1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 ************************************************************************/
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/sched.h>
63 #include <linux/ethtool.h>
64 #include <linux/workqueue.h>
65 #include <linux/if_vlan.h>
67 #include <linux/tcp.h>
70 #include <asm/system.h>
71 #include <asm/uaccess.h>
73 #include <asm/div64.h>
78 #include "s2io-regs.h"
80 #define DRV_VERSION "2.0.15.2"
82 /* S2io Driver name & version. */
83 static char s2io_driver_name
[] = "Neterion";
84 static char s2io_driver_version
[] = DRV_VERSION
;
86 static int rxd_size
[4] = {32,48,48,64};
87 static int rxd_count
[4] = {127,85,85,63};
89 static inline int RXD_IS_UP2DT(RxD_t
*rxdp
)
93 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
94 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
100 * Cards with following subsystem_id have a link state indication
101 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
102 * macro below identifies these cards given the subsystem_id.
104 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
105 (dev_type == XFRAME_I_DEVICE) ? \
106 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
107 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
109 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
110 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
111 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
114 static inline int rx_buffer_level(nic_t
* sp
, int rxb_size
, int ring
)
116 mac_info_t
*mac_control
;
118 mac_control
= &sp
->mac_control
;
119 if (rxb_size
<= rxd_count
[sp
->rxd_mode
])
121 else if ((mac_control
->rings
[ring
].pkt_cnt
- rxb_size
) > 16)
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_stats_keys
[][ETH_GSTRING_LEN
] = {
137 {"tmac_data_octets"},
141 {"tmac_pause_ctrl_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
214 {"new_rd_req_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
219 {"new_wr_req_rtry_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
230 {"rmac_ttl_1519_4095_frms"},
231 {"rmac_ttl_4096_8191_frms"},
232 {"rmac_ttl_8192_max_frms"},
233 {"rmac_ttl_gt_max_frms"},
234 {"rmac_osized_alt_frms"},
235 {"rmac_jabber_alt_frms"},
236 {"rmac_gt_max_alt_frms"},
238 {"rmac_len_discard"},
239 {"rmac_fcs_discard"},
242 {"rmac_red_discard"},
243 {"rmac_rts_discard"},
244 {"rmac_ingm_full_discard"},
246 {"\n DRIVER STATISTICS"},
247 {"single_bit_ecc_errs"},
248 {"double_bit_ecc_errs"},
254 ("alarm_transceiver_temp_high"),
255 ("alarm_transceiver_temp_low"),
256 ("alarm_laser_bias_current_high"),
257 ("alarm_laser_bias_current_low"),
258 ("alarm_laser_output_power_high"),
259 ("alarm_laser_output_power_low"),
260 ("warn_transceiver_temp_high"),
261 ("warn_transceiver_temp_low"),
262 ("warn_laser_bias_current_high"),
263 ("warn_laser_bias_current_low"),
264 ("warn_laser_output_power_high"),
265 ("warn_laser_output_power_low"),
266 ("lro_aggregated_pkts"),
267 ("lro_flush_both_count"),
268 ("lro_out_of_sequence_pkts"),
269 ("lro_flush_due_to_max_pkts"),
270 ("lro_avg_aggr_pkts"),
273 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
274 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
276 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
277 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
279 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
280 init_timer(&timer); \
281 timer.function = handle; \
282 timer.data = (unsigned long) arg; \
283 mod_timer(&timer, (jiffies + exp)) \
286 static void s2io_vlan_rx_register(struct net_device
*dev
,
287 struct vlan_group
*grp
)
289 nic_t
*nic
= dev
->priv
;
292 spin_lock_irqsave(&nic
->tx_lock
, flags
);
294 spin_unlock_irqrestore(&nic
->tx_lock
, flags
);
297 /* Unregister the vlan */
298 static void s2io_vlan_rx_kill_vid(struct net_device
*dev
, unsigned long vid
)
300 nic_t
*nic
= dev
->priv
;
303 spin_lock_irqsave(&nic
->tx_lock
, flags
);
305 nic
->vlgrp
->vlan_devices
[vid
] = NULL
;
306 spin_unlock_irqrestore(&nic
->tx_lock
, flags
);
310 * Constants to be programmed into the Xena's registers, to configure
315 static const u64 herc_act_dtx_cfg
[] = {
317 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
319 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
321 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
323 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
325 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
327 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
329 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
331 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
336 static const u64 xena_dtx_cfg
[] = {
338 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
340 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
342 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
344 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
346 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
348 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
353 * Constants for Fixing the MacAddress problem seen mostly on
356 static const u64 fix_mac
[] = {
357 0x0060000000000000ULL
, 0x0060600000000000ULL
,
358 0x0040600000000000ULL
, 0x0000600000000000ULL
,
359 0x0020600000000000ULL
, 0x0060600000000000ULL
,
360 0x0020600000000000ULL
, 0x0060600000000000ULL
,
361 0x0020600000000000ULL
, 0x0060600000000000ULL
,
362 0x0020600000000000ULL
, 0x0060600000000000ULL
,
363 0x0020600000000000ULL
, 0x0060600000000000ULL
,
364 0x0020600000000000ULL
, 0x0060600000000000ULL
,
365 0x0020600000000000ULL
, 0x0060600000000000ULL
,
366 0x0020600000000000ULL
, 0x0060600000000000ULL
,
367 0x0020600000000000ULL
, 0x0060600000000000ULL
,
368 0x0020600000000000ULL
, 0x0060600000000000ULL
,
369 0x0020600000000000ULL
, 0x0000600000000000ULL
,
370 0x0040600000000000ULL
, 0x0060600000000000ULL
,
374 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
375 MODULE_LICENSE("GPL");
376 MODULE_VERSION(DRV_VERSION
);
379 /* Module Loadable parameters. */
380 S2IO_PARM_INT(tx_fifo_num
, 1);
381 S2IO_PARM_INT(rx_ring_num
, 1);
384 S2IO_PARM_INT(rx_ring_mode
, 1);
385 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
386 S2IO_PARM_INT(rmac_pause_time
, 0x100);
387 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
388 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
389 S2IO_PARM_INT(shared_splits
, 0);
390 S2IO_PARM_INT(tmac_util_period
, 5);
391 S2IO_PARM_INT(rmac_util_period
, 5);
392 S2IO_PARM_INT(bimodal
, 0);
393 S2IO_PARM_INT(l3l4hdr_size
, 128);
394 /* Frequency of Rx desc syncs expressed as power of 2 */
395 S2IO_PARM_INT(rxsync_frequency
, 3);
396 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
397 S2IO_PARM_INT(intr_type
, 0);
398 /* Large receive offload feature */
399 S2IO_PARM_INT(lro
, 0);
400 /* Max pkts to be aggregated by LRO at one time. If not specified,
401 * aggregation happens until we hit max IP pkt size(64K)
403 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
404 #ifndef CONFIG_S2IO_NAPI
405 S2IO_PARM_INT(indicate_max_pkts
, 0);
408 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
409 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
410 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
411 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
412 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
413 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
415 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
416 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
417 module_param_array(rts_frm_len
, uint
, NULL
, 0);
421 * This table lists all the devices that this driver supports.
423 static struct pci_device_id s2io_tbl
[] __devinitdata
= {
424 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
425 PCI_ANY_ID
, PCI_ANY_ID
},
426 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
427 PCI_ANY_ID
, PCI_ANY_ID
},
428 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
429 PCI_ANY_ID
, PCI_ANY_ID
},
430 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
431 PCI_ANY_ID
, PCI_ANY_ID
},
435 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
437 static struct pci_driver s2io_driver
= {
439 .id_table
= s2io_tbl
,
440 .probe
= s2io_init_nic
,
441 .remove
= __devexit_p(s2io_rem_nic
),
444 /* A simplifier macro used both by init and free shared_mem Fns(). */
445 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
448 * init_shared_mem - Allocation and Initialization of Memory
449 * @nic: Device private variable.
450 * Description: The function allocates all the memory areas shared
451 * between the NIC and the driver. This includes Tx descriptors,
452 * Rx descriptors and the statistics block.
455 static int init_shared_mem(struct s2io_nic
*nic
)
458 void *tmp_v_addr
, *tmp_v_addr_next
;
459 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
460 RxD_block_t
*pre_rxd_blk
= NULL
;
461 int i
, j
, blk_cnt
, rx_sz
, tx_sz
;
462 int lst_size
, lst_per_page
;
463 struct net_device
*dev
= nic
->dev
;
467 mac_info_t
*mac_control
;
468 struct config_param
*config
;
470 mac_control
= &nic
->mac_control
;
471 config
= &nic
->config
;
474 /* Allocation and initialization of TXDLs in FIOFs */
476 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
477 size
+= config
->tx_cfg
[i
].fifo_len
;
479 if (size
> MAX_AVAILABLE_TXDS
) {
480 DBG_PRINT(ERR_DBG
, "s2io: Requested TxDs too high, ");
481 DBG_PRINT(ERR_DBG
, "Requested: %d, max supported: 8192\n", size
);
485 lst_size
= (sizeof(TxD_t
) * config
->max_txds
);
486 tx_sz
= lst_size
* size
;
487 lst_per_page
= PAGE_SIZE
/ lst_size
;
489 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
490 int fifo_len
= config
->tx_cfg
[i
].fifo_len
;
491 int list_holder_size
= fifo_len
* sizeof(list_info_hold_t
);
492 mac_control
->fifos
[i
].list_info
= kmalloc(list_holder_size
,
494 if (!mac_control
->fifos
[i
].list_info
) {
496 "Malloc failed for list_info\n");
499 memset(mac_control
->fifos
[i
].list_info
, 0, list_holder_size
);
501 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
502 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
504 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
505 mac_control
->fifos
[i
].tx_curr_put_info
.fifo_len
=
506 config
->tx_cfg
[i
].fifo_len
- 1;
507 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
508 mac_control
->fifos
[i
].tx_curr_get_info
.fifo_len
=
509 config
->tx_cfg
[i
].fifo_len
- 1;
510 mac_control
->fifos
[i
].fifo_no
= i
;
511 mac_control
->fifos
[i
].nic
= nic
;
512 mac_control
->fifos
[i
].max_txds
= MAX_SKB_FRAGS
+ 2;
514 for (j
= 0; j
< page_num
; j
++) {
518 tmp_v
= pci_alloc_consistent(nic
->pdev
,
522 "pci_alloc_consistent ");
523 DBG_PRINT(ERR_DBG
, "failed for TxDL\n");
526 /* If we got a zero DMA address(can happen on
527 * certain platforms like PPC), reallocate.
528 * Store virtual address of page we don't want,
532 mac_control
->zerodma_virt_addr
= tmp_v
;
534 "%s: Zero DMA address for TxDL. ", dev
->name
);
536 "Virtual address %p\n", tmp_v
);
537 tmp_v
= pci_alloc_consistent(nic
->pdev
,
541 "pci_alloc_consistent ");
542 DBG_PRINT(ERR_DBG
, "failed for TxDL\n");
546 while (k
< lst_per_page
) {
547 int l
= (j
* lst_per_page
) + k
;
548 if (l
== config
->tx_cfg
[i
].fifo_len
)
550 mac_control
->fifos
[i
].list_info
[l
].list_virt_addr
=
551 tmp_v
+ (k
* lst_size
);
552 mac_control
->fifos
[i
].list_info
[l
].list_phy_addr
=
553 tmp_p
+ (k
* lst_size
);
559 nic
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
560 if (!nic
->ufo_in_band_v
)
563 /* Allocation and initialization of RXDs in Rings */
565 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
566 if (config
->rx_cfg
[i
].num_rxd
%
567 (rxd_count
[nic
->rxd_mode
] + 1)) {
568 DBG_PRINT(ERR_DBG
, "%s: RxD count of ", dev
->name
);
569 DBG_PRINT(ERR_DBG
, "Ring%d is not a multiple of ",
571 DBG_PRINT(ERR_DBG
, "RxDs per Block");
574 size
+= config
->rx_cfg
[i
].num_rxd
;
575 mac_control
->rings
[i
].block_count
=
576 config
->rx_cfg
[i
].num_rxd
/
577 (rxd_count
[nic
->rxd_mode
] + 1 );
578 mac_control
->rings
[i
].pkt_cnt
= config
->rx_cfg
[i
].num_rxd
-
579 mac_control
->rings
[i
].block_count
;
581 if (nic
->rxd_mode
== RXD_MODE_1
)
582 size
= (size
* (sizeof(RxD1_t
)));
584 size
= (size
* (sizeof(RxD3_t
)));
587 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
588 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
589 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
590 mac_control
->rings
[i
].rx_curr_get_info
.ring_len
=
591 config
->rx_cfg
[i
].num_rxd
- 1;
592 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
593 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
594 mac_control
->rings
[i
].rx_curr_put_info
.ring_len
=
595 config
->rx_cfg
[i
].num_rxd
- 1;
596 mac_control
->rings
[i
].nic
= nic
;
597 mac_control
->rings
[i
].ring_no
= i
;
599 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
600 (rxd_count
[nic
->rxd_mode
] + 1);
601 /* Allocating all the Rx blocks */
602 for (j
= 0; j
< blk_cnt
; j
++) {
603 rx_block_info_t
*rx_blocks
;
606 rx_blocks
= &mac_control
->rings
[i
].rx_blocks
[j
];
607 size
= SIZE_OF_BLOCK
; //size is always page size
608 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
610 if (tmp_v_addr
== NULL
) {
612 * In case of failure, free_shared_mem()
613 * is called, which should free any
614 * memory that was alloced till the
617 rx_blocks
->block_virt_addr
= tmp_v_addr
;
620 memset(tmp_v_addr
, 0, size
);
621 rx_blocks
->block_virt_addr
= tmp_v_addr
;
622 rx_blocks
->block_dma_addr
= tmp_p_addr
;
623 rx_blocks
->rxds
= kmalloc(sizeof(rxd_info_t
)*
624 rxd_count
[nic
->rxd_mode
],
626 for (l
=0; l
<rxd_count
[nic
->rxd_mode
];l
++) {
627 rx_blocks
->rxds
[l
].virt_addr
=
628 rx_blocks
->block_virt_addr
+
629 (rxd_size
[nic
->rxd_mode
] * l
);
630 rx_blocks
->rxds
[l
].dma_addr
=
631 rx_blocks
->block_dma_addr
+
632 (rxd_size
[nic
->rxd_mode
] * l
);
635 /* Interlinking all Rx Blocks */
636 for (j
= 0; j
< blk_cnt
; j
++) {
638 mac_control
->rings
[i
].rx_blocks
[j
].block_virt_addr
;
640 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
641 blk_cnt
].block_virt_addr
;
643 mac_control
->rings
[i
].rx_blocks
[j
].block_dma_addr
;
645 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
646 blk_cnt
].block_dma_addr
;
648 pre_rxd_blk
= (RxD_block_t
*) tmp_v_addr
;
649 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
650 (unsigned long) tmp_v_addr_next
;
651 pre_rxd_blk
->pNext_RxD_Blk_physical
=
652 (u64
) tmp_p_addr_next
;
655 if (nic
->rxd_mode
>= RXD_MODE_3A
) {
657 * Allocation of Storages for buffer addresses in 2BUFF mode
658 * and the buffers as well.
