[GFS2] Fix change nlink deadlock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / starfire.c
blobbf873ea2579733f572f25886b9a0ab9d358cbf3d
1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 Written 1998-2000 by Donald Becker.
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
16 The information below comes from Donald Becker's original driver:
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.0"
31 #define DRV_RELDATE "June 27, 2006"
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/pci.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/crc32.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <linux/mm.h>
45 #include <asm/processor.h> /* Processor type for cache alignment. */
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
49 #include "starfire_firmware.h"
51 * The current frame processor firmware fails to checksum a fragment
52 * of length 1. If and when this is fixed, the #define below can be removed.
54 #define HAS_BROKEN_FIRMWARE
57 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 #ifdef HAS_BROKEN_FIRMWARE
60 #define PADDING_MASK 3
61 #endif
64 * Define this if using the driver with the zero-copy patch
66 #define ZEROCOPY
68 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
69 #define VLAN_SUPPORT
70 #endif
72 #ifndef CONFIG_ADAPTEC_STARFIRE_NAPI
73 #undef HAVE_NETDEV_POLL
74 #endif
76 /* The user-configurable values.
77 These may be modified when a driver module is loaded.*/
79 /* Used for tuning interrupt latency vs. overhead. */
80 static int intr_latency;
81 static int small_frames;
83 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
84 static int max_interrupt_work = 20;
85 static int mtu;
86 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
87 The Starfire has a 512 element hash table based on the Ethernet CRC. */
88 static const int multicast_filter_limit = 512;
89 /* Whether to do TCP/UDP checksums in hardware */
90 static int enable_hw_cksum = 1;
92 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
94 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
95 * Setting to > 1518 effectively disables this feature.
97 * NOTE:
98 * The ia64 doesn't allow for unaligned loads even of integers being
99 * misaligned on a 2 byte boundary. Thus always force copying of
100 * packets as the starfire doesn't allow for misaligned DMAs ;-(
101 * 23/10/2000 - Jes
103 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
104 * at least, having unaligned frames leads to a rather serious performance
105 * penalty. -Ion
107 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
108 static int rx_copybreak = PKT_BUF_SZ;
109 #else
110 static int rx_copybreak /* = 0 */;
111 #endif
113 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
114 #ifdef __sparc__
115 #define DMA_BURST_SIZE 64
116 #else
117 #define DMA_BURST_SIZE 128
118 #endif
120 /* Used to pass the media type, etc.
121 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
122 The media type is usually passed in 'options[]'.
123 These variables are deprecated, use ethtool instead. -Ion
125 #define MAX_UNITS 8 /* More are supported, limit only on options */
126 static int options[MAX_UNITS] = {0, };
127 static int full_duplex[MAX_UNITS] = {0, };
129 /* Operational parameters that are set at compile time. */
131 /* The "native" ring sizes are either 256 or 2048.
132 However in some modes a descriptor may be marked to wrap the ring earlier.
134 #define RX_RING_SIZE 256
135 #define TX_RING_SIZE 32
136 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
137 #define DONE_Q_SIZE 1024
138 /* All queues must be aligned on a 256-byte boundary */
139 #define QUEUE_ALIGN 256
141 #if RX_RING_SIZE > 256
142 #define RX_Q_ENTRIES Rx2048QEntries
143 #else
144 #define RX_Q_ENTRIES Rx256QEntries
145 #endif
147 /* Operational parameters that usually are not changed. */
148 /* Time in jiffies before concluding the transmitter is hung. */
149 #define TX_TIMEOUT (2 * HZ)
152 * This SUCKS.
153 * We need a much better method to determine if dma_addr_t is 64-bit.
155 #if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__mips64__) || (defined(__mips__) && defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR))
156 /* 64-bit dma_addr_t */
157 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
158 #define netdrv_addr_t u64
159 #define cpu_to_dma(x) cpu_to_le64(x)
160 #define dma_to_cpu(x) le64_to_cpu(x)
161 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
162 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
163 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
164 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
165 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
166 #else /* 32-bit dma_addr_t */
167 #define netdrv_addr_t u32
168 #define cpu_to_dma(x) cpu_to_le32(x)
169 #define dma_to_cpu(x) le32_to_cpu(x)
170 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
171 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
172 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
173 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
174 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
175 #endif
177 #define skb_first_frag_len(skb) skb_headlen(skb)
178 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
180 #ifdef HAVE_NETDEV_POLL
181 #define init_poll(dev) \
182 do { \
183 dev->poll = &netdev_poll; \
184 dev->weight = max_interrupt_work; \
185 } while (0)
186 #define netdev_rx(dev, ioaddr) \
187 do { \
188 u32 intr_enable; \
189 if (netif_rx_schedule_prep(dev)) { \
190 __netif_rx_schedule(dev); \
191 intr_enable = readl(ioaddr + IntrEnable); \
192 intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
193 writel(intr_enable, ioaddr + IntrEnable); \
194 readl(ioaddr + IntrEnable); /* flush PCI posting buffers */ \
195 } else { \
196 /* Paranoia check */ \
197 intr_enable = readl(ioaddr + IntrEnable); \
198 if (intr_enable & (IntrRxDone | IntrRxEmpty)) { \
199 printk(KERN_INFO "%s: interrupt while in polling mode!\n", dev->name); \
200 intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
201 writel(intr_enable, ioaddr + IntrEnable); \
204 } while (0)
205 #define netdev_receive_skb(skb) netif_receive_skb(skb)
206 #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_receive_skb(skb, vlgrp, vlid)
207 static int netdev_poll(struct net_device *dev, int *budget);
208 #else /* not HAVE_NETDEV_POLL */
209 #define init_poll(dev)
210 #define netdev_receive_skb(skb) netif_rx(skb)
211 #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_rx(skb, vlgrp, vlid)
212 #define netdev_rx(dev, ioaddr) \
213 do { \
214 int quota = np->dirty_rx + RX_RING_SIZE - np->cur_rx; \
215 __netdev_rx(dev, &quota);\
216 } while (0)
217 #endif /* not HAVE_NETDEV_POLL */
218 /* end of compatibility code */
221 /* These identify the driver base version and may not be removed. */
222 static const char version[] __devinitdata =
223 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
224 KERN_INFO " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
226 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
227 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
228 MODULE_LICENSE("GPL");
229 MODULE_VERSION(DRV_VERSION);
231 module_param(max_interrupt_work, int, 0);
232 module_param(mtu, int, 0);
233 module_param(debug, int, 0);
234 module_param(rx_copybreak, int, 0);
235 module_param(intr_latency, int, 0);
236 module_param(small_frames, int, 0);
237 module_param_array(options, int, NULL, 0);
238 module_param_array(full_duplex, int, NULL, 0);
239 module_param(enable_hw_cksum, int, 0);
240 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
241 MODULE_PARM_DESC(mtu, "MTU (all boards)");
242 MODULE_PARM_DESC(debug, "Debug level (0-6)");
243 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
244 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
245 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
246 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
247 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
248 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
251 Theory of Operation
253 I. Board Compatibility
255 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
257 II. Board-specific settings
259 III. Driver operation
261 IIIa. Ring buffers
263 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
264 ring sizes are set fixed by the hardware, but may optionally be wrapped
265 earlier by the END bit in the descriptor.
266 This driver uses that hardware queue size for the Rx ring, where a large
267 number of entries has no ill effect beyond increases the potential backlog.
268 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
269 disables the queue layer priority ordering and we have no mechanism to
270 utilize the hardware two-level priority queue. When modifying the
271 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
272 levels.
274 IIIb/c. Transmit/Receive Structure
276 See the Adaptec manual for the many possible structures, and options for
277 each structure. There are far too many to document all of them here.
