Revert "b43: Enforce DMA descriptor memory constraints"
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
blobcfb0b2f5f63de6d75213b16373f84a248fbd6421
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
19 * tunables
21 /* max queue in one round of service */
22 static const int cfq_quantum = 4;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
36 * offset from end of service tree
38 #define CFQ_IDLE_DELAY (HZ / 5)
41 * below this threshold, we consider thinktime immediate
43 #define CFQ_MIN_TT (2)
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
49 #define CFQQ_COOP_TOUT (HZ)
51 #define CFQ_SLICE_SCALE (5)
52 #define CFQ_HW_QUEUE_MIN (5)
53 #define CFQ_SERVICE_SHIFT 12
55 #define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
59 static struct kmem_cache *cfq_pool;
60 static struct kmem_cache *cfq_ioc_pool;
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63 static struct completion *ioc_gone;
64 static DEFINE_SPINLOCK(ioc_gone_lock);
66 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
70 #define sample_valid(samples) ((samples) > 80)
71 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
79 struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
82 unsigned count;
83 u64 min_vdisktime;
84 struct rb_node *active;
85 unsigned total_weight;
87 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
90 * Per process-grouping structure
92 struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 unsigned int allocated_slice;
121 /* time when first request from queue completed and slice started. */
122 unsigned long slice_start;
123 unsigned long slice_end;
124 long slice_resid;
125 unsigned int slice_dispatch;
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
136 unsigned int seek_samples;
137 u64 seek_total;
138 sector_t seek_mean;
139 sector_t last_request_pos;
140 unsigned long seeky_start;
142 pid_t pid;
144 struct cfq_rb_root *service_tree;
145 struct cfq_queue *new_cfqq;
146 struct cfq_group *cfqg;
147 struct cfq_group *orig_cfqg;
148 /* Sectors dispatched in current dispatch round */
149 unsigned long nr_sectors;
153 * First index in the service_trees.
154 * IDLE is handled separately, so it has negative index
156 enum wl_prio_t {
157 BE_WORKLOAD = 0,
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
163 * Second index in the service_trees.
165 enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
171 /* This is per cgroup per device grouping structure */
172 struct cfq_group {
173 /* group service_tree member */
174 struct rb_node rb_node;
176 /* group service_tree key */
177 u64 vdisktime;
178 unsigned int weight;
179 bool on_st;
181 /* number of cfqq currently on this group */
182 int nr_cfqq;
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg[2];
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
190 struct cfq_rb_root service_trees[2][3];
191 struct cfq_rb_root service_tree_idle;
193 unsigned long saved_workload_slice;
194 enum wl_type_t saved_workload;
195 enum wl_prio_t saved_serving_prio;
196 struct blkio_group blkg;
197 #ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node;
199 atomic_t ref;
200 #endif
204 * Per block device queue structure
206 struct cfq_data {
207 struct request_queue *queue;
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree;
210 struct cfq_group root_group;
211 /* Number of active cfq groups on group service tree */
212 int nr_groups;
215 * The priority currently being served
217 enum wl_prio_t serving_prio;
218 enum wl_type_t serving_type;
219 unsigned long workload_expires;
220 struct cfq_group *serving_group;
221 bool noidle_tree_requires_idle;
224 * Each priority tree is sorted by next_request position. These
225 * trees are used when determining if two or more queues are
226 * interleaving requests (see cfq_close_cooperator).
228 struct rb_root prio_trees[CFQ_PRIO_LISTS];
230 unsigned int busy_queues;
232 int rq_in_driver[2];
233 int sync_flight;
236 * queue-depth detection
238 int rq_queued;
239 int hw_tag;
241 * hw_tag can be
242 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
243 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
244 * 0 => no NCQ
246 int hw_tag_est_depth;
247 unsigned int hw_tag_samples;
250 * idle window management
252 struct timer_list idle_slice_timer;
253 struct work_struct unplug_work;
255 struct cfq_queue *active_queue;
256 struct cfq_io_context *active_cic;
259 * async queue for each priority case
261 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
262 struct cfq_queue *async_idle_cfqq;
264 sector_t last_position;
267 * tunables, see top of file
269 unsigned int cfq_quantum;
270 unsigned int cfq_fifo_expire[2];
271 unsigned int cfq_back_penalty;
272 unsigned int cfq_back_max;
273 unsigned int cfq_slice[2];
274 unsigned int cfq_slice_async_rq;
275 unsigned int cfq_slice_idle;
276 unsigned int cfq_latency;
277 unsigned int cfq_group_isolation;
279 struct list_head cic_list;
282 * Fallback dummy cfqq for extreme OOM conditions
284 struct cfq_queue oom_cfqq;
286 unsigned long last_end_sync_rq;
288 /* List of cfq groups being managed on this device*/
289 struct hlist_head cfqg_list;
290 struct rcu_head rcu;
293 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
295 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
296 enum wl_prio_t prio,
297 enum wl_type_t type,
298 struct cfq_data *cfqd)
300 if (!cfqg)
301 return NULL;
303 if (prio == IDLE_WORKLOAD)
304 return &cfqg->service_tree_idle;
306 return &cfqg->service_trees[prio][type];
309 enum cfqq_state_flags {
310 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
311 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
312 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
313 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
314 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
315 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
316 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
317 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
318 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
319 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
320 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
321 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
322 CFQ_CFQQ_FLAG_wait_busy_done, /* Got new request. Expire the queue */
325 #define CFQ_CFQQ_FNS(name) \
326 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
328 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
330 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
332 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
334 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
336 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
339 CFQ_CFQQ_FNS(on_rr);
340 CFQ_CFQQ_FNS(wait_request);
341 CFQ_CFQQ_FNS(must_dispatch);
342 CFQ_CFQQ_FNS(must_alloc_slice);
343 CFQ_CFQQ_FNS(fifo_expire);
344 CFQ_CFQQ_FNS(idle_window);
345 CFQ_CFQQ_FNS(prio_changed);
346 CFQ_CFQQ_FNS(slice_new);
347 CFQ_CFQQ_FNS(sync);
348 CFQ_CFQQ_FNS(coop);
349 CFQ_CFQQ_FNS(deep);
350 CFQ_CFQQ_FNS(wait_busy);
351 CFQ_CFQQ_FNS(wait_busy_done);
352 #undef CFQ_CFQQ_FNS
354 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
355 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
356 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
357 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
358 blkg_path(&(cfqq)->cfqg->blkg), ##args);
360 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
361 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
362 blkg_path(&(cfqg)->blkg), ##args); \
364 #else
365 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
366 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
367 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
368 #endif
369 #define cfq_log(cfqd, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
372 /* Traverses through cfq group service trees */
373 #define for_each_cfqg_st(cfqg, i, j, st) \
374 for (i = 0; i <= IDLE_WORKLOAD; i++) \
375 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
376 : &cfqg->service_tree_idle; \
377 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
378 (i == IDLE_WORKLOAD && j == 0); \
379 j++, st = i < IDLE_WORKLOAD ? \
380 &cfqg->service_trees[i][j]: NULL) \
383 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
385 if (cfq_class_idle(cfqq))
386 return IDLE_WORKLOAD;
387 if (cfq_class_rt(cfqq))
388 return RT_WORKLOAD;
389 return BE_WORKLOAD;
393 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
395 if (!cfq_cfqq_sync(cfqq))
396 return ASYNC_WORKLOAD;
397 if (!cfq_cfqq_idle_window(cfqq))
398 return SYNC_NOIDLE_WORKLOAD;
399 return SYNC_WORKLOAD;
402 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
403 struct cfq_data *cfqd,
404 struct cfq_group *cfqg)
406 if (wl == IDLE_WORKLOAD)
407 return cfqg->service_tree_idle.count;
409 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
410 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
411 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
414 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
415 struct cfq_group *cfqg)
417 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
418 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
421 static void cfq_dispatch_insert(struct request_queue *, struct request *);
422 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
423 struct io_context *, gfp_t);
424 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
425 struct io_context *);
427 static inline int rq_in_driver(struct cfq_data *cfqd)
429 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
432 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
433 bool is_sync)
435 return cic->cfqq[is_sync];
438 static inline void cic_set_cfqq(struct cfq_io_context *cic,
439 struct cfq_queue *cfqq, bool is_sync)
441 cic->cfqq[is_sync] = cfqq;
445 * We regard a request as SYNC, if it's either a read or has the SYNC bit
446 * set (in which case it could also be direct WRITE).
448 static inline bool cfq_bio_sync(struct bio *bio)
450 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
454 * scheduler run of queue, if there are requests pending and no one in the
455 * driver that will restart queueing
457 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
459 if (cfqd->busy_queues) {
460 cfq_log(cfqd, "schedule dispatch");
461 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
465 static int cfq_queue_empty(struct request_queue *q)
467 struct cfq_data *cfqd = q->elevator->elevator_data;
469 return !cfqd->rq_queued;
473 * Scale schedule slice based on io priority. Use the sync time slice only
474 * if a queue is marked sync and has sync io queued. A sync queue with async
475 * io only, should not get full sync slice length.
477 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
478 unsigned short prio)
480 const int base_slice = cfqd->cfq_slice[sync];
482 WARN_ON(prio >= IOPRIO_BE_NR);
484 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
487 static inline int
488 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
490 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
493 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
495 u64 d = delta << CFQ_SERVICE_SHIFT;
497 d = d * BLKIO_WEIGHT_DEFAULT;
498 do_div(d, cfqg->weight);
499 return d;
502 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
504 s64 delta = (s64)(vdisktime - min_vdisktime);
505 if (delta > 0)
506 min_vdisktime = vdisktime;
508 return min_vdisktime;
511 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
513 s64 delta = (s64)(vdisktime - min_vdisktime);
514 if (delta < 0)
515 min_vdisktime = vdisktime;
517 return min_vdisktime;
520 static void update_min_vdisktime(struct cfq_rb_root *st)
522 u64 vdisktime = st->min_vdisktime;
523 struct cfq_group *cfqg;
525 if (st->active) {
526 cfqg = rb_entry_cfqg(st->active);
527 vdisktime = cfqg->vdisktime;
530 if (st->left) {
531 cfqg = rb_entry_cfqg(st->left);
532 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
535 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
539 * get averaged number of queues of RT/BE priority.
540 * average is updated, with a formula that gives more weight to higher numbers,
541 * to quickly follows sudden increases and decrease slowly
544 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
545 struct cfq_group *cfqg, bool rt)
547 unsigned min_q, max_q;
548 unsigned mult = cfq_hist_divisor - 1;
549 unsigned round = cfq_hist_divisor / 2;
550 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
552 min_q = min(cfqg->busy_queues_avg[rt], busy);
553 max_q = max(cfqg->busy_queues_avg[rt], busy);
554 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
555 cfq_hist_divisor;
556 return cfqg->busy_queues_avg[rt];
559 static inline unsigned
560 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
562 struct cfq_rb_root *st = &cfqd->grp_service_tree;
564 return cfq_target_latency * cfqg->weight / st->total_weight;
567 static inline void
568 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
570 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
571 if (cfqd->cfq_latency) {
573 * interested queues (we consider only the ones with the same
574 * priority class in the cfq group)
576 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
577 cfq_class_rt(cfqq));
578 unsigned sync_slice = cfqd->cfq_slice[1];
579 unsigned expect_latency = sync_slice * iq;
580 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
582 if (expect_latency > group_slice) {
583 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
584 /* scale low_slice according to IO priority
585 * and sync vs async */
586 unsigned low_slice =
587 min(slice, base_low_slice * slice / sync_slice);
588 /* the adapted slice value is scaled to fit all iqs
589 * into the target latency */
590 slice = max(slice * group_slice / expect_latency,
591 low_slice);
594 cfqq->slice_start = jiffies;
595 cfqq->slice_end = jiffies + slice;
596 cfqq->allocated_slice = slice;
597 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
601 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
602 * isn't valid until the first request from the dispatch is activated
603 * and the slice time set.
