gru: allow users to specify gru chiplet 2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / misc / sgi-gru / grukservices.c
blobe0d4b53d1fc25612b357af3224c9c4f5b9ed4b7c
1 /*
2 * SN Platform GRU Driver
4 * KERNEL SERVICES THAT USE THE GRU
6 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/spinlock.h>
28 #include <linux/device.h>
29 #include <linux/miscdevice.h>
30 #include <linux/proc_fs.h>
31 #include <linux/interrupt.h>
32 #include <linux/uaccess.h>
33 #include <linux/delay.h>
34 #include "gru.h"
35 #include "grulib.h"
36 #include "grutables.h"
37 #include "grukservices.h"
38 #include "gru_instructions.h"
39 #include <asm/uv/uv_hub.h>
42 * Kernel GRU Usage
44 * The following is an interim algorithm for management of kernel GRU
45 * resources. This will likely be replaced when we better understand the
46 * kernel/user requirements.
48 * Blade percpu resources reserved for kernel use. These resources are
49 * reserved whenever the the kernel context for the blade is loaded. Note
50 * that the kernel context is not guaranteed to be always available. It is
51 * loaded on demand & can be stolen by a user if the user demand exceeds the
52 * kernel demand. The kernel can always reload the kernel context but
53 * a SLEEP may be required!!!.
55 * Async Overview:
57 * Each blade has one "kernel context" that owns GRU kernel resources
58 * located on the blade. Kernel drivers use GRU resources in this context
59 * for sending messages, zeroing memory, etc.
61 * The kernel context is dynamically loaded on demand. If it is not in
62 * use by the kernel, the kernel context can be unloaded & given to a user.
63 * The kernel context will be reloaded when needed. This may require that
64 * a context be stolen from a user.
65 * NOTE: frequent unloading/reloading of the kernel context is
66 * expensive. We are depending on batch schedulers, cpusets, sane
67 * drivers or some other mechanism to prevent the need for frequent
68 * stealing/reloading.
70 * The kernel context consists of two parts:
71 * - 1 CB & a few DSRs that are reserved for each cpu on the blade.
72 * Each cpu has it's own private resources & does not share them
73 * with other cpus. These resources are used serially, ie,
74 * locked, used & unlocked on each call to a function in
75 * grukservices.
76 * (Now that we have dynamic loading of kernel contexts, I
77 * may rethink this & allow sharing between cpus....)
79 * - Additional resources can be reserved long term & used directly
80 * by UV drivers located in the kernel. Drivers using these GRU
81 * resources can use asynchronous GRU instructions that send
82 * interrupts on completion.
83 * - these resources must be explicitly locked/unlocked
84 * - locked resources prevent (obviously) the kernel
85 * context from being unloaded.
86 * - drivers using these resource directly issue their own
87 * GRU instruction and must wait/check completion.
89 * When these resources are reserved, the caller can optionally
90 * associate a wait_queue with the resources and use asynchronous
91 * GRU instructions. When an async GRU instruction completes, the
92 * driver will do a wakeup on the event.
97 #define ASYNC_HAN_TO_BID(h) ((h) - 1)
98 #define ASYNC_BID_TO_HAN(b) ((b) + 1)
99 #define ASYNC_HAN_TO_BS(h) gru_base[ASYNC_HAN_TO_BID(h)]
100 #define KCB_TO_GID(cb) ((cb - gru_start_vaddr) / \
101 (GRU_SIZE * GRU_CHIPLETS_PER_BLADE))
102 #define KCB_TO_BS(cb) gru_base[KCB_TO_GID(cb)]
104 #define GRU_NUM_KERNEL_CBR 1
105 #define GRU_NUM_KERNEL_DSR_BYTES 256
106 #define GRU_NUM_KERNEL_DSR_CL (GRU_NUM_KERNEL_DSR_BYTES / \
107 GRU_CACHE_LINE_BYTES)
109 /* GRU instruction attributes for all instructions */
110 #define IMA IMA_CB_DELAY
112 /* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */
113 #define __gru_cacheline_aligned__ \
114 __attribute__((__aligned__(GRU_CACHE_LINE_BYTES)))
116 #define MAGIC 0x1234567887654321UL
118 /* Default retry count for GRU errors on kernel instructions */
119 #define EXCEPTION_RETRY_LIMIT 3
121 /* Status of message queue sections */
122 #define MQS_EMPTY 0
123 #define MQS_FULL 1
124 #define MQS_NOOP 2
126 /*----------------- RESOURCE MANAGEMENT -------------------------------------*/
127 /* optimized for x86_64 */
128 struct message_queue {
129 union gru_mesqhead head __gru_cacheline_aligned__; /* CL 0 */
130 int qlines; /* DW 1 */
131 long hstatus[2];
132 void *next __gru_cacheline_aligned__;/* CL 1 */
133 void *limit;
134 void *start;
135 void *start2;
136 char data ____cacheline_aligned; /* CL 2 */
139 /* First word in every message - used by mesq interface */
140 struct message_header {
141 char present;
142 char present2;
143 char lines;
144 char fill;
147 #define HSTATUS(mq, h) ((mq) + offsetof(struct message_queue, hstatus[h]))
150 * Reload the blade's kernel context into a GRU chiplet. Called holding
151 * the bs_kgts_sema for READ. Will steal user contexts if necessary.