279 For transmit this driver uses type 0/1 transmit descriptors (depending
280 on the 32/64 bitness of the architecture), and relies on automatic
281 minimum-length padding. It does not use the completion queue
282 consumer index, but instead checks for non-zero status entries.
284 For receive this driver uses type 2/3 receive descriptors. The driver
285 allocates full frame size skbuffs for the Rx ring buffers, so all frames
286 should fit in a single descriptor. The driver does not use the completion
287 queue consumer index, but instead checks for non-zero status entries.
289 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
290 is allocated and the frame is copied to the new skbuff. When the incoming
291 frame is larger, the skbuff is passed directly up the protocol stack.
292 Buffers consumed this way are replaced by newly allocated skbuffs in a later
293 phase of receive.
295 A notable aspect of operation is that unaligned buffers are not permitted by
296 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
297 isn't longword aligned, which may cause problems on some machine
298 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
299 the frame into a new skbuff unconditionally. Copied frames are put into the
300 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
302 IIId. Synchronization
304 The driver runs as two independent, single-threaded flows of control. One
305 is the send-packet routine, which enforces single-threaded use by the
306 dev->tbusy flag. The other thread is the interrupt handler, which is single
307 threaded by the hardware and interrupt handling software.
309 The send packet thread has partial control over the Tx ring and the netif_queue
310 status. If the number of free Tx slots in the ring falls below a certain number
311 (currently hardcoded to 4), it signals the upper layer to stop the queue.
313 The interrupt handler has exclusive control over the Rx ring and records stats
314 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
315 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
316 number of free Tx slow is above the threshold, it signals the upper layer to
317 restart the queue.
319 IV. Notes
321 IVb. References
323 The Adaptec Starfire manuals, available only from Adaptec.
324 http://www.scyld.com/expert/100mbps.html
325 http://www.scyld.com/expert/NWay.html
327 IVc. Errata
329 - StopOnPerr is broken, don't enable
330 - Hardware ethernet padding exposes random data, perform software padding
331 instead (unverified -- works correctly for all the hardware I have)
337 enum chip_capability_flags {CanHaveMII=1, };
339 enum chipset {
340 CH_6915 = 0,
343 static struct pci_device_id starfire_pci_tbl[] = {
344 { 0x9004, 0x6915, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_6915 },
345 { 0, }
347 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
349 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
350 static const struct chip_info {
351 const char *name;
352 int drv_flags;
353 } netdrv_tbl[] __devinitdata = {
354 { "Adaptec Starfire 6915", CanHaveMII },
358 /* Offsets to the device registers.
359 Unlike software-only systems, device drivers interact with complex hardware.
360 It's not useful to define symbolic names for every register bit in the
361 device. The name can only partially document the semantics and make
362 the driver longer and more difficult to read.
363 In general, only the important configuration values or bits changed
364 multiple times should be defined symbolically.
366 enum register_offsets {
367 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
368 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
369 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
370 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
371 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
372 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
373 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
374 TxThreshold=0x500B0,
375 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
376 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
377 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
378 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
379 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
380 TxMode=0x55000, VlanType=0x55064,
381 PerfFilterTable=0x56000, HashTable=0x56100,
382 TxGfpMem=0x58000, RxGfpMem=0x5a000,
386 * Bits in the interrupt status/mask registers.
387 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
388 * enables all the interrupt sources that are or'ed into those status bits.
390 enum intr_status_bits {
391 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
392 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
393 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
394 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
395 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
396 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
397 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
398 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
399 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
400 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
401 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
402 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
403 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
404 IntrTxGfp=0x02, IntrPCIPad=0x01,
405 /* not quite bits */
406 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
407 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
408 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
411 /* Bits in the RxFilterMode register. */
412 enum rx_mode_bits {
413 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
414 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
415 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
416 WakeupOnGFP=0x0800,
419 /* Bits in the TxMode register */
420 enum tx_mode_bits {
421 MiiSoftReset=0x8000, MIILoopback=0x4000,
422 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
423 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
426 /* Bits in the TxDescCtrl register. */
427 enum tx_ctrl_bits {
428 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
429 TxDescSpace128=0x30, TxDescSpace256=0x40,
430 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
431 TxDescType3=0x03, TxDescType4=0x04,
432 TxNoDMACompletion=0x08,
433 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
434 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
435 TxDMABurstSizeShift=8,
438 /* Bits in the RxDescQCtrl register. */
439 enum rx_ctrl_bits {
440 RxBufferLenShift=16, RxMinDescrThreshShift=0,
441 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
442 Rx2048QEntries=0x4000, Rx256QEntries=0,
443 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
444 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
445 RxDescSpace4=0x000, RxDescSpace8=0x100,
446 RxDescSpace16=0x200, RxDescSpace32=0x300,
447 RxDescSpace64=0x400, RxDescSpace128=0x500,
448 RxConsumerWrEn=0x80,
451 /* Bits in the RxDMACtrl register. */
452 enum rx_dmactrl_bits {
453 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
454 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
455 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
456 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
457 RxChecksumRejectTCPOnly=0x01000000,
458 RxCompletionQ2Enable=0x800000,
459 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
460 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
461 RxDMAQ2NonIP=0x400000,
462 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
463 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
464 RxBurstSizeShift=0,
467 /* Bits in the RxCompletionAddr register */
468 enum rx_compl_bits {
469 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
470 RxComplProducerWrEn=0x40,
471 RxComplType0=0x00, RxComplType1=0x10,
472 RxComplType2=0x20, RxComplType3=0x30,
473 RxComplThreshShift=0,
476 /* Bits in the TxCompletionAddr register */
477 enum tx_compl_bits {
478 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
479 TxComplProducerWrEn=0x40,
480 TxComplIntrStatus=0x20,
