1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
38 #include "blockcheck.h"
41 #include "extent_map.h"
42 #include "heartbeat.h"
45 #include "localalloc.h"
51 #include "buffer_head_io.h"
53 DEFINE_SPINLOCK(trans_inc_lock
);
55 static int ocfs2_force_read_journal(struct inode
*inode
);
56 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
57 int node_num
, int slot_num
);
58 static int __ocfs2_recovery_thread(void *arg
);
59 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
60 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
);
61 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
62 int dirty
, int replayed
);
63 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
65 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
67 static int ocfs2_commit_thread(void *arg
);
68 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
70 struct ocfs2_dinode
*la_dinode
,
71 struct ocfs2_dinode
*tl_dinode
,
72 struct ocfs2_quota_recovery
*qrec
);
74 static inline int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
76 return __ocfs2_wait_on_mount(osb
, 0);
79 static inline int ocfs2_wait_on_quotas(struct ocfs2_super
*osb
)
81 return __ocfs2_wait_on_mount(osb
, 1);
85 * This replay_map is to track online/offline slots, so we could recover
86 * offline slots during recovery and mount
89 enum ocfs2_replay_state
{
90 REPLAY_UNNEEDED
= 0, /* Replay is not needed, so ignore this map */
91 REPLAY_NEEDED
, /* Replay slots marked in rm_replay_slots */
92 REPLAY_DONE
/* Replay was already queued */
95 struct ocfs2_replay_map
{
96 unsigned int rm_slots
;
97 enum ocfs2_replay_state rm_state
;
98 unsigned char rm_replay_slots
[0];
101 void ocfs2_replay_map_set_state(struct ocfs2_super
*osb
, int state
)
103 if (!osb
->replay_map
)
106 /* If we've already queued the replay, we don't have any more to do */
107 if (osb
->replay_map
->rm_state
== REPLAY_DONE
)
110 osb
->replay_map
->rm_state
= state
;
113 int ocfs2_compute_replay_slots(struct ocfs2_super
*osb
)
115 struct ocfs2_replay_map
*replay_map
;
118 /* If replay map is already set, we don't do it again */
122 replay_map
= kzalloc(sizeof(struct ocfs2_replay_map
) +
123 (osb
->max_slots
* sizeof(char)), GFP_KERNEL
);
130 spin_lock(&osb
->osb_lock
);
132 replay_map
->rm_slots
= osb
->max_slots
;
133 replay_map
->rm_state
= REPLAY_UNNEEDED
;
135 /* set rm_replay_slots for offline slot(s) */
136 for (i
= 0; i
< replay_map
->rm_slots
; i
++) {
137 if (ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
) == -ENOENT
)
138 replay_map
->rm_replay_slots
[i
] = 1;
141 osb
->replay_map
= replay_map
;
142 spin_unlock(&osb
->osb_lock
);
146 void ocfs2_queue_replay_slots(struct ocfs2_super
*osb
)
148 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
154 if (replay_map
->rm_state
!= REPLAY_NEEDED
)
157 for (i
= 0; i
< replay_map
->rm_slots
; i
++)
158 if (replay_map
->rm_replay_slots
[i
])
159 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
,
161 replay_map
->rm_state
= REPLAY_DONE
;
164 void ocfs2_free_replay_slots(struct ocfs2_super
*osb
)
166 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
168 if (!osb
->replay_map
)
172 osb
->replay_map
= NULL
;
175 int ocfs2_recovery_init(struct ocfs2_super
*osb
)
177 struct ocfs2_recovery_map
*rm
;
179 mutex_init(&osb
->recovery_lock
);
180 osb
->disable_recovery
= 0;
181 osb
->recovery_thread_task
= NULL
;
182 init_waitqueue_head(&osb
->recovery_event
);
184 rm
= kzalloc(sizeof(struct ocfs2_recovery_map
) +
185 osb
->max_slots
* sizeof(unsigned int),
192 rm
->rm_entries
= (unsigned int *)((char *)rm
+
193 sizeof(struct ocfs2_recovery_map
));
194 osb
->recovery_map
= rm
;
199 /* we can't grab the goofy sem lock from inside wait_event, so we use
200 * memory barriers to make sure that we'll see the null task before
202 static int ocfs2_recovery_thread_running(struct ocfs2_super
*osb
)
205 return osb
->recovery_thread_task
!= NULL
;
208 void ocfs2_recovery_exit(struct ocfs2_super
*osb
)
210 struct ocfs2_recovery_map
*rm
;
212 /* disable any new recovery threads and wait for any currently
213 * running ones to exit. Do this before setting the vol_state. */
214 mutex_lock(&osb
->recovery_lock
);
215 osb
->disable_recovery
= 1;
216 mutex_unlock(&osb
->recovery_lock
);
217 wait_event(osb
->recovery_event
, !ocfs2_recovery_thread_running(osb
));
219 /* At this point, we know that no more recovery threads can be
220 * launched, so wait for any recovery completion work to
222 flush_workqueue(ocfs2_wq
);
225 * Now that recovery is shut down, and the osb is about to be
226 * freed, the osb_lock is not taken here.
