4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <linux/fs_struct.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
36 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
37 #define HASH_SIZE (1UL << HASH_SHIFT)
39 /* spinlock for vfsmount related operations, inplace of dcache_lock */
40 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(vfsmount_lock
);
43 static DEFINE_IDA(mnt_id_ida
);
44 static DEFINE_IDA(mnt_group_ida
);
46 static struct list_head
*mount_hashtable __read_mostly
;
47 static struct kmem_cache
*mnt_cache __read_mostly
;
48 static struct rw_semaphore namespace_sem
;
51 struct kobject
*fs_kobj
;
52 EXPORT_SYMBOL_GPL(fs_kobj
);
54 static inline unsigned long hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
56 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
57 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
58 tmp
= tmp
+ (tmp
>> HASH_SHIFT
);
59 return tmp
& (HASH_SIZE
- 1);
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
64 /* allocation is serialized by namespace_sem */
65 static int mnt_alloc_id(struct vfsmount
*mnt
)
70 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
71 spin_lock(&vfsmount_lock
);
72 res
= ida_get_new(&mnt_id_ida
, &mnt
->mnt_id
);
73 spin_unlock(&vfsmount_lock
);
80 static void mnt_free_id(struct vfsmount
*mnt
)
82 spin_lock(&vfsmount_lock
);
83 ida_remove(&mnt_id_ida
, mnt
->mnt_id
);
84 spin_unlock(&vfsmount_lock
);
88 * Allocate a new peer group ID
90 * mnt_group_ida is protected by namespace_sem
92 static int mnt_alloc_group_id(struct vfsmount
*mnt
)
94 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
97 return ida_get_new_above(&mnt_group_ida
, 1, &mnt
->mnt_group_id
);
101 * Release a peer group ID
103 void mnt_release_group_id(struct vfsmount
*mnt
)
105 ida_remove(&mnt_group_ida
, mnt
->mnt_group_id
);
106 mnt
->mnt_group_id
= 0;
109 struct vfsmount
*alloc_vfsmnt(const char *name
)
111 struct vfsmount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
115 err
= mnt_alloc_id(mnt
);
120 mnt
->mnt_devname
= kstrdup(name
, GFP_KERNEL
);
121 if (!mnt
->mnt_devname
)
125 atomic_set(&mnt
->mnt_count
, 1);
126 INIT_LIST_HEAD(&mnt
->mnt_hash
);
127 INIT_LIST_HEAD(&mnt
->mnt_child
);
128 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
129 INIT_LIST_HEAD(&mnt
->mnt_list
);
130 INIT_LIST_HEAD(&mnt
->mnt_expire
);
131 INIT_LIST_HEAD(&mnt
->mnt_share
);
132 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
133 INIT_LIST_HEAD(&mnt
->mnt_slave
);
135 mnt
->mnt_writers
= alloc_percpu(int);
136 if (!mnt
->mnt_writers
)
137 goto out_free_devname
;
139 mnt
->mnt_writers
= 0;
146 kfree(mnt
->mnt_devname
);
151 kmem_cache_free(mnt_cache
, mnt
);
156 * Most r/o checks on a fs are for operations that take
157 * discrete amounts of time, like a write() or unlink().
158 * We must keep track of when those operations start
159 * (for permission checks) and when they end, so that
160 * we can determine when writes are able to occur to
164 * __mnt_is_readonly: check whether a mount is read-only
165 * @mnt: the mount to check for its write status
167 * This shouldn't be used directly ouside of the VFS.
168 * It does not guarantee that the filesystem will stay
169 * r/w, just that it is right *now*. This can not and
170 * should not be used in place of IS_RDONLY(inode).
171 * mnt_want/drop_write() will _keep_ the filesystem
174 int __mnt_is_readonly(struct vfsmount
*mnt
)
176 if (mnt
->mnt_flags
& MNT_READONLY
)
178 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
182 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
184 static inline void inc_mnt_writers(struct vfsmount
*mnt
)
187 (*per_cpu_ptr(mnt
->mnt_writers
, smp_processor_id()))++;
193 static inline void dec_mnt_writers(struct vfsmount
*mnt
)
196 (*per_cpu_ptr(mnt
->mnt_writers
, smp_processor_id()))--;
202 static unsigned int count_mnt_writers(struct vfsmount
*mnt
)
205 unsigned int count
= 0;
208 for_each_possible_cpu(cpu
) {
209 count
+= *per_cpu_ptr(mnt
->mnt_writers
, cpu
);
214 return mnt
->mnt_writers
;
219 * Most r/o checks on a fs are for operations that take
220 * discrete amounts of time, like a write() or unlink().
221 * We must keep track of when those operations start
222 * (for permission checks) and when they end, so that
223 * we can determine when writes are able to occur to
227 * mnt_want_write - get write access to a mount
228 * @mnt: the mount on which to take a write
230 * This tells the low-level filesystem that a write is
231 * about to be performed to it, and makes sure that
232 * writes are allowed before returning success. When
233 * the write operation is finished, mnt_drop_write()
234 * must be called. This is effectively a refcount.
236 int mnt_want_write(struct vfsmount
*mnt
)
241 inc_mnt_writers(mnt
);
243 * The store to inc_mnt_writers must be visible before we pass
244 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
245 * incremented count after it has set MNT_WRITE_HOLD.
248 while (mnt
->mnt_flags
& MNT_WRITE_HOLD
)
251 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
252 * be set to match its requirements. So we must not load that until
253 * MNT_WRITE_HOLD is cleared.
256 if (__mnt_is_readonly(mnt
)) {
257 dec_mnt_writers(mnt
);
265 EXPORT_SYMBOL_GPL(mnt_want_write
);
268 * mnt_clone_write - get write access to a mount
269 * @mnt: the mount on which to take a write
271 * This is effectively like mnt_want_write, except
272 * it must only be used to take an extra write reference
273 * on a mountpoint that we already know has a write reference
274 * on it. This allows some optimisation.
276 * After finished, mnt_drop_write must be called as usual to
277 * drop the reference.
279 int mnt_clone_write(struct vfsmount
*mnt
)
281 /* superblock may be r/o */
282 if (__mnt_is_readonly(mnt
))
285 inc_mnt_writers(mnt
);
289 EXPORT_SYMBOL_GPL(mnt_clone_write
);
292 * mnt_want_write_file - get write access to a file's mount
293 * @file: the file who's mount on which to take a write
295 * This is like mnt_want_write, but it takes a file and can
296 * do some optimisations if the file is open for write already
298 int mnt_want_write_file(struct file
*file
)
300 if (!(file
->f_mode
& FMODE_WRITE
))
301 return mnt_want_write(file
->f_path
.mnt
);
303 return mnt_clone_write(file
->f_path
.mnt
);
305 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
308 * mnt_drop_write - give up write access to a mount
309 * @mnt: the mount on which to give up write access
311 * Tells the low-level filesystem that we are done
312 * performing writes to it. Must be matched with
313 * mnt_want_write() call above.
315 void mnt_drop_write(struct vfsmount
*mnt
)
318 dec_mnt_writers(mnt
);
321 EXPORT_SYMBOL_GPL(mnt_drop_write
);
323 static int mnt_make_readonly(struct vfsmount
*mnt
)
327 spin_lock(&vfsmount_lock
);
328 mnt
->mnt_flags
|= MNT_WRITE_HOLD
;
330 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
331 * should be visible before we do.