481 CommonQueueMode=0x10,
482 TxComplThreshShift=0,
485 /* Bits in the GenCtrl register */
486 enum gen_ctrl_bits {
487 RxEnable=0x05, TxEnable=0x0a,
488 RxGFPEnable=0x10, TxGFPEnable=0x20,
491 /* Bits in the IntrTimerCtrl register */
492 enum intr_ctrl_bits {
493 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
494 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
495 IntrLatencyMask=0x1f,
498 /* The Rx and Tx buffer descriptors. */
499 struct starfire_rx_desc {
500 dma_addr_t rxaddr;
502 enum rx_desc_bits {
503 RxDescValid=1, RxDescEndRing=2,
506 /* Completion queue entry. */
507 struct short_rx_done_desc {
508 u32 status; /* Low 16 bits is length. */
510 struct basic_rx_done_desc {
511 u32 status; /* Low 16 bits is length. */
512 u16 vlanid;
513 u16 status2;
515 struct csum_rx_done_desc {
516 u32 status; /* Low 16 bits is length. */
517 u16 csum; /* Partial checksum */
518 u16 status2;
520 struct full_rx_done_desc {
521 u32 status; /* Low 16 bits is length. */
522 u16 status3;
523 u16 status2;
524 u16 vlanid;
525 u16 csum; /* partial checksum */
526 u32 timestamp;
528 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
529 #ifdef VLAN_SUPPORT
530 typedef struct full_rx_done_desc rx_done_desc;
531 #define RxComplType RxComplType3
532 #else /* not VLAN_SUPPORT */
533 typedef struct csum_rx_done_desc rx_done_desc;
534 #define RxComplType RxComplType2
535 #endif /* not VLAN_SUPPORT */
537 enum rx_done_bits {
538 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
541 /* Type 1 Tx descriptor. */
542 struct starfire_tx_desc_1 {
543 u32 status; /* Upper bits are status, lower 16 length. */
544 u32 addr;
547 /* Type 2 Tx descriptor. */
548 struct starfire_tx_desc_2 {
549 u32 status; /* Upper bits are status, lower 16 length. */
550 u32 reserved;
551 u64 addr;
554 #ifdef ADDR_64BITS
555 typedef struct starfire_tx_desc_2 starfire_tx_desc;
556 #define TX_DESC_TYPE TxDescType2
557 #else /* not ADDR_64BITS */
558 typedef struct starfire_tx_desc_1 starfire_tx_desc;
559 #define TX_DESC_TYPE TxDescType1
560 #endif /* not ADDR_64BITS */
561 #define TX_DESC_SPACING TxDescSpaceUnlim
563 enum tx_desc_bits {
564 TxDescID=0xB0000000,
565 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
566 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
568 struct tx_done_desc {
569 u32 status; /* timestamp, index. */
570 #if 0
571 u32 intrstatus; /* interrupt status */
572 #endif
575 struct rx_ring_info {
576 struct sk_buff *skb;
577 dma_addr_t mapping;
579 struct tx_ring_info {
580 struct sk_buff *skb;
581 dma_addr_t mapping;
582 unsigned int used_slots;
585 #define PHY_CNT 2
586 struct netdev_private {
587 /* Descriptor rings first for alignment. */
588 struct starfire_rx_desc *rx_ring;
589 starfire_tx_desc *tx_ring;
590 dma_addr_t rx_ring_dma;
591 dma_addr_t tx_ring_dma;
592 /* The addresses of rx/tx-in-place skbuffs. */
593 struct rx_ring_info rx_info[RX_RING_SIZE];
594 struct tx_ring_info tx_info[TX_RING_SIZE];
595 /* Pointers to completion queues (full pages). */
596 rx_done_desc *rx_done_q;
597 dma_addr_t rx_done_q_dma;
598 unsigned int rx_done;
599 struct tx_done_desc *tx_done_q;
600 dma_addr_t tx_done_q_dma;
601 unsigned int tx_done;
602 struct net_device_stats stats;
603 struct pci_dev *pci_dev;
604 #ifdef VLAN_SUPPORT
605 struct vlan_group *vlgrp;
606 #endif
607 void *queue_mem;
608 dma_addr_t queue_mem_dma;
609 size_t queue_mem_size;
611 /* Frequently used values: keep some adjacent for cache effect. */
612 spinlock_t lock;
613 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
614 unsigned int cur_tx, dirty_tx, reap_tx;
615 unsigned int rx_buf_sz; /* Based on MTU+slack. */
616 /* These values keep track of the transceiver/media in use. */
617 int speed100; /* Set if speed == 100MBit. */
618 u32 tx_mode;
619 u32 intr_timer_ctrl;
620 u8 tx_threshold;
621 /* MII transceiver section. */
622 struct mii_if_info mii_if; /* MII lib hooks/info */
623 int phy_cnt; /* MII device addresses. */
624 unsigned char phys[PHY_CNT]; /* MII device addresses. */
625 void __iomem *base;
629 static int mdio_read(struct net_device *dev, int phy_id, int location);
630 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
631 static int netdev_open(struct net_device *dev);
632 static void check_duplex(struct net_device *dev);
633 static void tx_timeout(struct net_device *dev);
634 static void init_ring(struct net_device *dev);
635 static int start_tx(struct sk_buff *skb, struct net_device *dev);
636 static irqreturn_t intr_handler(int irq, void *dev_instance);
637 static void netdev_error(struct net_device *dev, int intr_status);
638 static int __netdev_rx(struct net_device *dev, int *quota);
639 static void refill_rx_ring(struct net_device *dev);
640 static void netdev_error(struct net_device *dev, int intr_status);
641 static void set_rx_mode(struct net_device *dev);
642 static struct net_device_stats *get_stats(struct net_device *dev);
643 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
644 static int netdev_close(struct net_device *dev);
645 static void netdev_media_change(struct net_device *dev);
646 static const struct ethtool_ops ethtool_ops;
649 #ifdef VLAN_SUPPORT
650 static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
652 struct netdev_private *np = netdev_priv(dev);
654 spin_lock(&np->lock);
655 if (debug > 2)
656 printk("%s: Setting vlgrp to %p\n", dev->name, grp);
657 np->vlgrp = grp;
658 set_rx_mode(dev);
659 spin_unlock(&np->lock);
662 static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
664 struct netdev_private *np = netdev_priv(dev);
666 spin_lock(&np->lock);
667 if (debug > 1)
668 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
669 set_rx_mode(dev);
670 spin_unlock(&np->lock);
673 static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
675 struct netdev_private *np = netdev_priv(dev);
677 spin_lock(&np->lock);
678 if (debug > 1)
679 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
680 if (np->vlgrp)
681 np->vlgrp->vlan_devices[vid] = NULL;
682 set_rx_mode(dev);
683 spin_unlock(&np->lock);
685 #endif /* VLAN_SUPPORT */
688 static int __devinit starfire_init_one(struct pci_dev *pdev,
689 const struct pci_device_id *ent)
691 struct netdev_private *np;
692 int i, irq, option, chip_idx = ent->driver_data;
693 struct net_device *dev;
694 static int card_idx = -1;
695 long ioaddr;
696 void __iomem *base;
697 int drv_flags, io_size;
698 int boguscnt;
700 /* when built into the kernel, we only print version if device is found */
701 #ifndef MODULE
702 static int printed_version;
703 if (!printed_version++)
704 printk(version);
705 #endif
707 card_idx++;
709 if (pci_enable_device (pdev))
710 return -EIO;
712 ioaddr = pci_resource_start(pdev, 0);
713 io_size = pci_resource_len(pdev, 0);
714 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
715 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
716 return -ENODEV;
719 dev = alloc_etherdev(sizeof(*np));
720 if (!dev) {
721 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
722 return -ENOMEM;
724 SET_MODULE_OWNER(dev);
725 SET_NETDEV_DEV(dev, &pdev->dev);
727 irq = pdev->irq;
729 if (pci_request_regions (pdev, DRV_NAME)) {
730 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
731 goto err_out_free_netdev;
734 base = ioremap(ioaddr, io_size);
735 if (!base) {
736 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
737 card_idx, io_size, ioaddr);
738 goto err_out_free_res;
741 pci_set_master(pdev);
743 /* enable MWI -- it vastly improves Rx performance on sparc64 */
744 pci_set_mwi(pdev);
746 #ifdef ZEROCOPY
747 /* Starfire can do TCP/UDP checksumming */
748 if (enable_hw_cksum)
749 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
750 #endif /* ZEROCOPY */
751 #ifdef VLAN_SUPPORT
752 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
753 dev->vlan_rx_register = netdev_vlan_rx_register;
754 dev->vlan_rx_add_vid = netdev_vlan_rx_add_vid;
755 dev->vlan_rx_kill_vid = netdev_vlan_rx_kill_vid;
756 #endif /* VLAN_RX_KILL_VID */
757 #ifdef ADDR_64BITS
758 dev->features |= NETIF_F_HIGHDMA;
759 #endif /* ADDR_64BITS */
761 /* Serial EEPROM reads are hidden by the hardware. */
762 for (i = 0; i < 6; i++)