660 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
661 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
662 (rxd_count
[nic
->rxd_mode
]+ 1);
663 mac_control
->rings
[i
].ba
=
664 kmalloc((sizeof(buffAdd_t
*) * blk_cnt
),
666 if (!mac_control
->rings
[i
].ba
)
668 for (j
= 0; j
< blk_cnt
; j
++) {
670 mac_control
->rings
[i
].ba
[j
] =
671 kmalloc((sizeof(buffAdd_t
) *
672 (rxd_count
[nic
->rxd_mode
] + 1)),
674 if (!mac_control
->rings
[i
].ba
[j
])
676 while (k
!= rxd_count
[nic
->rxd_mode
]) {
677 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
679 ba
->ba_0_org
= (void *) kmalloc
680 (BUF0_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
683 tmp
= (unsigned long)ba
->ba_0_org
;
685 tmp
&= ~((unsigned long) ALIGN_SIZE
);
686 ba
->ba_0
= (void *) tmp
;
688 ba
->ba_1_org
= (void *) kmalloc
689 (BUF1_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
692 tmp
= (unsigned long) ba
->ba_1_org
;
694 tmp
&= ~((unsigned long) ALIGN_SIZE
);
695 ba
->ba_1
= (void *) tmp
;
702 /* Allocation and initialization of Statistics block */
703 size
= sizeof(StatInfo_t
);
704 mac_control
->stats_mem
= pci_alloc_consistent
705 (nic
->pdev
, size
, &mac_control
->stats_mem_phy
);
707 if (!mac_control
->stats_mem
) {
709 * In case of failure, free_shared_mem() is called, which
710 * should free any memory that was alloced till the
715 mac_control
->stats_mem_sz
= size
;
717 tmp_v_addr
= mac_control
->stats_mem
;
718 mac_control
->stats_info
= (StatInfo_t
*) tmp_v_addr
;
719 memset(tmp_v_addr
, 0, size
);
720 DBG_PRINT(INIT_DBG
, "%s:Ring Mem PHY: 0x%llx\n", dev
->name
,
721 (unsigned long long) tmp_p_addr
);
727 * free_shared_mem - Free the allocated Memory
728 * @nic: Device private variable.
729 * Description: This function is to free all memory locations allocated by
730 * the init_shared_mem() function and return it to the kernel.
733 static void free_shared_mem(struct s2io_nic
*nic
)
735 int i
, j
, blk_cnt
, size
;
737 dma_addr_t tmp_p_addr
;
738 mac_info_t
*mac_control
;
739 struct config_param
*config
;
740 int lst_size
, lst_per_page
;
741 struct net_device
*dev
= nic
->dev
;
746 mac_control
= &nic
->mac_control
;
747 config
= &nic
->config
;
749 lst_size
= (sizeof(TxD_t
) * config
->max_txds
);
750 lst_per_page
= PAGE_SIZE
/ lst_size
;
752 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
753 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
755 for (j
= 0; j
< page_num
; j
++) {
756 int mem_blks
= (j
* lst_per_page
);
757 if (!mac_control
->fifos
[i
].list_info
)
759 if (!mac_control
->fifos
[i
].list_info
[mem_blks
].
762 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
763 mac_control
->fifos
[i
].
766 mac_control
->fifos
[i
].
770 /* If we got a zero DMA address during allocation,
773 if (mac_control
->zerodma_virt_addr
) {
774 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
775 mac_control
->zerodma_virt_addr
,
778 "%s: Freeing TxDL with zero DMA addr. ",
780 DBG_PRINT(INIT_DBG
, "Virtual address %p\n",
781 mac_control
->zerodma_virt_addr
);
783 kfree(mac_control
->fifos
[i
].list_info
);
786 size
= SIZE_OF_BLOCK
;
787 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
788 blk_cnt
= mac_control
->rings
[i
].block_count
;
789 for (j
= 0; j
< blk_cnt
; j
++) {
790 tmp_v_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
792 tmp_p_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
794 if (tmp_v_addr
== NULL
)
796 pci_free_consistent(nic
->pdev
, size
,
797 tmp_v_addr
, tmp_p_addr
);
798 kfree(mac_control
->rings
[i
].rx_blocks
[j
].rxds
);
802 if (nic
->rxd_mode
>= RXD_MODE_3A
) {
803 /* Freeing buffer storage addresses in 2BUFF mode. */
804 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
805 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
806 (rxd_count
[nic
->rxd_mode
] + 1);
807 for (j
= 0; j
< blk_cnt
; j
++) {
809 if (!mac_control
->rings
[i
].ba
[j
])
811 while (k
!= rxd_count
[nic
->rxd_mode
]) {
813 &mac_control
->rings
[i
].ba
[j
][k
];
818 kfree(mac_control
->rings
[i
].ba
[j
]);
820 kfree(mac_control
->rings
[i
].ba
);
824 if (mac_control
->stats_mem
) {
825 pci_free_consistent(nic
->pdev
,
826 mac_control
->stats_mem_sz
,
827 mac_control
->stats_mem
,
828 mac_control
->stats_mem_phy
);
830 if (nic
->ufo_in_band_v
)
831 kfree(nic
->ufo_in_band_v
);
835 * s2io_verify_pci_mode -
838 static int s2io_verify_pci_mode(nic_t
*nic
)
840 XENA_dev_config_t __iomem
*bar0
= nic
->bar0
;
841 register u64 val64
= 0;
844 val64
= readq(&bar0
->pci_mode
);
845 mode
= (u8
)GET_PCI_MODE(val64
);
847 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
848 return -1; /* Unknown PCI mode */
852 #define NEC_VENID 0x1033
853 #define NEC_DEVID 0x0125
854 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
856 struct pci_dev
*tdev
= NULL
;
857 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
858 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
859 if (tdev
->bus
== s2io_pdev
->bus
->parent
)
867 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
869 * s2io_print_pci_mode -
871 static int s2io_print_pci_mode(nic_t
*nic
)
873 XENA_dev_config_t __iomem
*bar0
= nic
->bar0
;
874 register u64 val64
= 0;
876 struct config_param
*config
= &nic
->config
;
878 val64
= readq(&bar0
->pci_mode
);
879 mode
= (u8
)GET_PCI_MODE(val64
);
881 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
882 return -1; /* Unknown PCI mode */
884 config
->bus_speed
= bus_speed
[mode
];
886 if (s2io_on_nec_bridge(nic
->pdev
)) {
887 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
892 if (val64
& PCI_MODE_32_BITS
) {
893 DBG_PRINT(ERR_DBG
, "%s: Device is on 32 bit ", nic
->dev
->name
);
895 DBG_PRINT(ERR_DBG
, "%s: Device is on 64 bit ", nic
->dev
->name
);
899 case PCI_MODE_PCI_33
:
900 DBG_PRINT(ERR_DBG
, "33MHz PCI bus\n");
902 case PCI_MODE_PCI_66
:
903 DBG_PRINT(ERR_DBG
, "66MHz PCI bus\n");
905 case PCI_MODE_PCIX_M1_66
:
906 DBG_PRINT(ERR_DBG
, "66MHz PCIX(M1) bus\n");
908 case PCI_MODE_PCIX_M1_100
:
909 DBG_PRINT(ERR_DBG
, "100MHz PCIX(M1) bus\n");
911 case PCI_MODE_PCIX_M1_133
:
912 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M1) bus\n");
914 case PCI_MODE_PCIX_M2_66
:
915 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M2) bus\n");
917 case PCI_MODE_PCIX_M2_100
:
918 DBG_PRINT(ERR_DBG
, "200MHz PCIX(M2) bus\n");
920 case PCI_MODE_PCIX_M2_133
:
921 DBG_PRINT(ERR_DBG
, "266MHz PCIX(M2) bus\n");
924 return -1; /* Unsupported bus speed */
931 * init_nic - Initialization of hardware
932 * @nic: device peivate variable
933 * Description: The function sequentially configures every block
934 * of the H/W from their reset values.
935 * Return Value: SUCCESS on success and
936 * '-1' on failure (endian settings incorrect).
939 static int init_nic(struct s2io_nic
*nic
)
941 XENA_dev_config_t __iomem
*bar0
= nic
->bar0
;
942 struct net_device
*dev
= nic
->dev
;
943 register u64 val64
= 0;
947 mac_info_t
*mac_control
;
948 struct config_param
*config
;
950 unsigned long long mem_share
;
953 mac_control
= &nic
->mac_control
;
954 config
= &nic
->config
;
956 /* to set the swapper controle on the card */
957 if(s2io_set_swapper(nic
)) {
958 DBG_PRINT(ERR_DBG
,"ERROR: Setting Swapper failed\n");
963 * Herc requires EOI to be removed from reset before XGXS, so..
965 if (nic
->device_type
& XFRAME_II_DEVICE
) {
966 val64
= 0xA500000000ULL
;
967 writeq(val64
, &bar0
->sw_reset
);
969 val64
= readq(&bar0
->sw_reset
);
972 /* Remove XGXS from reset state */
974 writeq(val64
, &bar0
->sw_reset
);
976 val64
= readq(&bar0
->sw_reset
);
978 /* Enable Receiving broadcasts */
979 add
= &bar0
->mac_cfg
;
980 val64
= readq(&bar0
->mac_cfg
);
981 val64
|= MAC_RMAC_BCAST_ENABLE
;
982 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
983 writel((u32
) val64
, add
);
984 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
985 writel((u32
) (val64
>> 32), (add
+ 4));
987 /* Read registers in all blocks */
988 val64
= readq(&bar0
->mac_int_mask
);
989 val64
= readq(&bar0
->mc_int_mask
);
990 val64
= readq(&bar0
->xgxs_int_mask
);
994 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
996 if (nic
->device_type
& XFRAME_II_DEVICE
) {
997 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
998 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
999 &bar0
->dtx_control
, UF
);
1001 msleep(1); /* Necessary!! */
1005 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1006 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1007 &bar0
->dtx_control
, UF
);
1008 val64
= readq(&bar0
->dtx_control
);
1013 /* Tx DMA Initialization */
1015 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1016 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1017 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1018 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1021 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1023 vBIT(config
->tx_cfg
[i
].fifo_len
- 1, ((i
* 32) + 19),
1024 13) | vBIT(config
->tx_cfg
[i
].fifo_priority
,
1027 if (i
== (config
->tx_fifo_num
- 1)) {
1034 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1038 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1042 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1046 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1052 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1053 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1055 if ((nic
->device_type
== XFRAME_I_DEVICE
) &&
1056 (get_xena_rev_id(nic
->pdev
) < 4))
1057 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1059 val64
= readq(&bar0
->tx_fifo_partition_0
);
1060 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1061 &bar0
->tx_fifo_partition_0
, (unsigned long long) val64
);
1064 * Initialization of Tx_PA_CONFIG register to ignore packet
1065 * integrity checking.