228 rm
= osb
->recovery_map
;
229 /* XXX: Should we bug if there are dirty entries? */
234 static int __ocfs2_recovery_map_test(struct ocfs2_super
*osb
,
235 unsigned int node_num
)
238 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
240 assert_spin_locked(&osb
->osb_lock
);
242 for (i
= 0; i
< rm
->rm_used
; i
++) {
243 if (rm
->rm_entries
[i
] == node_num
)
250 /* Behaves like test-and-set. Returns the previous value */
251 static int ocfs2_recovery_map_set(struct ocfs2_super
*osb
,
252 unsigned int node_num
)
254 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
256 spin_lock(&osb
->osb_lock
);
257 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
258 spin_unlock(&osb
->osb_lock
);
262 /* XXX: Can this be exploited? Not from o2dlm... */
263 BUG_ON(rm
->rm_used
>= osb
->max_slots
);
265 rm
->rm_entries
[rm
->rm_used
] = node_num
;
267 spin_unlock(&osb
->osb_lock
);
272 static void ocfs2_recovery_map_clear(struct ocfs2_super
*osb
,
273 unsigned int node_num
)
276 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
278 spin_lock(&osb
->osb_lock
);
280 for (i
= 0; i
< rm
->rm_used
; i
++) {
281 if (rm
->rm_entries
[i
] == node_num
)
285 if (i
< rm
->rm_used
) {
286 /* XXX: be careful with the pointer math */
287 memmove(&(rm
->rm_entries
[i
]), &(rm
->rm_entries
[i
+ 1]),
288 (rm
->rm_used
- i
- 1) * sizeof(unsigned int));
292 spin_unlock(&osb
->osb_lock
);
295 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
298 unsigned int flushed
;
299 unsigned long old_id
;
300 struct ocfs2_journal
*journal
= NULL
;
304 journal
= osb
->journal
;
306 /* Flush all pending commits and checkpoint the journal. */
307 down_write(&journal
->j_trans_barrier
);
309 if (atomic_read(&journal
->j_num_trans
) == 0) {
310 up_write(&journal
->j_trans_barrier
);
311 mlog(0, "No transactions for me to flush!\n");
315 jbd2_journal_lock_updates(journal
->j_journal
);
316 status
= jbd2_journal_flush(journal
->j_journal
);
317 jbd2_journal_unlock_updates(journal
->j_journal
);
319 up_write(&journal
->j_trans_barrier
);
324 old_id
= ocfs2_inc_trans_id(journal
);
326 flushed
= atomic_read(&journal
->j_num_trans
);
327 atomic_set(&journal
->j_num_trans
, 0);
328 up_write(&journal
->j_trans_barrier
);
330 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
331 journal
->j_trans_id
, flushed
);
333 ocfs2_wake_downconvert_thread(osb
);
334 wake_up(&journal
->j_checkpointed
);
340 /* pass it NULL and it will allocate a new handle object for you. If
341 * you pass it a handle however, it may still return error, in which
342 * case it has free'd the passed handle for you. */
343 handle_t
*ocfs2_start_trans(struct ocfs2_super
*osb
, int max_buffs
)
345 journal_t
*journal
= osb
->journal
->j_journal
;
348 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
350 if (ocfs2_is_hard_readonly(osb
))
351 return ERR_PTR(-EROFS
);
353 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
354 BUG_ON(max_buffs
<= 0);
356 /* Nested transaction? Just return the handle... */
357 if (journal_current_handle())
358 return jbd2_journal_start(journal
, max_buffs
);
360 down_read(&osb
->journal
->j_trans_barrier
);
362 handle
= jbd2_journal_start(journal
, max_buffs
);
363 if (IS_ERR(handle
)) {
364 up_read(&osb
->journal
->j_trans_barrier
);
366 mlog_errno(PTR_ERR(handle
));
368 if (is_journal_aborted(journal
)) {
369 ocfs2_abort(osb
->sb
, "Detected aborted journal");
370 handle
= ERR_PTR(-EROFS
);
373 if (!ocfs2_mount_local(osb
))
374 atomic_inc(&(osb
->journal
->j_num_trans
));
380 int ocfs2_commit_trans(struct ocfs2_super
*osb
,
384 struct ocfs2_journal
*journal
= osb
->journal
;
388 nested
= handle
->h_ref
> 1;
389 ret
= jbd2_journal_stop(handle
);
394 up_read(&journal
->j_trans_barrier
);
400 * 'nblocks' is what you want to add to the current
401 * transaction. extend_trans will either extend the current handle by
402 * nblocks, or commit it and start a new one with nblocks credits.
404 * This might call jbd2_journal_restart() which will commit dirty buffers
405 * and then restart the transaction. Before calling
406 * ocfs2_extend_trans(), any changed blocks should have been
407 * dirtied. After calling it, all blocks which need to be changed must
408 * go through another set of journal_access/journal_dirty calls.
410 * WARNING: This will not release any semaphores or disk locks taken
411 * during the transaction, so make sure they were taken *before*
412 * start_trans or we'll have ordering deadlocks.
414 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
415 * good because transaction ids haven't yet been recorded on the
416 * cluster locks associated with this handle.
418 int ocfs2_extend_trans(handle_t
*handle
, int nblocks
)
427 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks
);
429 #ifdef CONFIG_OCFS2_DEBUG_FS
432 status
= jbd2_journal_extend(handle
, nblocks
);
441 "jbd2_journal_extend failed, trying "
442 "jbd2_journal_restart\n");
443 status
= jbd2_journal_restart(handle
, nblocks
);
457 struct ocfs2_triggers
{
458 struct jbd2_buffer_trigger_type ot_triggers
;
462 static inline struct ocfs2_triggers
*to_ocfs2_trigger(struct jbd2_buffer_trigger_type
*triggers
)
464 return container_of(triggers
, struct ocfs2_triggers
, ot_triggers
);
467 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type
*triggers
,
468 struct buffer_head
*bh
,
469 void *data
, size_t size
)
471 struct ocfs2_triggers
*ot
= to_ocfs2_trigger(triggers
);
474 * We aren't guaranteed to have the superblock here, so we
475 * must unconditionally compute the ecc data.
476 * __ocfs2_journal_access() will only set the triggers if
477 * metaecc is enabled.
479 ocfs2_block_check_compute(data
, size
, data
+ ot
->ot_offset
);
483 * Quota blocks have their own trigger because the struct ocfs2_block_check
484 * offset depends on the blocksize.
486 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type
*triggers
,
487 struct buffer_head
*bh
,
488 void *data
, size_t size
)
490 struct ocfs2_disk_dqtrailer
*dqt
=
491 ocfs2_block_dqtrailer(size
, data
);
494 * We aren't guaranteed to have the superblock here, so we
495 * must unconditionally compute the ecc data.
496 * __ocfs2_journal_access() will only set the triggers if
497 * metaecc is enabled.
499 ocfs2_block_check_compute(data
, size
, &dqt
->dq_check
);
503 * Directory blocks also have their own trigger because the
504 * struct ocfs2_block_check offset depends on the blocksize.
506 static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type
*triggers
,
507 struct buffer_head
*bh
,
508 void *data
, size_t size
)
510 struct ocfs2_dir_block_trailer
*trailer
=
511 ocfs2_dir_trailer_from_size(size
, data
);
514 * We aren't guaranteed to have the superblock here, so we
515 * must unconditionally compute the ecc data.
516 * __ocfs2_journal_access() will only set the triggers if
517 * metaecc is enabled.