336 * With writers on hold, if this value is zero, then there are
337 * definitely no active writers (although held writers may subsequently
338 * increment the count, they'll have to wait, and decrement it after
339 * seeing MNT_READONLY).
341 * It is OK to have counter incremented on one CPU and decremented on
342 * another: the sum will add up correctly. The danger would be when we
343 * sum up each counter, if we read a counter before it is incremented,
344 * but then read another CPU's count which it has been subsequently
345 * decremented from -- we would see more decrements than we should.
346 * MNT_WRITE_HOLD protects against this scenario, because
347 * mnt_want_write first increments count, then smp_mb, then spins on
348 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
349 * we're counting up here.
351 if (count_mnt_writers(mnt
) > 0)
354 mnt
->mnt_flags
|= MNT_READONLY
;
356 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
357 * that become unheld will see MNT_READONLY.
360 mnt
->mnt_flags
&= ~MNT_WRITE_HOLD
;
361 spin_unlock(&vfsmount_lock
);
365 static void __mnt_unmake_readonly(struct vfsmount
*mnt
)
367 spin_lock(&vfsmount_lock
);
368 mnt
->mnt_flags
&= ~MNT_READONLY
;
369 spin_unlock(&vfsmount_lock
);
372 void simple_set_mnt(struct vfsmount
*mnt
, struct super_block
*sb
)
375 mnt
->mnt_root
= dget(sb
->s_root
);
378 EXPORT_SYMBOL(simple_set_mnt
);
380 void free_vfsmnt(struct vfsmount
*mnt
)
382 kfree(mnt
->mnt_devname
);
385 free_percpu(mnt
->mnt_writers
);
387 kmem_cache_free(mnt_cache
, mnt
);
391 * find the first or last mount at @dentry on vfsmount @mnt depending on
392 * @dir. If @dir is set return the first mount else return the last mount.
394 struct vfsmount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
,
397 struct list_head
*head
= mount_hashtable
+ hash(mnt
, dentry
);
398 struct list_head
*tmp
= head
;
399 struct vfsmount
*p
, *found
= NULL
;
402 tmp
= dir
? tmp
->next
: tmp
->prev
;
406 p
= list_entry(tmp
, struct vfsmount
, mnt_hash
);
407 if (p
->mnt_parent
== mnt
&& p
->mnt_mountpoint
== dentry
) {
416 * lookup_mnt increments the ref count before returning
417 * the vfsmount struct.
419 struct vfsmount
*lookup_mnt(struct path
*path
)
421 struct vfsmount
*child_mnt
;
422 spin_lock(&vfsmount_lock
);
423 if ((child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
, 1)))
425 spin_unlock(&vfsmount_lock
);
429 static inline int check_mnt(struct vfsmount
*mnt
)
431 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
434 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
438 wake_up_interruptible(&ns
->poll
);
442 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
444 if (ns
&& ns
->event
!= event
) {
446 wake_up_interruptible(&ns
->poll
);
450 static void detach_mnt(struct vfsmount
*mnt
, struct path
*old_path
)
452 old_path
->dentry
= mnt
->mnt_mountpoint
;
453 old_path
->mnt
= mnt
->mnt_parent
;
454 mnt
->mnt_parent
= mnt
;
455 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
456 list_del_init(&mnt
->mnt_child
);
457 list_del_init(&mnt
->mnt_hash
);
458 old_path
->dentry
->d_mounted
--;
461 void mnt_set_mountpoint(struct vfsmount
*mnt
, struct dentry
*dentry
,
462 struct vfsmount
*child_mnt
)
464 child_mnt
->mnt_parent
= mntget(mnt
);
465 child_mnt
->mnt_mountpoint
= dget(dentry
);
469 static void attach_mnt(struct vfsmount
*mnt
, struct path
*path
)
471 mnt_set_mountpoint(path
->mnt
, path
->dentry
, mnt
);
472 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
473 hash(path
->mnt
, path
->dentry
));
474 list_add_tail(&mnt
->mnt_child
, &path
->mnt
->mnt_mounts
);
478 * the caller must hold vfsmount_lock
480 static void commit_tree(struct vfsmount
*mnt
)
482 struct vfsmount
*parent
= mnt
->mnt_parent
;
485 struct mnt_namespace
*n
= parent
->mnt_ns
;
487 BUG_ON(parent
== mnt
);
489 list_add_tail(&head
, &mnt
->mnt_list
);
490 list_for_each_entry(m
, &head
, mnt_list
)
492 list_splice(&head
, n
->list
.prev
);
494 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
495 hash(parent
, mnt
->mnt_mountpoint
));
496 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
497 touch_mnt_namespace(n
);
500 static struct vfsmount
*next_mnt(struct vfsmount
*p
, struct vfsmount
*root
)
502 struct list_head
*next
= p
->mnt_mounts
.next
;
503 if (next
== &p
->mnt_mounts
) {
507 next
= p
->mnt_child
.next
;
508 if (next
!= &p
->mnt_parent
->mnt_mounts
)
513 return list_entry(next
, struct vfsmount
, mnt_child
);
516 static struct vfsmount
*skip_mnt_tree(struct vfsmount
*p
)
518 struct list_head
*prev
= p
->mnt_mounts
.prev
;
519 while (prev
!= &p
->mnt_mounts
) {
520 p
= list_entry(prev
, struct vfsmount
, mnt_child
);
521 prev
= p
->mnt_mounts
.prev
;
526 static struct vfsmount
*clone_mnt(struct vfsmount
*old
, struct dentry
*root
,
529 struct super_block
*sb
= old
->mnt_sb
;
530 struct vfsmount
*mnt
= alloc_vfsmnt(old
->mnt_devname
);
533 if (flag
& (CL_SLAVE
| CL_PRIVATE
))
534 mnt
->mnt_group_id
= 0; /* not a peer of original */
536 mnt
->mnt_group_id
= old
->mnt_group_id
;
538 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
539 int err
= mnt_alloc_group_id(mnt
);
544 mnt
->mnt_flags
= old
->mnt_flags
;
545 atomic_inc(&sb
->s_active
);
547 mnt
->mnt_root
= dget(root
);
548 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
549 mnt
->mnt_parent
= mnt
;
551 if (flag
& CL_SLAVE
) {
552 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
553 mnt
->mnt_master
= old
;
554 CLEAR_MNT_SHARED(mnt
);
555 } else if (!(flag
& CL_PRIVATE
)) {
556 if ((flag
& CL_PROPAGATION
) || IS_MNT_SHARED(old
))
557 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
558 if (IS_MNT_SLAVE(old
))
559 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
560 mnt
->mnt_master
= old
->mnt_master
;
562 if (flag
& CL_MAKE_SHARED
)
565 /* stick the duplicate mount on the same expiry list
566 * as the original if that was on one */
567 if (flag
& CL_EXPIRE
) {
568 if (!list_empty(&old
->mnt_expire
))
569 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
579 static inline void __mntput(struct vfsmount
*mnt
)
581 struct super_block
*sb
= mnt
->mnt_sb
;
583 * This probably indicates that somebody messed
584 * up a mnt_want/drop_write() pair. If this
585 * happens, the filesystem was probably unable
586 * to make r/w->r/o transitions.