1067 val64
= readq(&bar0
->tx_pa_cfg
);
1068 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
| TX_PA_CFG_IGNORE_SNAP_OUI
|
1069 TX_PA_CFG_IGNORE_LLC_CTRL
| TX_PA_CFG_IGNORE_L2_ERR
;
1070 writeq(val64
, &bar0
->tx_pa_cfg
);
1072 /* Rx DMA intialization. */
1074 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1076 vBIT(config
->rx_cfg
[i
].ring_priority
, (5 + (i
* 8)),
1079 writeq(val64
, &bar0
->rx_queue_priority
);
1082 * Allocating equal share of memory to all the
1086 if (nic
->device_type
& XFRAME_II_DEVICE
)
1091 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1094 mem_share
= (mem_size
/ config
->rx_ring_num
+
1095 mem_size
% config
->rx_ring_num
);
1096 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1099 mem_share
= (mem_size
/ config
->rx_ring_num
);
1100 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1103 mem_share
= (mem_size
/ config
->rx_ring_num
);
1104 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1107 mem_share
= (mem_size
/ config
->rx_ring_num
);
1108 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1111 mem_share
= (mem_size
/ config
->rx_ring_num
);
1112 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1115 mem_share
= (mem_size
/ config
->rx_ring_num
);
1116 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1119 mem_share
= (mem_size
/ config
->rx_ring_num
);
1120 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1123 mem_share
= (mem_size
/ config
->rx_ring_num
);
1124 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1128 writeq(val64
, &bar0
->rx_queue_cfg
);
1131 * Filling Tx round robin registers
1132 * as per the number of FIFOs
1134 switch (config
->tx_fifo_num
) {
1136 val64
= 0x0000000000000000ULL
;
1137 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1138 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1139 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1140 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1141 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1144 val64
= 0x0000010000010000ULL
;
1145 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1146 val64
= 0x0100000100000100ULL
;
1147 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1148 val64
= 0x0001000001000001ULL
;
1149 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1150 val64
= 0x0000010000010000ULL
;
1151 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1152 val64
= 0x0100000000000000ULL
;
1153 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1156 val64
= 0x0001000102000001ULL
;
1157 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1158 val64
= 0x0001020000010001ULL
;
1159 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1160 val64
= 0x0200000100010200ULL
;
1161 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1162 val64
= 0x0001000102000001ULL
;
1163 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1164 val64
= 0x0001020000000000ULL
;
1165 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1168 val64
= 0x0001020300010200ULL
;
1169 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1170 val64
= 0x0100000102030001ULL
;
1171 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1172 val64
= 0x0200010000010203ULL
;
1173 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1174 val64
= 0x0001020001000001ULL
;
1175 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1176 val64
= 0x0203000100000000ULL
;
1177 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1180 val64
= 0x0001000203000102ULL
;
1181 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1182 val64
= 0x0001020001030004ULL
;
1183 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1184 val64
= 0x0001000203000102ULL
;
1185 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1186 val64
= 0x0001020001030004ULL
;
1187 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1188 val64
= 0x0001000000000000ULL
;
1189 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1192 val64
= 0x0001020304000102ULL
;
1193 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1194 val64
= 0x0304050001020001ULL
;
1195 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1196 val64
= 0x0203000100000102ULL
;
1197 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1198 val64
= 0x0304000102030405ULL
;
1199 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1200 val64
= 0x0001000200000000ULL
;
1201 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1204 val64
= 0x0001020001020300ULL
;
1205 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1206 val64
= 0x0102030400010203ULL
;
1207 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1208 val64
= 0x0405060001020001ULL
;
1209 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1210 val64
= 0x0304050000010200ULL
;
1211 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1212 val64
= 0x0102030000000000ULL
;
1213 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1216 val64
= 0x0001020300040105ULL
;
1217 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1218 val64
= 0x0200030106000204ULL
;
1219 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1220 val64
= 0x0103000502010007ULL
;
1221 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1222 val64
= 0x0304010002060500ULL
;
1223 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1224 val64
= 0x0103020400000000ULL
;
1225 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1229 /* Enable all configured Tx FIFO partitions */
1230 val64
= readq(&bar0
->tx_fifo_partition_0
);
1231 val64
|= (TX_FIFO_PARTITION_EN
);
1232 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1234 /* Filling the Rx round robin registers as per the
1235 * number of Rings and steering based on QoS.
1237 switch (config
->rx_ring_num
) {
1239 val64
= 0x8080808080808080ULL
;
1240 writeq(val64
, &bar0
->rts_qos_steering
);
1243 val64
= 0x0000010000010000ULL
;
1244 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1245 val64
= 0x0100000100000100ULL
;
1246 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1247 val64
= 0x0001000001000001ULL
;
1248 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1249 val64
= 0x0000010000010000ULL
;
1250 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1251 val64
= 0x0100000000000000ULL
;
1252 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1254 val64
= 0x8080808040404040ULL
;
1255 writeq(val64
, &bar0
->rts_qos_steering
);
1258 val64
= 0x0001000102000001ULL
;
1259 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1260 val64
= 0x0001020000010001ULL
;
1261 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1262 val64
= 0x0200000100010200ULL
;
1263 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1264 val64
= 0x0001000102000001ULL
;
1265 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1266 val64
= 0x0001020000000000ULL
;
1267 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1269 val64
= 0x8080804040402020ULL
;
1270 writeq(val64
, &bar0
->rts_qos_steering
);
1273 val64
= 0x0001020300010200ULL
;
1274 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1275 val64
= 0x0100000102030001ULL
;
1276 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1277 val64
= 0x0200010000010203ULL
;
1278 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1279 val64
= 0x0001020001000001ULL
;
1280 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1281 val64
= 0x0203000100000000ULL
;
1282 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1284 val64
= 0x8080404020201010ULL
;
1285 writeq(val64
, &bar0
->rts_qos_steering
);
1288 val64
= 0x0001000203000102ULL
;
1289 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1290 val64
= 0x0001020001030004ULL
;
1291 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1292 val64
= 0x0001000203000102ULL
;
1293 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1294 val64
= 0x0001020001030004ULL
;
1295 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1296 val64
= 0x0001000000000000ULL
;
1297 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1299 val64
= 0x8080404020201008ULL
;
1300 writeq(val64
, &bar0
->rts_qos_steering
);
1303 val64
= 0x0001020304000102ULL
;
1304 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1305 val64
= 0x0304050001020001ULL
;
1306 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1307 val64
= 0x0203000100000102ULL
;
1308 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1309 val64
= 0x0304000102030405ULL
;
1310 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1311 val64
= 0x0001000200000000ULL
;
1312 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1314 val64
= 0x8080404020100804ULL
;
1315 writeq(val64
, &bar0
->rts_qos_steering
);
1318 val64
= 0x0001020001020300ULL
;
1319 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1320 val64
= 0x0102030400010203ULL
;
1321 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1322 val64
= 0x0405060001020001ULL
;
1323 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1324 val64
= 0x0304050000010200ULL
;
1325 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1326 val64
= 0x0102030000000000ULL
;
1327 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1329 val64
= 0x8080402010080402ULL
;
1330 writeq(val64
, &bar0
->rts_qos_steering
);
1333 val64
= 0x0001020300040105ULL
;
1334 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1335 val64
= 0x0200030106000204ULL
;
1336 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1337 val64
= 0x0103000502010007ULL
;
1338 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1339 val64
= 0x0304010002060500ULL
;
1340 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1341 val64
= 0x0103020400000000ULL
;
1342 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1344 val64
= 0x8040201008040201ULL
;
1345 writeq(val64
, &bar0
->rts_qos_steering
);
1351 for (i
= 0; i
< 8; i
++)
1352 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1354 /* Set the default rts frame length for the rings configured */
1355 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1356 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1357 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1359 /* Set the frame length for the configured rings
1360 * desired by the user
1362 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1363 /* If rts_frm_len[i] == 0 then it is assumed that user not
1364 * specified frame length steering.
1365 * If the user provides the frame length then program
1366 * the rts_frm_len register for those values or else
1367 * leave it as it is.
1369 if (rts_frm_len
[i
] != 0) {
1370 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1371 &bar0
->rts_frm_len_n
[i
]);
1375 /* Program statistics memory */
1376 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1378 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1379 val64
= STAT_BC(0x320);
1380 writeq(val64
, &bar0
->stat_byte_cnt
);
1384 * Initializing the sampling rate for the device to calculate the
1385 * bandwidth utilization.
1387 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1388 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1389 writeq(val64
, &bar0
->mac_link_util
);
1393 * Initializing the Transmit and Receive Traffic Interrupt
1397 * TTI Initialization. Default Tx timer gets us about
1398 * 250 interrupts per sec. Continuous interrupts are enabled
1401 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1402 int count
= (nic
->config
.bus_speed
* 125)/2;
1403 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1406 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1408 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1409 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1410 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1411 if (use_continuous_tx_intrs
)
1412 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1413 writeq(val64
, &bar0
->tti_data1_mem
);
1415 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1416 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1417 TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1418 writeq(val64
, &bar0
->tti_data2_mem
);
1420 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
;
1421 writeq(val64
, &bar0
->tti_command_mem
);
1424 * Once the operation completes, the Strobe bit of the command
1425 * register will be reset. We poll for this particular condition
1426 * We wait for a maximum of 500ms for the operation to complete,
1427 * if it's not complete by then we return error.
1431 val64
= readq(&bar0
->tti_command_mem
);
1432 if (!(val64
& TTI_CMD_MEM_STROBE_NEW_CMD
)) {
1436 DBG_PRINT(ERR_DBG
, "%s: TTI init Failed\n",
1444 if (nic
->config
.bimodal
) {
1446 for (k
= 0; k
< config
->rx_ring_num
; k
++) {
1447 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
;
1448 val64
|= TTI_CMD_MEM_OFFSET(0x38+k
);
1449 writeq(val64
, &bar0
->tti_command_mem
);
1452 * Once the operation completes, the Strobe bit of the command
1453 * register will be reset. We poll for this particular condition
1454 * We wait for a maximum of 500ms for the operation to complete,
1455 * if it's not complete by then we return error.
1459 val64
= readq(&bar0
->tti_command_mem
);
1460 if (!(val64
& TTI_CMD_MEM_STROBE_NEW_CMD
)) {
1465 "%s: TTI init Failed\n",
1475 /* RTI Initialization */
1476 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1478 * Programmed to generate Apprx 500 Intrs per
1481 int count
= (nic
->config
.bus_speed
* 125)/4;
1482 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1484 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1486 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1487 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1488 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1490 writeq(val64
, &bar0
->rti_data1_mem
);
1492 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1493 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1494 if (nic
->intr_type
== MSI_X
)
1495 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1496 RTI_DATA2_MEM_RX_UFC_D(0x40));
1498 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1499 RTI_DATA2_MEM_RX_UFC_D(0x80));
1500 writeq(val64
, &bar0
->rti_data2_mem
);
1502 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1503 val64
= RTI_CMD_MEM_WE
| RTI_CMD_MEM_STROBE_NEW_CMD
1504 | RTI_CMD_MEM_OFFSET(i
);
1505 writeq(val64
, &bar0
->rti_command_mem
);
1508 * Once the operation completes, the Strobe bit of the
1509 * command register will be reset. We poll for this
1510 * particular condition. We wait for a maximum of 500ms
1511 * for the operation to complete, if it's not complete
1512 * by then we return error.
1516 val64
= readq(&bar0
->rti_command_mem
);
1517 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
)) {
1521 DBG_PRINT(ERR_DBG
, "%s: RTI init Failed\n",
1532 * Initializing proper values as Pause threshold into all
1533 * the 8 Queues on Rx side.
1535 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1536 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1538 /* Disable RMAC PAD STRIPPING */
1539 add
= &bar0
->mac_cfg
;
1540 val64
= readq(&bar0
->mac_cfg
);
1541 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1542 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1543 writel((u32
) (val64
), add
);
1544 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1545 writel((u32
) (val64
>> 32), (add
+ 4));
1546 val64
= readq(&bar0
->mac_cfg
);
1548 /* Enable FCS stripping by adapter */
1549 add
= &bar0
->mac_cfg
;
1550 val64
= readq(&bar0
->mac_cfg
);
1551 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1552 if (nic
->device_type
== XFRAME_II_DEVICE
)
1553 writeq(val64
, &bar0
->mac_cfg
);
1555 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1556 writel((u32
) (val64
), add
);
1557 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1558 writel((u32
) (val64
>> 32), (add
+ 4));
1562 * Set the time value to be inserted in the pause frame
1563 * generated by xena.
1565 val64
= readq(&bar0
->rmac_pause_cfg
);
1566 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1567 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1568 writeq(val64
, &bar0
->rmac_pause_cfg
);
1571 * Set the Threshold Limit for Generating the pause frame
1572 * If the amount of data in any Queue exceeds ratio of
1573 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1574 * pause frame is generated
1577 for (i
= 0; i
< 4; i
++) {
1579 (((u64
) 0xFF00 | nic
->mac_control
.
1580 mc_pause_threshold_q0q3
)
1583 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1586 for (i
= 0; i
< 4; i
++) {
1588 (((u64
) 0xFF00 | nic
->mac_control
.
1589 mc_pause_threshold_q4q7
)
1592 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1595 * TxDMA will stop Read request if the number of read split has
1596 * exceeded the limit pointed by shared_splits
1598 val64
= readq(&bar0
->pic_control
);
1599 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1600 writeq(val64
, &bar0
->pic_control
);
1602 if (nic
->config
.bus_speed
== 266) {
1603 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1604 writeq(0x0, &bar0
->read_retry_delay
);
1605 writeq(0x0, &bar0
->write_retry_delay
);
1609 * Programming the Herc to split every write transaction
1610 * that does not start on an ADB to reduce disconnects.
1612 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1613 val64
= EXT_REQ_EN
| MISC_LINK_STABILITY_PRD(3);
1614 writeq(val64
, &bar0
->misc_control
);
1615 val64
= readq(&bar0
->pic_control2
);
1616 val64
&= ~(BIT(13)|BIT(14)|BIT(15));
1617 writeq(val64
, &bar0
->pic_control2
);
1619 if (strstr(nic
->product_name
, "CX4")) {
1620 val64
= TMAC_AVG_IPG(0x17);
1621 writeq(val64
, &bar0
->tmac_avg_ipg
);
1626 #define LINK_UP_DOWN_INTERRUPT 1
1627 #define MAC_RMAC_ERR_TIMER 2
1629 static int s2io_link_fault_indication(nic_t
*nic
)
1631 if (nic
->intr_type
!= INTA
)
1632 return MAC_RMAC_ERR_TIMER
;
1633 if (nic
->device_type
== XFRAME_II_DEVICE
)
1634 return LINK_UP_DOWN_INTERRUPT
;
1636 return MAC_RMAC_ERR_TIMER
;
1640 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1641 * @nic: device private variable,
1642 * @mask: A mask indicating which Intr block must be modified and,
1643 * @flag: A flag indicating whether to enable or disable the Intrs.
1644 * Description: This function will either disable or enable the interrupts
1645 * depending on the flag argument. The mask argument can be used to
1646 * enable/disable any Intr block.
1647 * Return Value: NONE.
1650 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
1652 XENA_dev_config_t __iomem
*bar0
= nic
->bar0
;
1653 register u64 val64
= 0, temp64
= 0;
1655 /* Top level interrupt classification */
1656 /* PIC Interrupts */
1657 if ((mask
& (TX_PIC_INTR
| RX_PIC_INTR
))) {
1658 /* Enable PIC Intrs in the general intr mask register */
1659 val64
= TXPIC_INT_M
| PIC_RX_INT_M
;
1660 if (flag
== ENABLE_INTRS
) {
1661 temp64
= readq(&bar0
->general_int_mask
);
1662 temp64
&= ~((u64
) val64
);
1663 writeq(temp64
, &bar0
->general_int_mask
);
1665 * If Hercules adapter enable GPIO otherwise
1666 * disable all PCIX, Flash, MDIO, IIC and GPIO
1667 * interrupts for now.