763 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
765 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
766 if (debug > 4)
767 for (i = 0; i < 0x20; i++)
768 printk("%2.2x%s",
769 (unsigned int)readb(base + EEPROMCtrl + i),
770 i % 16 != 15 ? " " : "\n");
771 #endif
773 /* Issue soft reset */
774 writel(MiiSoftReset, base + TxMode);
775 udelay(1000);
776 writel(0, base + TxMode);
778 /* Reset the chip to erase previous misconfiguration. */
779 writel(1, base + PCIDeviceConfig);
780 boguscnt = 1000;
781 while (--boguscnt > 0) {
782 udelay(10);
783 if ((readl(base + PCIDeviceConfig) & 1) == 0)
784 break;
786 if (boguscnt == 0)
787 printk("%s: chipset reset never completed!\n", dev->name);
788 /* wait a little longer */
789 udelay(1000);
791 dev->base_addr = (unsigned long)base;
792 dev->irq = irq;
794 np = netdev_priv(dev);
795 np->base = base;
796 spin_lock_init(&np->lock);
797 pci_set_drvdata(pdev, dev);
799 np->pci_dev = pdev;
801 np->mii_if.dev = dev;
802 np->mii_if.mdio_read = mdio_read;
803 np->mii_if.mdio_write = mdio_write;
804 np->mii_if.phy_id_mask = 0x1f;
805 np->mii_if.reg_num_mask = 0x1f;
807 drv_flags = netdrv_tbl[chip_idx].drv_flags;
809 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
810 if (dev->mem_start)
811 option = dev->mem_start;
813 /* The lower four bits are the media type. */
814 if (option & 0x200)
815 np->mii_if.full_duplex = 1;
817 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
818 np->mii_if.full_duplex = 1;
820 if (np->mii_if.full_duplex)
821 np->mii_if.force_media = 1;
822 else
823 np->mii_if.force_media = 0;
824 np->speed100 = 1;
826 /* timer resolution is 128 * 0.8us */
827 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
828 Timer10X | EnableIntrMasking;
830 if (small_frames > 0) {
831 np->intr_timer_ctrl |= SmallFrameBypass;
832 switch (small_frames) {
833 case 1 ... 64:
834 np->intr_timer_ctrl |= SmallFrame64;
835 break;
836 case 65 ... 128:
837 np->intr_timer_ctrl |= SmallFrame128;
838 break;
839 case 129 ... 256:
840 np->intr_timer_ctrl |= SmallFrame256;
841 break;
842 default:
843 np->intr_timer_ctrl |= SmallFrame512;
844 if (small_frames > 512)
845 printk("Adjusting small_frames down to 512\n");
846 break;
850 /* The chip-specific entries in the device structure. */
851 dev->open = &netdev_open;
852 dev->hard_start_xmit = &start_tx;
853 dev->tx_timeout = tx_timeout;
854 dev->watchdog_timeo = TX_TIMEOUT;
855 init_poll(dev);
856 dev->stop = &netdev_close;
857 dev->get_stats = &get_stats;
858 dev->set_multicast_list = &set_rx_mode;
859 dev->do_ioctl = &netdev_ioctl;
860 SET_ETHTOOL_OPS(dev, &ethtool_ops);
862 if (mtu)
863 dev->mtu = mtu;
865 if (register_netdev(dev))
866 goto err_out_cleardev;
868 printk(KERN_INFO "%s: %s at %p, ",
869 dev->name, netdrv_tbl[chip_idx].name, base);
870 for (i = 0; i < 5; i++)
871 printk("%2.2x:", dev->dev_addr[i]);
872 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
874 if (drv_flags & CanHaveMII) {
875 int phy, phy_idx = 0;
876 int mii_status;
877 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
878 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
879 mdelay(100);
880 boguscnt = 1000;
881 while (--boguscnt > 0)
882 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
883 break;
884 if (boguscnt == 0) {
885 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
886 continue;
888 mii_status = mdio_read(dev, phy, MII_BMSR);
889 if (mii_status != 0) {
890 np->phys[phy_idx++] = phy;
891 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
892 printk(KERN_INFO "%s: MII PHY found at address %d, status "
893 "%#4.4x advertising %#4.4x.\n",
894 dev->name, phy, mii_status, np->mii_if.advertising);
895 /* there can be only one PHY on-board */
896 break;
899 np->phy_cnt = phy_idx;
900 if (np->phy_cnt > 0)
901 np->mii_if.phy_id = np->phys[0];
902 else
903 memset(&np->mii_if, 0, sizeof(np->mii_if));
906 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
907 dev->name, enable_hw_cksum ? "enabled" : "disabled");
908 return 0;
910 err_out_cleardev:
911 pci_set_drvdata(pdev, NULL);
912 iounmap(base);
913 err_out_free_res:
914 pci_release_regions (pdev);
915 err_out_free_netdev:
916 free_netdev(dev);
917 return -ENODEV;
921 /* Read the MII Management Data I/O (MDIO) interfaces. */
922 static int mdio_read(struct net_device *dev, int phy_id, int location)
924 struct netdev_private *np = netdev_priv(dev);
925 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
926 int result, boguscnt=1000;
927 /* ??? Should we add a busy-wait here? */
929 result = readl(mdio_addr);
930 while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
931 if (boguscnt == 0)
932 return 0;
933 if ((result & 0xffff) == 0xffff)
934 return 0;
935 return result & 0xffff;
939 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
941 struct netdev_private *np = netdev_priv(dev);
942 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
943 writel(value, mdio_addr);
944 /* The busy-wait will occur before a read. */
948 static int netdev_open(struct net_device *dev)
950 struct netdev_private *np = netdev_priv(dev);
951 void __iomem *ioaddr = np->base;
952 int i, retval;
953 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
955 /* Do we ever need to reset the chip??? */
957 retval = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
958 if (retval)
959 return retval;
961 /* Disable the Rx and Tx, and reset the chip. */
962 writel(0, ioaddr + GenCtrl);
963 writel(1, ioaddr + PCIDeviceConfig);
964 if (debug > 1)
965 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
966 dev->name, dev->irq);
968 /* Allocate the various queues. */
969 if (np->queue_mem == 0) {
970 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
971 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
972 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
973 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
974 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
975 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
976 if (np->queue_mem == NULL) {
977 free_irq(dev->irq, dev);
978 return -ENOMEM;
981 np->tx_done_q = np->queue_mem;
982 np->tx_done_q_dma = np->queue_mem_dma;
983 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
984 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
985 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
986 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
987 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
988 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
991 /* Start with no carrier, it gets adjusted later */
992 netif_carrier_off(dev);
993 init_ring(dev);
994 /* Set the size of the Rx buffers. */
995 writel((np->rx_buf_sz << RxBufferLenShift) |
996 (0 << RxMinDescrThreshShift) |
997 RxPrefetchMode | RxVariableQ |
998 RX_Q_ENTRIES |
999 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
1000 RxDescSpace4,
1001 ioaddr + RxDescQCtrl);
1003 /* Set up the Rx DMA controller. */
1004 writel(RxChecksumIgnore |
1005 (0 << RxEarlyIntThreshShift) |
1006 (6 << RxHighPrioThreshShift) |
1007 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
1008 ioaddr + RxDMACtrl);
1010 /* Set Tx descriptor */
1011 writel((2 << TxHiPriFIFOThreshShift) |
1012 (0 << TxPadLenShift) |
1013 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
1014 TX_DESC_Q_ADDR_SIZE |
1015 TX_DESC_SPACING | TX_DESC_TYPE,
1016 ioaddr + TxDescCtrl);
1018 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
1019 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
1020 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
1021 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
1022 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
1024 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
1025 writel(np->rx_done_q_dma |
1026 RxComplType |
1027 (0 << RxComplThreshShift),
1028 ioaddr + RxCompletionAddr);
1030 if (debug > 1)
1031 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
1033 /* Fill both the Tx SA register and the Rx perfect filter. */
1034 for (i = 0; i < 6; i++)
1035 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
1036 /* The first entry is special because it bypasses the VLAN filter.