519 ocfs2_block_check_compute(data
, size
, &trailer
->db_check
);
522 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type
*triggers
,
523 struct buffer_head
*bh
)
526 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
527 "bh->b_blocknr = %llu\n",
529 (unsigned long long)bh
->b_blocknr
);
531 /* We aren't guaranteed to have the superblock here - but if we
532 * don't, it'll just crash. */
533 ocfs2_error(bh
->b_assoc_map
->host
->i_sb
,
534 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
537 static struct ocfs2_triggers di_triggers
= {
539 .t_commit
= ocfs2_commit_trigger
,
540 .t_abort
= ocfs2_abort_trigger
,
542 .ot_offset
= offsetof(struct ocfs2_dinode
, i_check
),
545 static struct ocfs2_triggers eb_triggers
= {
547 .t_commit
= ocfs2_commit_trigger
,
548 .t_abort
= ocfs2_abort_trigger
,
550 .ot_offset
= offsetof(struct ocfs2_extent_block
, h_check
),
553 static struct ocfs2_triggers gd_triggers
= {
555 .t_commit
= ocfs2_commit_trigger
,
556 .t_abort
= ocfs2_abort_trigger
,
558 .ot_offset
= offsetof(struct ocfs2_group_desc
, bg_check
),
561 static struct ocfs2_triggers db_triggers
= {
563 .t_commit
= ocfs2_db_commit_trigger
,
564 .t_abort
= ocfs2_abort_trigger
,
568 static struct ocfs2_triggers xb_triggers
= {
570 .t_commit
= ocfs2_commit_trigger
,
571 .t_abort
= ocfs2_abort_trigger
,
573 .ot_offset
= offsetof(struct ocfs2_xattr_block
, xb_check
),
576 static struct ocfs2_triggers dq_triggers
= {
578 .t_commit
= ocfs2_dq_commit_trigger
,
579 .t_abort
= ocfs2_abort_trigger
,
583 static struct ocfs2_triggers dr_triggers
= {
585 .t_commit
= ocfs2_commit_trigger
,
586 .t_abort
= ocfs2_abort_trigger
,
588 .ot_offset
= offsetof(struct ocfs2_dx_root_block
, dr_check
),
591 static struct ocfs2_triggers dl_triggers
= {
593 .t_commit
= ocfs2_commit_trigger
,
594 .t_abort
= ocfs2_abort_trigger
,
596 .ot_offset
= offsetof(struct ocfs2_dx_leaf
, dl_check
),
599 static int __ocfs2_journal_access(handle_t
*handle
,
601 struct buffer_head
*bh
,
602 struct ocfs2_triggers
*triggers
,
611 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
612 (unsigned long long)bh
->b_blocknr
, type
,
613 (type
== OCFS2_JOURNAL_ACCESS_CREATE
) ?
614 "OCFS2_JOURNAL_ACCESS_CREATE" :
615 "OCFS2_JOURNAL_ACCESS_WRITE",
618 /* we can safely remove this assertion after testing. */
619 if (!buffer_uptodate(bh
)) {
620 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
621 mlog(ML_ERROR
, "b_blocknr=%llu\n",
622 (unsigned long long)bh
->b_blocknr
);
626 /* Set the current transaction information on the inode so
627 * that the locking code knows whether it can drop it's locks
628 * on this inode or not. We're protected from the commit
629 * thread updating the current transaction id until
630 * ocfs2_commit_trans() because ocfs2_start_trans() took
631 * j_trans_barrier for us. */
632 ocfs2_set_inode_lock_trans(OCFS2_SB(inode
->i_sb
)->journal
, inode
);
634 mutex_lock(&OCFS2_I(inode
)->ip_io_mutex
);
636 case OCFS2_JOURNAL_ACCESS_CREATE
:
637 case OCFS2_JOURNAL_ACCESS_WRITE
:
638 status
= jbd2_journal_get_write_access(handle
, bh
);
641 case OCFS2_JOURNAL_ACCESS_UNDO
:
642 status
= jbd2_journal_get_undo_access(handle
, bh
);
647 mlog(ML_ERROR
, "Uknown access type!\n");
649 if (!status
&& ocfs2_meta_ecc(OCFS2_SB(inode
->i_sb
)) && triggers
)
650 jbd2_journal_set_triggers(bh
, &triggers
->ot_triggers
);
651 mutex_unlock(&OCFS2_I(inode
)->ip_io_mutex
);
654 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
661 int ocfs2_journal_access_di(handle_t
*handle
, struct inode
*inode
,
662 struct buffer_head
*bh
, int type
)
664 return __ocfs2_journal_access(handle
, inode
, bh
, &di_triggers
,
668 int ocfs2_journal_access_eb(handle_t
*handle
, struct inode
*inode
,
669 struct buffer_head
*bh
, int type
)
671 return __ocfs2_journal_access(handle
, inode
, bh
, &eb_triggers
,
675 int ocfs2_journal_access_gd(handle_t
*handle
, struct inode
*inode
,
676 struct buffer_head
*bh
, int type
)
678 return __ocfs2_journal_access(handle
, inode
, bh
, &gd_triggers
,
682 int ocfs2_journal_access_db(handle_t
*handle
, struct inode
*inode
,
683 struct buffer_head
*bh
, int type
)
685 return __ocfs2_journal_access(handle
, inode
, bh
, &db_triggers
,
689 int ocfs2_journal_access_xb(handle_t
*handle
, struct inode
*inode
,
690 struct buffer_head
*bh
, int type
)
692 return __ocfs2_journal_access(handle
, inode
, bh
, &xb_triggers
,
696 int ocfs2_journal_access_dq(handle_t
*handle
, struct inode
*inode
,
697 struct buffer_head
*bh
, int type
)
699 return __ocfs2_journal_access(handle
, inode
, bh
, &dq_triggers
,
703 int ocfs2_journal_access_dr(handle_t
*handle
, struct inode
*inode
,
704 struct buffer_head
*bh
, int type
)
706 return __ocfs2_journal_access(handle
, inode
, bh
, &dr_triggers
,
710 int ocfs2_journal_access_dl(handle_t
*handle
, struct inode
*inode
,
711 struct buffer_head
*bh
, int type
)
713 return __ocfs2_journal_access(handle
, inode
, bh
, &dl_triggers
,
717 int ocfs2_journal_access(handle_t
*handle
, struct inode
*inode
,
718 struct buffer_head
*bh
, int type
)
720 return __ocfs2_journal_access(handle
, inode
, bh
, NULL
, type
);
723 int ocfs2_journal_dirty(handle_t
*handle
,
724 struct buffer_head
*bh
)
728 mlog_entry("(bh->b_blocknr=%llu)\n",
729 (unsigned long long)bh
->b_blocknr
);
731 status
= jbd2_journal_dirty_metadata(handle
, bh
);
733 mlog(ML_ERROR
, "Could not dirty metadata buffer. "
734 "(bh->b_blocknr=%llu)\n",
735 (unsigned long long)bh
->b_blocknr
);
741 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
743 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
745 journal_t
*journal
= osb
->journal
->j_journal
;
746 unsigned long commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
748 if (osb
->osb_commit_interval
)
749 commit_interval
= osb
->osb_commit_interval
;
751 spin_lock(&journal
->j_state_lock
);
752 journal
->j_commit_interval
= commit_interval
;
753 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
754 journal
->j_flags
|= JBD2_BARRIER