605 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
607 if (cfq_cfqq_slice_new(cfqq))
608 return 0;
609 if (time_before(jiffies, cfqq->slice_end))
610 return 0;
612 return 1;
616 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
617 * We choose the request that is closest to the head right now. Distance
618 * behind the head is penalized and only allowed to a certain extent.
620 static struct request *
621 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
623 sector_t s1, s2, d1 = 0, d2 = 0;
624 unsigned long back_max;
625 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
626 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
627 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
629 if (rq1 == NULL || rq1 == rq2)
630 return rq2;
631 if (rq2 == NULL)
632 return rq1;
634 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
635 return rq1;
636 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
637 return rq2;
638 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
639 return rq1;
640 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
641 return rq2;
643 s1 = blk_rq_pos(rq1);
644 s2 = blk_rq_pos(rq2);
647 * by definition, 1KiB is 2 sectors
649 back_max = cfqd->cfq_back_max * 2;
652 * Strict one way elevator _except_ in the case where we allow
653 * short backward seeks which are biased as twice the cost of a
654 * similar forward seek.
656 if (s1 >= last)
657 d1 = s1 - last;
658 else if (s1 + back_max >= last)
659 d1 = (last - s1) * cfqd->cfq_back_penalty;
660 else
661 wrap |= CFQ_RQ1_WRAP;
663 if (s2 >= last)
664 d2 = s2 - last;
665 else if (s2 + back_max >= last)
666 d2 = (last - s2) * cfqd->cfq_back_penalty;
667 else
668 wrap |= CFQ_RQ2_WRAP;
670 /* Found required data */
673 * By doing switch() on the bit mask "wrap" we avoid having to
674 * check two variables for all permutations: --> faster!
676 switch (wrap) {
677 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
678 if (d1 < d2)
679 return rq1;
680 else if (d2 < d1)
681 return rq2;
682 else {
683 if (s1 >= s2)
684 return rq1;
685 else
686 return rq2;
689 case CFQ_RQ2_WRAP:
690 return rq1;
691 case CFQ_RQ1_WRAP:
692 return rq2;
693 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
694 default:
696 * Since both rqs are wrapped,
697 * start with the one that's further behind head
698 * (--> only *one* back seek required),
699 * since back seek takes more time than forward.
701 if (s1 <= s2)
702 return rq1;
703 else
704 return rq2;
709 * The below is leftmost cache rbtree addon
711 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
713 /* Service tree is empty */
714 if (!root->count)
715 return NULL;
717 if (!root->left)
718 root->left = rb_first(&root->rb);
720 if (root->left)
721 return rb_entry(root->left, struct cfq_queue, rb_node);
723 return NULL;
726 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
728 if (!root->left)
729 root->left = rb_first(&root->rb);
731 if (root->left)
732 return rb_entry_cfqg(root->left);
734 return NULL;
737 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
739 rb_erase(n, root);
740 RB_CLEAR_NODE(n);
743 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
745 if (root->left == n)
746 root->left = NULL;
747 rb_erase_init(n, &root->rb);
748 --root->count;
752 * would be nice to take fifo expire time into account as well
754 static struct request *
755 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
756 struct request *last)
758 struct rb_node *rbnext = rb_next(&last->rb_node);
759 struct rb_node *rbprev = rb_prev(&last->rb_node);
760 struct request *next = NULL, *prev = NULL;
762 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
764 if (rbprev)
765 prev = rb_entry_rq(rbprev);
767 if (rbnext)
768 next = rb_entry_rq(rbnext);
769 else {
770 rbnext = rb_first(&cfqq->sort_list);
771 if (rbnext && rbnext != &last->rb_node)
772 next = rb_entry_rq(rbnext);
775 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
778 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
779 struct cfq_queue *cfqq)
782 * just an approximation, should be ok.
784 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
785 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
788 static inline s64
789 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
791 return cfqg->vdisktime - st->min_vdisktime;
794 static void
795 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
797 struct rb_node **node = &st->rb.rb_node;
798 struct rb_node *parent = NULL;
799 struct cfq_group *__cfqg;
800 s64 key = cfqg_key(st, cfqg);
801 int left = 1;
803 while (*node != NULL) {
804 parent = *node;
805 __cfqg = rb_entry_cfqg(parent);
807 if (key < cfqg_key(st, __cfqg))
808 node = &parent->rb_left;
809 else {
810 node = &parent->rb_right;
811 left = 0;
815 if (left)
816 st->left = &cfqg->rb_node;
818 rb_link_node(&cfqg->rb_node, parent, node);
819 rb_insert_color(&cfqg->rb_node, &st->rb);
822 static void
823 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
825 struct cfq_rb_root *st = &cfqd->grp_service_tree;
826 struct cfq_group *__cfqg;
827 struct rb_node *n;
829 cfqg->nr_cfqq++;
830 if (cfqg->on_st)
831 return;
834 * Currently put the group at the end. Later implement something
835 * so that groups get lesser vtime based on their weights, so that
836 * if group does not loose all if it was not continously backlogged.
838 n = rb_last(&st->rb);
839 if (n) {
840 __cfqg = rb_entry_cfqg(n);
841 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
842 } else
843 cfqg->vdisktime = st->min_vdisktime;
845 __cfq_group_service_tree_add(st, cfqg);
846 cfqg->on_st = true;
847 cfqd->nr_groups++;
848 st->total_weight += cfqg->weight;
851 static void
852 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
854 struct cfq_rb_root *st = &cfqd->grp_service_tree;
856 if (st->active == &cfqg->rb_node)
857 st->active = NULL;
859 BUG_ON(cfqg->nr_cfqq < 1);
860 cfqg->nr_cfqq--;
862 /* If there are other cfq queues under this group, don't delete it */
863 if (cfqg->nr_cfqq)
864 return;
866 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
867 cfqg->on_st = false;
868 cfqd->nr_groups--;
869 st->total_weight -= cfqg->weight;
870 if (!RB_EMPTY_NODE(&cfqg->rb_node))
871 cfq_rb_erase(&cfqg->rb_node, st);
872 cfqg->saved_workload_slice = 0;
873 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
876 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
878 unsigned int slice_used;
881 * Queue got expired before even a single request completed or
882 * got expired immediately after first request completion.
884 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
886 * Also charge the seek time incurred to the group, otherwise
887 * if there are mutiple queues in the group, each can dispatch
888 * a single request on seeky media and cause lots of seek time
889 * and group will never know it.
891 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
893 } else {
894 slice_used = jiffies - cfqq->slice_start;
895 if (slice_used > cfqq->allocated_slice)
896 slice_used = cfqq->allocated_slice;
899 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
900 cfqq->nr_sectors);
901 return slice_used;
904 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
905 struct cfq_queue *cfqq)
907 struct cfq_rb_root *st = &cfqd->grp_service_tree;
908 unsigned int used_sl, charge_sl;
909 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
910 - cfqg->service_tree_idle.count;
912 BUG_ON(nr_sync < 0);
913 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
915 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
916 charge_sl = cfqq->allocated_slice;
918 /* Can't update vdisktime while group is on service tree */
919 cfq_rb_erase(&cfqg->rb_node, st);
920 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
921 __cfq_group_service_tree_add(st, cfqg);
923 /* This group is being expired. Save the context */
924 if (time_after(cfqd->workload_expires, jiffies)) {
925 cfqg->saved_workload_slice = cfqd->workload_expires
926 - jiffies;
927 cfqg->saved_workload = cfqd->serving_type;
928 cfqg->saved_serving_prio = cfqd->serving_prio;
929 } else
930 cfqg->saved_workload_slice = 0;
932 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
933 st->min_vdisktime);
934 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
935 cfqq->nr_sectors);
938 #ifdef CONFIG_CFQ_GROUP_IOSCHED
939 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
941 if (blkg)
942 return container_of(blkg, struct cfq_group, blkg);
943 return NULL;
946 void
947 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
949 cfqg_of_blkg(blkg)->weight = weight;
952 static struct cfq_group *
953 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
955 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
956 struct cfq_group *cfqg = NULL;
957 void *key = cfqd;
958 int i, j;
959 struct cfq_rb_root *st;
960 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
961 unsigned int major, minor;
963 /* Do we need to take this reference */
964 if (!blkiocg_css_tryget(blkcg))
965 return NULL;;
967 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
968 if (cfqg || !create)
969 goto done;
971 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
972 if (!cfqg)
973 goto done;
975 cfqg->weight = blkcg->weight;
976 for_each_cfqg_st(cfqg, i, j, st)
977 *st = CFQ_RB_ROOT;
978 RB_CLEAR_NODE(&cfqg->rb_node);
981 * Take the initial reference that will be released on destroy
982 * This can be thought of a joint reference by cgroup and
983 * elevator which will be dropped by either elevator exit
984 * or cgroup deletion path depending on who is exiting first.
986 atomic_set(&cfqg->ref, 1);
988 /* Add group onto cgroup list */
989 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
990 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
991 MKDEV(major, minor));
993 /* Add group on cfqd list */
994 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
996 done:
997 blkiocg_css_put(blkcg);
998 return cfqg;
1002 * Search for the cfq group current task belongs to. If create = 1, then also
1003 * create the cfq group if it does not exist. request_queue lock must be held.
1005 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1007 struct cgroup *cgroup;
1008 struct cfq_group *cfqg = NULL;
1010 rcu_read_lock();
1011 cgroup = task_cgroup(current, blkio_subsys_id);
1012 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1013 if (!cfqg && create)
1014 cfqg = &cfqd->root_group;
1015 rcu_read_unlock();
1016 return cfqg;
1019 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1021 /* Currently, all async queues are mapped to root group */
1022 if (!cfq_cfqq_sync(cfqq))
1023 cfqg = &cfqq->cfqd->root_group;
1025 cfqq->cfqg = cfqg;
1026 /* cfqq reference on cfqg */
1027 atomic_inc(&cfqq->cfqg->ref);
1030 static void cfq_put_cfqg(struct cfq_group *cfqg)
1032 struct cfq_rb_root *st;
1033 int i, j;
1035 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1036 if (!atomic_dec_and_test(&cfqg->ref))
1037 return;
1038 for_each_cfqg_st(cfqg, i, j, st)
1039 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1040 kfree(cfqg);
1043 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1045 /* Something wrong if we are trying to remove same group twice */
1046 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1048 hlist_del_init(&cfqg->cfqd_node);
1051 * Put the reference taken at the time of creation so that when all
1052 * queues are gone, group can be destroyed.
1054 cfq_put_cfqg(cfqg);
1057 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1059 struct hlist_node *pos, *n;
1060 struct cfq_group *cfqg;
1062 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1064 * If cgroup removal path got to blk_group first and removed
1065 * it from cgroup list, then it will take care of destroying
1066 * cfqg also.
1068 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1069 cfq_destroy_cfqg(cfqd, cfqg);
1074 * Blk cgroup controller notification saying that blkio_group object is being
1075 * delinked as associated cgroup object is going away. That also means that
1076 * no new IO will come in this group. So get rid of this group as soon as
1077 * any pending IO in the group is finished.
1079 * This function is called under rcu_read_lock(). key is the rcu protected
1080 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1081 * read lock.
1083 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1084 * it should not be NULL as even if elevator was exiting, cgroup deltion
1085 * path got to it first.
1087 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1089 unsigned long flags;
1090 struct cfq_data *cfqd = key;
1092 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1093 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1094 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1097 #else /* GROUP_IOSCHED */
1098 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1100 return &cfqd->root_group;
1102 static inline void
1103 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1104 cfqq->cfqg = cfqg;
1107 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1108 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1110 #endif /* GROUP_IOSCHED */
1113 * The cfqd->service_trees holds all pending cfq_queue's that have
1114 * requests waiting to be processed. It is sorted in the order that
1115 * we will service the queues.