153 static void gru_load_kernel_context(struct gru_blade_state *bs, int blade_id)
155 struct gru_state *gru;
156 struct gru_thread_state *kgts;
157 void *vaddr;
158 int ctxnum, ncpus;
160 up_read(&bs->bs_kgts_sema);
161 down_write(&bs->bs_kgts_sema);
163 if (!bs->bs_kgts) {
164 bs->bs_kgts = gru_alloc_gts(NULL, 0, 0, 0, 0);
165 bs->bs_kgts->ts_user_blade_id = blade_id;
167 kgts = bs->bs_kgts;
169 if (!kgts->ts_gru) {
170 STAT(load_kernel_context);
171 ncpus = uv_blade_nr_possible_cpus(blade_id);
172 kgts->ts_cbr_au_count = GRU_CB_COUNT_TO_AU(
173 GRU_NUM_KERNEL_CBR * ncpus + bs->bs_async_cbrs);
174 kgts->ts_dsr_au_count = GRU_DS_BYTES_TO_AU(
175 GRU_NUM_KERNEL_DSR_BYTES * ncpus +
176 bs->bs_async_dsr_bytes);
177 while (!gru_assign_gru_context(kgts)) {
178 msleep(1);
179 gru_steal_context(kgts);
181 gru_load_context(kgts);
182 gru = bs->bs_kgts->ts_gru;
183 vaddr = gru->gs_gru_base_vaddr;
184 ctxnum = kgts->ts_ctxnum;
185 bs->kernel_cb = get_gseg_base_address_cb(vaddr, ctxnum, 0);
186 bs->kernel_dsr = get_gseg_base_address_ds(vaddr, ctxnum, 0);
188 downgrade_write(&bs->bs_kgts_sema);
192 * Free all kernel contexts that are not currently in use.
193 * Returns 0 if all freed, else number of inuse context.
195 static int gru_free_kernel_contexts(void)
197 struct gru_blade_state *bs;
198 struct gru_thread_state *kgts;
199 int bid, ret = 0;
201 for (bid = 0; bid < GRU_MAX_BLADES; bid++) {
202 bs = gru_base[bid];
203 if (!bs)
204 continue;
206 /* Ignore busy contexts. Don't want to block here. */
207 if (down_write_trylock(&bs->bs_kgts_sema)) {
208 kgts = bs->bs_kgts;
209 if (kgts && kgts->ts_gru)
210 gru_unload_context(kgts, 0);
211 bs->bs_kgts = NULL;
212 up_write(&bs->bs_kgts_sema);
213 kfree(kgts);
214 } else {
215 ret++;
218 return ret;
222 * Lock & load the kernel context for the specified blade.
224 static struct gru_blade_state *gru_lock_kernel_context(int blade_id)
226 struct gru_blade_state *bs;
228 STAT(lock_kernel_context);
229 bs = gru_base[blade_id];
231 down_read(&bs->bs_kgts_sema);
232 if (!bs->bs_kgts || !bs->bs_kgts->ts_gru)
233 gru_load_kernel_context(bs, blade_id);
234 return bs;
239 * Unlock the kernel context for the specified blade. Context is not
240 * unloaded but may be stolen before next use.