589 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
590 * provides barriers, so count_mnt_writers() below is safe. AV
592 WARN_ON(count_mnt_writers(mnt
));
595 deactivate_super(sb
);
598 void mntput_no_expire(struct vfsmount
*mnt
)
601 if (atomic_dec_and_lock(&mnt
->mnt_count
, &vfsmount_lock
)) {
602 if (likely(!mnt
->mnt_pinned
)) {
603 spin_unlock(&vfsmount_lock
);
607 atomic_add(mnt
->mnt_pinned
+ 1, &mnt
->mnt_count
);
609 spin_unlock(&vfsmount_lock
);
610 acct_auto_close_mnt(mnt
);
611 security_sb_umount_close(mnt
);
616 EXPORT_SYMBOL(mntput_no_expire
);
618 void mnt_pin(struct vfsmount
*mnt
)
620 spin_lock(&vfsmount_lock
);
622 spin_unlock(&vfsmount_lock
);
625 EXPORT_SYMBOL(mnt_pin
);
627 void mnt_unpin(struct vfsmount
*mnt
)
629 spin_lock(&vfsmount_lock
);
630 if (mnt
->mnt_pinned
) {
631 atomic_inc(&mnt
->mnt_count
);
634 spin_unlock(&vfsmount_lock
);
637 EXPORT_SYMBOL(mnt_unpin
);
639 static inline void mangle(struct seq_file
*m
, const char *s
)
641 seq_escape(m
, s
, " \t\n\\");
645 * Simple .show_options callback for filesystems which don't want to
646 * implement more complex mount option showing.
648 * See also save_mount_options().
650 int generic_show_options(struct seq_file
*m
, struct vfsmount
*mnt
)
655 options
= rcu_dereference(mnt
->mnt_sb
->s_options
);
657 if (options
!= NULL
&& options
[0]) {
665 EXPORT_SYMBOL(generic_show_options
);
668 * If filesystem uses generic_show_options(), this function should be
669 * called from the fill_super() callback.
671 * The .remount_fs callback usually needs to be handled in a special
672 * way, to make sure, that previous options are not overwritten if the
675 * Also note, that if the filesystem's .remount_fs function doesn't
676 * reset all options to their default value, but changes only newly
677 * given options, then the displayed options will not reflect reality
680 void save_mount_options(struct super_block
*sb
, char *options
)
682 BUG_ON(sb
->s_options
);
683 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
685 EXPORT_SYMBOL(save_mount_options
);
687 void replace_mount_options(struct super_block
*sb
, char *options
)
689 char *old
= sb
->s_options
;
690 rcu_assign_pointer(sb
->s_options
, options
);
696 EXPORT_SYMBOL(replace_mount_options
);
698 #ifdef CONFIG_PROC_FS
700 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
702 struct proc_mounts
*p
= m
->private;
704 down_read(&namespace_sem
);
705 return seq_list_start(&p
->ns
->list
, *pos
);
708 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
710 struct proc_mounts
*p
= m
->private;
712 return seq_list_next(v
, &p
->ns
->list
, pos
);
715 static void m_stop(struct seq_file
*m
, void *v
)
717 up_read(&namespace_sem
);
720 struct proc_fs_info
{
725 static int show_sb_opts(struct seq_file
*m
, struct super_block
*sb
)
727 static const struct proc_fs_info fs_info
[] = {
728 { MS_SYNCHRONOUS
, ",sync" },
729 { MS_DIRSYNC
, ",dirsync" },
730 { MS_MANDLOCK
, ",mand" },
733 const struct proc_fs_info
*fs_infop
;
735 for (fs_infop
= fs_info
; fs_infop
->flag
; fs_infop
++) {
736 if (sb
->s_flags
& fs_infop
->flag
)
737 seq_puts(m
, fs_infop
->str
);
740 return security_sb_show_options(m
, sb
);
743 static void show_mnt_opts(struct seq_file
*m
, struct vfsmount
*mnt
)
745 static const struct proc_fs_info mnt_info
[] = {
746 { MNT_NOSUID
, ",nosuid" },
747 { MNT_NODEV
, ",nodev" },
748 { MNT_NOEXEC
, ",noexec" },
749 { MNT_NOATIME
, ",noatime" },
750 { MNT_NODIRATIME
, ",nodiratime" },
751 { MNT_RELATIME
, ",relatime" },
752 { MNT_STRICTATIME
, ",strictatime" },
755 const struct proc_fs_info
*fs_infop
;
757 for (fs_infop
= mnt_info
; fs_infop
->flag
; fs_infop
++) {
758 if (mnt
->mnt_flags
& fs_infop
->flag
)
759 seq_puts(m
, fs_infop
->str
);
763 static void show_type(struct seq_file
*m
, struct super_block
*sb
)
765 mangle(m
, sb
->s_type
->name
);
766 if (sb
->s_subtype
&& sb
->s_subtype
[0]) {
768 mangle(m
, sb
->s_subtype
);
772 static int show_vfsmnt(struct seq_file
*m
, void *v
)
774 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
776 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
778 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
780 seq_path(m
, &mnt_path
, " \t\n\\");
782 show_type(m
, mnt
->mnt_sb
);
783 seq_puts(m
, __mnt_is_readonly(mnt
) ? " ro" : " rw");
784 err
= show_sb_opts(m
, mnt
->mnt_sb
);
787 show_mnt_opts(m
, mnt
);
788 if (mnt
->mnt_sb
->s_op
->show_options
)
789 err
= mnt
->mnt_sb
->s_op
->show_options(m
, mnt
);
790 seq_puts(m
, " 0 0\n");
795 const struct seq_operations mounts_op
= {
802 static int show_mountinfo(struct seq_file
*m
, void *v
)
804 struct proc_mounts
*p
= m
->private;
805 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
806 struct super_block
*sb
= mnt
->mnt_sb
;
807 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
808 struct path root
= p
->root
;
811 seq_printf(m
, "%i %i %u:%u ", mnt
->mnt_id
, mnt
->mnt_parent
->mnt_id
,
812 MAJOR(sb
->s_dev
), MINOR(sb
->s_dev
));
813 seq_dentry(m
, mnt
->mnt_root
, " \t\n\\");
815 seq_path_root(m
, &mnt_path
, &root
, " \t\n\\");
816 if (root
.mnt
!= p
->root
.mnt
|| root
.dentry
!= p
->root
.dentry
) {
818 * Mountpoint is outside root, discard that one. Ugly,
819 * but less so than trying to do that in iterator in a
820 * race-free way (due to renames).