1117 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1118 bool add_front)
1120 struct rb_node **p, *parent;
1121 struct cfq_queue *__cfqq;
1122 unsigned long rb_key;
1123 struct cfq_rb_root *service_tree;
1124 int left;
1125 int new_cfqq = 1;
1126 int group_changed = 0;
1128 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1129 if (!cfqd->cfq_group_isolation
1130 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1131 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1132 /* Move this cfq to root group */
1133 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1134 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1135 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1136 cfqq->orig_cfqg = cfqq->cfqg;
1137 cfqq->cfqg = &cfqd->root_group;
1138 atomic_inc(&cfqd->root_group.ref);
1139 group_changed = 1;
1140 } else if (!cfqd->cfq_group_isolation
1141 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1142 /* cfqq is sequential now needs to go to its original group */
1143 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1144 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1145 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1146 cfq_put_cfqg(cfqq->cfqg);
1147 cfqq->cfqg = cfqq->orig_cfqg;
1148 cfqq->orig_cfqg = NULL;
1149 group_changed = 1;
1150 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1152 #endif
1154 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1155 cfqq_type(cfqq), cfqd);
1156 if (cfq_class_idle(cfqq)) {
1157 rb_key = CFQ_IDLE_DELAY;
1158 parent = rb_last(&service_tree->rb);
1159 if (parent && parent != &cfqq->rb_node) {
1160 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1161 rb_key += __cfqq->rb_key;
1162 } else
1163 rb_key += jiffies;
1164 } else if (!add_front) {
1166 * Get our rb key offset. Subtract any residual slice
1167 * value carried from last service. A negative resid
1168 * count indicates slice overrun, and this should position
1169 * the next service time further away in the tree.
1171 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1172 rb_key -= cfqq->slice_resid;
1173 cfqq->slice_resid = 0;
1174 } else {
1175 rb_key = -HZ;
1176 __cfqq = cfq_rb_first(service_tree);
1177 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1180 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1181 new_cfqq = 0;
1183 * same position, nothing more to do
1185 if (rb_key == cfqq->rb_key &&
1186 cfqq->service_tree == service_tree)
1187 return;
1189 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1190 cfqq->service_tree = NULL;
1193 left = 1;
1194 parent = NULL;
1195 cfqq->service_tree = service_tree;
1196 p = &service_tree->rb.rb_node;
1197 while (*p) {
1198 struct rb_node **n;
1200 parent = *p;
1201 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1204 * sort by key, that represents service time.
1206 if (time_before(rb_key, __cfqq->rb_key))
1207 n = &(*p)->rb_left;
1208 else {
1209 n = &(*p)->rb_right;
1210 left = 0;
1213 p = n;
1216 if (left)
1217 service_tree->left = &cfqq->rb_node;
1219 cfqq->rb_key = rb_key;
1220 rb_link_node(&cfqq->rb_node, parent, p);
1221 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1222 service_tree->count++;
1223 if ((add_front || !new_cfqq) && !group_changed)
1224 return;
1225 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1228 static struct cfq_queue *
1229 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1230 sector_t sector, struct rb_node **ret_parent,
1231 struct rb_node ***rb_link)
1233 struct rb_node **p, *parent;
1234 struct cfq_queue *cfqq = NULL;
1236 parent = NULL;
1237 p = &root->rb_node;
1238 while (*p) {
1239 struct rb_node **n;
1241 parent = *p;
1242 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1245 * Sort strictly based on sector. Smallest to the left,
1246 * largest to the right.
1248 if (sector > blk_rq_pos(cfqq->next_rq))
1249 n = &(*p)->rb_right;
1250 else if (sector < blk_rq_pos(cfqq->next_rq))
1251 n = &(*p)->rb_left;
1252 else
1253 break;
1254 p = n;
1255 cfqq = NULL;
1258 *ret_parent = parent;
1259 if (rb_link)
1260 *rb_link = p;
1261 return cfqq;
1264 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1266 struct rb_node **p, *parent;
1267 struct cfq_queue *__cfqq;
1269 if (cfqq->p_root) {
1270 rb_erase(&cfqq->p_node, cfqq->p_root);
1271 cfqq->p_root = NULL;
1274 if (cfq_class_idle(cfqq))
1275 return;
1276 if (!cfqq->next_rq)
1277 return;
1279 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1280 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1281 blk_rq_pos(cfqq->next_rq), &parent, &p);
1282 if (!__cfqq) {
1283 rb_link_node(&cfqq->p_node, parent, p);
1284 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1285 } else
1286 cfqq->p_root = NULL;
1290 * Update cfqq's position in the service tree.
1292 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1295 * Resorting requires the cfqq to be on the RR list already.
1297 if (cfq_cfqq_on_rr(cfqq)) {
1298 cfq_service_tree_add(cfqd, cfqq, 0);
1299 cfq_prio_tree_add(cfqd, cfqq);
1304 * add to busy list of queues for service, trying to be fair in ordering
1305 * the pending list according to last request service
1307 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1309 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1310 BUG_ON(cfq_cfqq_on_rr(cfqq));
1311 cfq_mark_cfqq_on_rr(cfqq);
1312 cfqd->busy_queues++;
1314 cfq_resort_rr_list(cfqd, cfqq);
1318 * Called when the cfqq no longer has requests pending, remove it from
1319 * the service tree.
1321 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1323 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1324 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1325 cfq_clear_cfqq_on_rr(cfqq);
1327 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1328 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1329 cfqq->service_tree = NULL;
1331 if (cfqq->p_root) {
1332 rb_erase(&cfqq->p_node, cfqq->p_root);
1333 cfqq->p_root = NULL;
1336 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1337 BUG_ON(!cfqd->busy_queues);
1338 cfqd->busy_queues--;
1342 * rb tree support functions
1344 static void cfq_del_rq_rb(struct request *rq)
1346 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1347 const int sync = rq_is_sync(rq);
1349 BUG_ON(!cfqq->queued[sync]);
1350 cfqq->queued[sync]--;
1352 elv_rb_del(&cfqq->sort_list, rq);
1354 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1356 * Queue will be deleted from service tree when we actually
1357 * expire it later. Right now just remove it from prio tree
1358 * as it is empty.
1360 if (cfqq->p_root) {
1361 rb_erase(&cfqq->p_node, cfqq->p_root);
1362 cfqq->p_root = NULL;
1367 static void cfq_add_rq_rb(struct request *rq)
1369 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1370 struct cfq_data *cfqd = cfqq->cfqd;
1371 struct request *__alias, *prev;
1373 cfqq->queued[rq_is_sync(rq)]++;
1376 * looks a little odd, but the first insert might return an alias.
1377 * if that happens, put the alias on the dispatch list
1379 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1380 cfq_dispatch_insert(cfqd->queue, __alias);
1382 if (!cfq_cfqq_on_rr(cfqq))
1383 cfq_add_cfqq_rr(cfqd, cfqq);
1386 * check if this request is a better next-serve candidate
1388 prev = cfqq->next_rq;
1389 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1392 * adjust priority tree position, if ->next_rq changes
1394 if (prev != cfqq->next_rq)
1395 cfq_prio_tree_add(cfqd, cfqq);
1397 BUG_ON(!cfqq->next_rq);
1400 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1402 elv_rb_del(&cfqq->sort_list, rq);
1403 cfqq->queued[rq_is_sync(rq)]--;
1404 cfq_add_rq_rb(rq);
1407 static struct request *
1408 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1410 struct task_struct *tsk = current;
1411 struct cfq_io_context *cic;
1412 struct cfq_queue *cfqq;
1414 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1415 if (!cic)
1416 return NULL;
1418 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1419 if (cfqq) {
1420 sector_t sector = bio->bi_sector + bio_sectors(bio);
1422 return elv_rb_find(&cfqq->sort_list, sector);
1425 return NULL;
1428 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1430 struct cfq_data *cfqd = q->elevator->elevator_data;
1432 cfqd->rq_in_driver[rq_is_sync(rq)]++;
1433 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1434 rq_in_driver(cfqd));
1436 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1439 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1441 struct cfq_data *cfqd = q->elevator->elevator_data;
1442 const int sync = rq_is_sync(rq);
1444 WARN_ON(!cfqd->rq_in_driver[sync]);
1445 cfqd->rq_in_driver[sync]--;
1446 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1447 rq_in_driver(cfqd));
1450 static void cfq_remove_request(struct request *rq)
1452 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1454 if (cfqq->next_rq == rq)
1455 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1457 list_del_init(&rq->queuelist);
1458 cfq_del_rq_rb(rq);
1460 cfqq->cfqd->rq_queued--;
1461 if (rq_is_meta(rq)) {
1462 WARN_ON(!cfqq->meta_pending);
1463 cfqq->meta_pending--;
1467 static int cfq_merge(struct request_queue *q, struct request **req,
1468 struct bio *bio)
1470 struct cfq_data *cfqd = q->elevator->elevator_data;
1471 struct request *__rq;
1473 __rq = cfq_find_rq_fmerge(cfqd, bio);
1474 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1475 *req = __rq;
1476 return ELEVATOR_FRONT_MERGE;
1479 return ELEVATOR_NO_MERGE;
1482 static void cfq_merged_request(struct request_queue *q, struct request *req,
1483 int type)
1485 if (type == ELEVATOR_FRONT_MERGE) {
1486 struct cfq_queue *cfqq = RQ_CFQQ(req);
1488 cfq_reposition_rq_rb(cfqq, req);
1492 static void
1493 cfq_merged_requests(struct request_queue *q, struct request *rq,
1494 struct request *next)
1496 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1498 * reposition in fifo if next is older than rq
1500 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1501 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1502 list_move(&rq->queuelist, &next->queuelist);
1503 rq_set_fifo_time(rq, rq_fifo_time(next));
1506 if (cfqq->next_rq == next)
1507 cfqq->next_rq = rq;
1508 cfq_remove_request(next);
1511 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1512 struct bio *bio)
1514 struct cfq_data *cfqd = q->elevator->elevator_data;
1515 struct cfq_io_context *cic;
1516 struct cfq_queue *cfqq;
1518 /* Deny merge if bio and rq don't belong to same cfq group */
1519 if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1520 return false;
1522 * Disallow merge of a sync bio into an async request.
1524 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1525 return false;
1528 * Lookup the cfqq that this bio will be queued with. Allow
1529 * merge only if rq is queued there.
1531 cic = cfq_cic_lookup(cfqd, current->io_context);
1532 if (!cic)
1533 return false;
1535 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1536 return cfqq == RQ_CFQQ(rq);
1539 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1540 struct cfq_queue *cfqq)
1542 if (cfqq) {
1543 cfq_log_cfqq(cfqd, cfqq, "set_active");
1544 cfqq->slice_start = 0;
1545 cfqq->dispatch_start = jiffies;
1546 cfqq->allocated_slice = 0;
1547 cfqq->slice_end = 0;
1548 cfqq->slice_dispatch = 0;
1549 cfqq->nr_sectors = 0;
1551 cfq_clear_cfqq_wait_request(cfqq);
1552 cfq_clear_cfqq_must_dispatch(cfqq);
1553 cfq_clear_cfqq_must_alloc_slice(cfqq);
1554 cfq_clear_cfqq_fifo_expire(cfqq);
1555 cfq_mark_cfqq_slice_new(cfqq);
1557 del_timer(&cfqd->idle_slice_timer);
1560 cfqd->active_queue = cfqq;
1564 * current cfqq expired its slice (or was too idle), select new one
1566 static void
1567 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1568 bool timed_out)
1570 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1572 if (cfq_cfqq_wait_request(cfqq))
1573 del_timer(&cfqd->idle_slice_timer);
1575 cfq_clear_cfqq_wait_request(cfqq);
1576 cfq_clear_cfqq_wait_busy(cfqq);
1577 cfq_clear_cfqq_wait_busy_done(cfqq);
1580 * store what was left of this slice, if the queue idled/timed out
1582 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1583 cfqq->slice_resid = cfqq->slice_end - jiffies;
1584 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1587 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1589 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1590 cfq_del_cfqq_rr(cfqd, cfqq);
1592 cfq_resort_rr_list(cfqd, cfqq);
1594 if (cfqq == cfqd->active_queue)
1595 cfqd->active_queue = NULL;
1597 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1598 cfqd->grp_service_tree.active = NULL;
1600 if (cfqd->active_cic) {
1601 put_io_context(cfqd->active_cic->ioc);
1602 cfqd->active_cic = NULL;
1606 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1608 struct cfq_queue *cfqq = cfqd->active_queue;
1610 if (cfqq)
1611 __cfq_slice_expired(cfqd, cfqq, timed_out);
1615 * Get next queue for service. Unless we have a queue preemption,
1616 * we'll simply select the first cfqq in the service tree.