242 static void gru_unlock_kernel_context(int blade_id)
244 struct gru_blade_state *bs;
246 bs = gru_base[blade_id];
247 up_read(&bs->bs_kgts_sema);
248 STAT(unlock_kernel_context);
252 * Reserve & get pointers to the DSR/CBRs reserved for the current cpu.
253 * - returns with preemption disabled
255 static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr)
257 struct gru_blade_state *bs;
258 int lcpu;
260 BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES);
261 preempt_disable();
262 bs = gru_lock_kernel_context(uv_numa_blade_id());
263 lcpu = uv_blade_processor_id();
264 *cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE;
265 *dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES;
266 return 0;
270 * Free the current cpus reserved DSR/CBR resources.
272 static void gru_free_cpu_resources(void *cb, void *dsr)
274 gru_unlock_kernel_context(uv_numa_blade_id());
275 preempt_enable();
279 * Reserve GRU resources to be used asynchronously.
280 * Note: currently supports only 1 reservation per blade.
282 * input:
283 * blade_id - blade on which resources should be reserved
284 * cbrs - number of CBRs
285 * dsr_bytes - number of DSR bytes needed
286 * output:
287 * handle to identify resource
288 * (0 = async resources already reserved)
290 unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes,
291 struct completion *cmp)
293 struct gru_blade_state *bs;
294 struct gru_thread_state *kgts;
295 int ret = 0;
297 bs = gru_base[blade_id];
299 down_write(&bs->bs_kgts_sema);
301 /* Verify no resources already reserved */
302 if (bs->bs_async_dsr_bytes + bs->bs_async_cbrs)
303 goto done;
304 bs->bs_async_dsr_bytes = dsr_bytes;
305 bs->bs_async_cbrs = cbrs;
306 bs->bs_async_wq = cmp;
307 kgts = bs->bs_kgts;
309 /* Resources changed. Unload context if already loaded */
310 if (kgts && kgts->ts_gru)
311 gru_unload_context(kgts, 0);
312 ret = ASYNC_BID_TO_HAN(blade_id);
314 done:
315 up_write(&bs->bs_kgts_sema);
316 return ret;
320 * Release async resources previously reserved.
322 * input:
323 * han - handle to identify resources
325 void gru_release_async_resources(unsigned long han)
327 struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
329 down_write(&bs->bs_kgts_sema);
330 bs->bs_async_dsr_bytes = 0;
331 bs->bs_async_cbrs = 0;
332 bs->bs_async_wq = NULL;
333 up_write(&bs->bs_kgts_sema);
337 * Wait for async GRU instructions to complete.
339 * input:
340 * han - handle to identify resources
342 void gru_wait_async_cbr(unsigned long han)
344 struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
346 wait_for_completion(bs->bs_async_wq);
347 mb();
351 * Lock previous reserved async GRU resources
353 * input:
354 * han - handle to identify resources
355 * output:
356 * cb - pointer to first CBR
357 * dsr - pointer to first DSR
359 void gru_lock_async_resource(unsigned long han, void **cb, void **dsr)
361 struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
362 int blade_id = ASYNC_HAN_TO_BID(han);
363 int ncpus;
365 gru_lock_kernel_context(blade_id);
366 ncpus = uv_blade_nr_possible_cpus(blade_id);
367 if (cb)
368 *cb = bs->kernel_cb + ncpus * GRU_HANDLE_STRIDE;
369 if (dsr)
370 *dsr = bs->kernel_dsr + ncpus * GRU_NUM_KERNEL_DSR_BYTES;
374 * Unlock previous reserved async GRU resources
376 * input:
377 * han - handle to identify resources
379 void gru_unlock_async_resource(unsigned long han)
381 int blade_id = ASYNC_HAN_TO_BID(han);
383 gru_unlock_kernel_context(blade_id);
