[NETFILTER]: nf_nat: add FTP NAT helper port
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sparc / kernel / smp.c
blob276f22881d0fd764cd3922037eed8f962138d646
1 /* smp.c: Sparc SMP support.
3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6 */
8 #include <asm/head.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/smp_lock.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/cache.h>
23 #include <linux/delay.h>
25 #include <asm/ptrace.h>
26 #include <asm/atomic.h>
28 #include <asm/irq.h>
29 #include <asm/page.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/oplib.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlbflush.h>
35 #include <asm/cpudata.h>
37 int smp_num_cpus = 1;
38 volatile unsigned long cpu_callin_map[NR_CPUS] __initdata = {0,};
39 unsigned char boot_cpu_id = 0;
40 unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
41 int smp_activated = 0;
42 volatile int __cpu_number_map[NR_CPUS];
43 volatile int __cpu_logical_map[NR_CPUS];
45 cpumask_t cpu_online_map = CPU_MASK_NONE;
46 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
47 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
49 /* The only guaranteed locking primitive available on all Sparc
50 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
51 * places the current byte at the effective address into dest_reg and
52 * places 0xff there afterwards. Pretty lame locking primitive
53 * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
54 * instruction which is much better...
57 /* Used to make bitops atomic */
58 unsigned char bitops_spinlock = 0;
60 void __cpuinit smp_store_cpu_info(int id)
62 int cpu_node;
64 cpu_data(id).udelay_val = loops_per_jiffy;
66 cpu_find_by_mid(id, &cpu_node);
67 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
68 "clock-frequency", 0);
69 cpu_data(id).prom_node = cpu_node;
70 cpu_data(id).mid = cpu_get_hwmid(cpu_node);
72 /* this is required to tune the scheduler correctly */
73 /* is it possible to have CPUs with different cache sizes? */
74 if (id == boot_cpu_id) {
75 int cache_line,cache_nlines;
76 cache_line = 0x20;
77 cache_line = prom_getintdefault(cpu_node, "ecache-line-size", cache_line);
78 cache_nlines = 0x8000;
79 cache_nlines = prom_getintdefault(cpu_node, "ecache-nlines", cache_nlines);
80 max_cache_size = cache_line * cache_nlines;
82 if (cpu_data(id).mid < 0)
83 panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
86 void __init smp_cpus_done(unsigned int max_cpus)
88 extern void smp4m_smp_done(void);
89 extern void smp4d_smp_done(void);
90 unsigned long bogosum = 0;
91 int cpu, num;
93 for (cpu = 0, num = 0; cpu < NR_CPUS; cpu++)
94 if (cpu_online(cpu)) {
95 num++;
96 bogosum += cpu_data(cpu).udelay_val;
99 printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
100 num, bogosum/(500000/HZ),
101 (bogosum/(5000/HZ))%100);
103 switch(sparc_cpu_model) {
104 case sun4:
105 printk("SUN4\n");
106 BUG();
107 break;
108 case sun4c:
109 printk("SUN4C\n");
110 BUG();
111 break;
112 case sun4m:
113 smp4m_smp_done();
114 break;
115 case sun4d:
116 smp4d_smp_done();
117 break;
118 case sun4e:
119 printk("SUN4E\n");
120 BUG();
121 break;
122 case sun4u:
123 printk("SUN4U\n");
124 BUG();
125 break;
126 default:
127 printk("UNKNOWN!\n");
128 BUG();
129 break;
133 void cpu_panic(void)
135 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
136 panic("SMP bolixed\n");
139 struct linux_prom_registers smp_penguin_ctable __initdata = { 0 };
141 void smp_send_reschedule(int cpu)
143 /* See sparc64 */
146 void smp_send_stop(void)
150 void smp_flush_cache_all(void)
152 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
153 local_flush_cache_all();
156 void smp_flush_tlb_all(void)
158 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
159 local_flush_tlb_all();
162 void smp_flush_cache_mm(struct mm_struct *mm)
164 if(mm->context != NO_CONTEXT) {
165 cpumask_t cpu_mask = mm->cpu_vm_mask;
166 cpu_clear(smp_processor_id(), cpu_mask);
167 if (!cpus_empty(cpu_mask))
168 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
169 local_flush_cache_mm(mm);
173 void smp_flush_tlb_mm(struct mm_struct *mm)
175 if(mm->context != NO_CONTEXT) {
176 cpumask_t cpu_mask = mm->cpu_vm_mask;
177 cpu_clear(smp_processor_id(), cpu_mask);
178 if (!cpus_empty(cpu_mask)) {
179 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
180 if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
181 mm->cpu_vm_mask = cpumask_of_cpu(smp_processor_id());
183 local_flush_tlb_mm(mm);
187 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
188 unsigned long end)
190 struct mm_struct *mm = vma->vm_mm;
192 if (mm->context != NO_CONTEXT) {
193 cpumask_t cpu_mask = mm->cpu_vm_mask;
194 cpu_clear(smp_processor_id(), cpu_mask);
195 if (!cpus_empty(cpu_mask))
196 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
197 local_flush_cache_range(vma, start, end);
201 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
202 unsigned long end)
204 struct mm_struct *mm = vma->vm_mm;
206 if (mm->context != NO_CONTEXT) {
207 cpumask_t cpu_mask = mm->cpu_vm_mask;
208 cpu_clear(smp_processor_id(), cpu_mask);
209 if (!cpus_empty(cpu_mask))
210 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
211 local_flush_tlb_range(vma, start, end);
215 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
217 struct mm_struct *mm = vma->vm_mm;
219 if(mm->context != NO_CONTEXT) {
220 cpumask_t cpu_mask = mm->cpu_vm_mask;
221 cpu_clear(smp_processor_id(), cpu_mask);
222 if (!cpus_empty(cpu_mask))
223 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
224 local_flush_cache_page(vma, page);
228 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
230 struct mm_struct *mm = vma->vm_mm;
232 if(mm->context != NO_CONTEXT) {
233 cpumask_t cpu_mask = mm->cpu_vm_mask;
234 cpu_clear(smp_processor_id(), cpu_mask);
235 if (!cpus_empty(cpu_mask))
236 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
237 local_flush_tlb_page(vma, page);
241 void smp_reschedule_irq(void)
243 set_need_resched();
246 void smp_flush_page_to_ram(unsigned long page)
248 /* Current theory is that those who call this are the one's
249 * who have just dirtied their cache with the pages contents
250 * in kernel space, therefore we only run this on local cpu.
