&pl022
->adev
->dev
,
1727 "TX FIFO Trigger Level is configured incorrectly\n");
1731 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
1732 if (pl022
->vendor
->fifodepth
< 32) {
1733 dev_err(&pl022
->adev
->dev
,
1734 "TX FIFO Trigger Level is configured incorrectly\n");
1739 dev_err(&pl022
->adev
->dev
,
1740 "TX FIFO Trigger Level is configured incorrectly\n");
1744 if (chip_info
->iface
== SSP_INTERFACE_NATIONAL_MICROWIRE
) {
1745 if ((chip_info
->ctrl_len
< SSP_BITS_4
)
1746 || (chip_info
->ctrl_len
> SSP_BITS_32
)) {
1747 dev_err(&pl022
->adev
->dev
,
1748 "CTRL LEN is configured incorrectly\n");
1751 if ((chip_info
->wait_state
!= SSP_MWIRE_WAIT_ZERO
)
1752 && (chip_info
->wait_state
!= SSP_MWIRE_WAIT_ONE
)) {
1753 dev_err(&pl022
->adev
->dev
,
1754 "Wait State is configured incorrectly\n");
1757 /* Half duplex is only available in the ST Micro version */
1758 if (pl022
->vendor
->extended_cr
) {
1759 if ((chip_info
->duplex
!=
1760 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1761 && (chip_info
->duplex
!=
1762 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX
)) {
1763 dev_err(&pl022
->adev
->dev
,
1764 "Microwire duplex mode is configured incorrectly\n");
1768 if (chip_info
->duplex
!= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1769 dev_err(&pl022
->adev
->dev
,
1770 "Microwire half duplex mode requested,"
1771 " but this is only available in the"
1772 " ST version of PL022\n");
1780 * pl022_transfer - transfer function registered to SPI master framework
1781 * @spi: spi device which is requesting transfer
1782 * @msg: spi message which is to handled is queued to driver queue
1784 * This function is registered to the SPI framework for this SPI master
1785 * controller. It will queue the spi_message in the queue of driver if
1786 * the queue is not stopped and return.
1788 static int pl022_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1790 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1791 unsigned long flags
;
1793 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1795 if (!pl022
->running
) {
1796 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1799 msg
->actual_length
= 0;
1800 msg
->status
= -EINPROGRESS
;
1801 msg
->state
= STATE_START
;
1803 list_add_tail(&msg
->queue
, &pl022
->queue
);
1804 if (pl022
->running
&& !pl022
->busy
)
1805 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1807 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1811 static inline u32
spi_rate(u32 rate
, u16 cpsdvsr
, u16 scr
)
1813 return rate
/ (cpsdvsr
* (1 + scr
));
1816 static int calculate_effective_freq(struct pl022
*pl022
, int freq
, struct
1817 ssp_clock_params
* clk_freq
)
1819 /* Lets calculate the frequency parameters */
1820 u16 cpsdvsr
= CPSDVR_MIN
, scr
= SCR_MIN
;
1821 u32 rate
, max_tclk
, min_tclk
, best_freq
= 0, best_cpsdvsr
= 0,
1822 best_scr
= 0, tmp
, found
= 0;
1824 rate
= clk_get_rate(pl022
->clk
);
1825 /* cpsdvscr = 2 & scr 0 */
1826 max_tclk
= spi_rate(rate
, CPSDVR_MIN
, SCR_MIN
);
1827 /* cpsdvsr = 254 & scr = 255 */
1828 min_tclk
= spi_rate(rate
, CPSDVR_MAX
, SCR_MAX
);
1830 if (!((freq
<= max_tclk
) && (freq
>= min_tclk
))) {
1831 dev_err(&pl022
->adev
->dev
,
1832 "controller data is incorrect: out of range frequency");
1837 * best_freq will give closest possible available rate (<= requested
1838 * freq) for all values of scr & cpsdvsr.