1670 if (s2io_link_fault_indication(nic
) ==
1671 LINK_UP_DOWN_INTERRUPT
) {
1672 temp64
= readq(&bar0
->pic_int_mask
);
1673 temp64
&= ~((u64
) PIC_INT_GPIO
);
1674 writeq(temp64
, &bar0
->pic_int_mask
);
1675 temp64
= readq(&bar0
->gpio_int_mask
);
1676 temp64
&= ~((u64
) GPIO_INT_MASK_LINK_UP
);
1677 writeq(temp64
, &bar0
->gpio_int_mask
);
1679 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
1682 * No MSI Support is available presently, so TTI and
1683 * RTI interrupts are also disabled.
1685 } else if (flag
== DISABLE_INTRS
) {
1687 * Disable PIC Intrs in the general
1688 * intr mask register
1690 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
1691 temp64
= readq(&bar0
->general_int_mask
);
1693 writeq(val64
, &bar0
->general_int_mask
);
1697 /* DMA Interrupts */
1698 /* Enabling/Disabling Tx DMA interrupts */
1699 if (mask
& TX_DMA_INTR
) {
1700 /* Enable TxDMA Intrs in the general intr mask register */
1701 val64
= TXDMA_INT_M
;
1702 if (flag
== ENABLE_INTRS
) {
1703 temp64
= readq(&bar0
->general_int_mask
);
1704 temp64
&= ~((u64
) val64
);
1705 writeq(temp64
, &bar0
->general_int_mask
);
1707 * Keep all interrupts other than PFC interrupt
1708 * and PCC interrupt disabled in DMA level.
1710 val64
= DISABLE_ALL_INTRS
& ~(TXDMA_PFC_INT_M
|
1712 writeq(val64
, &bar0
->txdma_int_mask
);
1714 * Enable only the MISC error 1 interrupt in PFC block
1716 val64
= DISABLE_ALL_INTRS
& (~PFC_MISC_ERR_1
);
1717 writeq(val64
, &bar0
->pfc_err_mask
);
1719 * Enable only the FB_ECC error interrupt in PCC block
1721 val64
= DISABLE_ALL_INTRS
& (~PCC_FB_ECC_ERR
);
1722 writeq(val64
, &bar0
->pcc_err_mask
);
1723 } else if (flag
== DISABLE_INTRS
) {
1725 * Disable TxDMA Intrs in the general intr mask
1728 writeq(DISABLE_ALL_INTRS
, &bar0
->txdma_int_mask
);
1729 writeq(DISABLE_ALL_INTRS
, &bar0
->pfc_err_mask
);
1730 temp64
= readq(&bar0
->general_int_mask
);
1732 writeq(val64
, &bar0
->general_int_mask
);
1736 /* Enabling/Disabling Rx DMA interrupts */
1737 if (mask
& RX_DMA_INTR
) {
1738 /* Enable RxDMA Intrs in the general intr mask register */
1739 val64
= RXDMA_INT_M
;
1740 if (flag
== ENABLE_INTRS
) {
1741 temp64
= readq(&bar0
->general_int_mask
);
1742 temp64
&= ~((u64
) val64
);
1743 writeq(temp64
, &bar0
->general_int_mask
);
1745 * All RxDMA block interrupts are disabled for now
1748 writeq(DISABLE_ALL_INTRS
, &bar0
->rxdma_int_mask
);
1749 } else if (flag
== DISABLE_INTRS
) {
1751 * Disable RxDMA Intrs in the general intr mask
1754 writeq(DISABLE_ALL_INTRS
, &bar0
->rxdma_int_mask
);
1755 temp64
= readq(&bar0
->general_int_mask
);
1757 writeq(val64
, &bar0
->general_int_mask
);
1761 /* MAC Interrupts */
1762 /* Enabling/Disabling MAC interrupts */
1763 if (mask
& (TX_MAC_INTR
| RX_MAC_INTR
)) {
1764 val64
= TXMAC_INT_M
| RXMAC_INT_M
;
1765 if (flag
== ENABLE_INTRS
) {
1766 temp64
= readq(&bar0
->general_int_mask
);
1767 temp64
&= ~((u64
) val64
);
1768 writeq(temp64
, &bar0
->general_int_mask
);
1770 * All MAC block error interrupts are disabled for now
1773 } else if (flag
== DISABLE_INTRS
) {
1775 * Disable MAC Intrs in the general intr mask register
1777 writeq(DISABLE_ALL_INTRS
, &bar0
->mac_int_mask
);
1778 writeq(DISABLE_ALL_INTRS
,
1779 &bar0
->mac_rmac_err_mask
);
1781 temp64
= readq(&bar0
->general_int_mask
);
1783 writeq(val64
, &bar0
->general_int_mask
);
1787 /* XGXS Interrupts */
1788 if (mask
& (TX_XGXS_INTR
| RX_XGXS_INTR
)) {
1789 val64
= TXXGXS_INT_M
| RXXGXS_INT_M
;
1790 if (flag
== ENABLE_INTRS
) {
1791 temp64
= readq(&bar0
->general_int_mask
);
1792 temp64
&= ~((u64
) val64
);
1793 writeq(temp64
, &bar0
->general_int_mask
);
1795 * All XGXS block error interrupts are disabled for now
1798 writeq(DISABLE_ALL_INTRS
, &bar0
->xgxs_int_mask
);
1799 } else if (flag
== DISABLE_INTRS
) {
1801 * Disable MC Intrs in the general intr mask register
1803 writeq(DISABLE_ALL_INTRS
, &bar0
->xgxs_int_mask
);
1804 temp64
= readq(&bar0
->general_int_mask
);
1806 writeq(val64
, &bar0
->general_int_mask
);
1810 /* Memory Controller(MC) interrupts */
1811 if (mask
& MC_INTR
) {
1813 if (flag
== ENABLE_INTRS
) {
1814 temp64
= readq(&bar0
->general_int_mask
);
1815 temp64
&= ~((u64
) val64
);
1816 writeq(temp64
, &bar0
->general_int_mask
);
1818 * Enable all MC Intrs.
1820 writeq(0x0, &bar0
->mc_int_mask
);
1821 writeq(0x0, &bar0
->mc_err_mask
);
1822 } else if (flag
== DISABLE_INTRS
) {
1824 * Disable MC Intrs in the general intr mask register
1826 writeq(DISABLE_ALL_INTRS
, &bar0
->mc_int_mask
);
1827 temp64
= readq(&bar0
->general_int_mask
);
1829 writeq(val64
, &bar0
->general_int_mask
);
1834 /* Tx traffic interrupts */
1835 if (mask
& TX_TRAFFIC_INTR
) {
1836 val64
= TXTRAFFIC_INT_M
;
1837 if (flag
== ENABLE_INTRS
) {
1838 temp64
= readq(&bar0
->general_int_mask
);
1839 temp64
&= ~((u64
) val64
);
1840 writeq(temp64
, &bar0
->general_int_mask
);
1842 * Enable all the Tx side interrupts
1843 * writing 0 Enables all 64 TX interrupt levels
1845 writeq(0x0, &bar0
->tx_traffic_mask
);
1846 } else if (flag
== DISABLE_INTRS
) {
1848 * Disable Tx Traffic Intrs in the general intr mask
1851 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
1852 temp64
= readq(&bar0
->general_int_mask
);
1854 writeq(val64
, &bar0
->general_int_mask
);
1858 /* Rx traffic interrupts */
1859 if (mask
& RX_TRAFFIC_INTR
) {
1860 val64
= RXTRAFFIC_INT_M
;
1861 if (flag
== ENABLE_INTRS
) {
1862 temp64
= readq(&bar0
->general_int_mask
);
1863 temp64
&= ~((u64
) val64
);
1864 writeq(temp64
, &bar0
->general_int_mask
);
1865 /* writing 0 Enables all 8 RX interrupt levels */
1866 writeq(0x0, &bar0
->rx_traffic_mask
);
1867 } else if (flag
== DISABLE_INTRS
) {
1869 * Disable Rx Traffic Intrs in the general intr mask
1872 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
1873 temp64
= readq(&bar0
->general_int_mask
);
1875 writeq(val64
, &bar0
->general_int_mask
);
1880 static int check_prc_pcc_state(u64 val64
, int flag
, int rev_id
, int herc
)
1884 if (flag
== FALSE
) {
1885 if ((!herc
&& (rev_id
>= 4)) || herc
) {
1886 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) &&
1887 ((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
1888 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
1892 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) &&
1893 ((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
1894 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
1899 if ((!herc
&& (rev_id
>= 4)) || herc
) {
1900 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
1901 ADAPTER_STATUS_RMAC_PCC_IDLE
) &&
1902 (!(val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ||
1903 ((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
1904 ADAPTER_STATUS_RC_PRC_QUIESCENT
))) {
1908 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
1909 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) &&
1910 (!(val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ||
1911 ((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
1912 ADAPTER_STATUS_RC_PRC_QUIESCENT
))) {
1921 * verify_xena_quiescence - Checks whether the H/W is ready
1922 * @val64 : Value read from adapter status register.
1923 * @flag : indicates if the adapter enable bit was ever written once
1925 * Description: Returns whether the H/W is ready to go or not. Depending
1926 * on whether adapter enable bit was written or not the comparison
1927 * differs and the calling function passes the input argument flag to
1929 * Return: 1 If xena is quiescence
1930 * 0 If Xena is not quiescence
1933 static int verify_xena_quiescence(nic_t
*sp
, u64 val64
, int flag
)
1936 u64 tmp64
= ~((u64
) val64
);
1937 int rev_id
= get_xena_rev_id(sp
->pdev
);
1939 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
1942 (ADAPTER_STATUS_TDMA_READY
| ADAPTER_STATUS_RDMA_READY
|
1943 ADAPTER_STATUS_PFC_READY
| ADAPTER_STATUS_TMAC_BUF_EMPTY
|
1944 ADAPTER_STATUS_PIC_QUIESCENT
| ADAPTER_STATUS_MC_DRAM_READY
|
1945 ADAPTER_STATUS_MC_QUEUES_READY
| ADAPTER_STATUS_M_PLL_LOCK
|
1946 ADAPTER_STATUS_P_PLL_LOCK
))) {
1947 ret
= check_prc_pcc_state(val64
, flag
, rev_id
, herc
);
1954 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1955 * @sp: Pointer to device specifc structure
1957 * New procedure to clear mac address reading problems on Alpha platforms
1961 static void fix_mac_address(nic_t
* sp
)
1963 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
1967 while (fix_mac
[i
] != END_SIGN
) {
1968 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
1970 val64
= readq(&bar0
->gpio_control
);
1975 * start_nic - Turns the device on
1976 * @nic : device private variable.
1978 * This function actually turns the device on. Before this function is
1979 * called,all Registers are configured from their reset states
1980 * and shared memory is allocated but the NIC is still quiescent. On
1981 * calling this function, the device interrupts are cleared and the NIC is
1982 * literally switched on by writing into the adapter control register.
1984 * SUCCESS on success and -1 on failure.
1987 static int start_nic(struct s2io_nic
*nic
)
1989 XENA_dev_config_t __iomem
*bar0
= nic
->bar0
;
1990 struct net_device
*dev
= nic
->dev
;
1991 register u64 val64
= 0;
1993 mac_info_t
*mac_control
;
1994 struct config_param
*config
;
1996 mac_control
= &nic
->mac_control
;
1997 config
= &nic
->config
;
1999 /* PRC Initialization and configuration */
2000 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2001 writeq((u64
) mac_control
->rings
[i
].rx_blocks
[0].block_dma_addr
,
2002 &bar0
->prc_rxd0_n
[i
]);
2004 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2005 if (nic
->config
.bimodal
)
2006 val64
|= PRC_CTRL_BIMODAL_INTERRUPT
;
2007 if (nic
->rxd_mode
== RXD_MODE_1
)
2008 val64
|= PRC_CTRL_RC_ENABLED
;
2010 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2011 if (nic
->device_type
== XFRAME_II_DEVICE
)
2012 val64
|= PRC_CTRL_GROUP_READS
;
2013 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2014 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2015 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2018 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2019 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2020 val64
= readq(&bar0
->rx_pa_cfg
);
2021 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2022 writeq(val64
, &bar0
->rx_pa_cfg
);
2026 * Enabling MC-RLDRAM. After enabling the device, we timeout
2027 * for around 100ms, which is approximately the time required
2028 * for the device to be ready for operation.
2030 val64
= readq(&bar0
->mc_rldram_mrs
);
2031 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2032 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2033 val64
= readq(&bar0
->mc_rldram_mrs
);
2035 msleep(100); /* Delay by around 100 ms. */
2037 /* Enabling ECC Protection. */
2038 val64
= readq(&bar0
->adapter_control
);
2039 val64
&= ~ADAPTER_ECC_EN
;
2040 writeq(val64
, &bar0
->adapter_control
);
2043 * Clearing any possible Link state change interrupts that
2044 * could have popped up just before Enabling the card.
2046 val64
= readq(&bar0
->mac_rmac_err_reg
);
2048 writeq(val64
, &bar0
->mac_rmac_err_reg
);
2051 * Verify if the device is ready to be enabled, if so enable
2054 val64
= readq(&bar0
->adapter_status
);
2055 if (!verify_xena_quiescence(nic
, val64
, nic
->device_enabled_once
)) {
2056 DBG_PRINT(ERR_DBG
, "%s: device is not ready, ", dev
->name
);
2057 DBG_PRINT(ERR_DBG
, "Adapter status reads: 0x%llx\n",
2058 (unsigned long long) val64
);
2063 * With some switches, link might be already up at this point.
2064 * Because of this weird behavior, when we enable laser,
2065 * we may not get link. We need to handle this. We cannot
2066 * figure out which switch is misbehaving. So we are forced to
2067 * make a global change.