;
756 journal
->j_flags
&= ~JBD2_BARRIER
;
757 spin_unlock(&journal
->j_state_lock
);
760 int ocfs2_journal_init(struct ocfs2_journal
*journal
, int *dirty
)
763 struct inode
*inode
= NULL
; /* the journal inode */
764 journal_t
*j_journal
= NULL
;
765 struct ocfs2_dinode
*di
= NULL
;
766 struct buffer_head
*bh
= NULL
;
767 struct ocfs2_super
*osb
;
774 osb
= journal
->j_osb
;
776 /* already have the inode for our journal */
777 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
784 if (is_bad_inode(inode
)) {
785 mlog(ML_ERROR
, "access error (bad inode)\n");
792 SET_INODE_JOURNAL(inode
);
793 OCFS2_I(inode
)->ip_open_count
++;
795 /* Skip recovery waits here - journal inode metadata never
796 * changes in a live cluster so it can be considered an
797 * exception to the rule. */
798 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
800 if (status
!= -ERESTARTSYS
)
801 mlog(ML_ERROR
, "Could not get lock on journal!\n");
806 di
= (struct ocfs2_dinode
*)bh
->b_data
;
808 if (inode
->i_size
< OCFS2_MIN_JOURNAL_SIZE
) {
809 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
815 mlog(0, "inode->i_size = %lld\n", inode
->i_size
);
816 mlog(0, "inode->i_blocks = %llu\n",
817 (unsigned long long)inode
->i_blocks
);
818 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode
)->ip_clusters
);
820 /* call the kernels journal init function now */
821 j_journal
= jbd2_journal_init_inode(inode
);
822 if (j_journal
== NULL
) {
823 mlog(ML_ERROR
, "Linux journal layer error\n");
828 mlog(0, "Returned from jbd2_journal_init_inode\n");
829 mlog(0, "j_journal->j_maxlen = %u\n", j_journal
->j_maxlen
);
831 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
832 OCFS2_JOURNAL_DIRTY_FL
);
834 journal
->j_journal
= j_journal
;
835 journal
->j_inode
= inode
;
838 ocfs2_set_journal_params(osb
);
840 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
846 ocfs2_inode_unlock(inode
, 1);
849 OCFS2_I(inode
)->ip_open_count
--;
858 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode
*di
)
860 le32_add_cpu(&(di
->id1
.journal1
.ij_recovery_generation
), 1);
863 static u32
ocfs2_get_recovery_generation(struct ocfs2_dinode
*di
)
865 return le32_to_cpu(di
->id1
.journal1
.ij_recovery_generation
);
868 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
869 int dirty
, int replayed
)
873 struct ocfs2_journal
*journal
= osb
->journal
;
874 struct buffer_head
*bh
= journal
->j_bh
;
875 struct ocfs2_dinode
*fe
;
879 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
881 /* The journal bh on the osb always comes from ocfs2_journal_init()
882 * and was validated there inside ocfs2_inode_lock_full(). It's a
883 * code bug if we mess it up. */
884 BUG_ON(!OCFS2_IS_VALID_DINODE(fe
));
886 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
888 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
890 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
891 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
894 ocfs2_bump_recovery_generation(fe
);
896 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
897 status
= ocfs2_write_block(osb
, bh
, journal
->j_inode
);
906 * If the journal has been kmalloc'd it needs to be freed after this
909 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
911 struct ocfs2_journal
*journal
= NULL
;
913 struct inode
*inode
= NULL
;
914 int num_running_trans
= 0;
920 journal
= osb
->journal
;
924 inode
= journal
->j_inode
;
926 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
929 /* need to inc inode use count - jbd2_journal_destroy will iput. */
933 num_running_trans
= atomic_read(&(osb
->journal
->j_num_trans
));
934 if (num_running_trans
> 0)
935 mlog(0, "Shutting down journal: must wait on %d "
936 "running transactions!\n",
939 /* Do a commit_cache here. It will flush our journal, *and*
940 * release any locks that are still held.
941 * set the SHUTDOWN flag and release the trans lock.
942 * the commit thread will take the trans lock for us below. */
943 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
945 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
946 * drop the trans_lock (which we want to hold until we
947 * completely destroy the journal. */
948 if (osb
->commit_task
) {
949 /* Wait for the commit thread */
950 mlog(0, "Waiting for ocfs2commit to exit....\n");
951 kthread_stop(osb
->commit_task
);
952 osb
->commit_task
= NULL
;
955 BUG_ON(atomic_read(&(osb
->journal
->j_num_trans
)) != 0);
957 if (ocfs2_mount_local(osb
)) {
958 jbd2_journal_lock_updates(journal
->j_journal
);
959 status
= jbd2_journal_flush(journal
->j_journal
);
960 jbd2_journal_unlock_updates(journal
->j_journal
);
967 * Do not toggle if flush was unsuccessful otherwise
968 * will leave dirty metadata in a "clean" journal
970 status
= ocfs2_journal_toggle_dirty(osb
, 0, 0);
975 /* Shutdown the kernel journal system */
976 jbd2_journal_destroy(journal
->j_journal
);
977 journal
->j_journal
= NULL
;
979 OCFS2_I(inode
)->ip_open_count
--;
981 /* unlock our journal */
982 ocfs2_inode_unlock(inode
, 1);
984 brelse(journal
->j_bh
);
985 journal
->j_bh
= NULL
;
987 journal
->j_state
= OCFS2_JOURNAL_FREE
;
989 // up_write(&journal->j_trans_barrier);
996 static void ocfs2_clear_journal_error(struct super_block
*sb
,
1002 olderr
= jbd2_journal_errno(journal
);
1004 mlog(ML_ERROR
, "File system error %d recorded in "
1005 "journal %u.\n", olderr
, slot
);
1006 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
1009 jbd2_journal_ack_err(journal
);
1010 jbd2_journal_clear_err(journal
);
1014 int ocfs2_journal_load(struct ocfs2_journal
*journal
, int local
, int replayed
)
1017 struct ocfs2_super
*osb
;
1023 osb
= journal
->j_osb
;
1025 status
= jbd2_journal_load(journal
->j_journal
);
1027 mlog(ML_ERROR
, "Failed to load journal!\n");
1031 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
1033 status
= ocfs2_journal_toggle_dirty(osb
, 1, replayed
);
1039 /* Launch the commit thread */
1041 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