1840 while ((cpsdvsr
<= CPSDVR_MAX
) && !found
) {
1841 while (scr
<= SCR_MAX
) {
1842 tmp
= spi_rate(rate
, cpsdvsr
, scr
);
1847 * If found exact value, update and break.
1848 * If found more closer value, update and continue.
1850 else if ((tmp
== freq
) || (tmp
> best_freq
)) {
1852 best_cpsdvsr
= cpsdvsr
;
1864 clk_freq
->cpsdvsr
= (u8
) (best_cpsdvsr
& 0xFF);
1865 clk_freq
->scr
= (u8
) (best_scr
& 0xFF);
1866 dev_dbg(&pl022
->adev
->dev
,
1867 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1869 dev_dbg(&pl022
->adev
->dev
, "SSP cpsdvsr = %d, scr = %d\n",
1870 clk_freq
->cpsdvsr
, clk_freq
->scr
);
1876 * A piece of default chip info unless the platform
1879 static const struct pl022_config_chip pl022_default_chip_info
= {
1880 .com_mode
= POLLING_TRANSFER
,
1881 .iface
= SSP_INTERFACE_MOTOROLA_SPI
,
1882 .hierarchy
= SSP_SLAVE
,
1883 .slave_tx_disable
= DO_NOT_DRIVE_TX
,
1884 .rx_lev_trig
= SSP_RX_1_OR_MORE_ELEM
,
1885 .tx_lev_trig
= SSP_TX_1_OR_MORE_EMPTY_LOC
,
1886 .ctrl_len
= SSP_BITS_8
,
1887 .wait_state
= SSP_MWIRE_WAIT_ZERO
,
1888 .duplex
= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
,
1889 .cs_control
= null_cs_control
,
1893 * pl022_setup - setup function registered to SPI master framework
1894 * @spi: spi device which is requesting setup
1896 * This function is registered to the SPI framework for this SPI master
1897 * controller. If it is the first time when setup is called by this device,
1898 * this function will initialize the runtime state for this chip and save
1899 * the same in the device structure. Else it will update the runtime info
1900 * with the updated chip info. Nothing is really being written to the
1901 * controller hardware here, that is not done until the actual transfer
1904 static int pl022_setup(struct spi_device
*spi
)
1906 struct pl022_config_chip
const *chip_info
;
1907 struct chip_data
*chip
;
1908 struct ssp_clock_params clk_freq
= { .cpsdvsr
= 0, .scr
= 0};
1910 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1911 unsigned int bits
= spi
->bits_per_word
;
1914 if (!spi
->max_speed_hz
)
1917 /* Get controller_state if one is supplied */
1918 chip
= spi_get_ctldata(spi
);
1921 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1924 "cannot allocate controller state\n");
1928 "allocated memory for controller's runtime state\n");
1931 /* Get controller data if one is supplied */
1932 chip_info
= spi
->controller_data
;
1934 if (chip_info
== NULL
) {
1935 chip_info
= &pl022_default_chip_info
;
1936 /* spi_board_info.controller_data not is supplied */
1938 "using default controller_data settings\n");
1941 "using user supplied controller_data settings\n");
1944 * We can override with custom divisors, else we use the board
1947 if ((0 == chip_info
->clk_freq
.cpsdvsr
)
1948 && (0 == chip_info
->clk_freq
.scr
)) {
1949 status
= calculate_effective_freq(pl022
,
1953 goto err_config_params
;
1955 memcpy(&clk_freq
, &chip_info
->clk_freq
, sizeof(clk_freq
));
1956 if ((clk_freq
.cpsdvsr
% 2) != 0)
1958 clk_freq
.cpsdvsr
- 1;
1960 if ((clk_freq
.cpsdvsr
< CPSDVR_MIN
)
1961 || (clk_freq