1618 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1620 struct cfq_rb_root *service_tree =
1621 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1622 cfqd->serving_type, cfqd);
1624 if (!cfqd->rq_queued)
1625 return NULL;
1627 /* There is nothing to dispatch */
1628 if (!service_tree)
1629 return NULL;
1630 if (RB_EMPTY_ROOT(&service_tree->rb))
1631 return NULL;
1632 return cfq_rb_first(service_tree);
1635 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1637 struct cfq_group *cfqg;
1638 struct cfq_queue *cfqq;
1639 int i, j;
1640 struct cfq_rb_root *st;
1642 if (!cfqd->rq_queued)
1643 return NULL;
1645 cfqg = cfq_get_next_cfqg(cfqd);
1646 if (!cfqg)
1647 return NULL;
1649 for_each_cfqg_st(cfqg, i, j, st)
1650 if ((cfqq = cfq_rb_first(st)) != NULL)
1651 return cfqq;
1652 return NULL;
1656 * Get and set a new active queue for service.
1658 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1659 struct cfq_queue *cfqq)
1661 if (!cfqq)
1662 cfqq = cfq_get_next_queue(cfqd);
1664 __cfq_set_active_queue(cfqd, cfqq);
1665 return cfqq;
1668 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1669 struct request *rq)
1671 if (blk_rq_pos(rq) >= cfqd->last_position)
1672 return blk_rq_pos(rq) - cfqd->last_position;
1673 else
1674 return cfqd->last_position - blk_rq_pos(rq);
1677 #define CFQQ_SEEK_THR 8 * 1024
1678 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1680 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1681 struct request *rq)
1683 sector_t sdist = cfqq->seek_mean;
1685 if (!sample_valid(cfqq->seek_samples))
1686 sdist = CFQQ_SEEK_THR;
1688 return cfq_dist_from_last(cfqd, rq) <= sdist;
1691 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1692 struct cfq_queue *cur_cfqq)
1694 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1695 struct rb_node *parent, *node;
1696 struct cfq_queue *__cfqq;
1697 sector_t sector = cfqd->last_position;
1699 if (RB_EMPTY_ROOT(root))
1700 return NULL;
1703 * First, if we find a request starting at the end of the last
1704 * request, choose it.
1706 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1707 if (__cfqq)
1708 return __cfqq;
1711 * If the exact sector wasn't found, the parent of the NULL leaf
1712 * will contain the closest sector.
1714 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1715 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1716 return __cfqq;
1718 if (blk_rq_pos(__cfqq->next_rq) < sector)
1719 node = rb_next(&__cfqq->p_node);
1720 else
1721 node = rb_prev(&__cfqq->p_node);
1722 if (!node)
1723 return NULL;
1725 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1726 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1727 return __cfqq;
1729 return NULL;
1733 * cfqd - obvious
1734 * cur_cfqq - passed in so that we don't decide that the current queue is
1735 * closely cooperating with itself.
1737 * So, basically we're assuming that that cur_cfqq has dispatched at least
1738 * one request, and that cfqd->last_position reflects a position on the disk
1739 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1740 * assumption.
1742 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1743 struct cfq_queue *cur_cfqq)
1745 struct cfq_queue *cfqq;
1747 if (!cfq_cfqq_sync(cur_cfqq))
1748 return NULL;
1749 if (CFQQ_SEEKY(cur_cfqq))
1750 return NULL;
1753 * We should notice if some of the queues are cooperating, eg
1754 * working closely on the same area of the disk. In that case,
1755 * we can group them together and don't waste time idling.
1757 cfqq = cfqq_close(cfqd, cur_cfqq);
1758 if (!cfqq)
1759 return NULL;
1761 /* If new queue belongs to different cfq_group, don't choose it */
1762 if (cur_cfqq->cfqg != cfqq->cfqg)
1763 return NULL;
1766 * It only makes sense to merge sync queues.
1768 if (!cfq_cfqq_sync(cfqq))
1769 return NULL;
1770 if (CFQQ_SEEKY(cfqq))
1771 return NULL;
1774 * Do not merge queues of different priority classes
1776 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1777 return NULL;
1779 return cfqq;
1783 * Determine whether we should enforce idle window for this queue.
1786 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1788 enum wl_prio_t prio = cfqq_prio(cfqq);
1789 struct cfq_rb_root *service_tree = cfqq->service_tree;
1791 BUG_ON(!service_tree);
1792 BUG_ON(!service_tree->count);
1794 /* We never do for idle class queues. */
1795 if (prio == IDLE_WORKLOAD)
1796 return false;
1798 /* We do for queues that were marked with idle window flag. */
1799 if (cfq_cfqq_idle_window(cfqq) &&
1800 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1801 return true;
1804 * Otherwise, we do only if they are the last ones
1805 * in their service tree.
1807 return service_tree->count == 1;
1810 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1812 struct cfq_queue *cfqq = cfqd->active_queue;
1813 struct cfq_io_context *cic;
1814 unsigned long sl;
1817 * SSD device without seek penalty, disable idling. But only do so
1818 * for devices that support queuing, otherwise we still have a problem
1819 * with sync vs async workloads.
1821 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1822 return;
1824 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1825 WARN_ON(cfq_cfqq_slice_new(cfqq));
1828 * idle is disabled, either manually or by past process history
1830 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1831 return;
1834 * still active requests from this queue, don't idle
1836 if (cfqq->dispatched)
1837 return;
1840 * task has exited, don't wait
1842 cic = cfqd->active_cic;
1843 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1844 return;
1847 * If our average think time is larger than the remaining time
1848 * slice, then don't idle. This avoids overrunning the allotted
1849 * time slice.
1851 if (sample_valid(cic->ttime_samples) &&
1852 (cfqq->slice_end - jiffies < cic->ttime_mean))
1853 return;
1855 cfq_mark_cfqq_wait_request(cfqq);
1857 sl = cfqd->cfq_slice_idle;
1859 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1860 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1864 * Move request from internal lists to the request queue dispatch list.
1866 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1868 struct cfq_data *cfqd = q->elevator->elevator_data;
1869 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1871 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1873 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1874 cfq_remove_request(rq);
1875 cfqq->dispatched++;
1876 elv_dispatch_sort(q, rq);
1878 if (cfq_cfqq_sync(cfqq))
1879 cfqd->sync_flight++;
1880 cfqq->nr_sectors += blk_rq_sectors(rq);
1884 * return expired entry, or NULL to just start from scratch in rbtree
1886 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1888 struct request *rq = NULL;
1890 if (cfq_cfqq_fifo_expire(cfqq))
1891 return NULL;
1893 cfq_mark_cfqq_fifo_expire(cfqq);
1895 if (list_empty(&cfqq->fifo))
1896 return NULL;
1898 rq = rq_entry_fifo(cfqq->fifo.next);
1899 if (time_before(jiffies, rq_fifo_time(rq)))
1900 rq = NULL;
1902 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1903 return rq;
1906 static inline int
1907 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1909 const int base_rq = cfqd->cfq_slice_async_rq;
1911 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1913 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1917 * Must be called with the queue_lock held.
1919 static int cfqq_process_refs(struct cfq_queue *cfqq)
1921 int process_refs, io_refs;
1923 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1924 process_refs = atomic_read(&cfqq->ref) - io_refs;
1925 BUG_ON(process_refs < 0);
1926 return process_refs;
1929 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1931 int process_refs, new_process_refs;
1932 struct cfq_queue *__cfqq;
1934 /* Avoid a circular list and skip interim queue merges */
1935 while ((__cfqq = new_cfqq->new_cfqq)) {
1936 if (__cfqq == cfqq)
1937 return;
1938 new_cfqq = __cfqq;
1941 process_refs = cfqq_process_refs(cfqq);
1943 * If the process for the cfqq has gone away, there is no
1944 * sense in merging the queues.
1946 if (process_refs == 0)
1947 return;
1950 * Merge in the direction of the lesser amount of work.
1952 new_process_refs = cfqq_process_refs(new_cfqq);
1953 if (new_process_refs >= process_refs) {
1954 cfqq->new_cfqq = new_cfqq;
1955 atomic_add(process_refs, &new_cfqq->ref);
1956 } else {
1957 new_cfqq->new_cfqq = cfqq;
1958 atomic_add(new_process_refs, &cfqq->ref);
1962 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1963 struct cfq_group *cfqg, enum wl_prio_t prio,
1964 bool prio_changed)
1966 struct cfq_queue *queue;
1967 int i;
1968 bool key_valid = false;
1969 unsigned long lowest_key = 0;
1970 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1972 if (prio_changed) {
1974 * When priorities switched, we prefer starting
1975 * from SYNC_NOIDLE (first choice), or just SYNC
1976 * over ASYNC
1978 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1979 return cur_best;
1980 cur_best = SYNC_WORKLOAD;
1981 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1982 return cur_best;
1984 return ASYNC_WORKLOAD;
1987 for (i = 0; i < 3; ++i) {
1988 /* otherwise, select the one with lowest rb_key */
1989 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1990 if (queue &&
1991 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1992 lowest_key = queue->rb_key;
1993 cur_best = i;
1994 key_valid = true;
1998 return cur_best;
2001 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2003 enum wl_prio_t previous_prio = cfqd->serving_prio;
2004 bool prio_changed;
2005 unsigned slice;
2006 unsigned count;
2007 struct cfq_rb_root *st;
2008 unsigned group_slice;
2010 if (!cfqg) {
2011 cfqd->serving_prio = IDLE_WORKLOAD;
2012 cfqd->workload_expires = jiffies + 1;
2013 return;
2016 /* Choose next priority. RT > BE > IDLE */
2017 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2018 cfqd->serving_prio = RT_WORKLOAD;
2019 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2020 cfqd->serving_prio = BE_WORKLOAD;
2021 else {
2022 cfqd->serving_prio = IDLE_WORKLOAD;
2023 cfqd->workload_expires = jiffies + 1;
2024 return;
2028 * For RT and BE, we have to choose also the type
2029 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2030 * expiration time
2032 prio_changed = (cfqd->serving_prio != previous_prio);
2033 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2034 cfqd);
2035 count = st->count;
2038 * If priority didn't change, check workload expiration,
2039 * and that we still have other queues ready
2041 if (!prio_changed && count &&
2042 !time_after(jiffies, cfqd->workload_expires))
2043 return;
2045 /* otherwise select new workload type */
2046 cfqd->serving_type =
2047 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
2048 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2049 cfqd);
2050 count = st->count;
2053 * the workload slice is computed as a fraction of target latency
2054 * proportional to the number of queues in that workload, over
2055 * all the queues in the same priority class
2057 group_slice = cfq_group_slice(cfqd, cfqg);
2059 slice = group_slice * count /
2060 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2061 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2063 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2064 unsigned int tmp;
2067 * Async queues are currently system wide. Just taking
2068 * proportion of queues with-in same group will lead to higher
2069 * async ratio system wide as generally root group is going
2070 * to have higher weight. A more accurate thing would be to
2071 * calculate system wide asnc/sync ratio.