2070 /* Enabling Laser. */
2071 val64
= readq(&bar0
->adapter_control
);
2072 val64
|= ADAPTER_EOI_TX_ON
;
2073 writeq(val64
, &bar0
->adapter_control
);
2075 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2077 * Dont see link state interrupts initally on some switches,
2078 * so directly scheduling the link state task here.
2080 schedule_work(&nic
->set_link_task
);
2082 /* SXE-002: Initialize link and activity LED */
2083 subid
= nic
->pdev
->subsystem_device
;
2084 if (((subid
& 0xFF) >= 0x07) &&
2085 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2086 val64
= readq(&bar0
->gpio_control
);
2087 val64
|= 0x0000800000000000ULL
;
2088 writeq(val64
, &bar0
->gpio_control
);
2089 val64
= 0x0411040400000000ULL
;
2090 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2096 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2098 static struct sk_buff
*s2io_txdl_getskb(fifo_info_t
*fifo_data
, TxD_t
*txdlp
, int get_off
)
2100 nic_t
*nic
= fifo_data
->nic
;
2101 struct sk_buff
*skb
;
2106 if (txds
->Host_Control
== (u64
)(long)nic
->ufo_in_band_v
) {
2107 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2108 txds
->Buffer_Pointer
, sizeof(u64
),
2113 skb
= (struct sk_buff
*) ((unsigned long)
2114 txds
->Host_Control
);
2116 memset(txdlp
, 0, (sizeof(TxD_t
) * fifo_data
->max_txds
));
2119 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2120 txds
->Buffer_Pointer
,
2121 skb
->len
- skb
->data_len
,
2123 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2126 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2127 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2128 if (!txds
->Buffer_Pointer
)
2130 pci_unmap_page(nic
->pdev
, (dma_addr_t
)
2131 txds
->Buffer_Pointer
,
2132 frag
->size
, PCI_DMA_TODEVICE
);
2135 memset(txdlp
,0, (sizeof(TxD_t
) * fifo_data
->max_txds
));
2140 * free_tx_buffers - Free all queued Tx buffers
2141 * @nic : device private variable.
2143 * Free all queued Tx buffers.
2144 * Return Value: void
2147 static void free_tx_buffers(struct s2io_nic
*nic
)
2149 struct net_device
*dev
= nic
->dev
;
2150 struct sk_buff
*skb
;
2153 mac_info_t
*mac_control
;
2154 struct config_param
*config
;
2157 mac_control
= &nic
->mac_control
;
2158 config
= &nic
->config
;
2160 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2161 for (j
= 0; j
< config
->tx_cfg
[i
].fifo_len
- 1; j
++) {
2162 txdp
= (TxD_t
*) mac_control
->fifos
[i
].list_info
[j
].
2164 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2171 "%s:forcibly freeing %d skbs on FIFO%d\n",
2173 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
2174 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
2179 * stop_nic - To stop the nic
2180 * @nic ; device private variable.
2182 * This function does exactly the opposite of what the start_nic()
2183 * function does. This function is called to stop the device.
2188 static void stop_nic(struct s2io_nic
*nic
)
2190 XENA_dev_config_t __iomem
*bar0
= nic
->bar0
;
2191 register u64 val64
= 0;
2193 mac_info_t
*mac_control
;
2194 struct config_param
*config
;
2196 mac_control
= &nic
->mac_control
;
2197 config
= &nic
->config
;
2199 /* Disable all interrupts */
2200 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2201 interruptible
|= TX_PIC_INTR
| RX_PIC_INTR
;
2202 interruptible
|= TX_MAC_INTR
| RX_MAC_INTR
;
2203 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2205 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2206 val64
= readq(&bar0
->adapter_control
);
2207 val64
&= ~(ADAPTER_CNTL_EN
);
2208 writeq(val64
, &bar0
->adapter_control
);
2211 static int fill_rxd_3buf(nic_t
*nic
, RxD_t
*rxdp
, struct sk_buff
*skb
)
2213 struct net_device
*dev
= nic
->dev
;
2214 struct sk_buff
*frag_list
;
2217 /* Buffer-1 receives L3/L4 headers */
2218 ((RxD3_t
*)rxdp
)->Buffer1_ptr
= pci_map_single
2219 (nic
->pdev
, skb
->data
, l3l4hdr_size
+ 4,
2220 PCI_DMA_FROMDEVICE
);
2222 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2223 skb_shinfo(skb
)->frag_list
= dev_alloc_skb(dev
->mtu
+ ALIGN_SIZE
);
2224 if (skb_shinfo(skb
)->frag_list
== NULL
) {
2225 DBG_PRINT(ERR_DBG
, "%s: dev_alloc_skb failed\n ", dev
->name
);
2228 frag_list
= skb_shinfo(skb
)->frag_list
;
2229 frag_list
->next
= NULL
;
2230 tmp
= (void *)ALIGN((long)frag_list
->data
, ALIGN_SIZE
+ 1);
2231 frag_list
->data
= tmp
;
2232 frag_list
->tail
= tmp
;
2234 /* Buffer-2 receives L4 data payload */
2235 ((RxD3_t
*)rxdp
)->Buffer2_ptr
= pci_map_single(nic
->pdev
,
2236 frag_list
->data
, dev
->mtu
,
2237 PCI_DMA_FROMDEVICE
);
2238 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(l3l4hdr_size
+ 4);
2239 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
);
2245 * fill_rx_buffers - Allocates the Rx side skbs
2246 * @nic: device private variable
2247 * @ring_no: ring number
2249 * The function allocates Rx side skbs and puts the physical
2250 * address of these buffers into the RxD buffer pointers, so that the NIC
2251 * can DMA the received frame into these locations.
2252 * The NIC supports 3 receive modes, viz
2254 * 2. three buffer and
2255 * 3. Five buffer modes.
2256 * Each mode defines how many fragments the received frame will be split
2257 * up into by the NIC. The frame is split into L3 header, L4 Header,
2258 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2259 * is split into 3 fragments. As of now only single buffer mode is
2262 * SUCCESS on success or an appropriate -ve value on failure.
2265 static int fill_rx_buffers(struct s2io_nic
*nic
, int ring_no
)
2267 struct net_device
*dev
= nic
->dev
;
2268 struct sk_buff
*skb
;
2270 int off
, off1
, size
, block_no
, block_no1
;
2273 mac_info_t
*mac_control
;
2274 struct config_param
*config
;
2277 #ifndef CONFIG_S2IO_NAPI
2278 unsigned long flags
;
2280 RxD_t
*first_rxdp
= NULL
;
2282 mac_control
= &nic
->mac_control
;
2283 config
= &nic
->config
;
2284 alloc_cnt
= mac_control
->rings
[ring_no
].pkt_cnt
-
2285 atomic_read(&nic
->rx_bufs_left
[ring_no
]);
2287 block_no1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.block_index
;
2288 off1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.offset
;
2289 while (alloc_tab
< alloc_cnt
) {
2290 block_no
= mac_control
->rings
[ring_no
].rx_curr_put_info
.
2292 off
= mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
;
2294 rxdp
= mac_control
->rings
[ring_no
].
2295 rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2297 if ((block_no
== block_no1
) && (off
== off1
) &&
2298 (rxdp
->Host_Control
)) {
2299 DBG_PRINT(INTR_DBG
, "%s: Get and Put",
2301 DBG_PRINT(INTR_DBG
, " info equated\n");
2304 if (off
&& (off
== rxd_count
[nic
->rxd_mode
])) {
2305 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2307 if (mac_control
->rings
[ring_no
].rx_curr_put_info
.
2308 block_index
== mac_control
->rings
[ring_no
].
2310 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2312 block_no
= mac_control
->rings
[ring_no
].
2313 rx_curr_put_info
.block_index
;
2314 if (off
== rxd_count
[nic
->rxd_mode
])
2316 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2318 rxdp
= mac_control
->rings
[ring_no
].
2319 rx_blocks
[block_no
].block_virt_addr
;
2320 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2323 #ifndef CONFIG_S2IO_NAPI
2324 spin_lock_irqsave(&nic
->put_lock
, flags
);
2325 mac_control
->rings
[ring_no
].put_pos
=
2326 (block_no
* (rxd_count
[nic
->rxd_mode
] + 1)) + off
;
2327 spin_unlock_irqrestore(&nic
->put_lock
, flags
);
2329 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2330 ((nic
->rxd_mode
>= RXD_MODE_3A
) &&
2331 (rxdp
->Control_2
& BIT(0)))) {
2332 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2336 /* calculate size of skb based on ring mode */
2337 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
2338 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2339 if (nic
->rxd_mode
== RXD_MODE_1
)
2340 size
+= NET_IP_ALIGN
;
2341 else if (nic
->rxd_mode
== RXD_MODE_3B
)
2342 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2344 size
= l3l4hdr_size
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2347 skb
= dev_alloc_skb(size
);
2349 DBG_PRINT(ERR_DBG
, "%s: Out of ", dev
->name
);
2350 DBG_PRINT(ERR_DBG
, "memory to allocate SKBs\n");
2353 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2357 if (nic
->rxd_mode
== RXD_MODE_1
) {
2358 /* 1 buffer mode - normal operation mode */
2359 memset(rxdp
, 0, sizeof(RxD1_t
));
2360 skb_reserve(skb
, NET_IP_ALIGN
);
2361 ((RxD1_t
*)rxdp
)->Buffer0_ptr
= pci_map_single
2362 (nic
->pdev
, skb
->data
, size
- NET_IP_ALIGN
,
2363 PCI_DMA_FROMDEVICE
);
2364 rxdp
->Control_2
= SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2366 } else if (nic
->rxd_mode
>= RXD_MODE_3A
) {
2368 * 2 or 3 buffer mode -
2369 * Both 2 buffer mode and 3 buffer mode provides 128
2370 * byte aligned receive buffers.
2372 * 3 buffer mode provides header separation where in
2373 * skb->data will have L3/L4 headers where as
2374 * skb_shinfo(skb)->frag_list will have the L4 data
2378 memset(rxdp
, 0, sizeof(RxD3_t
));
2379 ba
= &mac_control
->rings
[ring_no
].ba
[block_no
][off
];
2380 skb_reserve(skb
, BUF0_LEN
);
2381 tmp
= (u64
)(unsigned long) skb
->data
;
2384 skb
->data
= (void *) (unsigned long)tmp
;
2385 skb
->tail
= (void *) (unsigned long)tmp
;
2387 if (!(((RxD3_t
*)rxdp
)->Buffer0_ptr
))
2388 ((RxD3_t
*)rxdp
)->Buffer0_ptr
=
2389 pci_map_single(nic
->pdev
, ba
->ba_0
, BUF0_LEN
,
2390 PCI_DMA_FROMDEVICE
);
2392 pci_dma_sync_single_for_device(nic
->pdev
,
2393 (dma_addr_t
) ((RxD3_t
*)rxdp
)->Buffer0_ptr
,
2394 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2395 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2396 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2397 /* Two buffer mode */
2400 * Buffer2 will have L3/L4 header plus
2403 ((RxD3_t
*)rxdp
)->Buffer2_ptr
= pci_map_single
2404 (nic
->pdev
, skb
->data
, dev
->mtu
+ 4,
2405 PCI_DMA_FROMDEVICE
);
2407 /* Buffer-1 will be dummy buffer. Not used */
2408 if (!(((RxD3_t
*)rxdp
)->Buffer1_ptr
)) {
2409 ((RxD3_t
*)rxdp
)->Buffer1_ptr
=
2410 pci_map_single(nic
->pdev
,
2412 PCI_DMA_FROMDEVICE
);
2414 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2415 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2419 if (fill_rxd_3buf(nic
, rxdp
, skb
) == -ENOMEM
) {
2420 dev_kfree_skb_irq(skb
);
2423 first_rxdp
->Control_1
|=
2429 rxdp
->Control_2
|= BIT(0);
2431 rxdp
->Host_Control
= (unsigned long) (skb
);
2432 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2433 rxdp
->Control_1
|= RXD_OWN_XENA
;
2435 if (off
== (rxd_count
[nic
->rxd_mode
] + 1))
2437 mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
= off
;
2439 rxdp
->Control_2
|= SET_RXD_MARKER
;
2440 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2443 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2447 atomic_inc(&nic
->rx_bufs_left
[ring_no
]);
2452 /* Transfer ownership of first descriptor to adapter just before
2453 * exiting. Before that, use memory barrier so that ownership
2454 * and other fields are seen by adapter correctly.
2458 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2464 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2466 struct net_device
*dev
= sp
->dev
;
2468 struct sk_buff
*skb
;
2470 mac_info_t
*mac_control
;
2473 mac_control
= &sp
->mac_control
;
2474 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2475 rxdp
= mac_control
->rings
[ring_no
].
2476 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2477 skb
= (struct sk_buff
*)
2478 ((unsigned long) rxdp
->Host_Control
);
2482 if (sp
->rxd_mode
== RXD_MODE_1
) {
2483 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2484 ((RxD1_t
*)rxdp
)->Buffer0_ptr
,
2486 HEADER_ETHERNET_II_802_3_SIZE
2487 + HEADER_802_2_SIZE
+
2489 PCI_DMA_FROMDEVICE
);
2490 memset(rxdp
, 0, sizeof(RxD1_t
));
2491 } else if(sp
->rxd_mode
== RXD_MODE_3B
) {
2492 ba
= &mac_control
->rings
[ring_no
].
2494 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2495 ((RxD3_t
*)rxdp
)->Buffer0_ptr
,
2497 PCI_DMA_FROMDEVICE
);
2498 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2499 ((RxD3_t
*)rxdp
)->Buffer1_ptr
,
2501 PCI_DMA_FROMDEVICE
);
2502 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2503 ((RxD3_t
*)rxdp
)->Buffer2_ptr
,
2505 PCI_DMA_FROMDEVICE
);
2506 memset(rxdp
, 0, sizeof(RxD3_t
));
2508 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2509 ((RxD3_t
*)rxdp
)->Buffer0_ptr
, BUF0_LEN
,
2510 PCI_DMA_FROMDEVICE
);
2511 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2512 ((RxD3_t
*)rxdp
)->Buffer1_ptr
,
2514 PCI_DMA_FROMDEVICE
);
2515 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2516 ((RxD3_t
*)rxdp
)->Buffer2_ptr
, dev
->mtu
,
2517 PCI_DMA_FROMDEVICE
);
2518 memset(rxdp
, 0, sizeof(RxD3_t
));
2521 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
2526 * free_rx_buffers - Frees all Rx buffers
2527 * @sp: device private variable.