386 /*----------------------------------------------------------------------*/
387 int gru_get_cb_exception_detail(void *cb,
388 struct control_block_extended_exc_detail *excdet)
390 struct gru_control_block_extended *cbe;
391 struct gru_blade_state *bs;
392 int cbrnum;
394 bs = KCB_TO_BS(cb);
395 cbrnum = thread_cbr_number(bs->bs_kgts, get_cb_number(cb));
396 cbe = get_cbe(GRUBASE(cb), cbrnum);
397 gru_flush_cache(cbe); /* CBE not coherent */
398 excdet->opc = cbe->opccpy;
399 excdet->exopc = cbe->exopccpy;
400 excdet->ecause = cbe->ecause;
401 excdet->exceptdet0 = cbe->idef1upd;
402 excdet->exceptdet1 = cbe->idef3upd;
403 gru_flush_cache(cbe);
404 return 0;
407 char *gru_get_cb_exception_detail_str(int ret, void *cb,
408 char *buf, int size)
410 struct gru_control_block_status *gen = (void *)cb;
411 struct control_block_extended_exc_detail excdet;
413 if (ret > 0 && gen->istatus == CBS_EXCEPTION) {
414 gru_get_cb_exception_detail(cb, &excdet);
415 snprintf(buf, size,
416 "GRU exception: cb %p, opc %d, exopc %d, ecause 0x%x,"
417 "excdet0 0x%lx, excdet1 0x%x",
418 gen, excdet.opc, excdet.exopc, excdet.ecause,
419 excdet.exceptdet0, excdet.exceptdet1);
420 } else {
421 snprintf(buf, size, "No exception");
423 return buf;
426 static int gru_wait_idle_or_exception(struct gru_control_block_status *gen)
428 while (gen->istatus >= CBS_ACTIVE) {
429 cpu_relax();
430 barrier();
432 return gen->istatus;
435 static int gru_retry_exception(void *cb)
437 struct gru_control_block_status *gen = (void *)cb;
438 struct control_block_extended_exc_detail excdet;
439 int retry = EXCEPTION_RETRY_LIMIT;
441 while (1) {
442 if (gru_wait_idle_or_exception(gen) == CBS_IDLE)
443 return CBS_IDLE;
444 if (gru_get_cb_message_queue_substatus(cb))
445 return CBS_EXCEPTION;
446 gru_get_cb_exception_detail(cb, &excdet);
447 if ((excdet.ecause & ~EXCEPTION_RETRY_BITS) ||
448 (excdet.cbrexecstatus & CBR_EXS_ABORT_OCC))
449 break;
450 if (retry-- == 0)
451 break;
452 gen->icmd = 1;
453 gru_flush_cache(gen);
455 return CBS_EXCEPTION;
458 int gru_check_status_proc(void *cb)
460 struct gru_control_block_status *gen = (void *)cb;
461 int ret;
463 ret = gen->istatus;
464 if (ret != CBS_EXCEPTION)
465 return ret;
466 return gru_retry_exception(cb);
470 int gru_wait_proc(void *cb)
472 struct gru_control_block_status *gen = (void *)cb;
473 int ret;
475 ret = gru_wait_idle_or_exception(gen);
476 if (ret == CBS_EXCEPTION)
477 ret = gru_retry_exception(cb);
479 return ret;
482 void gru_abort(int ret, void *cb, char *str)
484 char buf[GRU_EXC_STR_SIZE];
486 panic("GRU FATAL ERROR: %s - %s\n", str,
487 gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf)));
490 void gru_wait_abort_proc(void *cb)
492 int ret;
494 ret = gru_wait_proc(cb);
495 if (ret)
496 gru_abort(ret, cb, "gru_wait_abort");
500 /*------------------------------ MESSAGE QUEUES -----------------------------*/
502 /* Internal status . These are NOT returned to the user. */
503 #define MQIE_AGAIN -1 /* try again */
507 * Save/restore the "present" flag that is in the second line of 2-line
508 * messages
510 static inline int get_present2(void *p)
512 struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
513 return mhdr->present;
516 static inline void restore_present2(void *p, int val)
518 struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
519 mhdr->present = val;
523 * Create a message queue.
524 * qlines - message queue size in cache lines. Includes 2-line header.
526 int gru_create_message_queue(struct gru_message_queue_desc *mqd,
527 void *p, unsigned int bytes, int nasid, int vector, int apicid)
529 struct message_queue *mq = p;
530 unsigned int qlines;
532 qlines = bytes / GRU_CACHE_LINE_BYTES - 2;
533 memset(mq, 0, bytes);
534 mq->start = &mq->data;
535 mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES;
536 mq->next = &mq->data;
537 mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES;
538 mq->qlines = qlines;
539 mq->hstatus[0] = 0;
540 mq->hstatus[1] = 1;
541 mq->head = gru_mesq_head(2, qlines / 2 + 1);
542 mqd->mq = mq;
543 mqd->mq_gpa = uv_gpa(mq);
544 mqd->qlines = qlines;
545 mqd->interrupt_pnode = UV_NASID_TO_PNODE(nasid);
546 mqd->interrupt_vector = vector;
547 mqd->interrupt_apicid = apicid;
548 return 0;
550 EXPORT_SYMBOL_GPL(gru_create_message_queue);
553 * Send a NOOP message to a message queue
554 * Returns:
555 * 0 - if queue is full after the send. This is the normal case
556 * but various races can change this.
557 * -1 - if mesq sent successfully but queue not full
558 * >0 - unexpected error. MQE_xxx returned
560 static int send_noop_message(void *cb, struct gru_message_queue_desc *mqd,
561 void *mesg)
563 const struct message_header noop_header = {
564 .present = MQS_NOOP, .lines = 1};
565 unsigned long m;
566 int substatus, ret;
567 struct message_header save_mhdr, *mhdr = mesg;
569 STAT(mesq_noop);
570 save_mhdr = *mhdr;
571 *mhdr = noop_header;
572 gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), 1, IMA);
573 ret = gru_wait(cb);
575 if (ret) {
576 substatus = gru_get_cb_message_queue_substatus(cb);
577 switch (substatus) {
578 case CBSS_NO_ERROR:
579 STAT(mesq_noop_unexpected_error);
580 ret = MQE_UNEXPECTED_CB_ERR;
581 break;
582 case CBSS_LB_OVERFLOWED:
583 STAT(mesq_noop_lb_overflow);
584 ret = MQE_CONGESTION;
585 break;
586 case CBSS_QLIMIT_REACHED:
587 STAT(mesq_noop_qlimit_reached);
588 ret = 0;
589 break;
590 case CBSS_AMO_NACKED:
591 STAT(mesq_noop_amo_nacked);
592 ret = MQE_CONGESTION;
593 break;
594 case CBSS_PUT_NACKED:
595 STAT(mesq_noop_put_nacked);
596 m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
597 gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1,
598 IMA);
599 if (gru_wait(cb) == CBS_IDLE)
600 ret = MQIE_AGAIN;
601 else
602 ret = MQE_UNEXPECTED_CB_ERR;
603 break;
604 case CBSS_PAGE_OVERFLOW:
605 default:
606 BUG();
609 *mhdr = save_mhdr;
610 return ret;
614 * Handle a gru_mesq full.
616 static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd,
617 void *mesg, int lines)
619 union gru_mesqhead mqh;
620 unsigned int limit, head;
621 unsigned long avalue;
622 int half, qlines;
624 /* Determine if switching to first/second half of q */
625 avalue = gru_get_amo_value(cb);
626 head = gru_get_amo_value_head(cb);
627 limit = gru_get_amo_value_limit(cb);
629 qlines = mqd->qlines;
630 half = (limit != qlines);
632 if (half)
633 mqh = gru_mesq_head(qlines / 2 + 1, qlines);
634 else
635 mqh = gru_mesq_head(2, qlines / 2 + 1);
637 /* Try to get lock for switching head pointer */
638 gru_gamir(cb, EOP_IR_CLR, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA);
639 if (gru_wait(cb) != CBS_IDLE)
640 goto cberr;
641 if (!gru_get_amo_value(cb)) {
642 STAT(mesq_qf_locked);
643 return MQE_QUEUE_FULL;
646 /* Got the lock. Send optional NOP if queue not full, */
647 if (head != limit) {
648 if (send_noop_message(cb, mqd, mesg)) {
649 gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half),
650 XTYPE_DW, IMA);
651 if (gru_wait(cb) != CBS_IDLE)
652 goto cberr;
653 STAT(mesq_qf_noop_not_full);
654 return MQIE_AGAIN;
656 avalue++;
659 /* Then flip queuehead to other half of queue. */
660 gru_gamer(cb, EOP_ERR_CSWAP, mqd->mq_gpa, XTYPE_DW, mqh.val, avalue,
661 IMA);
662 if (gru_wait(cb) != CBS_IDLE)
663 goto cberr;
665 /* If not successfully in swapping queue head, clear the hstatus lock */
666 if (gru_get_amo_value(cb) != avalue) {
667 STAT(mesq_qf_switch_head_failed);
668 gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW,
669 IMA);
670 if (gru_wait(cb) != CBS_IDLE)
671 goto cberr;
673 return MQIE_AGAIN;
674 cberr:
675 STAT(mesq_qf_unexpected_error);
676 return MQE_UNEXPECTED_CB_ERR;
680 * Send a cross-partition interrupt to the SSI that contains the target
681 * message queue. Normally, the interrupt is automatically delivered by hardware
682 * but some error conditions require explicit delivery.
684 static void send_message_queue_interrupt(struct gru_message_queue_desc *mqd)
686 if (mqd->interrupt_vector)
687 uv_hub_send_ipi(mqd->interrupt_pnode, mqd->interrupt_apicid,
688 mqd->interrupt_vector);
692 * Handle a PUT failure. Note: if message was a 2-line message, one of the
693 * lines might have successfully have been written. Before sending the
694 * message, "present" must be cleared in BOTH lines to prevent the receiver
695 * from prematurely seeing the full message.
697 static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd,
698 void *mesg, int lines)
700 unsigned long m;
702 m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
703 if (lines == 2) {
704 gru_vset(cb, m, 0, XTYPE_CL, lines, 1, IMA);
705 if (gru_wait(cb) != CBS_IDLE)
706 return MQE_UNEXPECTED_CB_ERR;
708 gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA);
709 if (gru_wait(cb) != CBS_IDLE)
710 return MQE_UNEXPECTED_CB_ERR;
711 send_message_queue_interrupt(mqd);
712 return MQE_OK;
716 * Handle a gru_mesq failure. Some of these failures are software recoverable
717 * or retryable.
719 static int send_message_failure(void *cb, struct gru_message_queue_desc *mqd,
720 void *mesg, int lines)
722 int substatus, ret = 0;
724 substatus = gru_get_cb_message_queue_substatus(cb);
725 switch (substatus) {
726 case CBSS_NO_ERROR:
727 STAT(mesq_send_unexpected_error);
728 ret = MQE_UNEXPECTED_CB_ERR;
729 break;
730 case CBSS_LB_OVERFLOWED:
731 STAT(mesq_send_lb_overflow);
732 ret = MQE_CONGESTION;
733 break;
734 case CBSS_QLIMIT_REACHED:
735 STAT(mesq_send_qlimit_reached);
736 ret = send_message_queue_full(cb, mqd, mesg, lines);
737 break;
738 case CBSS_AMO_NACKED:
739 STAT(mesq_send_amo_nacked);
740 ret = MQE_CONGESTION;
741 break;
742 case CBSS_PUT_NACKED:
743 STAT(mesq_send_put_nacked);
744 ret = send_message_put_nacked(cb, mqd, mesg, lines);
745 break;
746 default:
747 BUG();
749 return ret;
753 * Send a message to a message queue
754 * mqd message queue descriptor
755 * mesg message. ust be vaddr within a GSEG
756 * bytes message size (<= 2 CL)
758 int gru_send_message_gpa(struct gru_message_queue_desc *mqd, void *mesg,
759 unsigned int bytes)
761 struct message_header *mhdr;
762 void *cb;
763 void *dsr;
764 int istatus, clines, ret;
766 STAT(mesq_send);
767 BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES);
769 clines = DIV_ROUND_UP(bytes, GRU_CACHE_LINE_BYTES);
770 if (gru_get_cpu_resources(bytes, &cb, &dsr))
771 return MQE_BUG_NO_RESOURCES;
772 memcpy(dsr, mesg, bytes);
773 mhdr = dsr;
774 mhdr->present = MQS_FULL;
775 mhdr->lines = clines;
776 if (clines == 2) {
777 mhdr->present2 = get_present2(mhdr);
778 restore_present2(mhdr, MQS_FULL);
781 do {
782 ret = MQE_OK;
783 gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), clines, IMA);
784 istatus = gru_wait(cb);
785 if (istatus != CBS_IDLE)
786 ret = send_message_failure(cb, mqd, dsr, clines);
787 } while (ret == MQIE_AGAIN);
788 gru_free_cpu_resources(cb, dsr);
790 if (ret)
791 STAT(mesq_send_failed);
792 return ret;
794 EXPORT_SYMBOL_GPL(gru_send_message_gpa);
797 * Advance the receive pointer for the queue to the next message.
799 void gru_free_message(struct gru_message_queue_desc *mqd, void *mesg)
801 struct message_queue *mq = mqd->mq;
802 struct message_header *mhdr = mq->next;
803 void *next, *pnext;
804 int half = -1;
805 int lines = mhdr->lines;
807 if (lines == 2)
808 restore_present2(mhdr, MQS_EMPTY);
809 mhdr->present = MQS_EMPTY;
811 pnext = mq->next;
812 next = pnext + GRU_CACHE_LINE_BYTES * lines;
813 if (next == mq->limit) {
814 next = mq->start;
815 half = 1;
816 } else if (pnext < mq->start2 && next >= mq->start2) {
817 half = 0;
820 if (half >= 0)
821 mq->hstatus[half] = 1;
822 mq->next = next;
824 EXPORT_SYMBOL_GPL(gru_free_message);
827 * Get next message from message queue. Return NULL if no message
828 * present. User must call next_message() to move to next message.
829 * rmq message queue
831 void *gru_get_next_message(struct gru_message_queue_desc *mqd)
833 struct message_queue *mq = mqd->mq;
834 struct message_header *mhdr = mq->next;
835 int present = mhdr->present;
837 /* skip NOOP messages */
838 STAT(mesq_receive);
839 while (present == MQS_NOOP) {
840 gru_free_message(mqd, mhdr);
841 mhdr = mq->next;
842 present = mhdr->present;
845 /* Wait for both halves of 2 line messages */
846 if (present == MQS_FULL && mhdr->lines == 2 &&
847 get_present2(mhdr) == MQS_EMPTY)
848 present = MQS_EMPTY;
850 if (!present) {
851 STAT(mesq_receive_none);
852 return NULL;
855 if (mhdr->lines == 2)
856 restore_present2(mhdr, mhdr->present2);
858 return mhdr;
860 EXPORT_SYMBOL_GPL(gru_get_next_message);
862 /* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/
865 * Load a DW from a global GPA. The GPA can be a memory or MMR address.
867 int gru_read_gpa(unsigned long *value, unsigned long gpa)
869 void *cb;
870 void *dsr;
871 int ret, iaa;
873 STAT(read_gpa);
874 if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
875 return MQE_BUG_NO_RESOURCES;
876 iaa = gpa >> 62;
877 gru_vload_phys(cb, gpa, gru_get_tri(dsr), iaa, IMA);
878 ret = gru_wait(cb);
879 if (ret == CBS_IDLE)
880 *value = *(unsigned long *)dsr;
881 gru_free_cpu_resources(cb, dsr);
882 return ret;
884 EXPORT_SYMBOL_GPL(gru_read_gpa);
888 * Copy a block of data using the GRU resources
890 int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa,
891 unsigned int bytes)
893 void *cb;
894 void *dsr;
895 int ret;
897 STAT(copy_gpa);
898 if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
899 return MQE_BUG_NO_RESOURCES;
900 gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr),
901 XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_CL, IMA);
902 ret = gru_wait(cb);
903 gru_free_cpu_resources(cb, dsr);
904 return ret;
906 EXPORT_SYMBOL_GPL(gru_copy_gpa);
908 /* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/
909 /* Temp - will delete after we gain confidence in the GRU */
911 static int quicktest0(unsigned long arg)
913 unsigned long word0;
914 unsigned long word1;
915 void *cb;
916 void *dsr;
917 unsigned long *p;
918 int ret = -EIO;
920 if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES, &cb, &dsr))
921 return MQE_BUG_NO_RESOURCES;
922 p = dsr;
923 word0 = MAGIC;
924 word1 = 0;
926 gru_vload(cb, uv_gpa(&word0), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
927 if (gru_wait(cb) != CBS_IDLE) {
928 printk(KERN_DEBUG "GRU quicktest0: CBR failure 1\n");
929 goto done;
932 if (*p != MAGIC) {
933 printk(KERN_DEBUG "GRU: quicktest0 bad magic 0x%lx\n", *p);
934 goto done;
936 gru_vstore(cb, uv_gpa(&word1), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
937 if (gru_wait(cb) != CBS_IDLE) {
938 printk(KERN_DEBUG "GRU quicktest0: CBR failure 2\n");
939 goto done;
942 if (word0 != word1 || word1 != MAGIC) {
943 printk(KERN_DEBUG
944 "GRU quicktest0 err: found 0x%lx, expected 0x%lx\n",
945 word1, MAGIC);
946 goto done;
948 ret = 0;
950 done:
951 gru_free_cpu_resources(cb, dsr);
952 return ret;
955 #define ALIGNUP(p, q) ((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1)))
957 static int quicktest1(unsigned long arg)
959 struct gru_message_queue_desc mqd;
960 void *p, *mq;
961 unsigned long *dw;
962 int i, ret = -EIO;
963 char mes[GRU_CACHE_LINE_BYTES], *m;
965 /* Need 1K cacheline aligned that does not cross page boundary */
966 p = kmalloc(4096, 0);
967 if (p == NULL)
968 return -ENOMEM;
969 mq = ALIGNUP(p, 1024);
970 memset(mes, 0xee, sizeof(mes));
971 dw = mq;
973 gru_create_message_queue(&mqd, mq, 8 * GRU_CACHE_LINE_BYTES, 0, 0, 0);
974 for (i = 0; i < 6; i++) {
975 mes[8] = i;
976 do {
977 ret = gru_send_message_gpa(&mqd, mes, sizeof(mes));
978 } while (ret == MQE_CONGESTION);
979 if (ret)
980 break;
982 if (ret != MQE_QUEUE_FULL || i != 4)
983 goto done;
985 for (i = 0; i < 6; i++) {
986 m = gru_get_next_message(&mqd);
987 if (!m || m[8] != i)
988 break;
989 gru_free_message(&mqd, m);
991 ret = (i == 4) ? 0 : -EIO;
993 done:
994 kfree(p);
995 return ret;
998 static int quicktest2(unsigned long arg)
1000 static DECLARE_COMPLETION(cmp);
1001 unsigned long han;
1002 int blade_id = 0;
1003 int numcb = 4;
1004 int ret = 0;
1005 unsigned long *buf;
1006 void *cb0, *cb;
1007 int i, k, istatus, bytes;
1009 bytes = numcb * 4 * 8;
1010 buf = kmalloc(bytes, GFP_KERNEL);
1011 if (!buf)
1012 return -ENOMEM;
1014 ret = -EBUSY;
1015 han = gru_reserve_async_resources(blade_id, numcb, 0, &cmp);
1016 if (!han)
1017 goto done;
1019 gru_lock_async_resource(han, &cb0, NULL);
1020 memset(buf, 0xee, bytes);
1021 for (i = 0; i < numcb; i++)
1022 gru_vset(cb0 + i * GRU_HANDLE_STRIDE, uv_gpa(&buf[i * 4]), 0,
1023 XTYPE_DW, 4, 1, IMA_INTERRUPT);
1025 ret = 0;
1026 for (k = 0; k < numcb; k++) {
1027 gru_wait_async_cbr(han);
1028 for (i = 0; i < numcb; i++) {
1029 cb = cb0 + i * GRU_HANDLE_STRIDE;
1030 istatus = gru_check_status(cb);
1031 if (istatus == CBS_ACTIVE)
1032 continue;
1033 if (istatus == CBS_EXCEPTION)
1034 ret = -EFAULT;
1035 else if (buf[i] || buf[i + 1] || buf[i + 2] ||
1036 buf[i + 3])
1037 ret = -EIO;
1040 BUG_ON(cmp.done);
1042 gru_unlock_async_resource(han);
1043 gru_release_async_resources(han);
1044 done:
1045 kfree(buf);
1046 return ret;
1050 * Debugging only. User hook for various kernel tests
1051 * of driver & gru.
1053 int gru_ktest(unsigned long arg)
1055 int ret = -EINVAL;
1057 switch (arg & 0xff) {
1058 case 0:
1059 ret = quicktest0(arg);
1060 break;
1061 case 1:
1062 ret = quicktest1(arg);
1063 break;
1064 case 2:
1065 ret = quicktest2(arg);
1066 break;
1067 case 99:
1068 ret = gru_free_kernel_contexts();
1069 break;
1071 return ret;
1075 int gru_kservices_init(void)
1077 return 0;
1080 void gru_kservices_exit(void)
1082 if (gru_free_kernel_contexts())
1083 BUG();