,
1043 if (IS_ERR(osb
->commit_task
)) {
1044 status
= PTR_ERR(osb
->commit_task
);
1045 osb
->commit_task
= NULL
;
1046 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, "
1047 "error=%d", status
);
1051 osb
->commit_task
= NULL
;
1059 /* 'full' flag tells us whether we clear out all blocks or if we just
1060 * mark the journal clean */
1061 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
1069 status
= jbd2_journal_wipe(journal
->j_journal
, full
);
1075 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0, 0);
1084 static int ocfs2_recovery_completed(struct ocfs2_super
*osb
)
1087 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1089 spin_lock(&osb
->osb_lock
);
1090 empty
= (rm
->rm_used
== 0);
1091 spin_unlock(&osb
->osb_lock
);
1096 void ocfs2_wait_for_recovery(struct ocfs2_super
*osb
)
1098 wait_event(osb
->recovery_event
, ocfs2_recovery_completed(osb
));
1102 * JBD Might read a cached version of another nodes journal file. We
1103 * don't want this as this file changes often and we get no
1104 * notification on those changes. The only way to be sure that we've
1105 * got the most up to date version of those blocks then is to force
1106 * read them off disk. Just searching through the buffer cache won't
1107 * work as there may be pages backing this file which are still marked
1108 * up to date. We know things can't change on this file underneath us
1109 * as we have the lock by now :)
1111 static int ocfs2_force_read_journal(struct inode
*inode
)
1115 u64 v_blkno
, p_blkno
, p_blocks
, num_blocks
;
1116 #define CONCURRENT_JOURNAL_FILL 32ULL
1117 struct buffer_head
*bhs
[CONCURRENT_JOURNAL_FILL
];
1121 memset(bhs
, 0, sizeof(struct buffer_head
*) * CONCURRENT_JOURNAL_FILL
);
1123 num_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, inode
->i_size
);
1125 while (v_blkno
< num_blocks
) {
1126 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
1127 &p_blkno
, &p_blocks
, NULL
);
1133 if (p_blocks
> CONCURRENT_JOURNAL_FILL
)
1134 p_blocks
= CONCURRENT_JOURNAL_FILL
;
1136 /* We are reading journal data which should not
1137 * be put in the uptodate cache */
1138 status
= ocfs2_read_blocks_sync(OCFS2_SB(inode
->i_sb
),
1139 p_blkno
, p_blocks
, bhs
);
1145 for(i
= 0; i
< p_blocks
; i
++) {
1150 v_blkno
+= p_blocks
;
1154 for(i
= 0; i
< CONCURRENT_JOURNAL_FILL
; i
++)
1160 struct ocfs2_la_recovery_item
{
1161 struct list_head lri_list
;
1163 struct ocfs2_dinode
*lri_la_dinode
;
1164 struct ocfs2_dinode
*lri_tl_dinode
;
1165 struct ocfs2_quota_recovery
*lri_qrec
;
1168 /* Does the second half of the recovery process. By this point, the
1169 * node is marked clean and can actually be considered recovered,
1170 * hence it's no longer in the recovery map, but there's still some
1171 * cleanup we can do which shouldn't happen within the recovery thread
1172 * as locking in that context becomes very difficult if we are to take
1173 * recovering nodes into account.
1175 * NOTE: This function can and will sleep on recovery of other nodes
1176 * during cluster locking, just like any other ocfs2 process.
1178 void ocfs2_complete_recovery(struct work_struct
*work
)
1181 struct ocfs2_journal
*journal
=
1182 container_of(work
, struct ocfs2_journal
, j_recovery_work
);
1183 struct ocfs2_super
*osb
= journal
->j_osb
;
1184 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
1185 struct ocfs2_la_recovery_item
*item
, *n
;
1186 struct ocfs2_quota_recovery
*qrec
;
1187 LIST_HEAD(tmp_la_list
);
1191 mlog(0, "completing recovery from keventd\n");
1193 spin_lock(&journal
->j_lock
);
1194 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
1195 spin_unlock(&journal
->j_lock
);
1197 list_for_each_entry_safe(item
, n
, &tmp_la_list
, lri_list
) {
1198 list_del_init(&item
->lri_list
);
1200 mlog(0, "Complete recovery for slot %d\n", item
->lri_slot
);
1202 ocfs2_wait_on_quotas(osb
);
1204 la_dinode
= item
->lri_la_dinode
;
1206 mlog(0, "Clean up local alloc %llu\n",
1207 (unsigned long long)le64_to_cpu(la_dinode
->i_blkno
));
1209 ret
= ocfs2_complete_local_alloc_recovery(osb
,
1217 tl_dinode
= item
->lri_tl_dinode
;
1219 mlog(0, "Clean up truncate log %llu\n",
1220 (unsigned long long)le64_to_cpu(tl_dinode
->i_blkno
));
1222 ret
= ocfs2_complete_truncate_log_recovery(osb
,
1230 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
);
1234 qrec
= item
->lri_qrec
;
1236 mlog(0, "Recovering quota files");
1237 ret
= ocfs2_finish_quota_recovery(osb
, qrec
,
1241 /* Recovery info is already freed now */
1247 mlog(0, "Recovery completion\n");
1251 /* NOTE: This function always eats your references to la_dinode and
1252 * tl_dinode, either manually on error, or by passing them to
1253 * ocfs2_complete_recovery */
1254 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
1256 struct ocfs2_dinode
*la_dinode
,
1257 struct ocfs2_dinode
*tl_dinode
,
1258 struct ocfs2_quota_recovery
*qrec
)
1260 struct ocfs2_la_recovery_item
*item
;
1262 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
1264 /* Though we wish to avoid it, we are in fact safe in
1265 * skipping local alloc cleanup as fsck.ocfs2 is more
1266 * than capable of reclaiming unused space. */
1274 ocfs2_free_quota_recovery(qrec
);
1276 mlog_errno(-ENOMEM
);
1280 INIT_LIST_HEAD(&item
->lri_list
);
1281 item
->lri_la_dinode
= la_dinode
;
1282 item
->lri_slot
= slot_num
;
1283 item
->lri_tl_dinode
= tl_dinode
;
1284 item
->lri_qrec
= qrec
;
1286 spin_lock(&journal
->j_lock
);
1287 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
1288 queue_work(ocfs2_wq
, &journal
->j_recovery_work
);
1289 spin_unlock(&journal
->j_lock
);
1292 /* Called by the mount code to queue recovery the last part of
1293 * recovery for it's own and offline slot(s). */
1294 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
1296 struct ocfs2_journal
*journal
= osb
->journal
;
1298 /* No need to queue up our truncate_log as regular cleanup will catch
1300 ocfs2_queue_recovery_completion(journal