824 seq_puts(m
, mnt
->mnt_flags
& MNT_READONLY
? " ro" : " rw");
825 show_mnt_opts(m
, mnt
);
827 /* Tagged fields ("foo:X" or "bar") */
828 if (IS_MNT_SHARED(mnt
))
829 seq_printf(m
, " shared:%i", mnt
->mnt_group_id
);
830 if (IS_MNT_SLAVE(mnt
)) {
831 int master
= mnt
->mnt_master
->mnt_group_id
;
832 int dom
= get_dominating_id(mnt
, &p
->root
);
833 seq_printf(m
, " master:%i", master
);
834 if (dom
&& dom
!= master
)
835 seq_printf(m
, " propagate_from:%i", dom
);
837 if (IS_MNT_UNBINDABLE(mnt
))
838 seq_puts(m
, " unbindable");
840 /* Filesystem specific data */
844 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
845 seq_puts(m
, sb
->s_flags
& MS_RDONLY
? " ro" : " rw");
846 err
= show_sb_opts(m
, sb
);
849 if (sb
->s_op
->show_options
)
850 err
= sb
->s_op
->show_options(m
, mnt
);
856 const struct seq_operations mountinfo_op
= {
860 .show
= show_mountinfo
,
863 static int show_vfsstat(struct seq_file
*m
, void *v
)
865 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
866 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
870 if (mnt
->mnt_devname
) {
871 seq_puts(m
, "device ");
872 mangle(m
, mnt
->mnt_devname
);
874 seq_puts(m
, "no device");
877 seq_puts(m
, " mounted on ");
878 seq_path(m
, &mnt_path
, " \t\n\\");
881 /* file system type */
882 seq_puts(m
, "with fstype ");
883 show_type(m
, mnt
->mnt_sb
);
885 /* optional statistics */
886 if (mnt
->mnt_sb
->s_op
->show_stats
) {
888 err
= mnt
->mnt_sb
->s_op
->show_stats(m
, mnt
);
895 const struct seq_operations mountstats_op
= {
899 .show
= show_vfsstat
,
901 #endif /* CONFIG_PROC_FS */
904 * may_umount_tree - check if a mount tree is busy
905 * @mnt: root of mount tree
907 * This is called to check if a tree of mounts has any
908 * open files, pwds, chroots or sub mounts that are
911 int may_umount_tree(struct vfsmount
*mnt
)
914 int minimum_refs
= 0;
917 spin_lock(&vfsmount_lock
);
918 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
919 actual_refs
+= atomic_read(&p
->mnt_count
);
922 spin_unlock(&vfsmount_lock
);
924 if (actual_refs
> minimum_refs
)
930 EXPORT_SYMBOL(may_umount_tree
);
933 * may_umount - check if a mount point is busy
934 * @mnt: root of mount
936 * This is called to check if a mount point has any
937 * open files, pwds, chroots or sub mounts. If the
938 * mount has sub mounts this will return busy
939 * regardless of whether the sub mounts are busy.
941 * Doesn't take quota and stuff into account. IOW, in some cases it will
942 * give false negatives. The main reason why it's here is that we need
943 * a non-destructive way to look for easily umountable filesystems.
945 int may_umount(struct vfsmount
*mnt
)
948 spin_lock(&vfsmount_lock
);
949 if (propagate_mount_busy(mnt
, 2))
951 spin_unlock(&vfsmount_lock
);
955 EXPORT_SYMBOL(may_umount
);
957 void release_mounts(struct list_head
*head
)
959 struct vfsmount
*mnt
;
960 while (!list_empty(head
)) {
961 mnt
= list_first_entry(head
, struct vfsmount
, mnt_hash
);
962 list_del_init(&mnt
->mnt_hash
);
963 if (mnt
->mnt_parent
!= mnt
) {
964 struct dentry
*dentry
;
966 spin_lock(&vfsmount_lock
);
967 dentry
= mnt
->mnt_mountpoint
;
969 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
970 mnt
->mnt_parent
= mnt
;
972 spin_unlock(&vfsmount_lock
);
980 void umount_tree(struct vfsmount
*mnt
, int propagate
, struct list_head
*kill
)
984 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
985 list_move(&p
->mnt_hash
, kill
);
988 propagate_umount(kill
);
990 list_for_each_entry(p
, kill
, mnt_hash
) {
991 list_del_init(&p
->mnt_expire
);
992 list_del_init(&p
->mnt_list
);
993 __touch_mnt_namespace(p
->mnt_ns
);
995 list_del_init(&p
->mnt_child
);
996 if (p
->mnt_parent
!= p
) {
997 p
->mnt_parent
->mnt_ghosts
++;
998 p
->mnt_mountpoint
->d_mounted
--;
1000 change_mnt_propagation(p
, MS_PRIVATE
);
1004 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
);
1006 static int do_umount(struct vfsmount
*mnt
, int flags
)
1008 struct super_block
*sb
= mnt
->mnt_sb
;
1010 LIST_HEAD(umount_list
);
1012 retval
= security_sb_umount(mnt
, flags
);
1017 * Allow userspace to request a mountpoint be expired rather than
1018 * unmounting unconditionally. Unmount only happens if:
1019 * (1) the mark is already set (the mark is cleared by mntput())
1020 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1022 if (flags
& MNT_EXPIRE
) {
1023 if (mnt
== current
->fs
->root
.mnt
||
1024 flags
& (MNT_FORCE
| MNT_DETACH
))
1027 if (atomic_read(&mnt
->mnt_count
) != 2)
1030 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1035 * If we may have to abort operations to get out of this
1036 * mount, and they will themselves hold resources we must
1037 * allow the fs to do things. In the Unix tradition of
1038 * 'Gee thats tricky lets do it in userspace' the umount_begin
1039 * might fail to complete on the first run through as other tasks
1040 * must return, and the like. Thats for the mount program to worry
1041 * about for the moment.
1044 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1045 sb
->s_op
->umount_begin(sb
);
1049 * No sense to grab the lock for this test, but test itself looks
1050 * somewhat bogus. Suggestions for better replacement?
1051 * Ho-hum... In principle, we might treat that as umount + switch
1052 * to rootfs. GC would eventually take care of the old vfsmount.
1053 * Actually it makes sense, especially if rootfs would contain a
1054 * /reboot - static binary that would close all descriptors and
1055 * call reboot(9). Then init(8) could umount root and exec /reboot.
1057 if (mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1059 * Special case for "unmounting" root ...
1060 * we just try to remount it readonly.
1062 down_write(&sb
->s_umount
);
1063 if (!(sb
->s_flags
& MS_RDONLY
))
1064 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1065 up_write(&sb
->s_umount
);
1069 down_write(&namespace_sem
);
1070 spin_lock(&vfsmount_lock
);
1073 if (!(flags
& MNT_DETACH
))
1074 shrink_submounts(mnt
, &umount_list
);
1077 if (flags
& MNT_DETACH
|| !propagate_mount_busy(mnt
, 2)) {
1078 if (!list_empty(&mnt
->mnt_list
))
1079 umount_tree(mnt
, 1, &umount_list
);
1082 spin_unlock(&vfsmount_lock
);
1084 security_sb_umount_busy(mnt
);
1085 up_write(&namespace_sem
);
1086 release_mounts(&umount_list
);
1091 * Now umount can handle mount points as well as block devices.
1092 * This is important for filesystems which use unnamed block devices.
1094 * We now support a flag for forced unmount like the other 'big iron'
1095 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1098 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1103 retval
= user_path(name
, &path
);
1107 if (path
.dentry
!= path
.mnt
->mnt_root
)
1109 if (!check_mnt(path
.mnt
))
1113 if (!capable(CAP_SYS_ADMIN
))
1116 retval
= do_umount(path
.mnt
, flags
);
1118 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1120 mntput_no_expire(path
.mnt
);
1125 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1128 * The 2.0 compatible umount. No flags.