2529 * This function will free all Rx buffers allocated by host.
2534 static void free_rx_buffers(struct s2io_nic
*sp
)
2536 struct net_device
*dev
= sp
->dev
;
2537 int i
, blk
= 0, buf_cnt
= 0;
2538 mac_info_t
*mac_control
;
2539 struct config_param
*config
;
2541 mac_control
= &sp
->mac_control
;
2542 config
= &sp
->config
;
2544 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2545 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2546 free_rxd_blk(sp
,i
,blk
);
2548 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
2549 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
2550 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
2551 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
2552 atomic_set(&sp
->rx_bufs_left
[i
], 0);
2553 DBG_PRINT(INIT_DBG
, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2554 dev
->name
, buf_cnt
, i
);
2559 * s2io_poll - Rx interrupt handler for NAPI support
2560 * @dev : pointer to the device structure.
2561 * @budget : The number of packets that were budgeted to be processed
2562 * during one pass through the 'Poll" function.
2564 * Comes into picture only if NAPI support has been incorporated. It does
2565 * the same thing that rx_intr_handler does, but not in a interrupt context
2566 * also It will process only a given number of packets.
2568 * 0 on success and 1 if there are No Rx packets to be processed.
2571 #if defined(CONFIG_S2IO_NAPI)
2572 static int s2io_poll(struct net_device
*dev
, int *budget
)
2574 nic_t
*nic
= dev
->priv
;
2575 int pkt_cnt
= 0, org_pkts_to_process
;
2576 mac_info_t
*mac_control
;
2577 struct config_param
*config
;
2578 XENA_dev_config_t __iomem
*bar0
= nic
->bar0
;
2579 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2582 atomic_inc(&nic
->isr_cnt
);
2583 mac_control
= &nic
->mac_control
;
2584 config
= &nic
->config
;
2586 nic
->pkts_to_process
= *budget
;
2587 if (nic
->pkts_to_process
> dev
->quota
)
2588 nic
->pkts_to_process
= dev
->quota
;
2589 org_pkts_to_process
= nic
->pkts_to_process
;
2591 writeq(val64
, &bar0
->rx_traffic_int
);
2592 val64
= readl(&bar0
->rx_traffic_int
);
2594 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2595 rx_intr_handler(&mac_control
->rings
[i
]);
2596 pkt_cnt
= org_pkts_to_process
- nic
->pkts_to_process
;
2597 if (!nic
->pkts_to_process
) {
2598 /* Quota for the current iteration has been met */
2605 dev
->quota
-= pkt_cnt
;
2607 netif_rx_complete(dev
);
2609 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2610 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2611 DBG_PRINT(ERR_DBG
, "%s:Out of memory", dev
->name
);
2612 DBG_PRINT(ERR_DBG
, " in Rx Poll!!\n");
2616 /* Re enable the Rx interrupts. */
2617 writeq(0x0, &bar0
->rx_traffic_mask
);
2618 val64
= readl(&bar0
->rx_traffic_mask
);
2619 atomic_dec(&nic
->isr_cnt
);
2623 dev
->quota
-= pkt_cnt
;
2626 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2627 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2628 DBG_PRINT(ERR_DBG
, "%s:Out of memory", dev
->name
);
2629 DBG_PRINT(ERR_DBG
, " in Rx Poll!!\n");
2633 atomic_dec(&nic
->isr_cnt
);
2638 #ifdef CONFIG_NET_POLL_CONTROLLER
2640 * s2io_netpoll - netpoll event handler entry point
2641 * @dev : pointer to the device structure.
2643 * This function will be called by upper layer to check for events on the
2644 * interface in situations where interrupts are disabled. It is used for
2645 * specific in-kernel networking tasks, such as remote consoles and kernel
2646 * debugging over the network (example netdump in RedHat).
2648 static void s2io_netpoll(struct net_device
*dev
)
2650 nic_t
*nic
= dev
->priv
;
2651 mac_info_t
*mac_control
;
2652 struct config_param
*config
;
2653 XENA_dev_config_t __iomem
*bar0
= nic
->bar0
;
2654 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2657 disable_irq(dev
->irq
);
2659 atomic_inc(&nic
->isr_cnt
);
2660 mac_control
= &nic
->mac_control
;
2661 config
= &nic
->config
;
2663 writeq(val64
, &bar0
->rx_traffic_int
);
2664 writeq(val64
, &bar0
->tx_traffic_int
);
2666 /* we need to free up the transmitted skbufs or else netpoll will
2667 * run out of skbs and will fail and eventually netpoll application such
2668 * as netdump will fail.
2670 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2671 tx_intr_handler(&mac_control
->fifos
[i
]);
2673 /* check for received packet and indicate up to network */
2674 for (i
= 0; i
< config
->rx_ring_num
; i
++)
2675 rx_intr_handler(&mac_control
->rings
[i
]);
2677 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2678 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2679 DBG_PRINT(ERR_DBG
, "%s:Out of memory", dev
->name
);
2680 DBG_PRINT(ERR_DBG
, " in Rx Netpoll!!\n");
2684 atomic_dec(&nic
->isr_cnt
);
2685 enable_irq(dev
->irq
);
2691 * rx_intr_handler - Rx interrupt handler
2692 * @nic: device private variable.
2694 * If the interrupt is because of a received frame or if the
2695 * receive ring contains fresh as yet un-processed frames,this function is
2696 * called. It picks out the RxD at which place the last Rx processing had
2697 * stopped and sends the skb to the OSM's Rx handler and then increments
2702 static void rx_intr_handler(ring_info_t
*ring_data
)
2704 nic_t
*nic
= ring_data
->nic
;
2705 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
2706 int get_block
, put_block
, put_offset
;
2707 rx_curr_get_info_t get_info
, put_info
;
2709 struct sk_buff
*skb
;
2710 #ifndef CONFIG_S2IO_NAPI
2715 spin_lock(&nic
->rx_lock
);
2716 if (atomic_read(&nic
->card_state
) == CARD_DOWN
) {
2717 DBG_PRINT(INTR_DBG
, "%s: %s going down for reset\n",
2718 __FUNCTION__
, dev
->name
);
2719 spin_unlock(&nic
->rx_lock
);
2723 get_info
= ring_data
->rx_curr_get_info
;
2724 get_block
= get_info
.block_index
;
2725 put_info
= ring_data
->rx_curr_put_info
;
2726 put_block
= put_info
.block_index
;
2727 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2728 #ifndef CONFIG_S2IO_NAPI
2729 spin_lock(&nic
->put_lock
);
2730 put_offset
= ring_data
->put_pos
;
2731 spin_unlock(&nic
->put_lock
);
2733 put_offset
= (put_block
* (rxd_count
[nic
->rxd_mode
] + 1)) +
2736 while (RXD_IS_UP2DT(rxdp
)) {
2737 /* If your are next to put index then it's FIFO full condition */
2738 if ((get_block
== put_block
) &&
2739 (get_info
.offset
+ 1) == put_info
.offset
) {
2740 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",dev
->name
);
2743 skb
= (struct sk_buff
*) ((unsigned long)rxdp
->Host_Control
);
2745 DBG_PRINT(ERR_DBG
, "%s: The skb is ",
2747 DBG_PRINT(ERR_DBG
, "Null in Rx Intr\n");
2748 spin_unlock(&nic
->rx_lock
);
2751 if (nic
->rxd_mode
== RXD_MODE_1
) {
2752 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2753 ((RxD1_t
*)rxdp
)->Buffer0_ptr
,
2755 HEADER_ETHERNET_II_802_3_SIZE
+
2758 PCI_DMA_FROMDEVICE
);
2759 } else if (nic
->rxd_mode
== RXD_MODE_3B
) {
2760 pci_dma_sync_single_for_cpu(nic
->pdev
, (dma_addr_t
)
2761 ((RxD3_t
*)rxdp
)->Buffer0_ptr
,
2762 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2763 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2764 ((RxD3_t
*)rxdp
)->Buffer2_ptr
,
2766 PCI_DMA_FROMDEVICE
);
2768 pci_dma_sync_single_for_cpu(nic
->pdev
, (dma_addr_t
)
2769 ((RxD3_t
*)rxdp
)->Buffer0_ptr
, BUF0_LEN
,
2770 PCI_DMA_FROMDEVICE
);
2771 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2772 ((RxD3_t
*)rxdp
)->Buffer1_ptr
,
2774 PCI_DMA_FROMDEVICE
);
2775 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2776 ((RxD3_t
*)rxdp
)->Buffer2_ptr
,
2777 dev
->mtu
, PCI_DMA_FROMDEVICE
);
2779 prefetch(skb
->data
);
2780 rx_osm_handler(ring_data
, rxdp
);
2782 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2783 rxdp
= ring_data
->rx_blocks
[get_block
].
2784 rxds
[get_info
.offset
].virt_addr
;
2785 if (get_info
.offset
== rxd_count
[nic
->rxd_mode
]) {
2786 get_info
.offset
= 0;
2787 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2789 if (get_block
== ring_data
->block_count
)
2791 ring_data
->rx_curr_get_info
.block_index
= get_block
;
2792 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
2795 #ifdef CONFIG_S2IO_NAPI
2796 nic
->pkts_to_process
-= 1;
2797 if (!nic
->pkts_to_process
)
2801 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
2806 /* Clear all LRO sessions before exiting */
2807 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
2808 lro_t
*lro
= &nic
->lro0_n
[i
];
2810 update_L3L4_header(nic
, lro
);
2811 queue_rx_frame(lro
->parent
);
2812 clear_lro_session(lro
);
2817 spin_unlock(&nic
->rx_lock
);
2821 * tx_intr_handler - Transmit interrupt handler
2822 * @nic : device private variable
2824 * If an interrupt was raised to indicate DMA complete of the
2825 * Tx packet, this function is called. It identifies the last TxD
2826 * whose buffer was freed and frees all skbs whose data have already
2827 * DMA'ed into the NICs internal memory.
2832 static void tx_intr_handler(fifo_info_t
*fifo_data
)
2834 nic_t
*nic
= fifo_data
->nic
;
2835 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
2836 tx_curr_get_info_t get_info
, put_info
;
2837 struct sk_buff
*skb
;
2840 get_info
= fifo_data
->tx_curr_get_info
;
2841 put_info
= fifo_data
->tx_curr_put_info
;
2842 txdlp
= (TxD_t
*) fifo_data
->list_info
[get_info
.offset
].
2844 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
2845 (get_info
.offset
!= put_info
.offset
) &&
2846 (txdlp
->Host_Control
)) {
2847 /* Check for TxD errors */
2848 if (txdlp
->Control_1
& TXD_T_CODE
) {
2849 unsigned long long err
;
2850 err
= txdlp
->Control_1
& TXD_T_CODE
;
2852 nic
->mac_control
.stats_info
->sw_stat
.