, osb
->slot_num
,
1301 osb
->local_alloc_copy
, NULL
, NULL
);
1302 ocfs2_schedule_truncate_log_flush(osb
, 0);
1304 osb
->local_alloc_copy
= NULL
;
1307 /* queue to recover orphan slots for all offline slots */
1308 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1309 ocfs2_queue_replay_slots(osb
);
1310 ocfs2_free_replay_slots(osb
);
1313 void ocfs2_complete_quota_recovery(struct ocfs2_super
*osb
)
1315 if (osb
->quota_rec
) {
1316 ocfs2_queue_recovery_completion(osb
->journal
,
1321 osb
->quota_rec
= NULL
;
1325 static int __ocfs2_recovery_thread(void *arg
)
1327 int status
, node_num
, slot_num
;
1328 struct ocfs2_super
*osb
= arg
;
1329 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1330 int *rm_quota
= NULL
;
1331 int rm_quota_used
= 0, i
;
1332 struct ocfs2_quota_recovery
*qrec
;
1336 status
= ocfs2_wait_on_mount(osb
);
1341 rm_quota
= kzalloc(osb
->max_slots
* sizeof(int), GFP_NOFS
);
1347 status
= ocfs2_super_lock(osb
, 1);
1353 status
= ocfs2_compute_replay_slots(osb
);
1357 /* queue recovery for our own slot */
1358 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
1361 spin_lock(&osb
->osb_lock
);
1362 while (rm
->rm_used
) {
1363 /* It's always safe to remove entry zero, as we won't
1364 * clear it until ocfs2_recover_node() has succeeded. */
1365 node_num
= rm
->rm_entries
[0];
1366 spin_unlock(&osb
->osb_lock
);
1367 mlog(0, "checking node %d\n", node_num
);
1368 slot_num
= ocfs2_node_num_to_slot(osb
, node_num
);
1369 if (slot_num
== -ENOENT
) {
1371 mlog(0, "no slot for this node, so no recovery"
1375 mlog(0, "node %d was using slot %d\n", node_num
, slot_num
);
1377 /* It is a bit subtle with quota recovery. We cannot do it
1378 * immediately because we have to obtain cluster locks from
1379 * quota files and we also don't want to just skip it because
1380 * then quota usage would be out of sync until some node takes
1381 * the slot. So we remember which nodes need quota recovery
1382 * and when everything else is done, we recover quotas. */
1383 for (i
= 0; i
< rm_quota_used
&& rm_quota
[i
] != slot_num
; i
++);
1384 if (i
== rm_quota_used
)
1385 rm_quota
[rm_quota_used
++] = slot_num
;
1387 status
= ocfs2_recover_node(osb
, node_num
, slot_num
);
1390 ocfs2_recovery_map_clear(osb
, node_num
);
1393 "Error %d recovering node %d on device (%u,%u)!\n",
1395 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1396 mlog(ML_ERROR
, "Volume requires unmount.\n");
1399 spin_lock(&osb
->osb_lock
);
1401 spin_unlock(&osb
->osb_lock
);
1402 mlog(0, "All nodes recovered\n");
1404 /* Refresh all journal recovery generations from disk */
1405 status
= ocfs2_check_journals_nolocks(osb
);
1406 status
= (status
== -EROFS
) ? 0 : status
;
1410 /* Now it is right time to recover quotas... We have to do this under
1411 * superblock lock so that noone can start using the slot (and crash)
1412 * before we recover it */
1413 for (i
= 0; i
< rm_quota_used
; i
++) {
1414 qrec
= ocfs2_begin_quota_recovery(osb
, rm_quota
[i
]);
1416 status
= PTR_ERR(qrec
);
1420 ocfs2_queue_recovery_completion(osb
->journal
, rm_quota
[i
],
1424 ocfs2_super_unlock(osb
, 1);
1426 /* queue recovery for offline slots */
1427 ocfs2_queue_replay_slots(osb
);
1430 mutex_lock(&osb
->recovery_lock
);
1431 if (!status
&& !ocfs2_recovery_completed(osb
)) {
1432 mutex_unlock(&osb
->recovery_lock
);
1436 ocfs2_free_replay_slots(osb
);
1437 osb
->recovery_thread_task
= NULL
;
1438 mb(); /* sync with ocfs2_recovery_thread_running */
1439 wake_up(&osb
->recovery_event
);
1441 mutex_unlock(&osb
->recovery_lock
);
1447 /* no one is callint kthread_stop() for us so the kthread() api
1448 * requires that we call do_exit(). And it isn't exported, but
1449 * complete_and_exit() seems to be a minimal wrapper around it. */
1450 complete_and_exit(NULL
, status
);
1454 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
1456 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1457 node_num
, osb
->node_num
);
1459 mutex_lock(&osb
->recovery_lock
);
1460 if (osb
->disable_recovery
)
1463 /* People waiting on recovery will wait on
1464 * the recovery map to empty. */
1465 if (ocfs2_recovery_map_set(osb
, node_num
))
1466 mlog(0, "node %d already in recovery map.\n", node_num
);
1468 mlog(0, "starting recovery thread...\n");
1470 if (osb
->recovery_thread_task
)
1473 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
1475 if (IS_ERR(osb
->recovery_thread_task
)) {
1476 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
1477 osb
->recovery_thread_task
= NULL
;
1481 mutex_unlock(&osb
->recovery_lock
);
1482 wake_up(&osb
->recovery_event
);
1487 static int ocfs2_read_journal_inode(struct ocfs2_super
*osb
,
1489 struct buffer_head
**bh
,
1490 struct inode
**ret_inode
)
1492 int status
= -EACCES
;
1493 struct inode
*inode
= NULL
;
1495 BUG_ON(slot_num
>= osb
->max_slots
);
1497 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1499 if (!inode
|| is_bad_inode(inode
)) {
1503 SET_INODE_JOURNAL(inode
);
1505 status
= ocfs2_read_inode_block_full(inode
, bh
, OCFS2_BH_IGNORE_CACHE
);
1515 if (status
|| !ret_inode
)
1523 /* Does the actual journal replay and marks the journal inode as
1524 * clean. Will only replay if the journal inode is marked dirty. */
1525 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
1532 struct inode
*inode
= NULL
;
1533 struct ocfs2_dinode
*fe
;
1534 journal_t
*journal
= NULL
;
1535 struct buffer_head
*bh
= NULL
;
1538 status
= ocfs2_read_journal_inode(osb
, slot_num
, &bh
, &inode
);
1544 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
1545 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1550 * As the fs recovery is asynchronous, there is a small chance that
1551 * another node mounted (and recovered) the slot before the recovery
1552 * thread could get the lock. To handle that, we dirty read the journal
1553 * inode for that slot to get the recovery generation. If it is
1554 * different than what we expected, the slot has been recovered.