1130 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1132 return sys_umount(name
, 0);
1137 static int mount_is_safe(struct path
*path
)
1139 if (capable(CAP_SYS_ADMIN
))
1143 if (S_ISLNK(path
->dentry
->d_inode
->i_mode
))
1145 if (path
->dentry
->d_inode
->i_mode
& S_ISVTX
) {
1146 if (current_uid() != path
->dentry
->d_inode
->i_uid
)
1149 if (inode_permission(path
->dentry
->d_inode
, MAY_WRITE
))
1155 struct vfsmount
*copy_tree(struct vfsmount
*mnt
, struct dentry
*dentry
,
1158 struct vfsmount
*res
, *p
, *q
, *r
, *s
;
1161 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(mnt
))
1164 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1167 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1170 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1171 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1174 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1175 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(s
)) {
1176 s
= skip_mnt_tree(s
);
1179 while (p
!= s
->mnt_parent
) {
1185 path
.dentry
= p
->mnt_mountpoint
;
1186 q
= clone_mnt(p
, p
->mnt_root
, flag
);
1189 spin_lock(&vfsmount_lock
);
1190 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1191 attach_mnt(q
, &path
);
1192 spin_unlock(&vfsmount_lock
);
1198 LIST_HEAD(umount_list
);
1199 spin_lock(&vfsmount_lock
);
1200 umount_tree(res
, 0, &umount_list
);
1201 spin_unlock(&vfsmount_lock
);
1202 release_mounts(&umount_list
);
1207 struct vfsmount
*collect_mounts(struct path
*path
)
1209 struct vfsmount
*tree
;
1210 down_write(&namespace_sem
);
1211 tree
= copy_tree(path
->mnt
, path
->dentry
, CL_COPY_ALL
| CL_PRIVATE
);
1212 up_write(&namespace_sem
);
1216 void drop_collected_mounts(struct vfsmount
*mnt
)
1218 LIST_HEAD(umount_list
);
1219 down_write(&namespace_sem
);
1220 spin_lock(&vfsmount_lock
);
1221 umount_tree(mnt
, 0, &umount_list
);
1222 spin_unlock(&vfsmount_lock
);
1223 up_write(&namespace_sem
);
1224 release_mounts(&umount_list
);
1227 static void cleanup_group_ids(struct vfsmount
*mnt
, struct vfsmount
*end
)
1231 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1232 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1233 mnt_release_group_id(p
);
1237 static int invent_group_ids(struct vfsmount
*mnt
, bool recurse
)
1241 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1242 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1243 int err
= mnt_alloc_group_id(p
);
1245 cleanup_group_ids(mnt
, p
);
1255 * @source_mnt : mount tree to be attached
1256 * @nd : place the mount tree @source_mnt is attached
1257 * @parent_nd : if non-null, detach the source_mnt from its parent and
1258 * store the parent mount and mountpoint dentry.
1259 * (done when source_mnt is moved)
1261 * NOTE: in the table below explains the semantics when a source mount
1262 * of a given type is attached to a destination mount of a given type.
1263 * ---------------------------------------------------------------------------
1264 * | BIND MOUNT OPERATION |
1265 * |**************************************************************************
1266 * | source-->| shared | private | slave | unbindable |
1270 * |**************************************************************************
1271 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1273 * |non-shared| shared (+) | private | slave (*) | invalid |
1274 * ***************************************************************************
1275 * A bind operation clones the source mount and mounts the clone on the
1276 * destination mount.
1278 * (++) the cloned mount is propagated to all the mounts in the propagation
1279 * tree of the destination mount and the cloned mount is added to
1280 * the peer group of the source mount.
1281 * (+) the cloned mount is created under the destination mount and is marked
1282 * as shared. The cloned mount is added to the peer group of the source
1284 * (+++) the mount is propagated to all the mounts in the propagation tree
1285 * of the destination mount and the cloned mount is made slave
1286 * of the same master as that of the source mount. The cloned mount
1287 * is marked as 'shared and slave'.
1288 * (*) the cloned mount is made a slave of the same master as that of the
1291 * ---------------------------------------------------------------------------
1292 * | MOVE MOUNT OPERATION |
1293 * |**************************************************************************
1294 * | source-->| shared | private | slave | unbindable |
1298 * |**************************************************************************
1299 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1301 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1302 * ***************************************************************************
1304 * (+) the mount is moved to the destination. And is then propagated to
1305 * all the mounts in the propagation tree of the destination mount.
1306 * (+*) the mount is moved to the destination.
1307 * (+++) the mount is moved to the destination and is then propagated to
1308 * all the mounts belonging to the destination mount's propagation tree.
1309 * the mount is marked as 'shared and slave'.
1310 * (*) the mount continues to be a slave at the new location.
1312 * if the source mount is a tree, the operations explained above is
1313 * applied to each mount in the tree.
1314 * Must be called without spinlocks held, since this function can sleep
1317 static int attach_recursive_mnt(struct vfsmount
*source_mnt
,
1318 struct path
*path
, struct path
*parent_path
)
1320 LIST_HEAD(tree_list
);
1321 struct vfsmount
*dest_mnt
= path
->mnt
;
1322 struct dentry
*dest_dentry
= path
->dentry
;
1323 struct vfsmount
*child
, *p
;
1326 if (IS_MNT_SHARED(dest_mnt
)) {
1327 err
= invent_group_ids(source_mnt
, true);
1331 err
= propagate_mnt(dest_mnt
, dest_dentry
, source_mnt
, &tree_list
);
1333 goto out_cleanup_ids
;
1335 if (IS_MNT_SHARED(dest_mnt
)) {
1336 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1340 spin_lock(&vfsmount_lock
);
1342 detach_mnt(source_mnt
, parent_path
);
1343 attach_mnt(source_mnt
, path
);
1344 touch_mnt_namespace(parent_path
->mnt
->mnt_ns
);
1346 mnt_set_mountpoint(dest_mnt
, dest_dentry
, source_mnt
);
1347 commit_tree(source_mnt
);
1350 list_for_each_entry_safe(child
, p
, &tree_list
, mnt_hash
) {
1351 list_del_init(&child
->mnt_hash
);
1354 spin_unlock(&vfsmount_lock
);
1358 if (IS_MNT_SHARED(dest_mnt
))
1359 cleanup_group_ids(source_mnt
, NULL
);
1364 static int graft_tree(struct vfsmount
*mnt
, struct path
*path
)
1367 if (mnt
->mnt_sb
->s_flags
& MS_NOUSER
)
1370 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1371 S_ISDIR(mnt
->mnt_root
->d_inode
->i_mode
))
1375 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1376 if (IS_DEADDIR(path
->dentry
->d_inode
))
1379 err
= security_sb_check_sb(mnt
, path
);
1384 if (!d_unlinked(path
->dentry
))
1385 err
= attach_recursive_mnt(mnt
, path
, NULL
);
1387 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1389 security_sb_post_addmount(mnt
, path
);
1394 * recursively change the type of the mountpoint.