2855 if ((err
>> 48) == 0xA) {
2856 DBG_PRINT(TX_DBG
, "TxD returned due \
2857 to loss of link\n");
2860 DBG_PRINT(ERR_DBG
, "***TxD error \
2865 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
2867 DBG_PRINT(ERR_DBG
, "%s: Null skb ",
2869 DBG_PRINT(ERR_DBG
, "in Tx Free Intr\n");
2873 /* Updating the statistics block */
2874 nic
->stats
.tx_bytes
+= skb
->len
;
2875 dev_kfree_skb_irq(skb
);
2878 if (get_info
.offset
== get_info
.fifo_len
+ 1)
2879 get_info
.offset
= 0;
2880 txdlp
= (TxD_t
*) fifo_data
->list_info
2881 [get_info
.offset
].list_virt_addr
;
2882 fifo_data
->tx_curr_get_info
.offset
=
2886 spin_lock(&nic
->tx_lock
);
2887 if (netif_queue_stopped(dev
))
2888 netif_wake_queue(dev
);
2889 spin_unlock(&nic
->tx_lock
);
2893 * s2io_mdio_write - Function to write in to MDIO registers
2894 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2895 * @addr : address value
2896 * @value : data value
2897 * @dev : pointer to net_device structure
2899 * This function is used to write values to the MDIO registers
2902 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
, struct net_device
*dev
)
2905 nic_t
*sp
= dev
->priv
;
2906 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
2908 //address transaction
2909 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2910 | MDIO_MMD_DEV_ADDR(mmd_type
)
2911 | MDIO_MMS_PRT_ADDR(0x0);
2912 writeq(val64
, &bar0
->mdio_control
);
2913 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
2914 writeq(val64
, &bar0
->mdio_control
);
2919 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2920 | MDIO_MMD_DEV_ADDR(mmd_type
)
2921 | MDIO_MMS_PRT_ADDR(0x0)
2922 | MDIO_MDIO_DATA(value
)
2923 | MDIO_OP(MDIO_OP_WRITE_TRANS
);
2924 writeq(val64
, &bar0
->mdio_control
);
2925 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
2926 writeq(val64
, &bar0
->mdio_control
);
2930 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2931 | MDIO_MMD_DEV_ADDR(mmd_type
)
2932 | MDIO_MMS_PRT_ADDR(0x0)
2933 | MDIO_OP(MDIO_OP_READ_TRANS
);
2934 writeq(val64
, &bar0
->mdio_control
);
2935 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
2936 writeq(val64
, &bar0
->mdio_control
);
2942 * s2io_mdio_read - Function to write in to MDIO registers
2943 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2944 * @addr : address value
2945 * @dev : pointer to net_device structure
2947 * This function is used to read values to the MDIO registers
2950 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
2954 nic_t
*sp
= dev
->priv
;
2955 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
2957 /* address transaction */
2958 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2959 | MDIO_MMD_DEV_ADDR(mmd_type
)
2960 | MDIO_MMS_PRT_ADDR(0x0);
2961 writeq(val64
, &bar0
->mdio_control
);
2962 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
2963 writeq(val64
, &bar0
->mdio_control
);
2966 /* Data transaction */
2968 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2969 | MDIO_MMD_DEV_ADDR(mmd_type
)
2970 | MDIO_MMS_PRT_ADDR(0x0)
2971 | MDIO_OP(MDIO_OP_READ_TRANS
);
2972 writeq(val64
, &bar0
->mdio_control
);
2973 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
2974 writeq(val64
, &bar0
->mdio_control
);
2977 /* Read the value from regs */
2978 rval64
= readq(&bar0
->mdio_control
);
2979 rval64
= rval64
& 0xFFFF0000;
2980 rval64
= rval64
>> 16;
2984 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2985 * @counter : couter value to be updated
2986 * @flag : flag to indicate the status
2987 * @type : counter type
2989 * This function is to check the status of the xpak counters value
2993 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
, u16 flag
, u16 type
)
2998 for(i
= 0; i
<index
; i
++)
3003 *counter
= *counter
+ 1;
3004 val64
= *regs_stat
& mask
;
3005 val64
= val64
>> (index
* 0x2);
3012 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3013 "service. Excessive temperatures may "
3014 "result in premature transceiver "
3018 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3019 "service Excessive bias currents may "
3020 "indicate imminent laser diode "
3024 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3025 "service Excessive laser output "
3026 "power may saturate far-end "
3030 DBG_PRINT(ERR_DBG
, "Incorrect XPAK Alarm "
3035 val64
= val64
<< (index
* 0x2);
3036 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3039 *regs_stat
= *regs_stat
& (~mask
);
3044 * s2io_updt_xpak_counter - Function to update the xpak counters
3045 * @dev : pointer to net_device struct
3047 * This function is to upate the status of the xpak counters value
3050 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3058 nic_t
*sp
= dev
->priv
;
3059 StatInfo_t
*stat_info
= sp
->mac_control
.stats_info
;
3061 /* Check the communication with the MDIO slave */
3064 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3065 if((val64
== 0xFFFF) || (val64
== 0x0000))
3067 DBG_PRINT(ERR_DBG
, "ERR: MDIO slave access failed - "
3068 "Returned %llx\n", (unsigned long long)val64
);
3072 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3075 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - ");
3076 DBG_PRINT(ERR_DBG
, "Returned: %llx- Expected: 0x2040\n",
3077 (unsigned long long)val64
);
3081 /* Loading the DOM register to MDIO register */
3083 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR
, addr
, val16
, dev
);
3084 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3086 /* Reading the Alarm flags */
3089 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3091 flag
= CHECKBIT(val64
, 0x7);
3093 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_transceiver_temp_high
,
3094 &stat_info
->xpak_stat
.xpak_regs_stat
,
3097 if(CHECKBIT(val64
, 0x6))
3098 stat_info
->xpak_stat
.alarm_transceiver_temp_low
++;
3100 flag
= CHECKBIT(val64
, 0x3);
3102 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_bias_current_high
,
3103 &stat_info
->xpak_stat
.xpak_regs_stat
,
3106 if(CHECKBIT(val64
, 0x2))
3107 stat_info
->xpak_stat
.alarm_laser_bias_current_low
++;
3109 flag
= CHECKBIT(val64
, 0x1);
3111 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_output_power_high
,
3112 &stat_info
->xpak_stat
.xpak_regs_stat
,
3115 if(CHECKBIT(val64
, 0x0))
3116 stat_info
->xpak_stat
.alarm_laser_output_power_low
++;
3118 /* Reading the Warning flags */
3121 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3123 if(CHECKBIT(val64
, 0x7))
3124 stat_info
->xpak_stat
.warn_transceiver_temp_high
++;
3126 if(CHECKBIT(val64
, 0x6))
3127 stat_info
->xpak_stat
.warn_transceiver_temp_low
++;
3129 if(CHECKBIT(val64
, 0x3))
3130 stat_info
->xpak_stat
.warn_laser_bias_current_high
++;
3132 if(CHECKBIT(val64
, 0x2))
3133 stat_info
->xpak_stat
.warn_laser_bias_current_low
++;
3135 if(CHECKBIT(val64
, 0x1))
3136 stat_info
->xpak_stat
.warn_laser_output_power_high
++;
3138 if(CHECKBIT(val64
, 0x0))
3139 stat_info
->xpak_stat
.warn_laser_output_power_low
++;
3143 * alarm_intr_handler - Alarm Interrrupt handler
3144 * @nic: device private variable
3145 * Description: If the interrupt was neither because of Rx packet or Tx
3146 * complete, this function is called. If the interrupt was to indicate
3147 * a loss of link, the OSM link status handler is invoked for any other
3148 * alarm interrupt the block that raised the interrupt is displayed
3149 * and a H/W reset is issued.
3154 static void alarm_intr_handler(struct s2io_nic
*nic
)
3156 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
3157 XENA_dev_config_t __iomem
*bar0
= nic
->bar0
;
3158 register u64 val64
= 0, err_reg
= 0;
3161 nic
->mac_control
.stats_info
->sw_stat
.ring_full_cnt
= 0;
3162 /* Handling the XPAK counters update */
3163 if(nic
->mac_control
.stats_info
->xpak_stat
.xpak_timer_count
< 72000) {
3164 /* waiting for an hour */
3165 nic
->mac_control
.stats_info
->xpak_stat
.xpak_timer_count
++;
3167 s2io_updt_xpak_counter(dev
);
3168 /* reset the count to zero */
3169 nic
->mac_control
.stats_info
->xpak_stat
.xpak_timer_count
= 0;
3172 /* Handling link status change error Intr */
3173 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
3174 err_reg
= readq(&bar0
->mac_rmac_err_reg
);
3175 writeq(err_reg
, &bar0
->mac_rmac_err_reg
);
3176 if (err_reg
& RMAC_LINK_STATE_CHANGE_INT
) {
3177 schedule_work(&nic
->set_link_task
);
3181 /* Handling Ecc errors */
3182 val64
= readq(&bar0
->mc_err_reg
);
3183 writeq(val64
, &bar0
->mc_err_reg
);
3184 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
3185 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
3186 nic
->mac_control
.stats_info
->sw_stat
.
3188 DBG_PRINT(INIT_DBG
, "%s: Device indicates ",
3190 DBG_PRINT(INIT_DBG
, "double ECC error!!\n");
3191 if (nic
->device_type
!= XFRAME_II_DEVICE
) {
3192 /* Reset XframeI only if critical error */
3193 if (val64
& (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
3194 MC_ERR_REG_MIRI_ECC_DB_ERR_1
)) {
3195 netif_stop_queue(dev
);
3196 schedule_work(&nic
->rst_timer_task
);
3197 nic
->mac_control
.stats_info
->sw_stat
.
3202 nic
->mac_control
.stats_info
->sw_stat
.
3207 /* In case of a serious error, the device will be Reset. */
3208 val64
= readq(&bar0
->serr_source
);
3209 if (val64
& SERR_SOURCE_ANY
) {
3210 nic
->mac_control
.stats_info
->sw_stat
.serious_err_cnt
++;
3211 DBG_PRINT(ERR_DBG
, "%s: Device indicates ", dev
->name
);
3212 DBG_PRINT(ERR_DBG
, "serious error %llx!!\n",
3213 (unsigned long long)val64
);
3214 netif_stop_queue(dev
);
3215 schedule_work(&nic
->rst_timer_task
);
3216 nic
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
3220 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3221 * Error occurs, the adapter will be recycled by disabling the
3222 * adapter enable bit and enabling it again after the device
3223 * becomes Quiescent.
3225 val64
= readq(&bar0
->pcc_err_reg
);
3226 writeq(val64
, &bar0
->pcc_err_reg
);
3227 if (val64
& PCC_FB_ECC_DB_ERR
) {
3228 u64 ac
= readq(&bar0
->adapter_control
);
3229 ac
&= ~(ADAPTER_CNTL_EN
);
3230 writeq(ac
, &bar0
->adapter_control
);
3231 ac
= readq(&bar0
->adapter_control
);
3232 schedule_work(&nic
->set_link_task
);
3234 /* Check for data parity error */
3235 val64
= readq(&bar0
->pic_int_status
);
3236 if (val64
& PIC_INT_GPIO
) {
3237 val64
= readq(&bar0
->gpio_int_reg
);
3238 if (val64
& GPIO_INT_REG_DP_ERR_INT
) {
3239 nic
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
3240 schedule_work(&nic
->rst_timer_task
);
3241 nic
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
3245 /* Check for ring full counter */
3246 if (nic
->device_type
& XFRAME_II_DEVICE
) {
3247 val64
= readq(&bar0
->ring_bump_counter1
);
3248 for (i
=0; i
<4; i
++) {
3249 cnt
= ( val64
& vBIT(0xFFFF,(i
*16),16));
3250 cnt
>>= 64 - ((i
+1)*16);
3251 nic
->mac_control
.stats_info
->sw_stat
.ring_full_cnt
3255 val64
= readq(&bar0
->ring_bump_counter2
);
3256 for (i
=0; i
<4; i
++) {
3257 cnt
= ( val64
& vBIT(0xFFFF,(i
*16),16));
3258 cnt
>>= 64 - ((i
+1)*16);
3259 nic
->mac_control
.stats_info
->sw_stat
.ring_full_cnt
3264 /* Other type of interrupts are not being handled now, TODO */
3268 * wait_for_cmd_complete - waits for a command to complete.
3269 * @sp : private member of the device structure, which is a pointer to the
3270 * s2io_nic structure.
3271 * Description: Function that waits for a command to Write into RMAC
3272 * ADDR DATA registers to be completed and returns either success or
3273 * error depending on whether the command was complete or not.
3275 * SUCCESS on success and FAILURE on failure.
3278 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
)
3280 int ret
= FAILURE
, cnt
= 0;
3284 val64
= readq(addr
);
3285 if (!(val64
& busy_bit
)) {
3302 * s2io_reset - Resets the card.
3303 * @sp : private member of the device structure.
3304 * Description: Function to Reset the card. This function then also
3305 * restores the previously saved PCI configuration space registers as
3306 * the card reset also resets the configuration space.
3311 static void s2io_reset(nic_t
* sp
)
3313 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
3317 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3318 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3320 val64
= SW_RESET_ALL
;
3321 writeq(val64
, &bar0
->sw_reset
);
3324 * At this stage, if the PCI write is indeed completed, the
3325 * card is reset and so is the PCI Config space of the device.
3326 * So a read cannot be issued at this stage on any of the
3327 * registers to ensure the write into "sw_reset" register
3329 * Question: Is there any system call that will explicitly force
3330 * all the write commands still pending on the bus to be pushed
3332 * As of now I'am just giving a 250ms delay and hoping that the
3333 * PCI write to sw_reset register is done by this time.
3336 if (strstr(sp
->product_name
, "CX4")) {
3340 /* Restore the PCI state saved during initialization. */
3341 pci_restore_state(sp
->pdev
);
3342 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
3348 /* Set swapper to enable I/O register access */
3349 s2io_set_swapper(sp
);
3351 /* Restore the MSIX table entries from local variables */
3352 restore_xmsi_data(sp
);
3354 /* Clear certain PCI/PCI-X fields after reset */
3355 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3356 /* Clear "detected parity error" bit */
3357 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3359 /* Clearing PCIX Ecc status register */
3360 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3362 /* Clearing PCI_STATUS error reflected here */
3363 writeq(BIT(62), &bar0
->txpic_int_reg
);
3366 /* Reset device statistics maintained by OS */
3367 memset(&sp
->stats
, 0, sizeof (struct net_device_stats
));
3369 /* SXE-002: Configure link and activity LED to turn it off */
3370 subid
= sp
->pdev
->subsystem_device
;
3371 if (((subid
& 0xFF) >= 0x07) &&
3372 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3373 val64
= readq(&bar0
->gpio_control
);
3374 val64
|= 0x0000800000000000ULL
;
3375 writeq(val64
, &bar0
->gpio_control
);
3376 val64
= 0x0411040400000000ULL
;
3377 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3381 * Clear spurious ECC interrupts that would have occured on
3382 * XFRAME II cards after reset.
3384 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3385 val64
= readq(&bar0
->pcc_err_reg
);
3386 writeq(val64
, &bar0
->pcc_err_reg
);
3389 sp
->device_enabled_once
= FALSE
;
3393 * s2io_set_swapper - to set the swapper controle on the card
3394 * @sp : private member of the device structure,
3395 * pointer to the s2io_nic structure.
3396 * Description: Function to set the swapper control on the card
3397 * correctly depending on the 'endianness' of the system.
3399 * SUCCESS on success and FAILURE on failure.
3402 static int s2io_set_swapper(nic_t
* sp
)
3404 struct net_device
*dev
= sp
->dev
;
3405 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
3406 u64 val64
, valt
, valr
;
3409 * Set proper endian settings and verify the same by reading
3410 * the PIF Feed-back register.
3413 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3414 if (val64
!= 0x0123456789ABCDEFULL
) {
3416 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3417 0x8100008181000081ULL
, /* FE=1, SE=0 */
3418 0x4200004242000042ULL
, /* FE=0, SE=1 */
3419 0}; /* FE=0, SE=0 */
3422 writeq(value
[i
], &bar0
->swapper_ctrl
);
3423 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3424 if (val64
== 0x0123456789ABCDEFULL
)
3429 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3431 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3432 (unsigned long long) val64
);
3437 valr
= readq(&bar0
->swapper_ctrl
);
3440 valt
= 0x0123456789ABCDEFULL
;
3441 writeq(valt
, &bar0
->xmsi_address
);
3442 val64
= readq(&bar0
->xmsi_address
);
3446 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3447 0x0081810000818100ULL
, /* FE=1, SE=0 */
3448 0x0042420000424200ULL
, /* FE=0, SE=1 */
3449 0}; /* FE=0, SE=0 */
3452 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3453 writeq(valt
, &bar0
->xmsi_address
);
3454 val64
= readq(&bar0
->xmsi_address
);
3460 unsigned long long x
= val64
;
3461 DBG_PRINT(ERR_DBG
, "Write failed, Xmsi_addr ");
3462 DBG_PRINT(ERR_DBG
, "reads:0x%llx\n", x
);
3466 val64
= readq(&bar0
->swapper_ctrl
);
3467 val64
&= 0xFFFF000000000000ULL
;
3471 * The device by default set to a big endian format, so a
3472 * big endian driver need not set anything.