1555 * If not, it needs recovery.
1557 if (osb
->slot_recovery_generations
[slot_num
] != slot_reco_gen
) {
1558 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num
,
1559 osb
->slot_recovery_generations
[slot_num
], slot_reco_gen
);
1560 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1565 /* Continue with recovery as the journal has not yet been recovered */
1567 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
1569 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status
);
1570 if (status
!= -ERESTARTSYS
)
1571 mlog(ML_ERROR
, "Could not lock journal!\n");
1576 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
1578 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1579 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1581 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
1582 mlog(0, "No recovery required for node %d\n", node_num
);
1583 /* Refresh recovery generation for the slot */
1584 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1588 /* we need to run complete recovery for offline orphan slots */
1589 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1591 mlog(ML_NOTICE
, "Recovering node %d from slot %d on device (%u,%u)\n",
1593 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1595 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
1597 status
= ocfs2_force_read_journal(inode
);
1603 mlog(0, "calling journal_init_inode\n");
1604 journal
= jbd2_journal_init_inode(inode
);
1605 if (journal
== NULL
) {
1606 mlog(ML_ERROR
, "Linux journal layer error\n");
1611 status
= jbd2_journal_load(journal
);
1616 jbd2_journal_destroy(journal
);
1620 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1622 /* wipe the journal */
1623 mlog(0, "flushing the journal.\n");
1624 jbd2_journal_lock_updates(journal
);
1625 status
= jbd2_journal_flush(journal
);
1626 jbd2_journal_unlock_updates(journal
);
1630 /* This will mark the node clean */
1631 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1632 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1633 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1635 /* Increment recovery generation to indicate successful recovery */
1636 ocfs2_bump_recovery_generation(fe
);
1637 osb
->slot_recovery_generations
[slot_num
] =
1638 ocfs2_get_recovery_generation(fe
);
1640 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
1641 status
= ocfs2_write_block(osb
, bh
, inode
);
1648 jbd2_journal_destroy(journal
);
1651 /* drop the lock on this nodes journal */
1653 ocfs2_inode_unlock(inode
, 1);
1665 * Do the most important parts of node recovery:
1666 * - Replay it's journal
1667 * - Stamp a clean local allocator file
1668 * - Stamp a clean truncate log
1669 * - Mark the node clean
1671 * If this function completes without error, a node in OCFS2 can be
1672 * said to have been safely recovered. As a result, failure during the
1673 * second part of a nodes recovery process (local alloc recovery) is
1674 * far less concerning.
1676 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1677 int node_num
, int slot_num
)
1680 struct ocfs2_dinode
*la_copy
= NULL
;
1681 struct ocfs2_dinode
*tl_copy
= NULL
;
1683 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1684 node_num
, slot_num
, osb
->node_num
);
1686 /* Should not ever be called to recover ourselves -- in that
1687 * case we should've called ocfs2_journal_load instead. */
1688 BUG_ON(osb
->node_num
== node_num
);
1690 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1692 if (status
== -EBUSY
) {
1693 mlog(0, "Skipping recovery for slot %u (node %u) "
1694 "as another node has recovered it\n", slot_num
,
1703 /* Stamp a clean local alloc file AFTER recovering the journal... */
1704 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1710 /* An error from begin_truncate_log_recovery is not
1711 * serious enough to warrant halting the rest of
1713 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1717 /* Likewise, this would be a strange but ultimately not so
1718 * harmful place to get an error... */
1719 status
= ocfs2_clear_slot(osb
, slot_num
);
1723 /* This will kfree the memory pointed to by la_copy and tl_copy */
1724 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1734 /* Test node liveness by trylocking his journal. If we get the lock,
1735 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1736 * still alive (we couldn't get the lock) and < 0 on error. */
1737 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1741 struct inode
*inode
= NULL
;
1743 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1745 if (inode
== NULL
) {
1746 mlog(ML_ERROR
, "access error\n");
1750 if (is_bad_inode(inode
)) {
1751 mlog(ML_ERROR
, "access error (bad inode)\n");
1757 SET_INODE_JOURNAL(inode
);
1759 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1760 status
= ocfs2_inode_lock_full(inode
, NULL
, 1, flags
);
1762 if (status
!= -EAGAIN
)
1767 ocfs2_inode_unlock(inode
, 1);
1775 /* Call this underneath ocfs2_super_lock. It also assumes that the
1776 * slot info struct has been updated from disk. */
1777 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1779 unsigned int node_num
;
1782 struct buffer_head
*bh
= NULL
;
1783 struct ocfs2_dinode
*di
;
1785 /* This is called with the super block cluster lock, so we
1786 * know that the slot map can't change underneath us. */
1788 for (i
= 0; i
< osb
->max_slots
; i
++) {
1789 /* Read journal inode to get the recovery generation */
1790 status
= ocfs2_read_journal_inode(osb
, i
, &bh
, NULL
);
1795 di
= (struct ocfs2_dinode
*)bh
->b_data
;
1796 gen
= ocfs2_get_recovery_generation(di
);
1800 spin_lock(&osb
->osb_lock
);
1801 osb
->slot_recovery_generations
[i
] = gen
;
1803 mlog(0, "Slot %u recovery generation is %u\n", i
,
1804 osb
->slot_recovery_generations
[i
]);
1806 if (i
== osb
->slot_num
) {
1807 spin_unlock(&osb
->osb_lock
);
1811 status
= ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
);
1812 if (status
== -ENOENT
) {
1813 spin_unlock(&osb
->osb_lock
);
1817 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
1818 spin_unlock(&osb
->osb_lock
);
1821 spin_unlock(&osb
->osb_lock
);
1823 /* Ok, we have a slot occupied by another node which
1824 * is not in the recovery map. We trylock his journal
1825 * file here to test if he's alive. */
1826 status
= ocfs2_trylock_journal(osb
, i
);
1828 /* Since we're called from mount, we know that
1829 * the recovery thread can't race us on
1830 * setting / checking the recovery bits. */
1831 ocfs2_recovery_thread(osb
, node_num
);
1832 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1844 struct ocfs2_orphan_filldir_priv