1396 static int do_change_type(struct path
*path
, int flag
)
1398 struct vfsmount
*m
, *mnt
= path
->mnt
;
1399 int recurse
= flag
& MS_REC
;
1400 int type
= flag
& ~MS_REC
;
1403 if (!capable(CAP_SYS_ADMIN
))
1406 if (path
->dentry
!= path
->mnt
->mnt_root
)
1409 down_write(&namespace_sem
);
1410 if (type
== MS_SHARED
) {
1411 err
= invent_group_ids(mnt
, recurse
);
1416 spin_lock(&vfsmount_lock
);
1417 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
1418 change_mnt_propagation(m
, type
);
1419 spin_unlock(&vfsmount_lock
);
1422 up_write(&namespace_sem
);
1427 * do loopback mount.
1429 static int do_loopback(struct path
*path
, char *old_name
,
1432 struct path old_path
;
1433 struct vfsmount
*mnt
= NULL
;
1434 int err
= mount_is_safe(path
);
1437 if (!old_name
|| !*old_name
)
1439 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1443 down_write(&namespace_sem
);
1445 if (IS_MNT_UNBINDABLE(old_path
.mnt
))
1448 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1453 mnt
= copy_tree(old_path
.mnt
, old_path
.dentry
, 0);
1455 mnt
= clone_mnt(old_path
.mnt
, old_path
.dentry
, 0);
1460 err
= graft_tree(mnt
, path
);
1462 LIST_HEAD(umount_list
);
1463 spin_lock(&vfsmount_lock
);
1464 umount_tree(mnt
, 0, &umount_list
);
1465 spin_unlock(&vfsmount_lock
);
1466 release_mounts(&umount_list
);
1470 up_write(&namespace_sem
);
1471 path_put(&old_path
);
1475 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
1478 int readonly_request
= 0;
1480 if (ms_flags
& MS_RDONLY
)
1481 readonly_request
= 1;
1482 if (readonly_request
== __mnt_is_readonly(mnt
))
1485 if (readonly_request
)
1486 error
= mnt_make_readonly(mnt
);
1488 __mnt_unmake_readonly(mnt
);
1493 * change filesystem flags. dir should be a physical root of filesystem.
1494 * If you've mounted a non-root directory somewhere and want to do remount
1495 * on it - tough luck.
1497 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
1501 struct super_block
*sb
= path
->mnt
->mnt_sb
;
1503 if (!capable(CAP_SYS_ADMIN
))
1506 if (!check_mnt(path
->mnt
))
1509 if (path
->dentry
!= path
->mnt
->mnt_root
)
1512 down_write(&sb
->s_umount
);
1513 if (flags
& MS_BIND
)
1514 err
= change_mount_flags(path
->mnt
, flags
);
1516 err
= do_remount_sb(sb
, flags
, data
, 0);
1518 path
->mnt
->mnt_flags
= mnt_flags
;
1519 up_write(&sb
->s_umount
);
1521 security_sb_post_remount(path
->mnt
, flags
, data
);
1523 spin_lock(&vfsmount_lock
);
1524 touch_mnt_namespace(path
->mnt
->mnt_ns
);
1525 spin_unlock(&vfsmount_lock
);
1530 static inline int tree_contains_unbindable(struct vfsmount
*mnt
)
1533 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1534 if (IS_MNT_UNBINDABLE(p
))
1540 static int do_move_mount(struct path
*path
, char *old_name
)
1542 struct path old_path
, parent_path
;
1545 if (!capable(CAP_SYS_ADMIN
))
1547 if (!old_name
|| !*old_name
)
1549 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1553 down_write(&namespace_sem
);
1554 while (d_mountpoint(path
->dentry
) &&
1558 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1562 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1563 if (IS_DEADDIR(path
->dentry
->d_inode
))
1566 if (d_unlinked(path
->dentry
))
1570 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
1573 if (old_path
.mnt
== old_path
.mnt
->mnt_parent
)
1576 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1577 S_ISDIR(old_path
.dentry
->d_inode
->i_mode
))
1580 * Don't move a mount residing in a shared parent.
1582 if (old_path
.mnt
->mnt_parent
&&
1583 IS_MNT_SHARED(old_path
.mnt
->mnt_parent
))
1586 * Don't move a mount tree containing unbindable mounts to a destination
1587 * mount which is shared.
1589 if (IS_MNT_SHARED(path
->mnt
) &&
1590 tree_contains_unbindable(old_path
.mnt
))
1593 for (p
= path
->mnt
; p
->mnt_parent
!= p
; p
= p
->mnt_parent
)
1594 if (p
== old_path
.mnt
)
1597 err
= attach_recursive_mnt(old_path
.mnt
, path
, &parent_path
);
1601 /* if the mount is moved, it should no longer be expire
1603 list_del_init(&old_path
.mnt
->mnt_expire
);
1605 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1607 up_write(&namespace_sem
);
1609 path_put(&parent_path
);
1610 path_put(&old_path
);
1615 * create a new mount for userspace and request it to be added into the
1618 static int do_new_mount(struct path
*path
, char *type
, int flags
,
1619 int mnt_flags
, char *name
, void *data
)
1621 struct vfsmount
*mnt
;
1623 if (!type
|| !memchr(type
, 0, PAGE_SIZE
))
1626 /* we need capabilities... */
1627 if (!capable(CAP_SYS_ADMIN
))
1631 mnt
= do_kern_mount(type
, flags
, name
, data
);
1634 return PTR_ERR(mnt
);
1636 return do_add_mount(mnt
, path
, mnt_flags
, NULL
);
1640 * add a mount into a namespace's mount tree
1641 * - provide the option of adding the new mount to an expiration list
1643 int do_add_mount(struct vfsmount
*newmnt
, struct path
*path
,
1644 int mnt_flags
, struct list_head
*fslist
)
1648 down_write(&namespace_sem
);
1649 /* Something was mounted here while we slept */
1650 while (d_mountpoint(path
->dentry
) &&
1654 if (!(mnt_flags
& MNT_SHRINKABLE
) && !check_mnt(path
->mnt
))
1657 /* Refuse the same filesystem on the same mount point */
1659 if (path
->mnt
->mnt_sb
== newmnt
->mnt_sb
&&
1660 path
->mnt
->mnt_root
== path
->dentry
)
1664 if (S_ISLNK(newmnt
->mnt_root
->d_inode
->i_mode
))
1667 newmnt
->mnt_flags
= mnt_flags
;
1668 if ((err
= graft_tree(newmnt
, path
)))
1671 if (fslist
) /* add to the specified expiration list */
1672 list_add_tail(&newmnt
->mnt_expire
, fslist
);
1674 up_write(&namespace_sem
);
1678 up_write(&namespace_sem
);
1683 EXPORT_SYMBOL_GPL(do_add_mount
);
1686 * process a list of expirable mountpoints with the intent of discarding any
1687 * mountpoints that aren't in use and haven't been touched since last we came
1690 void mark_mounts_for_expiry(struct list_head
*mounts
)
1692 struct vfsmount
*mnt
, *next
;
1693 LIST_HEAD(graveyard
);
1696 if (list_empty(mounts
))
1699 down_write(&namespace_sem
);
1700 spin_lock(&vfsmount_lock
);
1702 /* extract from the expiration list every vfsmount that matches the
1703 * following criteria:
1704 * - only referenced by its parent vfsmount
1705 * - still marked for expiry (marked on the last call here; marks are
1706 * cleared by mntput())
1708 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
1709 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
1710 propagate_mount_busy(mnt
, 1))
1712 list_move(&mnt
->mnt_expire
, &graveyard
);
1714 while (!list_empty(&graveyard
)) {
1715 mnt
= list_first_entry(&graveyard
, struct vfsmount
, mnt_expire
);
1716 touch_mnt_namespace(mnt
->mnt_ns
);
1717 umount_tree(mnt
, 1, &umounts
);
1719 spin_unlock(&vfsmount_lock
);
1720 up_write(&namespace_sem
);
1722 release_mounts(&umounts
);
1725 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
1728 * Ripoff of 'select_parent()'
1730 * search the list of submounts for a given mountpoint, and move any
1731 * shrinkable submounts to the 'graveyard' list.