.cpsdvsr
> CPSDVR_MAX
)) {
1964 "cpsdvsr is configured incorrectly\n");
1965 goto err_config_params
;
1968 status
= verify_controller_parameters(pl022
, chip_info
);
1970 dev_err(&spi
->dev
, "controller data is incorrect");
1971 goto err_config_params
;
1974 pl022
->rx_lev_trig
= chip_info
->rx_lev_trig
;
1975 pl022
->tx_lev_trig
= chip_info
->tx_lev_trig
;
1977 /* Now set controller state based on controller data */
1978 chip
->xfer_type
= chip_info
->com_mode
;
1979 if (!chip_info
->cs_control
) {
1980 chip
->cs_control
= null_cs_control
;
1982 "chip select function is NULL for this chip\n");
1984 chip
->cs_control
= chip_info
->cs_control
;
1987 /* PL022 doesn't support less than 4-bits */
1989 goto err_config_params
;
1990 } else if (bits
<= 8) {
1991 dev_dbg(&spi
->dev
, "4 <= n <=8 bits per word\n");
1993 chip
->read
= READING_U8
;
1994 chip
->write
= WRITING_U8
;
1995 } else if (bits
<= 16) {
1996 dev_dbg(&spi
->dev
, "9 <= n <= 16 bits per word\n");
1998 chip
->read
= READING_U16
;
1999 chip
->write
= WRITING_U16
;
2001 if (pl022
->vendor
->max_bpw
>= 32) {
2002 dev_dbg(&spi
->dev
, "17 <= n <= 32 bits per word\n");
2004 chip
->read
= READING_U32
;
2005 chip
->write
= WRITING_U32
;
2008 "illegal data size for this controller!\n");
2010 "a standard pl022 can only handle "
2011 "1 <= n <= 16 bit words\n");
2013 goto err_config_params
;
2017 /* Now Initialize all register settings required for this chip */
2022 if ((chip_info
->com_mode
== DMA_TRANSFER
)
2023 && ((pl022
->master_info
)->enable_dma
)) {
2024 chip
->enable_dma
= true;
2025 dev_dbg(&spi
->dev
, "DMA mode set in controller state\n");
2026 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
2027 SSP_DMACR_MASK_RXDMAE
, 0);
2028 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
2029 SSP_DMACR_MASK_TXDMAE
, 1);
2031 chip
->enable_dma
= false;
2032 dev_dbg(&spi
->dev
, "DMA mode NOT set in controller state\n");
2033 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
2034 SSP_DMACR_MASK_RXDMAE
, 0);
2035 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
2036 SSP_DMACR_MASK_TXDMAE
, 1);
2039 chip
->cpsr
= clk_freq
.cpsdvsr
;
2041 /* Special setup for the ST micro extended control registers */
2042 if (pl022
->vendor
->extended_cr
) {
2045 if (pl022
->vendor
->pl023
) {
2046 /* These bits are only in the PL023 */
2047 SSP_WRITE_BITS(chip
->cr1
, chip_info
->clkdelay
,
2048 SSP_CR1_MASK_FBCLKDEL_ST
, 13);
2050 /* These bits are in the PL022 but not PL023 */
2051 SSP_WRITE_BITS(chip
->cr0
, chip_info
->duplex
,
2052 SSP_CR0_MASK_HALFDUP_ST
, 5);
2053 SSP_WRITE_BITS(chip
->cr0
, chip_info
->ctrl_len
,
2054 SSP_CR0_MASK_CSS_ST
, 16);
2055 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
2056 SSP_CR0_MASK_FRF_ST
, 21);
2057 SSP_WRITE_BITS(chip
->cr1
, chip_info
->wait_state
,
2058 SSP_CR1_MASK_MWAIT_ST
, 6);
2060 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
2061 SSP_CR0_MASK_DSS_ST
, 0);
2063 if (spi
->mode
& SPI_LSB_FIRST
) {
2070 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_RENDN_ST
, 4);
2071 SSP_WRITE_BITS(chip
->cr1
, etx
, SSP_CR1_MASK_TENDN_ST
, 5);