1037 Don't use it. */
1038 writew(0, ioaddr + PerfFilterTable);
1039 writew(0, ioaddr + PerfFilterTable + 4);
1040 writew(0, ioaddr + PerfFilterTable + 8);
1041 for (i = 1; i < 16; i++) {
1042 u16 *eaddrs = (u16 *)dev->dev_addr;
1043 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1044 writew(cpu_to_be16(eaddrs[2]), setup_frm); setup_frm += 4;
1045 writew(cpu_to_be16(eaddrs[1]), setup_frm); setup_frm += 4;
1046 writew(cpu_to_be16(eaddrs[0]), setup_frm); setup_frm += 8;
1049 /* Initialize other registers. */
1050 /* Configure the PCI bus bursts and FIFO thresholds. */
1051 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1052 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1053 udelay(1000);
1054 writel(np->tx_mode, ioaddr + TxMode);
1055 np->tx_threshold = 4;
1056 writel(np->tx_threshold, ioaddr + TxThreshold);
1058 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1060 netif_start_queue(dev);
1062 if (debug > 1)
1063 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1064 set_rx_mode(dev);
1066 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1067 check_duplex(dev);
1069 /* Enable GPIO interrupts on link change */
1070 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1072 /* Set the interrupt mask */
1073 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1074 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1075 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1076 ioaddr + IntrEnable);
1077 /* Enable PCI interrupts. */
1078 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1079 ioaddr + PCIDeviceConfig);
1081 #ifdef VLAN_SUPPORT
1082 /* Set VLAN type to 802.1q */
1083 writel(ETH_P_8021Q, ioaddr + VlanType);
1084 #endif /* VLAN_SUPPORT */
1086 /* Load Rx/Tx firmware into the frame processors */
1087 for (i = 0; i < FIRMWARE_RX_SIZE * 2; i++)
1088 writel(firmware_rx[i], ioaddr + RxGfpMem + i * 4);
1089 for (i = 0; i < FIRMWARE_TX_SIZE * 2; i++)
1090 writel(firmware_tx[i], ioaddr + TxGfpMem + i * 4);
1091 if (enable_hw_cksum)
1092 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1093 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1094 else
1095 /* Enable the Rx and Tx units only. */
1096 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1098 if (debug > 1)
1099 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1100 dev->name);
1102 return 0;
1106 static void check_duplex(struct net_device *dev)
1108 struct netdev_private *np = netdev_priv(dev);
1109 u16 reg0;
1110 int silly_count = 1000;
1112 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1113 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1114 udelay(500);
1115 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1116 /* do nothing */;
1117 if (!silly_count) {
1118 printk("%s: MII reset failed!\n", dev->name);
1119 return;
1122 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1124 if (!np->mii_if.force_media) {
1125 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1126 } else {
1127 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1128 if (np->speed100)
1129 reg0 |= BMCR_SPEED100;
1130 if (np->mii_if.full_duplex)
1131 reg0 |= BMCR_FULLDPLX;
1132 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1133 dev->name,
1134 np->speed100 ? "100" : "10",
1135 np->mii_if.full_duplex ? "full" : "half");
1137 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1141 static void tx_timeout(struct net_device *dev)
1143 struct netdev_private *np = netdev_priv(dev);
1144 void __iomem *ioaddr = np->base;
1145 int old_debug;
1147 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1148 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1150 /* Perhaps we should reinitialize the hardware here. */
1153 * Stop and restart the interface.
1154 * Cheat and increase the debug level temporarily.
1156 old_debug = debug;
1157 debug = 2;
1158 netdev_close(dev);
1159 netdev_open(dev);
1160 debug = old_debug;
1162 /* Trigger an immediate transmit demand. */
1164 dev->trans_start = jiffies;
1165 np->stats.tx_errors++;
1166 netif_wake_queue(dev);
1170 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1171 static void init_ring(struct net_device *dev)
1173 struct netdev_private *np = netdev_priv(dev);
1174 int i;
1176 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1177 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1179 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1181 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1182 for (i = 0; i < RX_RING_SIZE; i++) {
1183 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1184 np->rx_info[i].skb = skb;
1185 if (skb == NULL)
1186 break;
1187 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1188 skb->dev = dev; /* Mark as being used by this device. */
1189 /* Grrr, we cannot offset to correctly align the IP header. */
1190 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1192 writew(i - 1, np->base + RxDescQIdx);
1193 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1195 /* Clear the remainder of the Rx buffer ring. */
1196 for ( ; i < RX_RING_SIZE; i++) {
1197 np->rx_ring[i].rxaddr = 0;
1198 np->rx_info[i].skb = NULL;
1199 np->rx_info[i].mapping = 0;
1201 /* Mark the last entry as wrapping the ring. */
1202 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1204 /* Clear the completion rings. */
1205 for (i = 0; i < DONE_Q_SIZE; i++) {
1206 np->rx_done_q[i].status = 0;
1207 np->tx_done_q[i].status = 0;
1210 for (i = 0; i < TX_RING_SIZE; i++)
1211 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1213 return;
1217 static int start_tx(struct sk_buff *skb, struct net_device *dev)
1219 struct netdev_private *np = netdev_priv(dev);
1220 unsigned int entry;
1221 u32 status;
1222 int i;
1225 * be cautious here, wrapping the queue has weird semantics
1226 * and we may not have enough slots even when it seems we do.
1228 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1229 netif_stop_queue(dev);
1230 return 1;
1233 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1234 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1235 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1236 return NETDEV_TX_OK;
1238 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1240 entry = np->cur_tx % TX_RING_SIZE;
1241 for (i = 0; i < skb_num_frags(skb); i++) {
1242 int wrap_ring = 0;
1243 status = TxDescID;
1245 if (i == 0) {
1246 np->tx_info[entry].skb = skb;
1247 status |= TxCRCEn;
1248 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1249 status |= TxRingWrap;
1250 wrap_ring = 1;
1252 if (np->reap_tx) {
1253 status |= TxDescIntr;
1254 np->reap_tx = 0;
1256 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1257 status |= TxCalTCP;
1258 np->stats.tx_compressed++;
1260 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1262 np->tx_info[entry].mapping =
1263 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1264 } else {
1265 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1266 status |= this_frag->size;
1267 np->tx_info[entry].mapping =
1268 pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1271 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1272 np->tx_ring[entry].status = cpu_to_le32(status);
1273 if (debug > 3)
1274 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1275 dev->name, np->cur_tx, np->dirty_tx,
1276 entry, status);
1277 if (wrap_ring) {
1278 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1279 np->cur_tx += np->tx_info[entry].used_slots;
1280 entry = 0;
1281 } else {
1282 np->tx_info[entry].used_slots = 1;
1283 np->cur_tx += np->tx_info[entry].used_slots;
1284 entry++;
1286 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1287 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1288 np->reap_tx = 1;
1291 /* Non-x86: explicitly flush descriptor cache lines here. */
1292 /* Ensure all descriptors are written back before the transmit is
1293 initiated. - Jes */
1294 wmb();
1296 /* Update the producer index. */
1297 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1299 /* 4 is arbitrary, but should be ok */
1300 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1301 netif_stop_queue(dev);
1303 dev->trans_start = jiffies;
1305 return 0;
1309 /* The interrupt handler does all of the Rx thread work and cleans up
1310 after the Tx thread. */
1311 static irqreturn_t intr_handler(int irq, void *dev_instance)
1313 struct net_device *dev = dev_instance;
1314 struct netdev_private *np = netdev_priv(dev);
1315 void __iomem *ioaddr = np->base;
1316 int boguscnt = max_interrupt_work;
1317 int consumer;
1318 int tx_status;
1319 int handled = 0;
1321 do {
1322 u32 intr_status = readl(ioaddr + IntrClear);
1324 if (debug > 4)
1325 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1326 dev->name, intr_status);
1328 if (intr_status == 0 || intr_status == (u32) -1)
1329 break;
1331 handled = 1;
1333 if (intr_status & (IntrRxDone | IntrRxEmpty))
1334 netdev_rx(dev, ioaddr);
1336 /* Scavenge the skbuff list based on the Tx-done queue.