1733 static int select_submounts(struct vfsmount
*parent
, struct list_head
*graveyard
)
1735 struct vfsmount
*this_parent
= parent
;
1736 struct list_head
*next
;
1740 next
= this_parent
->mnt_mounts
.next
;
1742 while (next
!= &this_parent
->mnt_mounts
) {
1743 struct list_head
*tmp
= next
;
1744 struct vfsmount
*mnt
= list_entry(tmp
, struct vfsmount
, mnt_child
);
1747 if (!(mnt
->mnt_flags
& MNT_SHRINKABLE
))
1750 * Descend a level if the d_mounts list is non-empty.
1752 if (!list_empty(&mnt
->mnt_mounts
)) {
1757 if (!propagate_mount_busy(mnt
, 1)) {
1758 list_move_tail(&mnt
->mnt_expire
, graveyard
);
1763 * All done at this level ... ascend and resume the search
1765 if (this_parent
!= parent
) {
1766 next
= this_parent
->mnt_child
.next
;
1767 this_parent
= this_parent
->mnt_parent
;
1774 * process a list of expirable mountpoints with the intent of discarding any
1775 * submounts of a specific parent mountpoint
1777 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
)
1779 LIST_HEAD(graveyard
);
1782 /* extract submounts of 'mountpoint' from the expiration list */
1783 while (select_submounts(mnt
, &graveyard
)) {
1784 while (!list_empty(&graveyard
)) {
1785 m
= list_first_entry(&graveyard
, struct vfsmount
,
1787 touch_mnt_namespace(m
->mnt_ns
);
1788 umount_tree(m
, 1, umounts
);
1794 * Some copy_from_user() implementations do not return the exact number of
1795 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1796 * Note that this function differs from copy_from_user() in that it will oops
1797 * on bad values of `to', rather than returning a short copy.
1799 static long exact_copy_from_user(void *to
, const void __user
* from
,
1803 const char __user
*f
= from
;
1806 if (!access_ok(VERIFY_READ
, from
, n
))
1810 if (__get_user(c
, f
)) {
1821 int copy_mount_options(const void __user
* data
, unsigned long *where
)
1831 if (!(page
= __get_free_page(GFP_KERNEL
)))
1834 /* We only care that *some* data at the address the user
1835 * gave us is valid. Just in case, we'll zero
1836 * the remainder of the page.
1838 /* copy_from_user cannot cross TASK_SIZE ! */
1839 size
= TASK_SIZE
- (unsigned long)data
;
1840 if (size
> PAGE_SIZE
)
1843 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
1849 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
1855 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1856 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1858 * data is a (void *) that can point to any structure up to
1859 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1860 * information (or be NULL).
1862 * Pre-0.97 versions of mount() didn't have a flags word.
1863 * When the flags word was introduced its top half was required
1864 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1865 * Therefore, if this magic number is present, it carries no information
1866 * and must be discarded.
1868 long do_mount(char *dev_name
, char *dir_name
, char *type_page
,
1869 unsigned long flags
, void *data_page
)
1876 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
1877 flags
&= ~MS_MGC_MSK
;
1879 /* Basic sanity checks */
1881 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
1883 if (dev_name
&& !memchr(dev_name
, 0, PAGE_SIZE
))
1887 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
1889 /* Default to relatime unless overriden */
1890 if (!(flags
& MS_NOATIME
))
1891 mnt_flags
|= MNT_RELATIME
;
1893 /* Separate the per-mountpoint flags */
1894 if (flags
& MS_NOSUID
)
1895 mnt_flags
|= MNT_NOSUID
;
1896 if (flags
& MS_NODEV
)
1897 mnt_flags
|= MNT_NODEV
;
1898 if (flags
& MS_NOEXEC
)
1899 mnt_flags
|= MNT_NOEXEC
;
1900 if (flags
& MS_NOATIME
)
1901 mnt_flags
|= MNT_NOATIME
;
1902 if (flags
& MS_NODIRATIME
)
1903 mnt_flags
|= MNT_NODIRATIME
;
1904 if (flags
& MS_STRICTATIME
)
1905 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
1906 if (flags
& MS_RDONLY
)
1907 mnt_flags
|= MNT_READONLY
;
1909 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
|
1910 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
1913 /* ... and get the mountpoint */
1914 retval
= kern_path(dir_name
, LOOKUP_FOLLOW
, &path
);
1918 retval
= security_sb_mount(dev_name
, &path
,
1919 type_page
, flags
, data_page
);
1923 if (flags
& MS_REMOUNT
)
1924 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
1926 else if (flags
& MS_BIND
)
1927 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
1928 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
1929 retval
= do_change_type(&path
, flags
);
1930 else if (flags
& MS_MOVE
)
1931 retval
= do_move_mount(&path
, dev_name
);
1933 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
1934 dev_name
, data_page
);
1941 * Allocate a new namespace structure and populate it with contents
1942 * copied from the namespace of the passed in task structure.
1944 static struct mnt_namespace
*dup_mnt_ns(struct mnt_namespace
*mnt_ns
,
1945 struct fs_struct
*fs
)
1947 struct mnt_namespace
*new_ns
;
1948 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
1949 struct vfsmount
*p
, *q
;
1951 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
1953 return ERR_PTR(-ENOMEM
);
1955 atomic_set(&new_ns
->count
, 1);
1956 INIT_LIST_HEAD(&new_ns
->list
);
1957 init_waitqueue_head(&new_ns
->poll
);
1960 down_write(&namespace_sem
);
1961 /* First pass: copy the tree topology */
1962 new_ns
->root
= copy_tree(mnt_ns
->root
, mnt_ns
->root
->mnt_root
,
1963 CL_COPY_ALL
| CL_EXPIRE
);
1964 if (!new_ns
->root
) {
1965 up_write(&namespace_sem
);
1967 return ERR_PTR(-ENOMEM
);
1969 spin_lock(&vfsmount_lock
);
1970 list_add_tail(&new_ns
->list
, &new_ns
->root
->mnt_list
);
1971 spin_unlock(&vfsmount_lock
);
1974 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1975 * as belonging to new namespace. We have already acquired a private
1976 * fs_struct, so tsk->fs->lock is not needed.