2072 SSP_WRITE_BITS(chip
->cr1
, chip_info
->rx_lev_trig
,
2073 SSP_CR1_MASK_RXIFLSEL_ST
, 7);
2074 SSP_WRITE_BITS(chip
->cr1
, chip_info
->tx_lev_trig
,
2075 SSP_CR1_MASK_TXIFLSEL_ST
, 10);
2077 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
2078 SSP_CR0_MASK_DSS
, 0);
2079 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
2080 SSP_CR0_MASK_FRF
, 4);
2083 /* Stuff that is common for all versions */
2084 if (spi
->mode
& SPI_CPOL
)
2085 tmp
= SSP_CLK_POL_IDLE_HIGH
;
2087 tmp
= SSP_CLK_POL_IDLE_LOW
;
2088 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPO
, 6);
2090 if (spi
->mode
& SPI_CPHA
)
2091 tmp
= SSP_CLK_SECOND_EDGE
;
2093 tmp
= SSP_CLK_FIRST_EDGE
;
2094 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPH
, 7);
2096 SSP_WRITE_BITS(chip
->cr0
, clk_freq
.scr
, SSP_CR0_MASK_SCR
, 8);
2097 /* Loopback is available on all versions except PL023 */
2098 if (pl022
->vendor
->loopback
) {
2099 if (spi
->mode
& SPI_LOOP
)
2100 tmp
= LOOPBACK_ENABLED
;
2102 tmp
= LOOPBACK_DISABLED
;
2103 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_LBM
, 0);
2105 SSP_WRITE_BITS(chip
->cr1
, SSP_DISABLED
, SSP_CR1_MASK_SSE
, 1);
2106 SSP_WRITE_BITS(chip
->cr1
, chip_info
->hierarchy
, SSP_CR1_MASK_MS
, 2);
2107 SSP_WRITE_BITS(chip
->cr1
, chip_info
->slave_tx_disable
, SSP_CR1_MASK_SOD
,
2110 /* Save controller_state */
2111 spi_set_ctldata(spi
, chip
);
2114 spi_set_ctldata(spi
, NULL
);
2120 * pl022_cleanup - cleanup function registered to SPI master framework
2121 * @spi: spi device which is requesting cleanup
2123 * This function is registered to the SPI framework for this SPI master
2124 * controller. It will free the runtime state of chip.
2126 static void pl022_cleanup(struct spi_device
*spi
)
2128 struct chip_data
*chip
= spi_get_ctldata(spi
);
2130 spi_set_ctldata(spi
, NULL
);
2134 static int __devinit
2135 pl022_probe(struct amba_device
*adev
, const struct amba_id
*id
)
2137 struct device
*dev
= &adev
->dev
;
2138 struct pl022_ssp_controller
*platform_info
= adev
->dev
.platform_data
;
2139 struct spi_master
*master
;
2140 struct pl022
*pl022
= NULL
; /*Data for this driver */
2143 dev_info(&adev
->dev
,
2144 "ARM PL022 driver, device ID: 0x%08x\n", adev
->periphid
);
2145 if (platform_info
== NULL
) {
2146 dev_err(&adev
->dev
, "probe - no platform data supplied\n");
2151 /* Allocate master with space for data */
2152 master
= spi_alloc_master(dev
, sizeof(struct pl022
));
2153 if (master
== NULL
) {
2154 dev_err(&adev
->dev
, "probe - cannot alloc SPI master\n");
2159 pl022
= spi_master_get_devdata(master
);
2160 pl022
->master
= master
;
2161 pl022
->master_info
= platform_info
;
2163 pl022
->vendor
= id
->data
;
2166 * Bus Number Which has been Assigned to this SSP controller
2169 master
->bus_num
= platform_info
->bus_id
;
2170 master
->num_chipselect
= platform_info
->num_chipselect
;
2171 master
->cleanup
= pl022_cleanup
;
2172 master
->setup
= pl022_setup
;
2173 master
->transfer
= pl022_transfer
;
2176 * Supports mode 0-3, loopback, and active low CS. Transfers are
2177 * always MS bit first on the original pl022.