1337 There are redundant checks here that may be cleaned up
1338 after the driver has proven to be reliable. */
1339 consumer = readl(ioaddr + TxConsumerIdx);
1340 if (debug > 3)
1341 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1342 dev->name, consumer);
1344 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1345 if (debug > 3)
1346 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1347 dev->name, np->dirty_tx, np->tx_done, tx_status);
1348 if ((tx_status & 0xe0000000) == 0xa0000000) {
1349 np->stats.tx_packets++;
1350 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1351 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1352 struct sk_buff *skb = np->tx_info[entry].skb;
1353 np->tx_info[entry].skb = NULL;
1354 pci_unmap_single(np->pci_dev,
1355 np->tx_info[entry].mapping,
1356 skb_first_frag_len(skb),
1357 PCI_DMA_TODEVICE);
1358 np->tx_info[entry].mapping = 0;
1359 np->dirty_tx += np->tx_info[entry].used_slots;
1360 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1362 int i;
1363 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1364 pci_unmap_single(np->pci_dev,
1365 np->tx_info[entry].mapping,
1366 skb_shinfo(skb)->frags[i].size,
1367 PCI_DMA_TODEVICE);
1368 np->dirty_tx++;
1369 entry++;
1373 dev_kfree_skb_irq(skb);
1375 np->tx_done_q[np->tx_done].status = 0;
1376 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1378 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1380 if (netif_queue_stopped(dev) &&
1381 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1382 /* The ring is no longer full, wake the queue. */
1383 netif_wake_queue(dev);
1386 /* Stats overflow */
1387 if (intr_status & IntrStatsMax)
1388 get_stats(dev);
1390 /* Media change interrupt. */
1391 if (intr_status & IntrLinkChange)
1392 netdev_media_change(dev);
1394 /* Abnormal error summary/uncommon events handlers. */
1395 if (intr_status & IntrAbnormalSummary)
1396 netdev_error(dev, intr_status);
1398 if (--boguscnt < 0) {
1399 if (debug > 1)
1400 printk(KERN_WARNING "%s: Too much work at interrupt, "
1401 "status=%#8.8x.\n",
1402 dev->name, intr_status);
1403 break;
1405 } while (1);
1407 if (debug > 4)
1408 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1409 dev->name, (int) readl(ioaddr + IntrStatus));
1410 return IRQ_RETVAL(handled);
1414 /* This routine is logically part of the interrupt/poll handler, but separated
1415 for clarity, code sharing between NAPI/non-NAPI, and better register allocation. */
1416 static int __netdev_rx(struct net_device *dev, int *quota)
1418 struct netdev_private *np = netdev_priv(dev);
1419 u32 desc_status;
1420 int retcode = 0;
1422 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1423 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1424 struct sk_buff *skb;
1425 u16 pkt_len;
1426 int entry;
1427 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1429 if (debug > 4)
1430 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1431 if (!(desc_status & RxOK)) {
1432 /* There was an error. */
1433 if (debug > 2)
1434 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1435 np->stats.rx_errors++;
1436 if (desc_status & RxFIFOErr)
1437 np->stats.rx_fifo_errors++;
1438 goto next_rx;
1441 if (*quota <= 0) { /* out of rx quota */
1442 retcode = 1;
1443 goto out;
1445 (*quota)--;
1447 pkt_len = desc_status; /* Implicitly Truncate */
1448 entry = (desc_status >> 16) & 0x7ff;
1450 if (debug > 4)
1451 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1452 /* Check if the packet is long enough to accept without copying
1453 to a minimally-sized skbuff. */
1454 if (pkt_len < rx_copybreak
1455 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1456 skb->dev = dev;
1457 skb_reserve(skb, 2); /* 16 byte align the IP header */
1458 pci_dma_sync_single_for_cpu(np->pci_dev,
1459 np->rx_info[entry].mapping,
1460 pkt_len, PCI_DMA_FROMDEVICE);
1461 eth_copy_and_sum(skb, np->rx_info[entry].skb->data, pkt_len, 0);
1462 pci_dma_sync_single_for_device(np->pci_dev,
1463 np->rx_info[entry].mapping,
1464 pkt_len, PCI_DMA_FROMDEVICE);
1465 skb_put(skb, pkt_len);
1466 } else {
1467 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1468 skb = np->rx_info[entry].skb;
1469 skb_put(skb, pkt_len);
1470 np->rx_info[entry].skb = NULL;
1471 np->rx_info[entry].mapping = 0;
1473 #ifndef final_version /* Remove after testing. */
1474 /* You will want this info for the initial debug. */
1475 if (debug > 5)
1476 printk(KERN_DEBUG " Rx data %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:"
1477 "%2.2x %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x %2.2x%2.2x.\n",
1478 skb->data[0], skb->data[1], skb->data[2], skb->data[3],
1479 skb->data[4], skb->data[5], skb->data[6], skb->data[7],
1480 skb->data[8], skb->data[9], skb->data[10],
1481 skb->data[11], skb->data[12], skb->data[13]);
1482 #endif
1484 skb->protocol = eth_type_trans(skb, dev);
1485 #ifdef VLAN_SUPPORT
1486 if (debug > 4)
1487 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1488 #endif
1489 if (le16_to_cpu(desc->status2) & 0x0100) {
1490 skb->ip_summed = CHECKSUM_UNNECESSARY;
1491 np->stats.rx_compressed++;
1494 * This feature doesn't seem to be working, at least
1495 * with the two firmware versions I have. If the GFP sees
1496 * an IP fragment, it either ignores it completely, or reports
1497 * "bad checksum" on it.
1499 * Maybe I missed something -- corrections are welcome.