252 * XXX This experiment failed, research further... -DaveM
254 #if 1
255 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
256 #endif
257 local_flush_page_to_ram(page);
260 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
262 cpumask_t cpu_mask = mm->cpu_vm_mask;
263 cpu_clear(smp_processor_id(), cpu_mask);
264 if (!cpus_empty(cpu_mask))
265 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
266 local_flush_sig_insns(mm, insn_addr);
269 extern unsigned int lvl14_resolution;
271 /* /proc/profile writes can call this, don't __init it please. */
272 static DEFINE_SPINLOCK(prof_setup_lock);
274 int setup_profiling_timer(unsigned int multiplier)
276 int i;
277 unsigned long flags;
279 /* Prevent level14 ticker IRQ flooding. */
280 if((!multiplier) || (lvl14_resolution / multiplier) < 500)
281 return -EINVAL;
283 spin_lock_irqsave(&prof_setup_lock, flags);
284 for_each_possible_cpu(i) {
285 load_profile_irq(i, lvl14_resolution / multiplier);
286 prof_multiplier(i) = multiplier;
288 spin_unlock_irqrestore(&prof_setup_lock, flags);
290 return 0;
293 void __init smp_prepare_cpus(unsigned int max_cpus)
295 extern void smp4m_boot_cpus(void);
296 extern void smp4d_boot_cpus(void);
297 int i, cpuid, extra;
299 printk("Entering SMP Mode...\n");
301 extra = 0;
302 for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
303 if (cpuid >= NR_CPUS)
304 extra++;
306 /* i = number of cpus */
307 if (extra && max_cpus > i - extra)
308 printk("Warning: NR_CPUS is too low to start all cpus\n");
310 smp_store_cpu_info(boot_cpu_id);
312 switch(sparc_cpu_model) {
313 case sun4:
314 printk("SUN4\n");
315 BUG();
316 break;
317 case sun4c:
318 printk("SUN4C\n");
319 BUG();
320 break;
321 case sun4m:
322 smp4m_boot_cpus();
323 break;
324 case sun4d:
325 smp4d_boot_cpus();
326 break;
327 case sun4e:
328 printk("SUN4E\n");
329 BUG();
330 break;
331 case sun4u:
332 printk("SUN4U\n");
333 BUG();
334 break;
335 default:
336 printk("UNKNOWN!\n");
337 BUG();
338 break;
342 /* Set this up early so that things like the scheduler can init
343 * properly. We use the same cpu mask for both the present and
344 * possible cpu map.
346 void __init smp_setup_cpu_possible_map(void)
348 int instance, mid;
350 instance = 0;
351 while (!cpu_find_by_instance(instance, NULL, &mid)) {
352 if (mid < NR_CPUS) {
353 cpu_set(mid, phys_cpu_present_map);
354 cpu_set(mid, cpu_present_map);
356 instance++;
360 void __init smp_prepare_boot_cpu(void)
362 int cpuid = hard_smp_processor_id();
364 if (cpuid >= NR_CPUS) {
365 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
366 prom_halt();
368 if (cpuid != 0)
369 printk("boot cpu id != 0, this could work but is untested\n");
371 current_thread_info()->cpu = cpuid;
372 cpu_set(cpuid, cpu_online_map);
373 cpu_set(cpuid, phys_cpu_present_map);
376 int __cpuinit __cpu_up(unsigned int cpu)
378 extern int smp4m_boot_one_cpu(int);
379 extern int smp4d_boot_one_cpu(int);
380 int ret=0;
382 switch(sparc_cpu_model) {
383 case sun4:
384 printk("SUN4\n");
385 BUG();
386 break;
387 case sun4c:
388 printk("SUN4C\n");
389 BUG();
390 break;
391 case sun4m:
392 ret = smp4m_boot_one_cpu(cpu);
393 break;
394 case sun4d:
395 ret = smp4d_boot_one_cpu(cpu);
396 break;
397 case sun4e:
398 printk("SUN4E\n");
399 BUG();
400 break;
401 case sun4u:
402 printk("SUN4U\n");
403 BUG();
404 break;
405 default:
406 printk("UNKNOWN!\n");
407 BUG();
408 break;
411 if (!ret) {
412 cpu_set(cpu, smp_commenced_mask);
413 while (!cpu_online(cpu))
414 mb();
416 return ret;
419 void smp_bogo(struct seq_file *m)
421 int i;
423 for_each_online_cpu(i) {
424 seq_printf(m,
425 "Cpu%dBogo\t: %lu.%02lu\n",
427 cpu_data(i).udelay_val/(500000/HZ),
428 (cpu_data(i).udelay_val/(5000/HZ))%100);
432 void smp_info(struct seq_file *m)
434 int i;
436 seq_printf(m, "State:\n");
437 for_each_online_cpu(i)
438 seq_printf(m, "CPU%d\t\t: online\n", i);