2179 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
2180 if (pl022
->vendor
->extended_cr
)
2181 master
->mode_bits
|= SPI_LSB_FIRST
;
2183 dev_dbg(&adev
->dev
, "BUSNO: %d\n", master
->bus_num
);
2185 status
= amba_request_regions(adev
, NULL
);
2187 goto err_no_ioregion
;
2189 pl022
->phybase
= adev
->res
.start
;
2190 pl022
->virtbase
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
2191 if (pl022
->virtbase
== NULL
) {
2193 goto err_no_ioremap
;
2195 printk(KERN_INFO
"pl022: mapped registers from 0x%08x to %p\n",
2196 adev
->res
.start
, pl022
->virtbase
);
2198 pl022
->clk
= clk_get(&adev
->dev
, NULL
);
2199 if (IS_ERR(pl022
->clk
)) {
2200 status
= PTR_ERR(pl022
->clk
);
2201 dev_err(&adev
->dev
, "could not retrieve SSP/SPI bus clock\n");
2205 status
= clk_prepare(pl022
->clk
);
2207 dev_err(&adev
->dev
, "could not prepare SSP/SPI bus clock\n");
2211 status
= clk_enable(pl022
->clk
);
2213 dev_err(&adev
->dev
, "could not enable SSP/SPI bus clock\n");
2218 writew((readw(SSP_CR1(pl022
->virtbase
)) & (~SSP_CR1_MASK_SSE
)),
2219 SSP_CR1(pl022
->virtbase
));
2220 load_ssp_default_config(pl022
);
2222 status
= request_irq(adev
->irq
[0], pl022_interrupt_handler
, 0, "pl022",
2225 dev_err(&adev
->dev
, "probe - cannot get IRQ (%d)\n", status
);
2229 /* Get DMA channels */
2230 if (platform_info
->enable_dma
) {
2231 status
= pl022_dma_probe(pl022
);
2233 platform_info
->enable_dma
= 0;
2236 /* Initialize and start queue */
2237 status
= init_queue(pl022
);
2239 dev_err(&adev
->dev
, "probe - problem initializing queue\n");
2240 goto err_init_queue
;
2242 status
= start_queue(pl022
);
2244 dev_err(&adev
->dev
, "probe - problem starting queue\n");
2245 goto err_start_queue
;
2247 /* Register with the SPI framework */
2248 amba_set_drvdata(adev
, pl022
);
2249 status
= spi_register_master(master
);
2252 "probe - problem registering spi master\n");
2253 goto err_spi_register
;
2255 dev_dbg(dev
, "probe succeeded\n");
2257 /* let runtime pm put suspend */
2258 if (platform_info
->autosuspend_delay
> 0) {
2259 dev_info(&adev
->dev
,
2260 "will use autosuspend for runtime pm, delay %dms\n",
2261 platform_info
->autosuspend_delay
);
2262 pm_runtime_set_autosuspend_delay(dev
,
2263 platform_info
->autosuspend_delay
);
2264 pm_runtime_use_autosuspend(dev
);
2265 pm_runtime_put_autosuspend(dev
);
2267 pm_runtime_put(dev
);
2274 destroy_queue(pl022
);
2275 if (platform_info
->enable_dma
)
2276 pl022_dma_remove(pl022
);
2278 free_irq(adev
->irq
[0], pl022
);
2280 clk_disable(pl022
->clk
);
2282 clk_unprepare(pl022
->clk
);
2284 clk_put(pl022
->clk
);
2286 iounmap(pl022
->virtbase
);
2288 amba_release_regions(adev
);
2290 spi_master_put(master
);
2296 static int __devexit
2297 pl022_remove(struct amba_device
*adev
)
2299 struct pl022
*pl022
= amba_get_drvdata(adev
);
2305 * undo pm_runtime_put() in probe. I assume that we're not
2306 * accessing the primecell here.