2073 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2074 tmp = tmp/cfqd->busy_queues;
2075 slice = min_t(unsigned, slice, tmp);
2077 /* async workload slice is scaled down according to
2078 * the sync/async slice ratio. */
2079 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2080 } else
2081 /* sync workload slice is at least 2 * cfq_slice_idle */
2082 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2084 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2085 cfqd->workload_expires = jiffies + slice;
2086 cfqd->noidle_tree_requires_idle = false;
2089 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2091 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2092 struct cfq_group *cfqg;
2094 if (RB_EMPTY_ROOT(&st->rb))
2095 return NULL;
2096 cfqg = cfq_rb_first_group(st);
2097 st->active = &cfqg->rb_node;
2098 update_min_vdisktime(st);
2099 return cfqg;
2102 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2104 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2106 cfqd->serving_group = cfqg;
2108 /* Restore the workload type data */
2109 if (cfqg->saved_workload_slice) {
2110 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2111 cfqd->serving_type = cfqg->saved_workload;
2112 cfqd->serving_prio = cfqg->saved_serving_prio;
2114 choose_service_tree(cfqd, cfqg);
2118 * Select a queue for service. If we have a current active queue,
2119 * check whether to continue servicing it, or retrieve and set a new one.
2121 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2123 struct cfq_queue *cfqq, *new_cfqq = NULL;
2125 cfqq = cfqd->active_queue;
2126 if (!cfqq)
2127 goto new_queue;
2129 if (!cfqd->rq_queued)
2130 return NULL;
2132 * The active queue has run out of time, expire it and select new.
2134 if ((cfq_slice_used(cfqq) || cfq_cfqq_wait_busy_done(cfqq))
2135 && !cfq_cfqq_must_dispatch(cfqq))
2136 goto expire;
2139 * The active queue has requests and isn't expired, allow it to
2140 * dispatch.
2142 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2143 goto keep_queue;
2146 * If another queue has a request waiting within our mean seek
2147 * distance, let it run. The expire code will check for close
2148 * cooperators and put the close queue at the front of the service
2149 * tree. If possible, merge the expiring queue with the new cfqq.
2151 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2152 if (new_cfqq) {
2153 if (!cfqq->new_cfqq)
2154 cfq_setup_merge(cfqq, new_cfqq);
2155 goto expire;
2159 * No requests pending. If the active queue still has requests in
2160 * flight or is idling for a new request, allow either of these
2161 * conditions to happen (or time out) before selecting a new queue.
2163 if (timer_pending(&cfqd->idle_slice_timer) ||
2164 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2165 cfqq = NULL;
2166 goto keep_queue;
2169 expire:
2170 cfq_slice_expired(cfqd, 0);
2171 new_queue:
2173 * Current queue expired. Check if we have to switch to a new
2174 * service tree
2176 if (!new_cfqq)
2177 cfq_choose_cfqg(cfqd);
2179 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2180 keep_queue:
2181 return cfqq;
2184 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2186 int dispatched = 0;
2188 while (cfqq->next_rq) {
2189 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2190 dispatched++;
2193 BUG_ON(!list_empty(&cfqq->fifo));
2195 /* By default cfqq is not expired if it is empty. Do it explicitly */
2196 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2197 return dispatched;
2201 * Drain our current requests. Used for barriers and when switching
2202 * io schedulers on-the-fly.
2204 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2206 struct cfq_queue *cfqq;
2207 int dispatched = 0;
2209 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2210 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2212 cfq_slice_expired(cfqd, 0);
2213 BUG_ON(cfqd->busy_queues);
2215 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2216 return dispatched;
2219 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2221 unsigned int max_dispatch;
2224 * Drain async requests before we start sync IO
2226 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2227 return false;
2230 * If this is an async queue and we have sync IO in flight, let it wait
2232 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2233 return false;
2235 max_dispatch = cfqd->cfq_quantum;
2236 if (cfq_class_idle(cfqq))
2237 max_dispatch = 1;
2240 * Does this cfqq already have too much IO in flight?
2242 if (cfqq->dispatched >= max_dispatch) {
2244 * idle queue must always only have a single IO in flight
2246 if (cfq_class_idle(cfqq))
2247 return false;
2250 * We have other queues, don't allow more IO from this one
2252 if (cfqd->busy_queues > 1)
2253 return false;
2256 * Sole queue user, no limit
2258 max_dispatch = -1;
2262 * Async queues must wait a bit before being allowed dispatch.
2263 * We also ramp up the dispatch depth gradually for async IO,
2264 * based on the last sync IO we serviced
2266 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2267 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2268 unsigned int depth;
2270 depth = last_sync / cfqd->cfq_slice[1];
2271 if (!depth && !cfqq->dispatched)
2272 depth = 1;
2273 if (depth < max_dispatch)
2274 max_dispatch = depth;
2278 * If we're below the current max, allow a dispatch
2280 return cfqq->dispatched < max_dispatch;
2284 * Dispatch a request from cfqq, moving them to the request queue
2285 * dispatch list.
2287 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2289 struct request *rq;
2291 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2293 if (!cfq_may_dispatch(cfqd, cfqq))
2294 return false;
2297 * follow expired path, else get first next available
2299 rq = cfq_check_fifo(cfqq);
2300 if (!rq)
2301 rq = cfqq->next_rq;
2304 * insert request into driver dispatch list
2306 cfq_dispatch_insert(cfqd->queue, rq);
2308 if (!cfqd->active_cic) {
2309 struct cfq_io_context *cic = RQ_CIC(rq);
2311 atomic_long_inc(&cic->ioc->refcount);
2312 cfqd->active_cic = cic;
2315 return true;
2319 * Find the cfqq that we need to service and move a request from that to the
2320 * dispatch list
2322 static int cfq_dispatch_requests(struct request_queue *q, int force)
2324 struct cfq_data *cfqd = q->elevator->elevator_data;
2325 struct cfq_queue *cfqq;
2327 if (!cfqd->busy_queues)
2328 return 0;
2330 if (unlikely(force))
2331 return cfq_forced_dispatch(cfqd);
2333 cfqq = cfq_select_queue(cfqd);
2334 if (!cfqq)
2335 return 0;
2338 * Dispatch a request from this cfqq, if it is allowed
2340 if (!cfq_dispatch_request(cfqd, cfqq))
2341 return 0;
2343 cfqq->slice_dispatch++;
2344 cfq_clear_cfqq_must_dispatch(cfqq);
2347 * expire an async queue immediately if it has used up its slice. idle
2348 * queue always expire after 1 dispatch round.
2350 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2351 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2352 cfq_class_idle(cfqq))) {
2353 cfqq->slice_end = jiffies + 1;
2354 cfq_slice_expired(cfqd, 0);
2357 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2358 return 1;
2362 * task holds one reference to the queue, dropped when task exits. each rq
2363 * in-flight on this queue also holds a reference, dropped when rq is freed.
2365 * Each cfq queue took a reference on the parent group. Drop it now.
2366 * queue lock must be held here.
2368 static void cfq_put_queue(struct cfq_queue *cfqq)
2370 struct cfq_data *cfqd = cfqq->cfqd;
2371 struct cfq_group *cfqg, *orig_cfqg;
2373 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2375 if (!atomic_dec_and_test(&cfqq->ref))
2376 return;
2378 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2379 BUG_ON(rb_first(&cfqq->sort_list));
2380 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2381 cfqg = cfqq->cfqg;
2382 orig_cfqg = cfqq->orig_cfqg;
2384 if (unlikely(cfqd->active_queue == cfqq)) {
2385 __cfq_slice_expired(cfqd, cfqq, 0);
2386 cfq_schedule_dispatch(cfqd);
2389 BUG_ON(cfq_cfqq_on_rr(cfqq));
2390 kmem_cache_free(cfq_pool, cfqq);
2391 cfq_put_cfqg(cfqg);
2392 if (orig_cfqg)
2393 cfq_put_cfqg(orig_cfqg);
2397 * Must always be called with the rcu_read_lock() held
2399 static void
2400 __call_for_each_cic(struct io_context *ioc,
2401 void (*func)(struct io_context *, struct cfq_io_context *))
2403 struct cfq_io_context *cic;
2404 struct hlist_node *n;
2406 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2407 func(ioc, cic);
2411 * Call func for each cic attached to this ioc.
2413 static void
2414 call_for_each_cic(struct io_context *ioc,
2415 void (*func)(struct io_context *, struct cfq_io_context *))
2417 rcu_read_lock();
2418 __call_for_each_cic(ioc, func);
2419 rcu_read_unlock();
2422 static void cfq_cic_free_rcu(struct rcu_head *head)
2424 struct cfq_io_context *cic;
2426 cic = container_of(head, struct cfq_io_context, rcu_head);
2428 kmem_cache_free(cfq_ioc_pool, cic);
2429 elv_ioc_count_dec(cfq_ioc_count);
2431 if (ioc_gone) {
2433 * CFQ scheduler is exiting, grab exit lock and check
2434 * the pending io context count. If it hits zero,
2435 * complete ioc_gone and set it back to NULL
2437 spin_lock(&ioc_gone_lock);
2438 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2439 complete(ioc_gone);
2440 ioc_gone = NULL;
2442 spin_unlock(&ioc_gone_lock);
2446 static void cfq_cic_free(struct cfq_io_context *cic)
2448 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2451 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2453 unsigned long flags;
2455 BUG_ON(!cic->dead_key);
2457 spin_lock_irqsave(&ioc->lock, flags);
2458 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2459 hlist_del_rcu(&cic->cic_list);
2460 spin_unlock_irqrestore(&ioc->lock, flags);
2462 cfq_cic_free(cic);
2466 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2467 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2468 * and ->trim() which is called with the task lock held
2470 static void cfq_free_io_context(struct io_context *ioc)
2473 * ioc->refcount is zero here, or we are called from elv_unregister(),
2474 * so no more cic's are allowed to be linked into this ioc. So it
2475 * should be ok to iterate over the known list, we will see all cic's
2476 * since no new ones are added.
2478 __call_for_each_cic(ioc, cic_free_func);
2481 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2483 struct cfq_queue *__cfqq, *next;
2485 if (unlikely(cfqq == cfqd->active_queue)) {
2486 __cfq_slice_expired(cfqd, cfqq, 0);
2487 cfq_schedule_dispatch(cfqd);
2491 * If this queue was scheduled to merge with another queue, be
2492 * sure to drop the reference taken on that queue (and others in
2493 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2495 __cfqq = cfqq->new_cfqq;
2496 while (__cfqq) {
2497 if (__cfqq == cfqq) {
2498 WARN(1, "cfqq->new_cfqq loop detected\n");
2499 break;
2501 next = __cfqq->new_cfqq;
2502 cfq_put_queue(__cfqq);
2503 __cfqq = next;
2506 cfq_put_queue(cfqq);
2509 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2510 struct cfq_io_context *cic)
2512 struct io_context *ioc = cic->ioc;
2514 list_del_init(&cic->queue_list);
2517 * Make sure key == NULL is seen for dead queues
2519 smp_wmb();
2520 cic->dead_key = (unsigned long) cic->key;
2521 cic->key = NULL;
2523 if (ioc->ioc_data == cic)
2524 rcu_assign_pointer(ioc->ioc_data, NULL);
2526 if (cic->cfqq[BLK_RW_ASYNC]) {
2527 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2528 cic->cfqq[BLK_RW_ASYNC] = NULL;
2531 if (cic->cfqq[BLK_RW_SYNC]) {
2532 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2533 cic->cfqq[BLK_RW_SYNC] = NULL;
2537 static void cfq_exit_single_io_context(struct io_context *ioc,
2538 struct cfq_io_context *cic)
2540 struct cfq_data *cfqd = cic->key;
2542 if (cfqd) {
2543 struct request_queue *q = cfqd->queue;
2544 unsigned long flags;
2546 spin_lock_irqsave(q->queue_lock, flags);
2549 * Ensure we get a fresh copy of the ->key to prevent
2550 * race between exiting task and queue
2552 smp_read_barrier_depends();
2553 if (cic->key)
2554 __cfq_exit_single_io_context(cfqd, cic);
2556 spin_unlock_irqrestore(q->queue_lock, flags);
2561 * The process that ioc belongs to has exited, we need to clean up
2562 * and put the internal structures we have that belongs to that process.