1983 if (p
== fs
->root
.mnt
) {
1985 fs
->root
.mnt
= mntget(q
);
1987 if (p
== fs
->pwd
.mnt
) {
1989 fs
->pwd
.mnt
= mntget(q
);
1992 p
= next_mnt(p
, mnt_ns
->root
);
1993 q
= next_mnt(q
, new_ns
->root
);
1995 up_write(&namespace_sem
);
2005 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2006 struct fs_struct
*new_fs
)
2008 struct mnt_namespace
*new_ns
;
2013 if (!(flags
& CLONE_NEWNS
))
2016 new_ns
= dup_mnt_ns(ns
, new_fs
);
2022 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2023 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2026 unsigned long data_page
;
2027 unsigned long type_page
;
2028 unsigned long dev_page
;
2031 retval
= copy_mount_options(type
, &type_page
);
2035 dir_page
= getname(dir_name
);
2036 retval
= PTR_ERR(dir_page
);
2037 if (IS_ERR(dir_page
))
2040 retval
= copy_mount_options(dev_name
, &dev_page
);
2044 retval
= copy_mount_options(data
, &data_page
);
2048 retval
= do_mount((char *)dev_page
, dir_page
, (char *)type_page
,
2049 flags
, (void *)data_page
);
2050 free_page(data_page
);
2053 free_page(dev_page
);
2057 free_page(type_page
);
2062 * pivot_root Semantics:
2063 * Moves the root file system of the current process to the directory put_old,
2064 * makes new_root as the new root file system of the current process, and sets
2065 * root/cwd of all processes which had them on the current root to new_root.
2068 * The new_root and put_old must be directories, and must not be on the
2069 * same file system as the current process root. The put_old must be
2070 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2071 * pointed to by put_old must yield the same directory as new_root. No other
2072 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2074 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2075 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2076 * in this situation.
2079 * - we don't move root/cwd if they are not at the root (reason: if something
2080 * cared enough to change them, it's probably wrong to force them elsewhere)
2081 * - it's okay to pick a root that isn't the root of a file system, e.g.
2082 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2083 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2086 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
2087 const char __user
*, put_old
)
2089 struct vfsmount
*tmp
;
2090 struct path
new, old
, parent_path
, root_parent
, root
;
2093 if (!capable(CAP_SYS_ADMIN
))
2096 error
= user_path_dir(new_root
, &new);
2100 if (!check_mnt(new.mnt
))
2103 error
= user_path_dir(put_old
, &old
);
2107 error
= security_sb_pivotroot(&old
, &new);
2113 read_lock(¤t
->fs
->lock
);
2114 root
= current
->fs
->root
;
2115 path_get(¤t
->fs
->root
);
2116 read_unlock(¤t
->fs
->lock
);
2117 down_write(&namespace_sem
);
2118 mutex_lock(&old
.dentry
->d_inode
->i_mutex
);
2120 if (IS_MNT_SHARED(old
.mnt
) ||
2121 IS_MNT_SHARED(new.mnt
->mnt_parent
) ||
2122 IS_MNT_SHARED(root
.mnt
->mnt_parent
))
2124 if (!check_mnt(root
.mnt
))
2127 if (IS_DEADDIR(new.dentry
->d_inode
))
2129 if (d_unlinked(new.dentry
))
2131 if (d_unlinked(old
.dentry
))
2134 if (new.mnt
== root
.mnt
||
2135 old
.mnt
== root
.mnt
)
2136 goto out2
; /* loop, on the same file system */
2138 if (root
.mnt
->mnt_root
!= root
.dentry
)
2139 goto out2
; /* not a mountpoint */
2140 if (root
.mnt
->mnt_parent
== root
.mnt
)
2141 goto out2
; /* not attached */
2142 if (new.mnt
->mnt_root
!= new.dentry
)
2143 goto out2
; /* not a mountpoint */
2144 if (new.mnt
->mnt_parent
== new.mnt
)
2145 goto out2
; /* not attached */
2146 /* make sure we can reach put_old from new_root */
2148 spin_lock(&vfsmount_lock
);
2149 if (tmp
!= new.mnt
) {
2151 if (tmp
->mnt_parent
== tmp
)
2152 goto out3
; /* already mounted on put_old */
2153 if (tmp
->mnt_parent
== new.mnt
)
2155 tmp
= tmp
->mnt_parent
;
2157 if (!is_subdir(tmp
->mnt_mountpoint
, new.dentry
))
2159 } else if (!is_subdir(old
.dentry
, new.dentry
))
2161 detach_mnt(new.mnt
, &parent_path
);
2162 detach_mnt(root
.mnt
, &root_parent
);
2163 /* mount old root on put_old */
2164 attach_mnt(root
.mnt
, &old
);
2165 /* mount new_root on / */
2166 attach_mnt(new.mnt
, &root_parent
);
2167 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
2168 spin_unlock(&vfsmount_lock
);
2169 chroot_fs_refs(&root
, &new);
2170 security_sb_post_pivotroot(&root
, &new);
2172 path_put(&root_parent
);
2173 path_put(&parent_path
);
2175 mutex_unlock(&old
.dentry
->d_inode
->i_mutex
);
2176 up_write(&namespace_sem
);
2184 spin_unlock(&vfsmount_lock
);
2188 static void __init
init_mount_tree(void)
2190 struct vfsmount
*mnt
;
2191 struct mnt_namespace
*ns
;
2194 mnt
= do_kern_mount("rootfs", 0, "rootfs", NULL
);
2196 panic("Can't create rootfs");
2197 ns
= kmalloc(sizeof(*ns
), GFP_KERNEL
);
2199 panic("Can't allocate initial namespace");
2200 atomic_set(&ns
->count
, 1);
2201 INIT_LIST_HEAD(&ns
->list
);
2202 init_waitqueue_head(&ns
->poll
);
2204 list_add(&mnt
->mnt_list
, &ns
->list
);
2208 init_task
.nsproxy
->mnt_ns
= ns
;
2211 root
.mnt
= ns
->root
;
2212 root
.dentry
= ns
->root
->mnt_root
;
2214 set_fs_pwd(current
->fs
, &root
);
2215 set_fs_root(current
->fs
, &root
);
2218 void __init
mnt_init(void)
2223 init_rwsem(&namespace_sem
);
2225 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct vfsmount
),
2226 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2228 mount_hashtable
= (struct list_head
*)__get_free_page(GFP_ATOMIC
);
2230 if (!mount_hashtable
)
2231 panic("Failed to allocate mount hash table\n");
2233 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE
);
2235 for (u
= 0; u
< HASH_SIZE
; u
++)
2236 INIT_LIST_HEAD(&mount_hashtable
[u
]);
2240 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
2242 fs_kobj
= kobject_create_and_add("fs", NULL
);
2244 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
2249 void __put_mnt_ns(struct mnt_namespace
*ns
)
2251 struct vfsmount
*root
= ns
->root
;
2252 LIST_HEAD(umount_list
);
2254 spin_unlock(&vfsmount_lock
);
2255 down_write(&namespace_sem
);
2256 spin_lock(&vfsmount_lock
);
2257 umount_tree(root
, 0, &umount_list
);
2258 spin_unlock(&vfsmount_lock
);
2259 up_write(&namespace_sem
);
2260 release_mounts(&umount_list
);