1500 * Until then, the printk stays. :-) -Ion
1502 else if (le16_to_cpu(desc->status2) & 0x0040) {
1503 skb->ip_summed = CHECKSUM_COMPLETE;
1504 skb->csum = le16_to_cpu(desc->csum);
1505 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1507 #ifdef VLAN_SUPPORT
1508 if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
1509 if (debug > 4)
1510 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n", le16_to_cpu(desc->vlanid));
1511 /* vlan_netdev_receive_skb() expects a packet with the VLAN tag stripped out */
1512 vlan_netdev_receive_skb(skb, np->vlgrp, le16_to_cpu(desc->vlanid) & VLAN_VID_MASK);
1513 } else
1514 #endif /* VLAN_SUPPORT */
1515 netdev_receive_skb(skb);
1516 dev->last_rx = jiffies;
1517 np->stats.rx_packets++;
1519 next_rx:
1520 np->cur_rx++;
1521 desc->status = 0;
1522 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1524 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1526 out:
1527 refill_rx_ring(dev);
1528 if (debug > 5)
1529 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1530 retcode, np->rx_done, desc_status);
1531 return retcode;
1535 #ifdef HAVE_NETDEV_POLL
1536 static int netdev_poll(struct net_device *dev, int *budget)
1538 u32 intr_status;
1539 struct netdev_private *np = netdev_priv(dev);
1540 void __iomem *ioaddr = np->base;
1541 int retcode = 0, quota = dev->quota;
1543 do {
1544 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1546 retcode = __netdev_rx(dev, &quota);
1547 *budget -= (dev->quota - quota);
1548 dev->quota = quota;
1549 if (retcode)
1550 goto out;
1552 intr_status = readl(ioaddr + IntrStatus);
1553 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1555 netif_rx_complete(dev);
1556 intr_status = readl(ioaddr + IntrEnable);
1557 intr_status |= IntrRxDone | IntrRxEmpty;
1558 writel(intr_status, ioaddr + IntrEnable);
1560 out:
1561 if (debug > 5)
1562 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n", retcode);
1564 /* Restart Rx engine if stopped. */
1565 return retcode;
1567 #endif /* HAVE_NETDEV_POLL */
1570 static void refill_rx_ring(struct net_device *dev)
1572 struct netdev_private *np = netdev_priv(dev);
1573 struct sk_buff *skb;
1574 int entry = -1;
1576 /* Refill the Rx ring buffers. */
1577 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1578 entry = np->dirty_rx % RX_RING_SIZE;
1579 if (np->rx_info[entry].skb == NULL) {
1580 skb = dev_alloc_skb(np->rx_buf_sz);
1581 np->rx_info[entry].skb = skb;
1582 if (skb == NULL)
1583 break; /* Better luck next round. */
1584 np->rx_info[entry].mapping =
1585 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1586 skb->dev = dev; /* Mark as being used by this device. */
1587 np->rx_ring[entry].rxaddr =
1588 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1590 if (entry == RX_RING_SIZE - 1)
1591 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1593 if (entry >= 0)
1594 writew(entry, np->base + RxDescQIdx);
1598 static void netdev_media_change(struct net_device *dev)
1600 struct netdev_private *np = netdev_priv(dev);
1601 void __iomem *ioaddr = np->base;
1602 u16 reg0, reg1, reg4, reg5;
1603 u32 new_tx_mode;
1604 u32 new_intr_timer_ctrl;
1606 /* reset status first */
1607 mdio_read(dev, np->phys[0], MII_BMCR);
1608 mdio_read(dev, np->phys[0], MII_BMSR);
1610 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1611 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1613 if (reg1 & BMSR_LSTATUS) {
1614 /* link is up */
1615 if (reg0 & BMCR_ANENABLE) {
1616 /* autonegotiation is enabled */
1617 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1618 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1619 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1620 np->speed100 = 1;
1621 np->mii_if.full_duplex = 1;
1622 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1623 np->speed100 = 1;
1624 np->mii_if.full_duplex = 0;
1625 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1626 np->speed100 = 0;
1627 np->mii_if.full_duplex = 1;
1628 } else {
1629 np->speed100 = 0;
1630 np->mii_if.full_duplex = 0;
1632 } else {
1633 /* autonegotiation is disabled */
1634 if (reg0 & BMCR_SPEED100)
1635 np->speed100 = 1;
1636 else
1637 np->speed100 = 0;
1638 if (reg0 & BMCR_FULLDPLX)
1639 np->mii_if.full_duplex = 1;
1640 else
1641 np->mii_if.full_duplex = 0;
1643 netif_carrier_on(dev);
1644 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1645 dev->name,
1646 np->speed100 ? "100" : "10",
1647 np->mii_if.full_duplex ? "full" : "half");
1649 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1650 if (np->mii_if.full_duplex)
1651 new_tx_mode |= FullDuplex;
1652 if (np->tx_mode != new_tx_mode) {
1653 np->tx_mode = new_tx_mode;
1654 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1655 udelay(1000);
1656 writel(np->tx_mode, ioaddr + TxMode);
1659 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1660 if (np->speed100)
1661 new_intr_timer_ctrl |= Timer10X;
1662 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1663 np->intr_timer_ctrl = new_intr_timer_ctrl;
1664 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1666 } else {
1667 netif_carrier_off(dev);
1668 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1673 static void netdev_error(struct net_device *dev, int intr_status)
1675 struct netdev_private *np = netdev_priv(dev);
1677 /* Came close to underrunning the Tx FIFO, increase threshold. */
1678 if (intr_status & IntrTxDataLow) {
1679 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1680 writel(++np->tx_threshold, np->base + TxThreshold);
1681 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1682 dev->name, np->tx_threshold * 16);
1683 } else
1684 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1686 if (intr_status & IntrRxGFPDead) {
1687 np->stats.rx_fifo_errors++;
1688 np->stats.rx_errors++;
1690 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1691 np->stats.tx_fifo_errors++;
1692 np->stats.tx_errors++;
1694 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1695 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1696 dev->name, intr_status);
1700 static struct net_device_stats *get_stats(struct net_device *dev)
1702 struct netdev_private *np = netdev_priv(dev);
1703 void __iomem *ioaddr = np->base;
1705 /* This adapter architecture needs no SMP locks. */
1706 np->stats.tx_bytes = readl(ioaddr + 0x57010);
1707 np->stats.rx_bytes = readl(ioaddr + 0x57044);
1708 np->stats.tx_packets = readl(ioaddr + 0x57000);
1709 np->stats.tx_aborted_errors =
1710 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1711 np->stats.tx_window_errors = readl(ioaddr + 0x57018);
1712 np->stats.collisions =
1713 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1715 /* The chip only need report frame silently dropped. */
1716 np->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1717 writew(0, ioaddr + RxDMAStatus);
1718 np->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1719 np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1720 np->stats.rx_length_errors = readl(ioaddr + 0x57058);
1721 np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1723 return &np->stats;
1727 static void set_rx_mode(struct net_device *dev)
1729 struct netdev_private *np = netdev_priv(dev);
1730 void __iomem *ioaddr = np->base;
1731 u32 rx_mode = MinVLANPrio;
1732 struct dev_mc_list *mclist;
1733 int i;
1734 #ifdef VLAN_SUPPORT
1736 rx_mode |= VlanMode;
1737 if (np->vlgrp) {
1738 int vlan_count = 0;
1739 void __iomem *filter_addr = ioaddr + HashTable + 8;
1740 for (i = 0; i < VLAN_VID_MASK; i++) {
1741 if (np->vlgrp->vlan_devices[i]) {
1742 if (vlan_count >= 32)
1743 break;
1744 writew(cpu_to_be16(i), filter_addr);
1745 filter_addr += 16;
1746 vlan_count++;
1749 if (i == VLAN_VID_MASK) {
1750 rx_mode |= PerfectFilterVlan;
1751 while (vlan_count < 32) {
1752 writew(0, filter_addr);
1753 filter_addr += 16;
1754 vlan_count++;
1758 #endif /* VLAN_SUPPORT */
1760 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1761 rx_mode |= AcceptAll;
1762 } else if ((dev->mc_count > multicast_filter_limit)
1763 || (dev->flags & IFF_ALLMULTI)) {
1764 /* Too many to match, or accept all multicasts. */
1765 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1766 } else if (dev->mc_count <= 14) {
1767 /* Use the 16 element perfect filter, skip first two entries. */
1768 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1769 u16 *eaddrs;