2564 static void cfq_exit_io_context(struct io_context *ioc)
2566 call_for_each_cic(ioc, cfq_exit_single_io_context);
2569 static struct cfq_io_context *
2570 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2572 struct cfq_io_context *cic;
2574 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2575 cfqd->queue->node);
2576 if (cic) {
2577 cic->last_end_request = jiffies;
2578 INIT_LIST_HEAD(&cic->queue_list);
2579 INIT_HLIST_NODE(&cic->cic_list);
2580 cic->dtor = cfq_free_io_context;
2581 cic->exit = cfq_exit_io_context;
2582 elv_ioc_count_inc(cfq_ioc_count);
2585 return cic;
2588 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2590 struct task_struct *tsk = current;
2591 int ioprio_class;
2593 if (!cfq_cfqq_prio_changed(cfqq))
2594 return;
2596 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2597 switch (ioprio_class) {
2598 default:
2599 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2600 case IOPRIO_CLASS_NONE:
2602 * no prio set, inherit CPU scheduling settings
2604 cfqq->ioprio = task_nice_ioprio(tsk);
2605 cfqq->ioprio_class = task_nice_ioclass(tsk);
2606 break;
2607 case IOPRIO_CLASS_RT:
2608 cfqq->ioprio = task_ioprio(ioc);
2609 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2610 break;
2611 case IOPRIO_CLASS_BE:
2612 cfqq->ioprio = task_ioprio(ioc);
2613 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2614 break;
2615 case IOPRIO_CLASS_IDLE:
2616 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2617 cfqq->ioprio = 7;
2618 cfq_clear_cfqq_idle_window(cfqq);
2619 break;
2623 * keep track of original prio settings in case we have to temporarily
2624 * elevate the priority of this queue
2626 cfqq->org_ioprio = cfqq->ioprio;
2627 cfqq->org_ioprio_class = cfqq->ioprio_class;
2628 cfq_clear_cfqq_prio_changed(cfqq);
2631 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2633 struct cfq_data *cfqd = cic->key;
2634 struct cfq_queue *cfqq;
2635 unsigned long flags;
2637 if (unlikely(!cfqd))
2638 return;
2640 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2642 cfqq = cic->cfqq[BLK_RW_ASYNC];
2643 if (cfqq) {
2644 struct cfq_queue *new_cfqq;
2645 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2646 GFP_ATOMIC);
2647 if (new_cfqq) {
2648 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2649 cfq_put_queue(cfqq);
2653 cfqq = cic->cfqq[BLK_RW_SYNC];
2654 if (cfqq)
2655 cfq_mark_cfqq_prio_changed(cfqq);
2657 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2660 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2662 call_for_each_cic(ioc, changed_ioprio);
2663 ioc->ioprio_changed = 0;
2666 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2667 pid_t pid, bool is_sync)
2669 RB_CLEAR_NODE(&cfqq->rb_node);
2670 RB_CLEAR_NODE(&cfqq->p_node);
2671 INIT_LIST_HEAD(&cfqq->fifo);
2673 atomic_set(&cfqq->ref, 0);
2674 cfqq->cfqd = cfqd;
2676 cfq_mark_cfqq_prio_changed(cfqq);
2678 if (is_sync) {
2679 if (!cfq_class_idle(cfqq))
2680 cfq_mark_cfqq_idle_window(cfqq);
2681 cfq_mark_cfqq_sync(cfqq);
2683 cfqq->pid = pid;
2686 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2687 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2689 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2690 struct cfq_data *cfqd = cic->key;
2691 unsigned long flags;
2692 struct request_queue *q;
2694 if (unlikely(!cfqd))
2695 return;
2697 q = cfqd->queue;
2699 spin_lock_irqsave(q->queue_lock, flags);
2701 if (sync_cfqq) {
2703 * Drop reference to sync queue. A new sync queue will be
2704 * assigned in new group upon arrival of a fresh request.
2706 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2707 cic_set_cfqq(cic, NULL, 1);
2708 cfq_put_queue(sync_cfqq);
2711 spin_unlock_irqrestore(q->queue_lock, flags);
2714 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2716 call_for_each_cic(ioc, changed_cgroup);
2717 ioc->cgroup_changed = 0;
2719 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2721 static struct cfq_queue *
2722 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2723 struct io_context *ioc, gfp_t gfp_mask)
2725 struct cfq_queue *cfqq, *new_cfqq = NULL;
2726 struct cfq_io_context *cic;
2727 struct cfq_group *cfqg;
2729 retry:
2730 cfqg = cfq_get_cfqg(cfqd, 1);
2731 cic = cfq_cic_lookup(cfqd, ioc);
2732 /* cic always exists here */
2733 cfqq = cic_to_cfqq(cic, is_sync);
2736 * Always try a new alloc if we fell back to the OOM cfqq
2737 * originally, since it should just be a temporary situation.
2739 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2740 cfqq = NULL;
2741 if (new_cfqq) {
2742 cfqq = new_cfqq;
2743 new_cfqq = NULL;
2744 } else if (gfp_mask & __GFP_WAIT) {
2745 spin_unlock_irq(cfqd->queue->queue_lock);
2746 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2747 gfp_mask | __GFP_ZERO,
2748 cfqd->queue->node);
2749 spin_lock_irq(cfqd->queue->queue_lock);
2750 if (new_cfqq)
2751 goto retry;
2752 } else {
2753 cfqq = kmem_cache_alloc_node(cfq_pool,
2754 gfp_mask | __GFP_ZERO,
2755 cfqd->queue->node);
2758 if (cfqq) {
2759 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2760 cfq_init_prio_data(cfqq, ioc);
2761 cfq_link_cfqq_cfqg(cfqq, cfqg);
2762 cfq_log_cfqq(cfqd, cfqq, "alloced");
2763 } else
2764 cfqq = &cfqd->oom_cfqq;
2767 if (new_cfqq)
2768 kmem_cache_free(cfq_pool, new_cfqq);
2770 return cfqq;
2773 static struct cfq_queue **
2774 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2776 switch (ioprio_class) {
2777 case IOPRIO_CLASS_RT:
2778 return &cfqd->async_cfqq[0][ioprio];
2779 case IOPRIO_CLASS_BE:
2780 return &cfqd->async_cfqq[1][ioprio];
2781 case IOPRIO_CLASS_IDLE:
2782 return &cfqd->async_idle_cfqq;
2783 default:
2784 BUG();
2788 static struct cfq_queue *
2789 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2790 gfp_t gfp_mask)
2792 const int ioprio = task_ioprio(ioc);
2793 const int ioprio_class = task_ioprio_class(ioc);
2794 struct cfq_queue **async_cfqq = NULL;
2795 struct cfq_queue *cfqq = NULL;
2797 if (!is_sync) {
2798 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2799 cfqq = *async_cfqq;
2802 if (!cfqq)
2803 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2806 * pin the queue now that it's allocated, scheduler exit will prune it
2808 if (!is_sync && !(*async_cfqq)) {
2809 atomic_inc(&cfqq->ref);
2810 *async_cfqq = cfqq;
2813 atomic_inc(&cfqq->ref);
2814 return cfqq;
2818 * We drop cfq io contexts lazily, so we may find a dead one.
2820 static void
2821 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2822 struct cfq_io_context *cic)
2824 unsigned long flags;
2826 WARN_ON(!list_empty(&cic->queue_list));
2828 spin_lock_irqsave(&ioc->lock, flags);
2830 BUG_ON(ioc->ioc_data == cic);
2832 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2833 hlist_del_rcu(&cic->cic_list);
2834 spin_unlock_irqrestore(&ioc->lock, flags);
2836 cfq_cic_free(cic);
2839 static struct cfq_io_context *
2840 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2842 struct cfq_io_context *cic;
2843 unsigned long flags;
2844 void *k;
2846 if (unlikely(!ioc))
2847 return NULL;
2849 rcu_read_lock();
2852 * we maintain a last-hit cache, to avoid browsing over the tree
2854 cic = rcu_dereference(ioc->ioc_data);
2855 if (cic && cic->key == cfqd) {
2856 rcu_read_unlock();
2857 return cic;
2860 do {
2861 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2862 rcu_read_unlock();
2863 if (!cic)
2864 break;
2865 /* ->key must be copied to avoid race with cfq_exit_queue() */
2866 k = cic->key;
2867 if (unlikely(!k)) {
2868 cfq_drop_dead_cic(cfqd, ioc, cic);
2869 rcu_read_lock();
2870 continue;
2873 spin_lock_irqsave(&ioc->lock, flags);
2874 rcu_assign_pointer(ioc->ioc_data, cic);
2875 spin_unlock_irqrestore(&ioc->lock, flags);
2876 break;
2877 } while (1);
2879 return cic;
2883 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2884 * the process specific cfq io context when entered from the block layer.
2885 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2887 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2888 struct cfq_io_context *cic, gfp_t gfp_mask)
2890 unsigned long flags;
2891 int ret;
2893 ret = radix_tree_preload(gfp_mask);
2894 if (!ret) {
2895 cic->ioc = ioc;
2896 cic->key = cfqd;
2898 spin_lock_irqsave(&ioc->lock, flags);
2899 ret = radix_tree_insert(&ioc->radix_root,
2900 (unsigned long) cfqd, cic);
2901 if (!ret)
2902 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2903 spin_unlock_irqrestore(&ioc->lock, flags);
2905 radix_tree_preload_end();
2907 if (!ret) {
2908 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2909 list_add(&cic->queue_list, &cfqd->cic_list);
2910 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2914 if (ret)
2915 printk(KERN_ERR "cfq: cic link failed!\n");
2917 return ret;
2921 * Setup general io context and cfq io context. There can be several cfq
2922 * io contexts per general io context, if this process is doing io to more
2923 * than one device managed by cfq.
2925 static struct cfq_io_context *
2926 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2928 struct io_context *ioc = NULL;
2929 struct cfq_io_context *cic;
2931 might_sleep_if(gfp_mask & __GFP_WAIT);
2933 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2934 if (!ioc)
2935 return NULL;
2937 cic = cfq_cic_lookup(cfqd, ioc);
2938 if (cic)
2939 goto out;
2941 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2942 if (cic == NULL)
2943 goto err;
2945 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2946 goto err_free;
2948 out:
2949 smp_read_barrier_depends();
2950 if (unlikely(ioc->ioprio_changed))
2951 cfq_ioc_set_ioprio(ioc);
2953 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2954 if (unlikely(ioc->cgroup_changed))
2955 cfq_ioc_set_cgroup(ioc);
2956 #endif
2957 return cic;
2958 err_free:
2959 cfq_cic_free(cic);
2960 err:
2961 put_io_context(ioc);
2962 return NULL;
2965 static void
2966 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2968 unsigned long elapsed = jiffies - cic->last_end_request;
2969 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2971 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2972 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2973 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2976 static void
2977 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2978 struct request *rq)
2980 sector_t sdist;
2981 u64 total;
2983 if (!cfqq->last_request_pos)
2984 sdist = 0;
2985 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2986 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2987 else
2988 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2991 * Don't allow the seek distance to get too large from the
2992 * odd fragment, pagein, etc
2994 if (cfqq->seek_samples <= 60) /* second&third seek */
2995 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2996 else
2997 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2999 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
3000 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
3001 total = cfqq->seek_total + (cfqq->seek_samples/2);
3002 do_div(total, cfqq->seek_samples);
3003 cfqq->seek_mean = (sector_t)total;
3006 * If this cfqq is shared between multiple processes, check to
3007 * make sure that those processes are still issuing I/Os within
3008 * the mean seek distance. If not, it may be time to break the
3009 * queues apart again.