2308 pm_runtime_get_noresume(&adev
->dev
);
2310 /* Remove the queue */
2311 if (destroy_queue(pl022
) != 0)
2312 dev_err(&adev
->dev
, "queue remove failed\n");
2313 load_ssp_default_config(pl022
);
2314 if (pl022
->master_info
->enable_dma
)
2315 pl022_dma_remove(pl022
);
2317 free_irq(adev
->irq
[0], pl022
);
2318 clk_disable(pl022
->clk
);
2319 clk_unprepare(pl022
->clk
);
2320 clk_put(pl022
->clk
);
2321 iounmap(pl022
->virtbase
);
2322 amba_release_regions(adev
);
2323 tasklet_disable(&pl022
->pump_transfers
);
2324 spi_unregister_master(pl022
->master
);
2325 spi_master_put(pl022
->master
);
2326 amba_set_drvdata(adev
, NULL
);
2330 #ifdef CONFIG_SUSPEND
2331 static int pl022_suspend(struct device
*dev
)
2333 struct pl022
*pl022
= dev_get_drvdata(dev
);
2336 status
= stop_queue(pl022
);
2338 dev_warn(dev
, "suspend cannot stop queue\n");
2342 dev_dbg(dev
, "suspended\n");
2346 static int pl022_resume(struct device
*dev
)
2348 struct pl022
*pl022
= dev_get_drvdata(dev
);
2351 /* Start the queue running */
2352 status
= start_queue(pl022
);
2354 dev_err(dev
, "problem starting queue (%d)\n", status
);
2356 dev_dbg(dev
, "resumed\n");
2360 #endif /* CONFIG_PM */
2362 #ifdef CONFIG_PM_RUNTIME
2363 static int pl022_runtime_suspend(struct device
*dev
)
2365 struct pl022
*pl022
= dev_get_drvdata(dev
);
2367 clk_disable(pl022
->clk
);
2368 amba_vcore_disable(pl022
->adev
);
2373 static int pl022_runtime_resume(struct device
*dev
)
2375 struct pl022
*pl022
= dev_get_drvdata(dev
);
2377 amba_vcore_enable(pl022
->adev
);
2378 clk_enable(pl022
->clk
);
2384 static const struct dev_pm_ops pl022_dev_pm_ops
= {
2385 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend
, pl022_resume
)
2386 SET_RUNTIME_PM_OPS(pl022_runtime_suspend
, pl022_runtime_resume
, NULL
)
2389 static struct vendor_data vendor_arm
= {
2393 .extended_cr
= false,
2398 static struct vendor_data vendor_st
= {
2402 .extended_cr
= true,
2407 static struct vendor_data vendor_st_pl023
= {
2411 .extended_cr
= true,
2416 static struct vendor_data vendor_db5500_pl023
= {
2420 .extended_cr
= true,
2425 static struct amba_id pl022_ids
[] = {
2428 * ARM PL022 variant, this has a 16bit wide
2429 * and 8 locations deep TX/RX FIFO
2433 .data
= &vendor_arm
,
2437 * ST Micro derivative, this has 32bit wide
2438 * and 32 locations deep TX/RX FIFO
2446 * ST-Ericsson derivative "PL023" (this is not
2447 * an official ARM number), this is a PL022 SSP block
2448 * stripped to SPI mode only, it has 32bit wide
2449 * and 32 locations deep TX/RX FIFO but no extended
2454 .data
= &vendor_st_pl023
,
2459 .data
= &vendor_db5500_pl023
,
2464 MODULE_DEVICE_TABLE(amba
, pl022_ids
);
2466 static struct amba_driver pl022_driver
= {
2468 .name
= "ssp-pl022",
2469 .pm
= &pl022_dev_pm_ops
,
2471 .id_table
= pl022_ids
,
2472 .probe
= pl022_probe
,
2473 .remove
= __devexit_p(pl022_remove
),
2476 static int __init
pl022_init(void)
2478 return amba_driver_register(&pl022_driver
);
2480 subsys_initcall(pl022_init
);
2482 static void __exit
pl022_exit(void)
2484 amba_driver_unregister(&pl022_driver
);
2486 module_exit(pl022_exit
);
2488 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2489 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2490 MODULE_LICENSE("GPL");