{
1846 struct ocfs2_super
*osb
;
1849 static int ocfs2_orphan_filldir(void *priv
, const char *name
, int name_len
,
1850 loff_t pos
, u64 ino
, unsigned type
)
1852 struct ocfs2_orphan_filldir_priv
*p
= priv
;
1855 if (name_len
== 1 && !strncmp(".", name
, 1))
1857 if (name_len
== 2 && !strncmp("..", name
, 2))
1860 /* Skip bad inodes so that recovery can continue */
1861 iter
= ocfs2_iget(p
->osb
, ino
,
1862 OCFS2_FI_FLAG_ORPHAN_RECOVERY
, 0);
1866 mlog(0, "queue orphan %llu\n",
1867 (unsigned long long)OCFS2_I(iter
)->ip_blkno
);
1868 /* No locking is required for the next_orphan queue as there
1869 * is only ever a single process doing orphan recovery. */
1870 OCFS2_I(iter
)->ip_next_orphan
= p
->head
;
1876 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
1878 struct inode
**head
)
1881 struct inode
*orphan_dir_inode
= NULL
;
1882 struct ocfs2_orphan_filldir_priv priv
;
1888 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
1889 ORPHAN_DIR_SYSTEM_INODE
,
1891 if (!orphan_dir_inode
) {
1897 mutex_lock(&orphan_dir_inode
->i_mutex
);
1898 status
= ocfs2_inode_lock(orphan_dir_inode
, NULL
, 0);
1904 status
= ocfs2_dir_foreach(orphan_dir_inode
, &pos
, &priv
,
1905 ocfs2_orphan_filldir
);
1914 ocfs2_inode_unlock(orphan_dir_inode
, 0);
1916 mutex_unlock(&orphan_dir_inode
->i_mutex
);
1917 iput(orphan_dir_inode
);
1921 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
1926 spin_lock(&osb
->osb_lock
);
1927 ret
= !osb
->osb_orphan_wipes
[slot
];
1928 spin_unlock(&osb
->osb_lock
);
1932 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
1935 spin_lock(&osb
->osb_lock
);
1936 /* Mark ourselves such that new processes in delete_inode()
1937 * know to quit early. */
1938 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
1939 while (osb
->osb_orphan_wipes
[slot
]) {
1940 /* If any processes are already in the middle of an
1941 * orphan wipe on this dir, then we need to wait for
1943 spin_unlock(&osb
->osb_lock
);
1944 wait_event_interruptible(osb
->osb_wipe_event
,
1945 ocfs2_orphan_recovery_can_continue(osb
, slot
));
1946 spin_lock(&osb
->osb_lock
);
1948 spin_unlock(&osb
->osb_lock
);
1951 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
1954 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
1958 * Orphan recovery. Each mounted node has it's own orphan dir which we
1959 * must run during recovery. Our strategy here is to build a list of
1960 * the inodes in the orphan dir and iget/iput them. The VFS does
1961 * (most) of the rest of the work.
1963 * Orphan recovery can happen at any time, not just mount so we have a
1964 * couple of extra considerations.
1966 * - We grab as many inodes as we can under the orphan dir lock -
1967 * doing iget() outside the orphan dir risks getting a reference on
1969 * - We must be sure not to deadlock with other processes on the
1970 * system wanting to run delete_inode(). This can happen when they go
1971 * to lock the orphan dir and the orphan recovery process attempts to
1972 * iget() inside the orphan dir lock. This can be avoided by
1973 * advertising our state to ocfs2_delete_inode().
1975 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
1979 struct inode
*inode
= NULL
;
1981 struct ocfs2_inode_info
*oi
;
1983 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot
);
1985 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
1986 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
);
1987 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
1989 /* Error here should be noted, but we want to continue with as
1990 * many queued inodes as we've got. */
1995 oi
= OCFS2_I(inode
);
1996 mlog(0, "iput orphan %llu\n", (unsigned long long)oi
->ip_blkno
);
1998 iter
= oi
->ip_next_orphan
;
2000 spin_lock(&oi
->ip_lock
);
2001 /* The remote delete code may have set these on the
2002 * assumption that the other node would wipe them
2003 * successfully. If they are still in the node's
2004 * orphan dir, we need to reset that state. */
2005 oi
->ip_flags
&= ~(OCFS2_INODE_DELETED
|OCFS2_INODE_SKIP_DELETE
);
2007 /* Set the proper information to get us going into
2008 * ocfs2_delete_inode. */
2009 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
2010 spin_unlock(&oi
->ip_lock
);
2020 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
)
2022 /* This check is good because ocfs2 will wait on our recovery
2023 * thread before changing it to something other than MOUNTED
2025 wait_event(osb
->osb_mount_event
,
2026 (!quota
&& atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
) ||
2027 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED_QUOTAS
||
2028 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
2030 /* If there's an error on mount, then we may never get to the
2031 * MOUNTED flag, but this is set right before
2032 * dismount_volume() so we can trust it. */
2033 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
2034 mlog(0, "mount error, exiting!\n");
2041 static int ocfs2_commit_thread(void *arg
)
2044 struct ocfs2_super
*osb
= arg
;
2045 struct ocfs2_journal
*journal
= osb
->journal
;
2047 /* we can trust j_num_trans here because _should_stop() is only set in
2048 * shutdown and nobody other than ourselves should be able to start
2049 * transactions. committing on shutdown might take a few iterations
2050 * as final transactions put deleted inodes on the list */
2051 while (!(kthread_should_stop() &&
2052 atomic_read(&journal
->j_num_trans
) == 0)) {
2054 wait_event_interruptible(osb
->checkpoint_event
,
2055 atomic_read(&journal
->j_num_trans
)
2056 || kthread_should_stop());
2058 status
= ocfs2_commit_cache(osb
);
2062 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
2064 "commit_thread: %u transactions pending on "
2066 atomic_read(&journal
->j_num_trans
));
2073 /* Reads all the journal inodes without taking any cluster locks. Used
2074 * for hard readonly access to determine whether any journal requires
2075 * recovery. Also used to refresh the recovery generation numbers after
2076 * a journal has been recovered by another node.
2078 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
2082 struct buffer_head
*di_bh
= NULL
;
2083 struct ocfs2_dinode
*di
;
2084 int journal_dirty
= 0;
2086 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
2087 ret
= ocfs2_read_journal_inode(osb
, slot
, &di_bh
, NULL
);
2093 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
2095 osb
->slot_recovery_generations
[slot
] =
2096 ocfs2_get_recovery_generation(di
);
2098 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
2099 OCFS2_JOURNAL_DIRTY_FL
)