3011 if (cfq_cfqq_coop(cfqq)) {
3012 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
3013 cfqq->seeky_start = jiffies;
3014 else if (!CFQQ_SEEKY(cfqq))
3015 cfqq->seeky_start = 0;
3020 * Disable idle window if the process thinks too long or seeks so much that
3021 * it doesn't matter
3023 static void
3024 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3025 struct cfq_io_context *cic)
3027 int old_idle, enable_idle;
3030 * Don't idle for async or idle io prio class
3032 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3033 return;
3035 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3037 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3038 cfq_mark_cfqq_deep(cfqq);
3040 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3041 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3042 && CFQQ_SEEKY(cfqq)))
3043 enable_idle = 0;
3044 else if (sample_valid(cic->ttime_samples)) {
3045 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3046 enable_idle = 0;
3047 else
3048 enable_idle = 1;
3051 if (old_idle != enable_idle) {
3052 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3053 if (enable_idle)
3054 cfq_mark_cfqq_idle_window(cfqq);
3055 else
3056 cfq_clear_cfqq_idle_window(cfqq);
3061 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3062 * no or if we aren't sure, a 1 will cause a preempt.
3064 static bool
3065 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3066 struct request *rq)
3068 struct cfq_queue *cfqq;
3070 cfqq = cfqd->active_queue;
3071 if (!cfqq)
3072 return false;
3074 if (cfq_class_idle(new_cfqq))
3075 return false;
3077 if (cfq_class_idle(cfqq))
3078 return true;
3081 * if the new request is sync, but the currently running queue is
3082 * not, let the sync request have priority.
3084 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3085 return true;
3087 if (new_cfqq->cfqg != cfqq->cfqg)
3088 return false;
3090 if (cfq_slice_used(cfqq))
3091 return true;
3093 /* Allow preemption only if we are idling on sync-noidle tree */
3094 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3095 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3096 new_cfqq->service_tree->count == 2 &&
3097 RB_EMPTY_ROOT(&cfqq->sort_list))
3098 return true;
3101 * So both queues are sync. Let the new request get disk time if
3102 * it's a metadata request and the current queue is doing regular IO.
3104 if (rq_is_meta(rq) && !cfqq->meta_pending)
3105 return true;
3108 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3110 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3111 return true;
3113 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3114 return false;
3117 * if this request is as-good as one we would expect from the
3118 * current cfqq, let it preempt
3120 if (cfq_rq_close(cfqd, cfqq, rq))
3121 return true;
3123 return false;
3127 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3128 * let it have half of its nominal slice.
3130 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3132 cfq_log_cfqq(cfqd, cfqq, "preempt");
3133 cfq_slice_expired(cfqd, 1);
3136 * Put the new queue at the front of the of the current list,
3137 * so we know that it will be selected next.
3139 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3141 cfq_service_tree_add(cfqd, cfqq, 1);
3143 cfqq->slice_end = 0;
3144 cfq_mark_cfqq_slice_new(cfqq);
3148 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3149 * something we should do about it
3151 static void
3152 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3153 struct request *rq)
3155 struct cfq_io_context *cic = RQ_CIC(rq);
3157 cfqd->rq_queued++;
3158 if (rq_is_meta(rq))
3159 cfqq->meta_pending++;
3161 cfq_update_io_thinktime(cfqd, cic);
3162 cfq_update_io_seektime(cfqd, cfqq, rq);
3163 cfq_update_idle_window(cfqd, cfqq, cic);
3165 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3167 if (cfqq == cfqd->active_queue) {
3168 if (cfq_cfqq_wait_busy(cfqq)) {
3169 cfq_clear_cfqq_wait_busy(cfqq);
3170 cfq_mark_cfqq_wait_busy_done(cfqq);
3173 * Remember that we saw a request from this process, but
3174 * don't start queuing just yet. Otherwise we risk seeing lots
3175 * of tiny requests, because we disrupt the normal plugging
3176 * and merging. If the request is already larger than a single
3177 * page, let it rip immediately. For that case we assume that
3178 * merging is already done. Ditto for a busy system that
3179 * has other work pending, don't risk delaying until the
3180 * idle timer unplug to continue working.
3182 if (cfq_cfqq_wait_request(cfqq)) {
3183 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3184 cfqd->busy_queues > 1) {
3185 del_timer(&cfqd->idle_slice_timer);
3186 __blk_run_queue(cfqd->queue);
3187 } else
3188 cfq_mark_cfqq_must_dispatch(cfqq);
3190 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3192 * not the active queue - expire current slice if it is
3193 * idle and has expired it's mean thinktime or this new queue
3194 * has some old slice time left and is of higher priority or
3195 * this new queue is RT and the current one is BE
3197 cfq_preempt_queue(cfqd, cfqq);
3198 __blk_run_queue(cfqd->queue);
3202 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3204 struct cfq_data *cfqd = q->elevator->elevator_data;
3205 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3207 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3208 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3210 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3211 list_add_tail(&rq->queuelist, &cfqq->fifo);
3212 cfq_add_rq_rb(rq);
3214 cfq_rq_enqueued(cfqd, cfqq, rq);
3218 * Update hw_tag based on peak queue depth over 50 samples under
3219 * sufficient load.
3221 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3223 struct cfq_queue *cfqq = cfqd->active_queue;
3225 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3226 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3228 if (cfqd->hw_tag == 1)
3229 return;
3231 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3232 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3233 return;
3236 * If active queue hasn't enough requests and can idle, cfq might not
3237 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3238 * case
3240 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3241 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3242 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3243 return;
3245 if (cfqd->hw_tag_samples++ < 50)
3246 return;
3248 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3249 cfqd->hw_tag = 1;
3250 else
3251 cfqd->hw_tag = 0;
3254 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3256 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3257 struct cfq_data *cfqd = cfqq->cfqd;
3258 const int sync = rq_is_sync(rq);
3259 unsigned long now;
3261 now = jiffies;
3262 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3264 cfq_update_hw_tag(cfqd);
3266 WARN_ON(!cfqd->rq_in_driver[sync]);
3267 WARN_ON(!cfqq->dispatched);
3268 cfqd->rq_in_driver[sync]--;
3269 cfqq->dispatched--;
3271 if (cfq_cfqq_sync(cfqq))
3272 cfqd->sync_flight--;
3274 if (sync) {
3275 RQ_CIC(rq)->last_end_request = now;
3276 cfqd->last_end_sync_rq = now;
3280 * If this is the active queue, check if it needs to be expired,
3281 * or if we want to idle in case it has no pending requests.
3283 if (cfqd->active_queue == cfqq) {
3284 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3286 if (cfq_cfqq_slice_new(cfqq)) {
3287 cfq_set_prio_slice(cfqd, cfqq);
3288 cfq_clear_cfqq_slice_new(cfqq);
3292 * If this queue consumed its slice and this is last queue
3293 * in the group, wait for next request before we expire
3294 * the queue
3296 if (cfq_slice_used(cfqq) && cfqq->cfqg->nr_cfqq == 1) {
3297 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3298 cfq_mark_cfqq_wait_busy(cfqq);
3302 * Idling is not enabled on:
3303 * - expired queues
3304 * - idle-priority queues
3305 * - async queues
3306 * - queues with still some requests queued
3307 * - when there is a close cooperator
3309 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3310 cfq_slice_expired(cfqd, 1);
3311 else if (sync && cfqq_empty &&
3312 !cfq_close_cooperator(cfqd, cfqq)) {
3313 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3315 * Idling is enabled for SYNC_WORKLOAD.
3316 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3317 * only if we processed at least one !rq_noidle request
3319 if (cfqd->serving_type == SYNC_WORKLOAD
3320 || cfqd->noidle_tree_requires_idle
3321 || cfqq->cfqg->nr_cfqq == 1)
3322 cfq_arm_slice_timer(cfqd);
3326 if (!rq_in_driver(cfqd))
3327 cfq_schedule_dispatch(cfqd);
3331 * we temporarily boost lower priority queues if they are holding fs exclusive
3332 * resources. they are boosted to normal prio (CLASS_BE/4)
3334 static void cfq_prio_boost(struct cfq_queue *cfqq)
3336 if (has_fs_excl()) {
3338 * boost idle prio on transactions that would lock out other
3339 * users of the filesystem
3341 if (cfq_class_idle(cfqq))
3342 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3343 if (cfqq->ioprio > IOPRIO_NORM)
3344 cfqq->ioprio = IOPRIO_NORM;
3345 } else {
3347 * unboost the queue (if needed)
3349 cfqq->ioprio_class = cfqq->org_ioprio_class;
3350 cfqq->ioprio = cfqq->org_ioprio;
3354 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3356 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3357 cfq_mark_cfqq_must_alloc_slice(cfqq);
3358 return ELV_MQUEUE_MUST;
3361 return ELV_MQUEUE_MAY;
3364 static int cfq_may_queue(struct request_queue *q, int rw)
3366 struct cfq_data *cfqd = q->elevator->elevator_data;
3367 struct task_struct *tsk = current;
3368 struct cfq_io_context *cic;
3369 struct cfq_queue *cfqq;
3372 * don't force setup of a queue from here, as a call to may_queue
3373 * does not necessarily imply that a request actually will be queued.
3374 * so just lookup a possibly existing queue, or return 'may queue'
3375 * if that fails
3377 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3378 if (!cic)
3379 return ELV_MQUEUE_MAY;
3381 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3382 if (cfqq) {
3383 cfq_init_prio_data(cfqq, cic->ioc);
3384 cfq_prio_boost(cfqq);
3386 return __cfq_may_queue(cfqq);
3389 return ELV_MQUEUE_MAY;
3393 * queue lock held here
3395 static void cfq_put_request(struct request *rq)
3397 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3399 if (cfqq) {
3400 const int rw = rq_data_dir(rq);
3402 BUG_ON(!cfqq->allocated[rw]);
3403 cfqq->allocated[rw]--;
3405 put_io_context(RQ_CIC(rq)->ioc);
3407 rq->elevator_private = NULL;
3408 rq->elevator_private2 = NULL;
3410 cfq_put_queue(cfqq);
3414 static struct cfq_queue *
3415 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3416 struct cfq_queue *cfqq)
3418 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3419 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3420 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3421 cfq_put_queue(cfqq);
3422 return cic_to_cfqq(cic, 1);
3425 static int should_split_cfqq(struct cfq_queue *cfqq)
3427 if (cfqq->seeky_start &&
3428 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3429 return 1;
3430 return 0;
3434 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3435 * was the last process referring to said cfqq.
3437 static struct cfq_queue *
3438 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3440 if (cfqq_process_refs(cfqq) == 1) {
3441 cfqq->seeky_start = 0;
3442 cfqq->pid = current->pid;
3443 cfq_clear_cfqq_coop(cfqq);
3444 return cfqq;
3447 cic_set_cfqq(cic, NULL, 1);
3448 cfq_put_queue(cfqq);
3449 return NULL;
3452 * Allocate cfq data structures associated with this request.
3454 static int
3455 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3457 struct cfq_data *cfqd = q->elevator->elevator_data;
3458 struct cfq_io_context *cic;
3459 const int rw = rq_data_dir(rq);
3460 const bool is_sync = rq_is_sync(rq);
3461 struct cfq_queue *cfqq;
3462 unsigned long flags;
3464 might_sleep_if(gfp_mask & __GFP_WAIT);
3466 cic = cfq_get_io_context(cfqd, gfp_mask);
3468 spin_lock_irqsave(q->queue_lock, flags);
3470 if (!cic)
3471 goto queue_fail;
3473 new_queue:
3474 cfqq = cic_to_cfqq(cic, is_sync);
3475 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3476 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3477 cic_set_cfqq(cic, cfqq, is_sync);
3478 } else {
3480 * If the queue was seeky for too long, break it apart.
3482 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3483 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3484 cfqq = split_cfqq(cic, cfqq);
3485 if (!cfqq)
3486 goto new_queue;
3490 * Check to see if this queue is scheduled to merge with
3491 * another, closely cooperating queue. The merging of
3492 * queues happens here as it must be done in process context.