1770 for (i = 2, mclist = dev->mc_list; mclist && i < dev->mc_count + 2;
1771 i++, mclist = mclist->next) {
1772 eaddrs = (u16 *)mclist->dmi_addr;
1773 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 4;
1774 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1775 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 8;
1777 eaddrs = (u16 *)dev->dev_addr;
1778 while (i++ < 16) {
1779 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
1780 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1781 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
1783 rx_mode |= AcceptBroadcast|PerfectFilter;
1784 } else {
1785 /* Must use a multicast hash table. */
1786 void __iomem *filter_addr;
1787 u16 *eaddrs;
1788 u16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1790 memset(mc_filter, 0, sizeof(mc_filter));
1791 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1792 i++, mclist = mclist->next) {
1793 /* The chip uses the upper 9 CRC bits
1794 as index into the hash table */
1795 int bit_nr = ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23;
1796 __u32 *fptr = (__u32 *) &mc_filter[(bit_nr >> 4) & ~1];
1798 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1800 /* Clear the perfect filter list, skip first two entries. */
1801 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1802 eaddrs = (u16 *)dev->dev_addr;
1803 for (i = 2; i < 16; i++) {
1804 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
1805 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1806 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
1808 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1809 writew(mc_filter[i], filter_addr);
1810 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1812 writel(rx_mode, ioaddr + RxFilterMode);
1815 static int check_if_running(struct net_device *dev)
1817 if (!netif_running(dev))
1818 return -EINVAL;
1819 return 0;
1822 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1824 struct netdev_private *np = netdev_priv(dev);
1825 strcpy(info->driver, DRV_NAME);
1826 strcpy(info->version, DRV_VERSION);
1827 strcpy(info->bus_info, pci_name(np->pci_dev));
1830 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1832 struct netdev_private *np = netdev_priv(dev);
1833 spin_lock_irq(&np->lock);
1834 mii_ethtool_gset(&np->mii_if, ecmd);
1835 spin_unlock_irq(&np->lock);
1836 return 0;
1839 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1841 struct netdev_private *np = netdev_priv(dev);
1842 int res;
1843 spin_lock_irq(&np->lock);
1844 res = mii_ethtool_sset(&np->mii_if, ecmd);
1845 spin_unlock_irq(&np->lock);
1846 check_duplex(dev);
1847 return res;
1850 static int nway_reset(struct net_device *dev)
1852 struct netdev_private *np = netdev_priv(dev);
1853 return mii_nway_restart(&np->mii_if);
1856 static u32 get_link(struct net_device *dev)
1858 struct netdev_private *np = netdev_priv(dev);
1859 return mii_link_ok(&np->mii_if);
1862 static u32 get_msglevel(struct net_device *dev)
1864 return debug;
1867 static void set_msglevel(struct net_device *dev, u32 val)
1869 debug = val;
1872 static const struct ethtool_ops ethtool_ops = {
1873 .begin = check_if_running,
1874 .get_drvinfo = get_drvinfo,
1875 .get_settings = get_settings,
1876 .set_settings = set_settings,
1877 .nway_reset = nway_reset,
1878 .get_link = get_link,
1879 .get_msglevel = get_msglevel,
1880 .set_msglevel = set_msglevel,
1883 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1885 struct netdev_private *np = netdev_priv(dev);
1886 struct mii_ioctl_data *data = if_mii(rq);
1887 int rc;
1889 if (!netif_running(dev))
1890 return -EINVAL;
1892 spin_lock_irq(&np->lock);
1893 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1894 spin_unlock_irq(&np->lock);
1896 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1897 check_duplex(dev);
1899 return rc;
1902 static int netdev_close(struct net_device *dev)
1904 struct netdev_private *np = netdev_priv(dev);
1905 void __iomem *ioaddr = np->base;
1906 int i;
1908 netif_stop_queue(dev);
1910 if (debug > 1) {
1911 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1912 dev->name, (int) readl(ioaddr + IntrStatus));
1913 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1914 dev->name, np->cur_tx, np->dirty_tx,
1915 np->cur_rx, np->dirty_rx);
1918 /* Disable interrupts by clearing the interrupt mask. */
1919 writel(0, ioaddr + IntrEnable);
1921 /* Stop the chip's Tx and Rx processes. */
1922 writel(0, ioaddr + GenCtrl);
1923 readl(ioaddr + GenCtrl);
1925 if (debug > 5) {
1926 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1927 (long long) np->tx_ring_dma);
1928 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1929 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1930 i, le32_to_cpu(np->tx_ring[i].status),
1931 (long long) dma_to_cpu(np->tx_ring[i].addr),
1932 le32_to_cpu(np->tx_done_q[i].status));
1933 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1934 (long long) np->rx_ring_dma, np->rx_done_q);
1935 if (np->rx_done_q)
1936 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1937 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1938 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1942 free_irq(dev->irq, dev);
1944 /* Free all the skbuffs in the Rx queue. */
1945 for (i = 0; i < RX_RING_SIZE; i++) {
1946 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1947 if (np->rx_info[i].skb != NULL) {
1948 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1949 dev_kfree_skb(np->rx_info[i].skb);
1951 np->rx_info[i].skb = NULL;
1952 np->rx_info[i].mapping = 0;
1954 for (i = 0; i < TX_RING_SIZE; i++) {
1955 struct sk_buff *skb = np->tx_info[i].skb;
1956 if (skb == NULL)
1957 continue;
1958 pci_unmap_single(np->pci_dev,
1959 np->tx_info[i].mapping,
1960 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1961 np->tx_info[i].mapping = 0;
1962 dev_kfree_skb(skb);
1963 np->tx_info[i].skb = NULL;
1966 return 0;
1969 #ifdef CONFIG_PM
1970 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1972 struct net_device *dev = pci_get_drvdata(pdev);
1974 if (netif_running(dev)) {
1975 netif_device_detach(dev);
1976 netdev_close(dev);
1979 pci_save_state(pdev);
1980 pci_set_power_state(pdev, pci_choose_state(pdev,state));
1982 return 0;
1985 static int starfire_resume(struct pci_dev *pdev)
1987 struct net_device *dev = pci_get_drvdata(pdev);
1989 pci_set_power_state(pdev, PCI_D0);
1990 pci_restore_state(pdev);
1992 if (netif_running(dev)) {
1993 netdev_open(dev);
1994 netif_device_attach(dev);
1997 return 0;
1999 #endif /* CONFIG_PM */
2002 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2004 struct net_device *dev = pci_get_drvdata(pdev);
2005 struct netdev_private *np = netdev_priv(dev);
2007 BUG_ON(!dev);
2009 unregister_netdev(dev);
2011 if (np->queue_mem)
2012 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2015 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2016 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2017 pci_disable_device(pdev);
2019 iounmap(np->base);
2020 pci_release_regions(pdev);
2022 pci_set_drvdata(pdev, NULL);
2023 free_netdev(dev); /* Will also free np!! */
2027 static struct pci_driver starfire_driver = {
2028 .name = DRV_NAME,
2029 .probe = starfire_init_one,
2030 .remove = __devexit_p(starfire_remove_one),
2031 #ifdef CONFIG_PM
2032 .suspend = starfire_suspend,
2033 .resume = starfire_resume,
2034 #endif /* CONFIG_PM */
2035 .id_table = starfire_pci_tbl,
2039 static int __init starfire_init (void)
2041 /* when a module, this is printed whether or not devices are found in probe */
2042 #ifdef MODULE
2043 printk(version);
2044 #ifdef HAVE_NETDEV_POLL
2045 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2046 #else
2047 printk(KERN_INFO DRV_NAME ": polling (NAPI) disabled\n");
2048 #endif
2049 #endif
2051 /* we can do this test only at run-time... sigh */
2052 if (sizeof(dma_addr_t) != sizeof(netdrv_addr_t)) {
2053 printk("This driver has dma_addr_t issues, please send email to maintainer\n");
2054 return -ENODEV;
2057 return pci_register_driver(&starfire_driver);
2061 static void __exit starfire_cleanup (void)
2063 pci_unregister_driver (&starfire_driver);
2067 module_init(starfire_init);
2068 module_exit(starfire_cleanup);
2072 * Local variables:
2073 * c-basic-offset: 8
2074 * tab-width: 8
2075 * End: