USB: Add MUSB and TUSB support
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / musb / cppi_dma.c
blob5ad6d0893cbe0b39eb97464735f1507b0117499f
1 /*
2 * Copyright (C) 2005-2006 by Texas Instruments
4 * This file implements a DMA interface using TI's CPPI DMA.
5 * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB.
6 * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci.
7 */
9 #include <linux/usb.h>
11 #include "musb_core.h"
12 #include "cppi_dma.h"
15 /* CPPI DMA status 7-mar-2006:
17 * - See musb_{host,gadget}.c for more info
19 * - Correct RX DMA generally forces the engine into irq-per-packet mode,
20 * which can easily saturate the CPU under non-mass-storage loads.
22 * NOTES 24-aug-2006 (2.6.18-rc4):
24 * - peripheral RXDMA wedged in a test with packets of length 512/512/1.
25 * evidently after the 1 byte packet was received and acked, the queue
26 * of BDs got garbaged so it wouldn't empty the fifo. (rxcsr 0x2003,
27 * and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401
28 * 004001ff 00000001 .. 8feff860) Host was just getting NAKed on tx
29 * of its next (512 byte) packet. IRQ issues?
31 * REVISIT: the "transfer DMA" glue between CPPI and USB fifos will
32 * evidently also directly update the RX and TX CSRs ... so audit all
33 * host and peripheral side DMA code to avoid CSR access after DMA has
34 * been started.
37 /* REVISIT now we can avoid preallocating these descriptors; or
38 * more simply, switch to a global freelist not per-channel ones.
39 * Note: at full speed, 64 descriptors == 4K bulk data.
41 #define NUM_TXCHAN_BD 64
42 #define NUM_RXCHAN_BD 64
44 static inline void cpu_drain_writebuffer(void)
46 wmb();
47 #ifdef CONFIG_CPU_ARM926T
48 /* REVISIT this "should not be needed",
49 * but lack of it sure seemed to hurt ...
51 asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n");
52 #endif
55 static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c)
57 struct cppi_descriptor *bd = c->freelist;
59 if (bd)
60 c->freelist = bd->next;
61 return bd;
64 static inline void
65 cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd)
67 if (!bd)
68 return;
69 bd->next = c->freelist;
70 c->freelist = bd;
74 * Start DMA controller
76 * Initialize the DMA controller as necessary.
79 /* zero out entire rx state RAM entry for the channel */
80 static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx)
82 musb_writel(&rx->rx_skipbytes, 0, 0);
83 musb_writel(&rx->rx_head, 0, 0);
84 musb_writel(&rx->rx_sop, 0, 0);
85 musb_writel(&rx->rx_current, 0, 0);
86 musb_writel(&rx->rx_buf_current, 0, 0);
87 musb_writel(&rx->rx_len_len, 0, 0);
88 musb_writel(&rx->rx_cnt_cnt, 0, 0);
91 /* zero out entire tx state RAM entry for the channel */
92 static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr)
94 musb_writel(&tx->tx_head, 0, 0);
95 musb_writel(&tx->tx_buf, 0, 0);
96 musb_writel(&tx->tx_current, 0, 0);
97 musb_writel(&tx->tx_buf_current, 0, 0);
98 musb_writel(&tx->tx_info, 0, 0);
99 musb_writel(&tx->tx_rem_len, 0, 0);
100 /* musb_writel(&tx->tx_dummy, 0, 0); */
101 musb_writel(&tx->tx_complete, 0, ptr);
104 static void __init cppi_pool_init(struct cppi *cppi, struct cppi_channel *c)
106 int j;
108 /* initialize channel fields */
109 c->head = NULL;
110 c->tail = NULL;
111 c->last_processed = NULL;
112 c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
113 c->controller = cppi;
114 c->is_rndis = 0;
115 c->freelist = NULL;
117 /* build the BD Free list for the channel */
118 for (j = 0; j < NUM_TXCHAN_BD + 1; j++) {
119 struct cppi_descriptor *bd;
120 dma_addr_t dma;
122 bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma);
123 bd->dma = dma;
124 cppi_bd_free(c, bd);
128 static int cppi_channel_abort(struct dma_channel *);
130 static void cppi_pool_free(struct cppi_channel *c)
132 struct cppi *cppi = c->controller;
133 struct cppi_descriptor *bd;
135 (void) cppi_channel_abort(&c->channel);
136 c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
137 c->controller = NULL;
139 /* free all its bds */
140 bd = c->last_processed;
141 do {
142 if (bd)
143 dma_pool_free(cppi->pool, bd, bd->dma);
144 bd = cppi_bd_alloc(c);
145 } while (bd);
146 c->last_processed = NULL;
149 static int __init cppi_controller_start(struct dma_controller *c)
151 struct cppi *controller;
152 void __iomem *tibase;
153 int i;
155 controller = container_of(c, struct cppi, controller);
157 /* do whatever is necessary to start controller */
158 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
159 controller->tx[i].transmit = true;
160 controller->tx[i].index = i;
162 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
163 controller->rx[i].transmit = false;
164 controller->rx[i].index = i;
167 /* setup BD list on a per channel basis */
168 for (i = 0; i < ARRAY_SIZE(controller->tx); i++)
169 cppi_pool_init(controller, controller->tx + i);
170 for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
171 cppi_pool_init(controller, controller->rx + i);
173 tibase = controller->tibase;
174 INIT_LIST_HEAD(&controller->tx_complete);
176 /* initialise tx/rx channel head pointers to zero */
177 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
178 struct cppi_channel *tx_ch = controller->tx + i;
179 struct cppi_tx_stateram __iomem *tx;
181 INIT_LIST_HEAD(&tx_ch->tx_complete);
183 tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i);
184 tx_ch->state_ram = tx;
185 cppi_reset_tx(tx, 0);
187 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
188 struct cppi_channel *rx_ch = controller->rx + i;
189 struct cppi_rx_stateram __iomem *rx;
191 INIT_LIST_HEAD(&rx_ch->tx_complete);
193 rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i);
194 rx_ch->state_ram = rx;
195 cppi_reset_rx(rx);
198 /* enable individual cppi channels */
199 musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
200 DAVINCI_DMA_ALL_CHANNELS_ENABLE);
201 musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG,
202 DAVINCI_DMA_ALL_CHANNELS_ENABLE);
204 /* enable tx/rx CPPI control */
205 musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
206 musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
208 /* disable RNDIS mode, also host rx RNDIS autorequest */
209 musb_writel(tibase, DAVINCI_RNDIS_REG, 0);
210 musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0);
212 return 0;
216 * Stop DMA controller
218 * De-Init the DMA controller as necessary.
221 static int cppi_controller_stop(struct dma_controller *c)
223 struct cppi *controller;
224 void __iomem *tibase;
225 int i;
227 controller = container_of(c, struct cppi, controller);
229 tibase = controller->tibase;
230 /* DISABLE INDIVIDUAL CHANNEL Interrupts */
231 musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
232 DAVINCI_DMA_ALL_CHANNELS_ENABLE);
233 musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG,
234 DAVINCI_DMA_ALL_CHANNELS_ENABLE);
236 DBG(1, "Tearing down RX and TX Channels\n");
237 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
238 /* FIXME restructure of txdma to use bds like rxdma */
239 controller->tx[i].last_processed = NULL;
240 cppi_pool_free(controller->tx + i);
242 for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
243 cppi_pool_free(controller->rx + i);
245 /* in Tx Case proper teardown is supported. We resort to disabling
246 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is
247 * complete TX CPPI cannot be disabled.
249 /*disable tx/rx cppi */
250 musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
251 musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
253 return 0;
256 /* While dma channel is allocated, we only want the core irqs active
257 * for fault reports, otherwise we'd get irqs that we don't care about.
258 * Except for TX irqs, where dma done != fifo empty and reusable ...
260 * NOTE: docs don't say either way, but irq masking **enables** irqs.
262 * REVISIT same issue applies to pure PIO usage too, and non-cppi dma...
264 static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum)
266 musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8));
269 static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum)
271 musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8));
276 * Allocate a CPPI Channel for DMA. With CPPI, channels are bound to
277 * each transfer direction of a non-control endpoint, so allocating
278 * (and deallocating) is mostly a way to notice bad housekeeping on
279 * the software side. We assume the irqs are always active.
281 static struct dma_channel *
282 cppi_channel_allocate(struct dma_controller *c,
283 struct musb_hw_ep *ep, u8 transmit)
285 struct cppi *controller;
286 u8 index;
287 struct cppi_channel *cppi_ch;
288 void __iomem *tibase;
290 controller = container_of(c, struct cppi, controller);
291 tibase = controller->tibase;
293 /* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */
294 index = ep->epnum - 1;
296 /* return the corresponding CPPI Channel Handle, and
297 * probably disable the non-CPPI irq until we need it.
299 if (transmit) {
300 if (index >= ARRAY_SIZE(controller->tx)) {
301 DBG(1, "no %cX%d CPPI channel\n", 'T', index);
302 return NULL;
304 cppi_ch = controller->tx + index;
305 } else {
306 if (index >= ARRAY_SIZE(controller->rx)) {
307 DBG(1, "no %cX%d CPPI channel\n", 'R', index);
308 return NULL;
310 cppi_ch = controller->rx + index;
311 core_rxirq_disable(tibase, ep->epnum);
314 /* REVISIT make this an error later once the same driver code works
315 * with the other DMA engine too
317 if (cppi_ch->hw_ep)
318 DBG(1, "re-allocating DMA%d %cX channel %p\n",
319 index, transmit ? 'T' : 'R', cppi_ch);
320 cppi_ch->hw_ep = ep;
321 cppi_ch->channel.status = MUSB_DMA_STATUS_FREE;
323 DBG(4, "Allocate CPPI%d %cX\n", index, transmit ? 'T' : 'R');
324 return &cppi_ch->channel;
327 /* Release a CPPI Channel. */
328 static void cppi_channel_release(struct dma_channel *channel)
330 struct cppi_channel *c;
331 void __iomem *tibase;
333 /* REVISIT: for paranoia, check state and abort if needed... */
335 c = container_of(channel, struct cppi_channel, channel);
336 tibase = c->controller->tibase;
337 if (!c->hw_ep)
338 DBG(1, "releasing idle DMA channel %p\n", c);
339 else if (!c->transmit)
340 core_rxirq_enable(tibase, c->index + 1);
342 /* for now, leave its cppi IRQ enabled (we won't trigger it) */
343 c->hw_ep = NULL;
344 channel->status = MUSB_DMA_STATUS_UNKNOWN;
347 /* Context: controller irqlocked */
348 static void
349 cppi_dump_rx(int level, struct cppi_channel *c, const char *tag)
351 void __iomem *base = c->controller->mregs;
352 struct cppi_rx_stateram __iomem *rx = c->state_ram;
354 musb_ep_select(base, c->index + 1);
356 DBG(level, "RX DMA%d%s: %d left, csr %04x, "
357 "%08x H%08x S%08x C%08x, "
358 "B%08x L%08x %08x .. %08x"
359 "\n",
360 c->index, tag,
361 musb_readl(c->controller->tibase,
362 DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index),
363 musb_readw(c->hw_ep->regs, MUSB_RXCSR),
365 musb_readl(&rx->rx_skipbytes, 0),
366 musb_readl(&rx->rx_head, 0),
367 musb_readl(&rx->rx_sop, 0),
368 musb_readl(&rx->rx_current, 0),
370 musb_readl(&rx->rx_buf_current, 0),
371 musb_readl(&rx->rx_len_len, 0),
372 musb_readl(&rx->rx_cnt_cnt, 0),
373 musb_readl(&rx->rx_complete, 0)
377 /* Context: controller irqlocked */
378 static void
379 cppi_dump_tx(int level, struct cppi_channel *c, const char *tag)
381 void __iomem *base = c->controller->mregs;
382 struct cppi_tx_stateram __iomem *tx = c->state_ram;
384 musb_ep_select(base, c->index + 1);
386 DBG(level, "TX DMA%d%s: csr %04x, "
387 "H%08x S%08x C%08x %08x, "
388 "F%08x L%08x .. %08x"
389 "\n",
390 c->index, tag,
391 musb_readw(c->hw_ep->regs, MUSB_TXCSR),
393 musb_readl(&tx->tx_head, 0),
394 musb_readl(&tx->tx_buf, 0),
395 musb_readl(&tx->tx_current, 0),
396 musb_readl(&tx->tx_buf_current, 0),
398 musb_readl(&tx->tx_info, 0),
399 musb_readl(&tx->tx_rem_len, 0),
400 /* dummy/unused word 6 */
401 musb_readl(&tx->tx_complete, 0)
405 /* Context: controller irqlocked */
406 static inline void
407 cppi_rndis_update(struct cppi_channel *c, int is_rx,
408 void __iomem *tibase, int is_rndis)
410 /* we may need to change the rndis flag for this cppi channel */
411 if (c->is_rndis != is_rndis) {
412 u32 value = musb_readl(tibase, DAVINCI_RNDIS_REG);
413 u32 temp = 1 << (c->index);
415 if (is_rx)
416 temp <<= 16;
417 if (is_rndis)
418 value |= temp;
419 else
420 value &= ~temp;
421 musb_writel(tibase, DAVINCI_RNDIS_REG, value);
422 c->is_rndis = is_rndis;
426 static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd)
428 pr_debug("RXBD/%s %08x: "
429 "nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
430 tag, bd->dma,
431 bd->hw_next, bd->hw_bufp, bd->hw_off_len,
432 bd->hw_options);
435 static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx)
437 #if MUSB_DEBUG > 0
438 struct cppi_descriptor *bd;
440 if (!_dbg_level(level))
441 return;
442 cppi_dump_rx(level, rx, tag);
443 if (rx->last_processed)
444 cppi_dump_rxbd("last", rx->last_processed);
445 for (bd = rx->head; bd; bd = bd->next)
446 cppi_dump_rxbd("active", bd);
447 #endif
451 /* NOTE: DaVinci autoreq is ignored except for host side "RNDIS" mode RX;
452 * so we won't ever use it (see "CPPI RX Woes" below).
454 static inline int cppi_autoreq_update(struct cppi_channel *rx,
455 void __iomem *tibase, int onepacket, unsigned n_bds)
457 u32 val;
459 #ifdef RNDIS_RX_IS_USABLE
460 u32 tmp;
461 /* assert(is_host_active(musb)) */
463 /* start from "AutoReq never" */
464 tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
465 val = tmp & ~((0x3) << (rx->index * 2));
467 /* HCD arranged reqpkt for packet #1. we arrange int
468 * for all but the last one, maybe in two segments.
470 if (!onepacket) {
471 #if 0
472 /* use two segments, autoreq "all" then the last "never" */
473 val |= ((0x3) << (rx->index * 2));
474 n_bds--;
475 #else
476 /* one segment, autoreq "all-but-last" */
477 val |= ((0x1) << (rx->index * 2));
478 #endif
481 if (val != tmp) {
482 int n = 100;
484 /* make sure that autoreq is updated before continuing */
485 musb_writel(tibase, DAVINCI_AUTOREQ_REG, val);
486 do {
487 tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
488 if (tmp == val)
489 break;
490 cpu_relax();
491 } while (n-- > 0);
493 #endif
495 /* REQPKT is turned off after each segment */
496 if (n_bds && rx->channel.actual_len) {
497 void __iomem *regs = rx->hw_ep->regs;
499 val = musb_readw(regs, MUSB_RXCSR);
500 if (!(val & MUSB_RXCSR_H_REQPKT)) {
501 val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS;
502 musb_writew(regs, MUSB_RXCSR, val);
503 /* flush writebufer */
504 val = musb_readw(regs, MUSB_RXCSR);
507 return n_bds;
511 /* Buffer enqueuing Logic:
513 * - RX builds new queues each time, to help handle routine "early
514 * termination" cases (faults, including errors and short reads)
515 * more correctly.
517 * - for now, TX reuses the same queue of BDs every time
519 * REVISIT long term, we want a normal dynamic model.
520 * ... the goal will be to append to the
521 * existing queue, processing completed "dma buffers" (segments) on the fly.
523 * Otherwise we force an IRQ latency between requests, which slows us a lot
524 * (especially in "transparent" dma). Unfortunately that model seems to be
525 * inherent in the DMA model from the Mentor code, except in the rare case
526 * of transfers big enough (~128+ KB) that we could append "middle" segments
527 * in the TX paths. (RX can't do this, see below.)
529 * That's true even in the CPPI- friendly iso case, where most urbs have
530 * several small segments provided in a group and where the "packet at a time"
531 * "transparent" DMA model is always correct, even on the RX side.
535 * CPPI TX:
536 * ========
537 * TX is a lot more reasonable than RX; it doesn't need to run in
538 * irq-per-packet mode very often. RNDIS mode seems to behave too
539 * (except how it handles the exactly-N-packets case). Building a
540 * txdma queue with multiple requests (urb or usb_request) looks
541 * like it would work ... but fault handling would need much testing.
543 * The main issue with TX mode RNDIS relates to transfer lengths that
544 * are an exact multiple of the packet length. It appears that there's
545 * a hiccup in that case (maybe the DMA completes before the ZLP gets
546 * written?) boiling down to not being able to rely on CPPI writing any
547 * terminating zero length packet before the next transfer is written.
548 * So that's punted to PIO; better yet, gadget drivers can avoid it.
550 * Plus, there's allegedly an undocumented constraint that rndis transfer
551 * length be a multiple of 64 bytes ... but the chip doesn't act that
552 * way, and we really don't _want_ that behavior anyway.
554 * On TX, "transparent" mode works ... although experiments have shown
555 * problems trying to use the SOP/EOP bits in different USB packets.
557 * REVISIT try to handle terminating zero length packets using CPPI
558 * instead of doing it by PIO after an IRQ. (Meanwhile, make Ethernet
559 * links avoid that issue by forcing them to avoid zlps.)
561 static void
562 cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx)
564 unsigned maxpacket = tx->maxpacket;
565 dma_addr_t addr = tx->buf_dma + tx->offset;
566 size_t length = tx->buf_len - tx->offset;
567 struct cppi_descriptor *bd;
568 unsigned n_bds;
569 unsigned i;
570 struct cppi_tx_stateram __iomem *tx_ram = tx->state_ram;
571 int rndis;
573 /* TX can use the CPPI "rndis" mode, where we can probably fit this
574 * transfer in one BD and one IRQ. The only time we would NOT want
575 * to use it is when hardware constraints prevent it, or if we'd
576 * trigger the "send a ZLP?" confusion.
578 rndis = (maxpacket & 0x3f) == 0
579 && length < 0xffff
580 && (length % maxpacket) != 0;
582 if (rndis) {
583 maxpacket = length;
584 n_bds = 1;
585 } else {
586 n_bds = length / maxpacket;
587 if (!length || (length % maxpacket))
588 n_bds++;
589 n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD);
590 length = min(n_bds * maxpacket, length);
593 DBG(4, "TX DMA%d, pktSz %d %s bds %d dma 0x%x len %u\n",
594 tx->index,
595 maxpacket,
596 rndis ? "rndis" : "transparent",
597 n_bds,
598 addr, length);
600 cppi_rndis_update(tx, 0, musb->ctrl_base, rndis);
602 /* assuming here that channel_program is called during
603 * transfer initiation ... current code maintains state
604 * for one outstanding request only (no queues, not even
605 * the implicit ones of an iso urb).
608 bd = tx->freelist;
609 tx->head = bd;
610 tx->last_processed = NULL;
612 /* FIXME use BD pool like RX side does, and just queue
613 * the minimum number for this request.
616 /* Prepare queue of BDs first, then hand it to hardware.
617 * All BDs except maybe the last should be of full packet
618 * size; for RNDIS there _is_ only that last packet.
620 for (i = 0; i < n_bds; ) {
621 if (++i < n_bds && bd->next)
622 bd->hw_next = bd->next->dma;
623 else
624 bd->hw_next = 0;
626 bd->hw_bufp = tx->buf_dma + tx->offset;
628 /* FIXME set EOP only on the last packet,
629 * SOP only on the first ... avoid IRQs
631 if ((tx->offset + maxpacket) <= tx->buf_len) {
632 tx->offset += maxpacket;
633 bd->hw_off_len = maxpacket;
634 bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
635 | CPPI_OWN_SET | maxpacket;
636 } else {
637 /* only this one may be a partial USB Packet */
638 u32 partial_len;
640 partial_len = tx->buf_len - tx->offset;
641 tx->offset = tx->buf_len;
642 bd->hw_off_len = partial_len;
644 bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
645 | CPPI_OWN_SET | partial_len;
646 if (partial_len == 0)
647 bd->hw_options |= CPPI_ZERO_SET;
650 DBG(5, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n",
651 bd, bd->hw_next, bd->hw_bufp,
652 bd->hw_off_len, bd->hw_options);
654 /* update the last BD enqueued to the list */
655 tx->tail = bd;
656 bd = bd->next;
659 /* BDs live in DMA-coherent memory, but writes might be pending */
660 cpu_drain_writebuffer();
662 /* Write to the HeadPtr in state RAM to trigger */
663 musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma);
665 cppi_dump_tx(5, tx, "/S");
669 * CPPI RX Woes:
670 * =============
671 * Consider a 1KB bulk RX buffer in two scenarios: (a) it's fed two 300 byte
672 * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back.
673 * (Full speed transfers have similar scenarios.)
675 * The correct behavior for Linux is that (a) fills the buffer with 300 bytes,
676 * and the next packet goes into a buffer that's queued later; while (b) fills
677 * the buffer with 1024 bytes. How to do that with CPPI?
679 * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but
680 * (b) loses **BADLY** because nothing (!) happens when that second packet
681 * fills the buffer, much less when a third one arrives. (Which makes this
682 * not a "true" RNDIS mode. In the RNDIS protocol short-packet termination
683 * is optional, and it's fine if peripherals -- not hosts! -- pad messages
684 * out to end-of-buffer. Standard PCI host controller DMA descriptors
685 * implement that mode by default ... which is no accident.)
687 * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
688 * converse problems: (b) is handled right, but (a) loses badly. CPPI RX
689 * ignores SOP/EOP markings and processes both of those BDs; so both packets
690 * are loaded into the buffer (with a 212 byte gap between them), and the next
691 * buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP
692 * are intended as outputs for RX queues, not inputs...)
694 * - A variant of "transparent" mode -- one BD at a time -- is the only way to
695 * reliably make both cases work, with software handling both cases correctly
696 * and at the significant penalty of needing an IRQ per packet. (The lack of
697 * I/O overlap can be slightly ameliorated by enabling double buffering.)
699 * So how to get rid of IRQ-per-packet? The transparent multi-BD case could
700 * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK
701 * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors
702 * with guaranteed driver level fault recovery and scrubbing out what's left
703 * of that garbaged datastream.
705 * But there seems to be no way to identify the cases where CPPI RNDIS mode
706 * is appropriate -- which do NOT include RNDIS host drivers, but do include
707 * the CDC Ethernet driver! -- and the documentation is incomplete/wrong.
708 * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic
709 * that applies best on the peripheral side (and which could fail rudely).
711 * Leaving only "transparent" mode; we avoid multi-bd modes in almost all
712 * cases other than mass storage class. Otherwise we're correct but slow,
713 * since CPPI penalizes our need for a "true RNDIS" default mode.
717 /* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY
719 * IFF
720 * (a) peripheral mode ... since rndis peripherals could pad their
721 * writes to hosts, causing i/o failure; or we'd have to cope with
722 * a largely unknowable variety of host side protocol variants
723 * (b) and short reads are NOT errors ... since full reads would
724 * cause those same i/o failures
725 * (c) and read length is
726 * - less than 64KB (max per cppi descriptor)
727 * - not a multiple of 4096 (g_zero default, full reads typical)
728 * - N (>1) packets long, ditto (full reads not EXPECTED)
729 * THEN
730 * try rx rndis mode
732 * Cost of heuristic failing: RXDMA wedges at the end of transfers that
733 * fill out the whole buffer. Buggy host side usb network drivers could
734 * trigger that, but "in the field" such bugs seem to be all but unknown.
736 * So this module parameter lets the heuristic be disabled. When using
737 * gadgetfs, the heuristic will probably need to be disabled.
739 static int cppi_rx_rndis = 1;
741 module_param(cppi_rx_rndis, bool, 0);
742 MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic");
746 * cppi_next_rx_segment - dma read for the next chunk of a buffer
747 * @musb: the controller
748 * @rx: dma channel
749 * @onepacket: true unless caller treats short reads as errors, and
750 * performs fault recovery above usbcore.
751 * Context: controller irqlocked
753 * See above notes about why we can't use multi-BD RX queues except in
754 * rare cases (mass storage class), and can never use the hardware "rndis"
755 * mode (since it's not a "true" RNDIS mode) with complete safety..
757 * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in
758 * code to recover from corrupted datastreams after each short transfer.
760 static void
761 cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket)
763 unsigned maxpacket = rx->maxpacket;
764 dma_addr_t addr = rx->buf_dma + rx->offset;
765 size_t length = rx->buf_len - rx->offset;
766 struct cppi_descriptor *bd, *tail;
767 unsigned n_bds;
768 unsigned i;
769 void __iomem *tibase = musb->ctrl_base;
770 int is_rndis = 0;
771 struct cppi_rx_stateram __iomem *rx_ram = rx->state_ram;
773 if (onepacket) {
774 /* almost every USB driver, host or peripheral side */
775 n_bds = 1;
777 /* maybe apply the heuristic above */
778 if (cppi_rx_rndis
779 && is_peripheral_active(musb)
780 && length > maxpacket
781 && (length & ~0xffff) == 0
782 && (length & 0x0fff) != 0
783 && (length & (maxpacket - 1)) == 0) {
784 maxpacket = length;
785 is_rndis = 1;
787 } else {
788 /* virtually nothing except mass storage class */
789 if (length > 0xffff) {
790 n_bds = 0xffff / maxpacket;
791 length = n_bds * maxpacket;
792 } else {
793 n_bds = length / maxpacket;
794 if (length % maxpacket)
795 n_bds++;
797 if (n_bds == 1)
798 onepacket = 1;
799 else
800 n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD);
803 /* In host mode, autorequest logic can generate some IN tokens; it's
804 * tricky since we can't leave REQPKT set in RXCSR after the transfer
805 * finishes. So: multipacket transfers involve two or more segments.
806 * And always at least two IRQs ... RNDIS mode is not an option.
808 if (is_host_active(musb))
809 n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds);
811 cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis);
813 length = min(n_bds * maxpacket, length);
815 DBG(4, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) "
816 "dma 0x%x len %u %u/%u\n",
817 rx->index, maxpacket,
818 onepacket
819 ? (is_rndis ? "rndis" : "onepacket")
820 : "multipacket",
821 n_bds,
822 musb_readl(tibase,
823 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
824 & 0xffff,
825 addr, length, rx->channel.actual_len, rx->buf_len);
827 /* only queue one segment at a time, since the hardware prevents
828 * correct queue shutdown after unexpected short packets
830 bd = cppi_bd_alloc(rx);
831 rx->head = bd;
833 /* Build BDs for all packets in this segment */
834 for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) {
835 u32 bd_len;
837 if (i) {
838 bd = cppi_bd_alloc(rx);
839 if (!bd)
840 break;
841 tail->next = bd;
842 tail->hw_next = bd->dma;
844 bd->hw_next = 0;
846 /* all but the last packet will be maxpacket size */
847 if (maxpacket < length)
848 bd_len = maxpacket;
849 else
850 bd_len = length;
852 bd->hw_bufp = addr;
853 addr += bd_len;
854 rx->offset += bd_len;
856 bd->hw_off_len = (0 /*offset*/ << 16) + bd_len;
857 bd->buflen = bd_len;
859 bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0);
860 length -= bd_len;
863 /* we always expect at least one reusable BD! */
864 if (!tail) {
865 WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds);
866 return;
867 } else if (i < n_bds)
868 WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds);
870 tail->next = NULL;
871 tail->hw_next = 0;
873 bd = rx->head;
874 rx->tail = tail;
876 /* short reads and other faults should terminate this entire
877 * dma segment. we want one "dma packet" per dma segment, not
878 * one per USB packet, terminating the whole queue at once...
879 * NOTE that current hardware seems to ignore SOP and EOP.
881 bd->hw_options |= CPPI_SOP_SET;
882 tail->hw_options |= CPPI_EOP_SET;
884 if (debug >= 5) {
885 struct cppi_descriptor *d;
887 for (d = rx->head; d; d = d->next)
888 cppi_dump_rxbd("S", d);
891 /* in case the preceding transfer left some state... */
892 tail = rx->last_processed;
893 if (tail) {
894 tail->next = bd;
895 tail->hw_next = bd->dma;
898 core_rxirq_enable(tibase, rx->index + 1);
900 /* BDs live in DMA-coherent memory, but writes might be pending */
901 cpu_drain_writebuffer();
903 /* REVISIT specs say to write this AFTER the BUFCNT register
904 * below ... but that loses badly.
906 musb_writel(&rx_ram->rx_head, 0, bd->dma);
908 /* bufferCount must be at least 3, and zeroes on completion
909 * unless it underflows below zero, or stops at two, or keeps
910 * growing ... grr.
912 i = musb_readl(tibase,
913 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
914 & 0xffff;
916 if (!i)
917 musb_writel(tibase,
918 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
919 n_bds + 2);
920 else if (n_bds > (i - 3))
921 musb_writel(tibase,
922 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
923 n_bds - (i - 3));
925 i = musb_readl(tibase,
926 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
927 & 0xffff;
928 if (i < (2 + n_bds)) {
929 DBG(2, "bufcnt%d underrun - %d (for %d)\n",
930 rx->index, i, n_bds);
931 musb_writel(tibase,
932 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
933 n_bds + 2);
936 cppi_dump_rx(4, rx, "/S");
940 * cppi_channel_program - program channel for data transfer
941 * @ch: the channel
942 * @maxpacket: max packet size
943 * @mode: For RX, 1 unless the usb protocol driver promised to treat
944 * all short reads as errors and kick in high level fault recovery.
945 * For TX, ignored because of RNDIS mode races/glitches.
946 * @dma_addr: dma address of buffer
947 * @len: length of buffer
948 * Context: controller irqlocked
950 static int cppi_channel_program(struct dma_channel *ch,
951 u16 maxpacket, u8 mode,
952 dma_addr_t dma_addr, u32 len)
954 struct cppi_channel *cppi_ch;
955 struct cppi *controller;
956 struct musb *musb;
958 cppi_ch = container_of(ch, struct cppi_channel, channel);
959 controller = cppi_ch->controller;
960 musb = controller->musb;
962 switch (ch->status) {
963 case MUSB_DMA_STATUS_BUS_ABORT:
964 case MUSB_DMA_STATUS_CORE_ABORT:
965 /* fault irq handler should have handled cleanup */
966 WARNING("%cX DMA%d not cleaned up after abort!\n",
967 cppi_ch->transmit ? 'T' : 'R',
968 cppi_ch->index);
969 /* WARN_ON(1); */
970 break;
971 case MUSB_DMA_STATUS_BUSY:
972 WARNING("program active channel? %cX DMA%d\n",
973 cppi_ch->transmit ? 'T' : 'R',
974 cppi_ch->index);
975 /* WARN_ON(1); */
976 break;
977 case MUSB_DMA_STATUS_UNKNOWN:
978 DBG(1, "%cX DMA%d not allocated!\n",
979 cppi_ch->transmit ? 'T' : 'R',
980 cppi_ch->index);
981 /* FALLTHROUGH */
982 case MUSB_DMA_STATUS_FREE:
983 break;
986 ch->status = MUSB_DMA_STATUS_BUSY;
988 /* set transfer parameters, then queue up its first segment */
989 cppi_ch->buf_dma = dma_addr;
990 cppi_ch->offset = 0;
991 cppi_ch->maxpacket = maxpacket;
992 cppi_ch->buf_len = len;
994 /* TX channel? or RX? */
995 if (cppi_ch->transmit)
996 cppi_next_tx_segment(musb, cppi_ch);
997 else
998 cppi_next_rx_segment(musb, cppi_ch, mode);
1000 return true;
1003 static bool cppi_rx_scan(struct cppi *cppi, unsigned ch)
1005 struct cppi_channel *rx = &cppi->rx[ch];
1006 struct cppi_rx_stateram __iomem *state = rx->state_ram;
1007 struct cppi_descriptor *bd;
1008 struct cppi_descriptor *last = rx->last_processed;
1009 bool completed = false;
1010 bool acked = false;
1011 int i;
1012 dma_addr_t safe2ack;
1013 void __iomem *regs = rx->hw_ep->regs;
1015 cppi_dump_rx(6, rx, "/K");
1017 bd = last ? last->next : rx->head;
1018 if (!bd)
1019 return false;
1021 /* run through all completed BDs */
1022 for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0);
1023 (safe2ack || completed) && bd && i < NUM_RXCHAN_BD;
1024 i++, bd = bd->next) {
1025 u16 len;
1027 /* catch latest BD writes from CPPI */
1028 rmb();
1029 if (!completed && (bd->hw_options & CPPI_OWN_SET))
1030 break;
1032 DBG(5, "C/RXBD %08x: nxt %08x buf %08x "
1033 "off.len %08x opt.len %08x (%d)\n",
1034 bd->dma, bd->hw_next, bd->hw_bufp,
1035 bd->hw_off_len, bd->hw_options,
1036 rx->channel.actual_len);
1038 /* actual packet received length */
1039 if ((bd->hw_options & CPPI_SOP_SET) && !completed)
1040 len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK;
1041 else
1042 len = 0;
1044 if (bd->hw_options & CPPI_EOQ_MASK)
1045 completed = true;
1047 if (!completed && len < bd->buflen) {
1048 /* NOTE: when we get a short packet, RXCSR_H_REQPKT
1049 * must have been cleared, and no more DMA packets may
1050 * active be in the queue... TI docs didn't say, but
1051 * CPPI ignores those BDs even though OWN is still set.
1053 completed = true;
1054 DBG(3, "rx short %d/%d (%d)\n",
1055 len, bd->buflen,
1056 rx->channel.actual_len);
1059 /* If we got here, we expect to ack at least one BD; meanwhile
1060 * CPPI may completing other BDs while we scan this list...
1062 * RACE: we can notice OWN cleared before CPPI raises the
1063 * matching irq by writing that BD as the completion pointer.
1064 * In such cases, stop scanning and wait for the irq, avoiding
1065 * lost acks and states where BD ownership is unclear.
1067 if (bd->dma == safe2ack) {
1068 musb_writel(&state->rx_complete, 0, safe2ack);
1069 safe2ack = musb_readl(&state->rx_complete, 0);
1070 acked = true;
1071 if (bd->dma == safe2ack)
1072 safe2ack = 0;
1075 rx->channel.actual_len += len;
1077 cppi_bd_free(rx, last);
1078 last = bd;
1080 /* stop scanning on end-of-segment */
1081 if (bd->hw_next == 0)
1082 completed = true;
1084 rx->last_processed = last;
1086 /* dma abort, lost ack, or ... */
1087 if (!acked && last) {
1088 int csr;
1090 if (safe2ack == 0 || safe2ack == rx->last_processed->dma)
1091 musb_writel(&state->rx_complete, 0, safe2ack);
1092 if (safe2ack == 0) {
1093 cppi_bd_free(rx, last);
1094 rx->last_processed = NULL;
1096 /* if we land here on the host side, H_REQPKT will
1097 * be clear and we need to restart the queue...
1099 WARN_ON(rx->head);
1101 musb_ep_select(cppi->mregs, rx->index + 1);
1102 csr = musb_readw(regs, MUSB_RXCSR);
1103 if (csr & MUSB_RXCSR_DMAENAB) {
1104 DBG(4, "list%d %p/%p, last %08x%s, csr %04x\n",
1105 rx->index,
1106 rx->head, rx->tail,
1107 rx->last_processed
1108 ? rx->last_processed->dma
1109 : 0,
1110 completed ? ", completed" : "",
1111 csr);
1112 cppi_dump_rxq(4, "/what?", rx);
1115 if (!completed) {
1116 int csr;
1118 rx->head = bd;
1120 /* REVISIT seems like "autoreq all but EOP" doesn't...
1121 * setting it here "should" be racey, but seems to work
1123 csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1124 if (is_host_active(cppi->musb)
1125 && bd
1126 && !(csr & MUSB_RXCSR_H_REQPKT)) {
1127 csr |= MUSB_RXCSR_H_REQPKT;
1128 musb_writew(regs, MUSB_RXCSR,
1129 MUSB_RXCSR_H_WZC_BITS | csr);
1130 csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1132 } else {
1133 rx->head = NULL;
1134 rx->tail = NULL;
1137 cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned");
1138 return completed;
1141 void cppi_completion(struct musb *musb, u32 rx, u32 tx)
1143 void __iomem *tibase;
1144 int i, index;
1145 struct cppi *cppi;
1146 struct musb_hw_ep *hw_ep = NULL;
1148 cppi = container_of(musb->dma_controller, struct cppi, controller);
1150 tibase = musb->ctrl_base;
1152 /* process TX channels */
1153 for (index = 0; tx; tx = tx >> 1, index++) {
1154 struct cppi_channel *tx_ch;
1155 struct cppi_tx_stateram __iomem *tx_ram;
1156 bool completed = false;
1157 struct cppi_descriptor *bd;
1159 if (!(tx & 1))
1160 continue;
1162 tx_ch = cppi->tx + index;
1163 tx_ram = tx_ch->state_ram;
1165 /* FIXME need a cppi_tx_scan() routine, which
1166 * can also be called from abort code
1169 cppi_dump_tx(5, tx_ch, "/E");
1171 bd = tx_ch->head;
1173 if (NULL == bd) {
1174 DBG(1, "null BD\n");
1175 continue;
1178 /* run through all completed BDs */
1179 for (i = 0; !completed && bd && i < NUM_TXCHAN_BD;
1180 i++, bd = bd->next) {
1181 u16 len;
1183 /* catch latest BD writes from CPPI */
1184 rmb();
1185 if (bd->hw_options & CPPI_OWN_SET)
1186 break;
1188 DBG(5, "C/TXBD %p n %x b %x off %x opt %x\n",
1189 bd, bd->hw_next, bd->hw_bufp,
1190 bd->hw_off_len, bd->hw_options);
1192 len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK;
1193 tx_ch->channel.actual_len += len;
1195 tx_ch->last_processed = bd;
1197 /* write completion register to acknowledge
1198 * processing of completed BDs, and possibly
1199 * release the IRQ; EOQ might not be set ...
1201 * REVISIT use the same ack strategy as rx
1203 * REVISIT have observed bit 18 set; huh??
1205 /* if ((bd->hw_options & CPPI_EOQ_MASK)) */
1206 musb_writel(&tx_ram->tx_complete, 0, bd->dma);
1208 /* stop scanning on end-of-segment */
1209 if (bd->hw_next == 0)
1210 completed = true;
1213 /* on end of segment, maybe go to next one */
1214 if (completed) {
1215 /* cppi_dump_tx(4, tx_ch, "/complete"); */
1217 /* transfer more, or report completion */
1218 if (tx_ch->offset >= tx_ch->buf_len) {
1219 tx_ch->head = NULL;
1220 tx_ch->tail = NULL;
1221 tx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1223 hw_ep = tx_ch->hw_ep;
1225 /* Peripheral role never repurposes the
1226 * endpoint, so immediate completion is
1227 * safe. Host role waits for the fifo
1228 * to empty (TXPKTRDY irq) before going
1229 * to the next queued bulk transfer.
1231 if (is_host_active(cppi->musb)) {
1232 #if 0
1233 /* WORKAROUND because we may
1234 * not always get TXKPTRDY ...
1236 int csr;
1238 csr = musb_readw(hw_ep->regs,
1239 MUSB_TXCSR);
1240 if (csr & MUSB_TXCSR_TXPKTRDY)
1241 #endif
1242 completed = false;
1244 if (completed)
1245 musb_dma_completion(musb, index + 1, 1);
1247 } else {
1248 /* Bigger transfer than we could fit in
1249 * that first batch of descriptors...
1251 cppi_next_tx_segment(musb, tx_ch);
1253 } else
1254 tx_ch->head = bd;
1257 /* Start processing the RX block */
1258 for (index = 0; rx; rx = rx >> 1, index++) {
1260 if (rx & 1) {
1261 struct cppi_channel *rx_ch;
1263 rx_ch = cppi->rx + index;
1265 /* let incomplete dma segments finish */
1266 if (!cppi_rx_scan(cppi, index))
1267 continue;
1269 /* start another dma segment if needed */
1270 if (rx_ch->channel.actual_len != rx_ch->buf_len
1271 && rx_ch->channel.actual_len
1272 == rx_ch->offset) {
1273 cppi_next_rx_segment(musb, rx_ch, 1);
1274 continue;
1277 /* all segments completed! */
1278 rx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1280 hw_ep = rx_ch->hw_ep;
1282 core_rxirq_disable(tibase, index + 1);
1283 musb_dma_completion(musb, index + 1, 0);
1287 /* write to CPPI EOI register to re-enable interrupts */
1288 musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0);
1291 /* Instantiate a software object representing a DMA controller. */
1292 struct dma_controller *__init
1293 dma_controller_create(struct musb *musb, void __iomem *mregs)
1295 struct cppi *controller;
1297 controller = kzalloc(sizeof *controller, GFP_KERNEL);
1298 if (!controller)
1299 return NULL;
1301 controller->mregs = mregs;
1302 controller->tibase = mregs - DAVINCI_BASE_OFFSET;
1304 controller->musb = musb;
1305 controller->controller.start = cppi_controller_start;
1306 controller->controller.stop = cppi_controller_stop;
1307 controller->controller.channel_alloc = cppi_channel_allocate;
1308 controller->controller.channel_release = cppi_channel_release;
1309 controller->controller.channel_program = cppi_channel_program;
1310 controller->controller.channel_abort = cppi_channel_abort;
1312 /* NOTE: allocating from on-chip SRAM would give the least
1313 * contention for memory access, if that ever matters here.
1316 /* setup BufferPool */
1317 controller->pool = dma_pool_create("cppi",
1318 controller->musb->controller,
1319 sizeof(struct cppi_descriptor),
1320 CPPI_DESCRIPTOR_ALIGN, 0);
1321 if (!controller->pool) {
1322 kfree(controller);
1323 return NULL;
1326 return &controller->controller;
1330 * Destroy a previously-instantiated DMA controller.
1332 void dma_controller_destroy(struct dma_controller *c)
1334 struct cppi *cppi;
1336 cppi = container_of(c, struct cppi, controller);
1338 /* assert: caller stopped the controller first */
1339 dma_pool_destroy(cppi->pool);
1341 kfree(cppi);
1345 * Context: controller irqlocked, endpoint selected
1347 static int cppi_channel_abort(struct dma_channel *channel)
1349 struct cppi_channel *cppi_ch;
1350 struct cppi *controller;
1351 void __iomem *mbase;
1352 void __iomem *tibase;
1353 void __iomem *regs;
1354 u32 value;
1355 struct cppi_descriptor *queue;
1357 cppi_ch = container_of(channel, struct cppi_channel, channel);
1359 controller = cppi_ch->controller;
1361 switch (channel->status) {
1362 case MUSB_DMA_STATUS_BUS_ABORT:
1363 case MUSB_DMA_STATUS_CORE_ABORT:
1364 /* from RX or TX fault irq handler */
1365 case MUSB_DMA_STATUS_BUSY:
1366 /* the hardware needs shutting down */
1367 regs = cppi_ch->hw_ep->regs;
1368 break;
1369 case MUSB_DMA_STATUS_UNKNOWN:
1370 case MUSB_DMA_STATUS_FREE:
1371 return 0;
1372 default:
1373 return -EINVAL;
1376 if (!cppi_ch->transmit && cppi_ch->head)
1377 cppi_dump_rxq(3, "/abort", cppi_ch);
1379 mbase = controller->mregs;
1380 tibase = controller->tibase;
1382 queue = cppi_ch->head;
1383 cppi_ch->head = NULL;
1384 cppi_ch->tail = NULL;
1386 /* REVISIT should rely on caller having done this,
1387 * and caller should rely on us not changing it.
1388 * peripheral code is safe ... check host too.
1390 musb_ep_select(mbase, cppi_ch->index + 1);
1392 if (cppi_ch->transmit) {
1393 struct cppi_tx_stateram __iomem *tx_ram;
1394 int enabled;
1396 /* mask interrupts raised to signal teardown complete. */
1397 enabled = musb_readl(tibase, DAVINCI_TXCPPI_INTENAB_REG)
1398 & (1 << cppi_ch->index);
1399 if (enabled)
1400 musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
1401 (1 << cppi_ch->index));
1403 /* REVISIT put timeouts on these controller handshakes */
1405 cppi_dump_tx(6, cppi_ch, " (teardown)");
1407 /* teardown DMA engine then usb core */
1408 do {
1409 value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG);
1410 } while (!(value & CPPI_TEAR_READY));
1411 musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index);
1413 tx_ram = cppi_ch->state_ram;
1414 do {
1415 value = musb_readl(&tx_ram->tx_complete, 0);
1416 } while (0xFFFFFFFC != value);
1417 musb_writel(&tx_ram->tx_complete, 0, 0xFFFFFFFC);
1419 /* FIXME clean up the transfer state ... here?
1420 * the completion routine should get called with
1421 * an appropriate status code.
1424 value = musb_readw(regs, MUSB_TXCSR);
1425 value &= ~MUSB_TXCSR_DMAENAB;
1426 value |= MUSB_TXCSR_FLUSHFIFO;
1427 musb_writew(regs, MUSB_TXCSR, value);
1428 musb_writew(regs, MUSB_TXCSR, value);
1430 /* re-enable interrupt */
1431 if (enabled)
1432 musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
1433 (1 << cppi_ch->index));
1435 /* While we scrub the TX state RAM, ensure that we clean
1436 * up any interrupt that's currently asserted:
1437 * 1. Write to completion Ptr value 0x1(bit 0 set)
1438 * (write back mode)
1439 * 2. Write to completion Ptr value 0x0(bit 0 cleared)
1440 * (compare mode)
1441 * Value written is compared(for bits 31:2) and when
1442 * equal, interrupt is deasserted.
1444 cppi_reset_tx(tx_ram, 1);
1445 musb_writel(&tx_ram->tx_complete, 0, 0);
1447 cppi_dump_tx(5, cppi_ch, " (done teardown)");
1449 /* REVISIT tx side _should_ clean up the same way
1450 * as the RX side ... this does no cleanup at all!
1453 } else /* RX */ {
1454 u16 csr;
1456 /* NOTE: docs don't guarantee any of this works ... we
1457 * expect that if the usb core stops telling the cppi core
1458 * to pull more data from it, then it'll be safe to flush
1459 * current RX DMA state iff any pending fifo transfer is done.
1462 core_rxirq_disable(tibase, cppi_ch->index + 1);
1464 /* for host, ensure ReqPkt is never set again */
1465 if (is_host_active(cppi_ch->controller->musb)) {
1466 value = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
1467 value &= ~((0x3) << (cppi_ch->index * 2));
1468 musb_writel(tibase, DAVINCI_AUTOREQ_REG, value);
1471 csr = musb_readw(regs, MUSB_RXCSR);
1473 /* for host, clear (just) ReqPkt at end of current packet(s) */
1474 if (is_host_active(cppi_ch->controller->musb)) {
1475 csr |= MUSB_RXCSR_H_WZC_BITS;
1476 csr &= ~MUSB_RXCSR_H_REQPKT;
1477 } else
1478 csr |= MUSB_RXCSR_P_WZC_BITS;
1480 /* clear dma enable */
1481 csr &= ~(MUSB_RXCSR_DMAENAB);
1482 musb_writew(regs, MUSB_RXCSR, csr);
1483 csr = musb_readw(regs, MUSB_RXCSR);
1485 /* Quiesce: wait for current dma to finish (if not cleanup).
1486 * We can't use bit zero of stateram->rx_sop, since that
1487 * refers to an entire "DMA packet" not just emptying the
1488 * current fifo. Most segments need multiple usb packets.
1490 if (channel->status == MUSB_DMA_STATUS_BUSY)
1491 udelay(50);
1493 /* scan the current list, reporting any data that was
1494 * transferred and acking any IRQ
1496 cppi_rx_scan(controller, cppi_ch->index);
1498 /* clobber the existing state once it's idle
1500 * NOTE: arguably, we should also wait for all the other
1501 * RX channels to quiesce (how??) and then temporarily
1502 * disable RXCPPI_CTRL_REG ... but it seems that we can
1503 * rely on the controller restarting from state ram, with
1504 * only RXCPPI_BUFCNT state being bogus. BUFCNT will
1505 * correct itself after the next DMA transfer though.
1507 * REVISIT does using rndis mode change that?
1509 cppi_reset_rx(cppi_ch->state_ram);
1511 /* next DMA request _should_ load cppi head ptr */
1513 /* ... we don't "free" that list, only mutate it in place. */
1514 cppi_dump_rx(5, cppi_ch, " (done abort)");
1516 /* clean up previously pending bds */
1517 cppi_bd_free(cppi_ch, cppi_ch->last_processed);
1518 cppi_ch->last_processed = NULL;
1520 while (queue) {
1521 struct cppi_descriptor *tmp = queue->next;
1523 cppi_bd_free(cppi_ch, queue);
1524 queue = tmp;
1528 channel->status = MUSB_DMA_STATUS_FREE;
1529 cppi_ch->buf_dma = 0;
1530 cppi_ch->offset = 0;
1531 cppi_ch->buf_len = 0;
1532 cppi_ch->maxpacket = 0;
1533 return 0;
1536 /* TBD Queries:
1538 * Power Management ... probably turn off cppi during suspend, restart;
1539 * check state ram? Clocking is presumably shared with usb core.