3493 * The reference on new_cfqq was taken in merge_cfqqs.
3495 if (cfqq->new_cfqq)
3496 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3499 cfqq->allocated[rw]++;
3500 atomic_inc(&cfqq->ref);
3502 spin_unlock_irqrestore(q->queue_lock, flags);
3504 rq->elevator_private = cic;
3505 rq->elevator_private2 = cfqq;
3506 return 0;
3508 queue_fail:
3509 if (cic)
3510 put_io_context(cic->ioc);
3512 cfq_schedule_dispatch(cfqd);
3513 spin_unlock_irqrestore(q->queue_lock, flags);
3514 cfq_log(cfqd, "set_request fail");
3515 return 1;
3518 static void cfq_kick_queue(struct work_struct *work)
3520 struct cfq_data *cfqd =
3521 container_of(work, struct cfq_data, unplug_work);
3522 struct request_queue *q = cfqd->queue;
3524 spin_lock_irq(q->queue_lock);
3525 __blk_run_queue(cfqd->queue);
3526 spin_unlock_irq(q->queue_lock);
3530 * Timer running if the active_queue is currently idling inside its time slice
3532 static void cfq_idle_slice_timer(unsigned long data)
3534 struct cfq_data *cfqd = (struct cfq_data *) data;
3535 struct cfq_queue *cfqq;
3536 unsigned long flags;
3537 int timed_out = 1;
3539 cfq_log(cfqd, "idle timer fired");
3541 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3543 cfqq = cfqd->active_queue;
3544 if (cfqq) {
3545 timed_out = 0;
3548 * We saw a request before the queue expired, let it through
3550 if (cfq_cfqq_must_dispatch(cfqq))
3551 goto out_kick;
3554 * expired
3556 if (cfq_slice_used(cfqq))
3557 goto expire;
3560 * only expire and reinvoke request handler, if there are
3561 * other queues with pending requests
3563 if (!cfqd->busy_queues)
3564 goto out_cont;
3567 * not expired and it has a request pending, let it dispatch
3569 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3570 goto out_kick;
3573 * Queue depth flag is reset only when the idle didn't succeed
3575 cfq_clear_cfqq_deep(cfqq);
3577 expire:
3578 cfq_slice_expired(cfqd, timed_out);
3579 out_kick:
3580 cfq_schedule_dispatch(cfqd);
3581 out_cont:
3582 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3585 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3587 del_timer_sync(&cfqd->idle_slice_timer);
3588 cancel_work_sync(&cfqd->unplug_work);
3591 static void cfq_put_async_queues(struct cfq_data *cfqd)
3593 int i;
3595 for (i = 0; i < IOPRIO_BE_NR; i++) {
3596 if (cfqd->async_cfqq[0][i])
3597 cfq_put_queue(cfqd->async_cfqq[0][i]);
3598 if (cfqd->async_cfqq[1][i])
3599 cfq_put_queue(cfqd->async_cfqq[1][i]);
3602 if (cfqd->async_idle_cfqq)
3603 cfq_put_queue(cfqd->async_idle_cfqq);
3606 static void cfq_cfqd_free(struct rcu_head *head)
3608 kfree(container_of(head, struct cfq_data, rcu));
3611 static void cfq_exit_queue(struct elevator_queue *e)
3613 struct cfq_data *cfqd = e->elevator_data;
3614 struct request_queue *q = cfqd->queue;
3616 cfq_shutdown_timer_wq(cfqd);
3618 spin_lock_irq(q->queue_lock);
3620 if (cfqd->active_queue)
3621 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3623 while (!list_empty(&cfqd->cic_list)) {
3624 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3625 struct cfq_io_context,
3626 queue_list);
3628 __cfq_exit_single_io_context(cfqd, cic);
3631 cfq_put_async_queues(cfqd);
3632 cfq_release_cfq_groups(cfqd);
3633 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3635 spin_unlock_irq(q->queue_lock);
3637 cfq_shutdown_timer_wq(cfqd);
3639 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3640 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3643 static void *cfq_init_queue(struct request_queue *q)
3645 struct cfq_data *cfqd;
3646 int i, j;
3647 struct cfq_group *cfqg;
3648 struct cfq_rb_root *st;
3650 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3651 if (!cfqd)
3652 return NULL;
3654 /* Init root service tree */
3655 cfqd->grp_service_tree = CFQ_RB_ROOT;
3657 /* Init root group */
3658 cfqg = &cfqd->root_group;
3659 for_each_cfqg_st(cfqg, i, j, st)
3660 *st = CFQ_RB_ROOT;
3661 RB_CLEAR_NODE(&cfqg->rb_node);
3663 /* Give preference to root group over other groups */
3664 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3666 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3668 * Take a reference to root group which we never drop. This is just
3669 * to make sure that cfq_put_cfqg() does not try to kfree root group
3671 atomic_set(&cfqg->ref, 1);
3672 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3674 #endif
3676 * Not strictly needed (since RB_ROOT just clears the node and we
3677 * zeroed cfqd on alloc), but better be safe in case someone decides
3678 * to add magic to the rb code
3680 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3681 cfqd->prio_trees[i] = RB_ROOT;
3684 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3685 * Grab a permanent reference to it, so that the normal code flow
3686 * will not attempt to free it.
3688 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3689 atomic_inc(&cfqd->oom_cfqq.ref);
3690 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3692 INIT_LIST_HEAD(&cfqd->cic_list);
3694 cfqd->queue = q;
3696 init_timer(&cfqd->idle_slice_timer);
3697 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3698 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3700 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3702 cfqd->cfq_quantum = cfq_quantum;
3703 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3704 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3705 cfqd->cfq_back_max = cfq_back_max;
3706 cfqd->cfq_back_penalty = cfq_back_penalty;
3707 cfqd->cfq_slice[0] = cfq_slice_async;
3708 cfqd->cfq_slice[1] = cfq_slice_sync;
3709 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3710 cfqd->cfq_slice_idle = cfq_slice_idle;
3711 cfqd->cfq_latency = 1;
3712 cfqd->cfq_group_isolation = 0;
3713 cfqd->hw_tag = -1;
3714 cfqd->last_end_sync_rq = jiffies;
3715 INIT_RCU_HEAD(&cfqd->rcu);
3716 return cfqd;
3719 static void cfq_slab_kill(void)
3722 * Caller already ensured that pending RCU callbacks are completed,
3723 * so we should have no busy allocations at this point.
3725 if (cfq_pool)
3726 kmem_cache_destroy(cfq_pool);
3727 if (cfq_ioc_pool)
3728 kmem_cache_destroy(cfq_ioc_pool);
3731 static int __init cfq_slab_setup(void)
3733 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3734 if (!cfq_pool)
3735 goto fail;
3737 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3738 if (!cfq_ioc_pool)
3739 goto fail;
3741 return 0;
3742 fail:
3743 cfq_slab_kill();
3744 return -ENOMEM;
3748 * sysfs parts below -->
3750 static ssize_t
3751 cfq_var_show(unsigned int var, char *page)
3753 return sprintf(page, "%d\n", var);
3756 static ssize_t
3757 cfq_var_store(unsigned int *var, const char *page, size_t count)
3759 char *p = (char *) page;
3761 *var = simple_strtoul(p, &p, 10);
3762 return count;
3765 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3766 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3768 struct cfq_data *cfqd = e->elevator_data; \
3769 unsigned int __data = __VAR; \
3770 if (__CONV) \
3771 __data = jiffies_to_msecs(__data); \
3772 return cfq_var_show(__data, (page)); \
3774 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3775 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3776 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3777 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3778 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3779 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3780 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3781 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3782 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3783 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3784 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3785 #undef SHOW_FUNCTION
3787 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3788 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3790 struct cfq_data *cfqd = e->elevator_data; \
3791 unsigned int __data; \
3792 int ret = cfq_var_store(&__data, (page), count); \
3793 if (__data < (MIN)) \
3794 __data = (MIN); \
3795 else if (__data > (MAX)) \
3796 __data = (MAX); \
3797 if (__CONV) \
3798 *(__PTR) = msecs_to_jiffies(__data); \
3799 else \
3800 *(__PTR) = __data; \
3801 return ret; \
3803 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3804 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3805 UINT_MAX, 1);
3806 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3807 UINT_MAX, 1);
3808 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3809 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3810 UINT_MAX, 0);
3811 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3812 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3813 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3814 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3815 UINT_MAX, 0);
3816 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3817 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3818 #undef STORE_FUNCTION
3820 #define CFQ_ATTR(name) \
3821 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3823 static struct elv_fs_entry cfq_attrs[] = {
3824 CFQ_ATTR(quantum),
3825 CFQ_ATTR(fifo_expire_sync),
3826 CFQ_ATTR(fifo_expire_async),
3827 CFQ_ATTR(back_seek_max),
3828 CFQ_ATTR(back_seek_penalty),
3829 CFQ_ATTR(slice_sync),
3830 CFQ_ATTR(slice_async),
3831 CFQ_ATTR(slice_async_rq),
3832 CFQ_ATTR(slice_idle),
3833 CFQ_ATTR(low_latency),
3834 CFQ_ATTR(group_isolation),
3835 __ATTR_NULL
3838 static struct elevator_type iosched_cfq = {
3839 .ops = {
3840 .elevator_merge_fn = cfq_merge,
3841 .elevator_merged_fn = cfq_merged_request,
3842 .elevator_merge_req_fn = cfq_merged_requests,
3843 .elevator_allow_merge_fn = cfq_allow_merge,
3844 .elevator_dispatch_fn = cfq_dispatch_requests,
3845 .elevator_add_req_fn = cfq_insert_request,
3846 .elevator_activate_req_fn = cfq_activate_request,
3847 .elevator_deactivate_req_fn = cfq_deactivate_request,
3848 .elevator_queue_empty_fn = cfq_queue_empty,
3849 .elevator_completed_req_fn = cfq_completed_request,
3850 .elevator_former_req_fn = elv_rb_former_request,
3851 .elevator_latter_req_fn = elv_rb_latter_request,
3852 .elevator_set_req_fn = cfq_set_request,
3853 .elevator_put_req_fn = cfq_put_request,
3854 .elevator_may_queue_fn = cfq_may_queue,
3855 .elevator_init_fn = cfq_init_queue,
3856 .elevator_exit_fn = cfq_exit_queue,
3857 .trim = cfq_free_io_context,
3859 .elevator_attrs = cfq_attrs,
3860 .elevator_name = "cfq",
3861 .elevator_owner = THIS_MODULE,
3864 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3865 static struct blkio_policy_type blkio_policy_cfq = {
3866 .ops = {
3867 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3868 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3871 #else
3872 static struct blkio_policy_type blkio_policy_cfq;
3873 #endif
3875 static int __init cfq_init(void)
3878 * could be 0 on HZ < 1000 setups
3880 if (!cfq_slice_async)
3881 cfq_slice_async = 1;
3882 if (!cfq_slice_idle)
3883 cfq_slice_idle = 1;
3885 if (cfq_slab_setup())
3886 return -ENOMEM;
3888 elv_register(&iosched_cfq);
3889 blkio_policy_register(&blkio_policy_cfq);
3891 return 0;
3894 static void __exit cfq_exit(void)
3896 DECLARE_COMPLETION_ONSTACK(all_gone);
3897 blkio_policy_unregister(&blkio_policy_cfq);
3898 elv_unregister(&iosched_cfq);
3899 ioc_gone = &all_gone;
3900 /* ioc_gone's update must be visible before reading ioc_count */
3901 smp_wmb();
3904 * this also protects us from entering cfq_slab_kill() with
3905 * pending RCU callbacks
3907 if (elv_ioc_count_read(cfq_ioc_count))
3908 wait_for_completion(&all_gone);
3909 cfq_slab_kill();
3912 module_init(cfq_init);
3913 module_exit(cfq_exit);
3915 MODULE_AUTHOR("Jens Axboe");
3916 MODULE_LICENSE("GPL");
3917 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");