3474 val64
|= (SWAPPER_CTRL_TXP_FE
|
3475 SWAPPER_CTRL_TXP_SE
|
3476 SWAPPER_CTRL_TXD_R_FE
|
3477 SWAPPER_CTRL_TXD_W_FE
|
3478 SWAPPER_CTRL_TXF_R_FE
|
3479 SWAPPER_CTRL_RXD_R_FE
|
3480 SWAPPER_CTRL_RXD_W_FE
|
3481 SWAPPER_CTRL_RXF_W_FE
|
3482 SWAPPER_CTRL_XMSI_FE
|
3483 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3484 if (sp
->intr_type
== INTA
)
3485 val64
|= SWAPPER_CTRL_XMSI_SE
;
3486 writeq(val64
, &bar0
->swapper_ctrl
);
3489 * Initially we enable all bits to make it accessible by the
3490 * driver, then we selectively enable only those bits that
3493 val64
|= (SWAPPER_CTRL_TXP_FE
|
3494 SWAPPER_CTRL_TXP_SE
|
3495 SWAPPER_CTRL_TXD_R_FE
|
3496 SWAPPER_CTRL_TXD_R_SE
|
3497 SWAPPER_CTRL_TXD_W_FE
|
3498 SWAPPER_CTRL_TXD_W_SE
|
3499 SWAPPER_CTRL_TXF_R_FE
|
3500 SWAPPER_CTRL_RXD_R_FE
|
3501 SWAPPER_CTRL_RXD_R_SE
|
3502 SWAPPER_CTRL_RXD_W_FE
|
3503 SWAPPER_CTRL_RXD_W_SE
|
3504 SWAPPER_CTRL_RXF_W_FE
|
3505 SWAPPER_CTRL_XMSI_FE
|
3506 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3507 if (sp
->intr_type
== INTA
)
3508 val64
|= SWAPPER_CTRL_XMSI_SE
;
3509 writeq(val64
, &bar0
->swapper_ctrl
);
3511 val64
= readq(&bar0
->swapper_ctrl
);
3514 * Verifying if endian settings are accurate by reading a
3515 * feedback register.
3517 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3518 if (val64
!= 0x0123456789ABCDEFULL
) {
3519 /* Endian settings are incorrect, calls for another dekko. */
3520 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3522 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3523 (unsigned long long) val64
);
3530 static int wait_for_msix_trans(nic_t
*nic
, int i
)
3532 XENA_dev_config_t __iomem
*bar0
= nic
->bar0
;
3534 int ret
= 0, cnt
= 0;
3537 val64
= readq(&bar0
->xmsi_access
);
3538 if (!(val64
& BIT(15)))
3544 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3551 static void restore_xmsi_data(nic_t
*nic
)
3553 XENA_dev_config_t __iomem
*bar0
= nic
->bar0
;
3557 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3558 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3559 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3560 val64
= (BIT(7) | BIT(15) | vBIT(i
, 26, 6));
3561 writeq(val64
, &bar0
->xmsi_access
);
3562 if (wait_for_msix_trans(nic
, i
)) {
3563 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3569 static void store_xmsi_data(nic_t
*nic
)
3571 XENA_dev_config_t __iomem
*bar0
= nic
->bar0
;
3572 u64 val64
, addr
, data
;
3575 /* Store and display */
3576 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3577 val64
= (BIT(15) | vBIT(i
, 26, 6));
3578 writeq(val64
, &bar0
->xmsi_access
);
3579 if (wait_for_msix_trans(nic
, i
)) {
3580 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3583 addr
= readq(&bar0
->xmsi_address
);
3584 data
= readq(&bar0
->xmsi_data
);
3586 nic
->msix_info
[i
].addr
= addr
;
3587 nic
->msix_info
[i
].data
= data
;
3592 int s2io_enable_msi(nic_t
*nic
)
3594 XENA_dev_config_t __iomem
*bar0
= nic
->bar0
;
3595 u16 msi_ctrl
, msg_val
;
3596 struct config_param
*config
= &nic
->config
;
3597 struct net_device
*dev
= nic
->dev
;
3598 u64 val64
, tx_mat
, rx_mat
;
3601 val64
= readq(&bar0
->pic_control
);
3603 writeq(val64
, &bar0
->pic_control
);
3605 err
= pci_enable_msi(nic
->pdev
);
3607 DBG_PRINT(ERR_DBG
, "%s: enabling MSI failed\n",
3613 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3614 * for interrupt handling.
3616 pci_read_config_word(nic
->pdev
, 0x4c, &msg_val
);
3618 pci_write_config_word(nic
->pdev
, 0x4c, msg_val
);
3619 pci_read_config_word(nic
->pdev
, 0x4c, &msg_val
);
3621 pci_read_config_word(nic
->pdev
, 0x42, &msi_ctrl
);
3623 pci_write_config_word(nic
->pdev
, 0x42, msi_ctrl
);
3625 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3626 tx_mat
= readq(&bar0
->tx_mat0_n
[0]);
3627 for (i
=0; i
<config
->tx_fifo_num
; i
++) {
3628 tx_mat
|= TX_MAT_SET(i
, 1);
3630 writeq(tx_mat
, &bar0
->tx_mat0_n
[0]);
3632 rx_mat
= readq(&bar0
->rx_mat
);
3633 for (i
=0; i
<config
->rx_ring_num
; i
++) {
3634 rx_mat
|= RX_MAT_SET(i
, 1);
3636 writeq(rx_mat
, &bar0
->rx_mat
);
3638 dev
->irq
= nic
->pdev
->irq
;
3642 static int s2io_enable_msi_x(nic_t
*nic
)
3644 XENA_dev_config_t __iomem
*bar0
= nic
->bar0
;
3646 u16 msi_control
; /* Temp variable */
3647 int ret
, i
, j
, msix_indx
= 1;
3649 nic
->entries
= kmalloc(MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
),
3651 if (nic
->entries
== NULL
) {
3652 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n", __FUNCTION__
);
3655 memset(nic
->entries
, 0, MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3658 kmalloc(MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
),
3660 if (nic
->s2io_entries
== NULL
) {
3661 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n", __FUNCTION__
);
3662 kfree(nic
->entries
);
3665 memset(nic
->s2io_entries
, 0,
3666 MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3668 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3669 nic
->entries
[i
].entry
= i
;
3670 nic
->s2io_entries
[i
].entry
= i
;
3671 nic
->s2io_entries
[i
].arg
= NULL
;
3672 nic
->s2io_entries
[i
].in_use
= 0;
3675 tx_mat
= readq(&bar0
->tx_mat0_n
[0]);
3676 for (i
=0; i
<nic
->config
.tx_fifo_num
; i
++, msix_indx
++) {
3677 tx_mat
|= TX_MAT_SET(i
, msix_indx
);
3678 nic
->s2io_entries
[msix_indx
].arg
= &nic
->mac_control
.fifos
[i
];
3679 nic
->s2io_entries
[msix_indx
].type
= MSIX_FIFO_TYPE
;
3680 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3682 writeq(tx_mat
, &bar0
->tx_mat0_n
[0]);
3684 if (!nic
->config
.bimodal
) {
3685 rx_mat
= readq(&bar0
->rx_mat
);
3686 for (j
=0; j
<nic
->config
.rx_ring_num
; j
++, msix_indx
++) {
3687 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3688 nic
->s2io_entries
[msix_indx
].arg
= &nic
->mac_control
.rings
[j
];
3689 nic
->s2io_entries
[msix_indx
].type
= MSIX_RING_TYPE
;
3690 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3692 writeq(rx_mat
, &bar0
->rx_mat
);
3694 tx_mat
= readq(&bar0
->tx_mat0_n
[7]);
3695 for (j
=0; j
<nic
->config
.rx_ring_num
; j
++, msix_indx
++) {
3696 tx_mat
|= TX_MAT_SET(i
, msix_indx
);
3697 nic
->s2io_entries
[msix_indx
].arg
= &nic
->mac_control
.rings
[j
];
3698 nic
->s2io_entries
[msix_indx
].type
= MSIX_RING_TYPE
;
3699 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3701 writeq(tx_mat
, &bar0
->tx_mat0_n
[7]);
3704 nic
->avail_msix_vectors
= 0;
3705 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, MAX_REQUESTED_MSI_X
);
3706 /* We fail init if error or we get less vectors than min required */
3707 if (ret
>= (nic
->config
.tx_fifo_num
+ nic
->config
.rx_ring_num
+ 1)) {
3708 nic
->avail_msix_vectors
= ret
;
3709 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, ret
);
3712 DBG_PRINT(ERR_DBG
, "%s: Enabling MSIX failed\n", nic
->dev
->name
);
3713 kfree(nic
->entries
);
3714 kfree(nic
->s2io_entries
);
3715 nic
->entries
= NULL
;
3716 nic
->s2io_entries
= NULL
;
3717 nic
->avail_msix_vectors
= 0;
3720 if (!nic
->avail_msix_vectors
)
3721 nic
->avail_msix_vectors
= MAX_REQUESTED_MSI_X
;
3724 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3725 * in the herc NIC. (Temp change, needs to be removed later)
3727 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3728 msi_control
|= 0x1; /* Enable MSI */
3729 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3734 /* ********************************************************* *
3735 * Functions defined below concern the OS part of the driver *
3736 * ********************************************************* */
3739 * s2io_open - open entry point of the driver
3740 * @dev : pointer to the device structure.
3742 * This function is the open entry point of the driver. It mainly calls a
3743 * function to allocate Rx buffers and inserts them into the buffer
3744 * descriptors and then enables the Rx part of the NIC.
3746 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3750 static int s2io_open(struct net_device
*dev
)
3752 nic_t
*sp
= dev
->priv
;
3756 * Make sure you have link off by default every time
3757 * Nic is initialized
3759 netif_carrier_off(dev
);
3760 sp
->last_link_state
= 0;
3762 /* Initialize H/W and enable interrupts */
3763 err
= s2io_card_up(sp
);
3765 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3767 goto hw_init_failed
;
3770 if (s2io_set_mac_addr(dev
, dev
->dev_addr
) == FAILURE
) {
3771 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
3774 goto hw_init_failed
;
3777 netif_start_queue(dev
);
3781 if (sp
->intr_type
== MSI_X
) {
3784 if (sp
->s2io_entries
)
3785 kfree(sp
->s2io_entries
);
3791 * s2io_close -close entry point of the driver
3792 * @dev : device pointer.
3794 * This is the stop entry point of the driver. It needs to undo exactly
3795 * whatever was done by the open entry point,thus it's usually referred to
3796 * as the close function.Among other things this function mainly stops the
3797 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3799 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3803 static int s2io_close(struct net_device
*dev
)
3805 nic_t
*sp
= dev
->priv
;
3807 flush_scheduled_work();
3808 netif_stop_queue(dev
);
3809 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3812 sp
->device_close_flag
= TRUE
; /* Device is shut down. */
3817 * s2io_xmit - Tx entry point of te driver
3818 * @skb : the socket buffer containing the Tx data.
3819 * @dev : device pointer.
3821 * This function is the Tx entry point of the driver. S2IO NIC supports
3822 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3823 * NOTE: when device cant queue the pkt,just the trans_start variable will
3826 * 0 on success & 1 on failure.
3829 static int s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
3831 nic_t
*sp
= dev
->priv
;
3832 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
3835 TxFIFO_element_t __iomem
*tx_fifo
;
3836 unsigned long flags
;
3838 int vlan_priority
= 0;
3839 mac_info_t
*mac_control
;
3840 struct config_param
*config
;
3843 mac_control
= &sp
->mac_control
;
3844 config
= &sp
->config
;
3846 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
3847 spin_lock_irqsave(&sp
->tx_lock
, flags
);
3848 if (atomic_read(&sp
->card_state
) == CARD_DOWN
) {
3849 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
3851 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
3858 /* Get Fifo number to Transmit based on vlan priority */
3859 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
3860 vlan_tag
= vlan_tx_tag_get(skb
);
3861 vlan_priority
= vlan_tag
>> 13;
3862 queue
= config
->fifo_mapping
[vlan_priority
];
3865 put_off
= (u16
) mac_control
->fifos
[queue
].tx_curr_put_info
.offset
;
3866 get_off
= (u16
) mac_control
->fifos
[queue
].tx_curr_get_info
.offset
;
3867 txdp
= (TxD_t
*) mac_control
->fifos
[queue
].list_info
[put_off
].
3870 queue_len
= mac_control
->fifos
[queue
].tx_curr_put_info
.fifo_len
+ 1;
3871 /* Avoid "put" pointer going beyond "get" pointer */
3872 if (txdp
->Host_Control
||
3873 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
3874 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
3875 netif_stop_queue(dev
);
3877 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
3881 /* A buffer with no data will be dropped */
3883 DBG_PRINT(TX_DBG
, "%s:Buffer has no data..\n", dev
->name
);
3885 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
3889 offload_type
= s2io_offload_type(skb
);
3891 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
3892 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
3893 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
3896 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3898 (TXD_TX_CKO_IPV4_EN
| TXD_TX_CKO_TCP_EN
|
3901 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
3902 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
3903 txdp
->Control_2
|= config
->tx_intr_type
;
3905 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
3906 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
3907 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
3910 frg_len
= skb
->len
- skb
->data_len
;
3911 if (offload_type
== SKB_GSO_UDP
) {
3914 ufo_size
= s2io_udp_mss(skb
);
3916 txdp
->Control_1
|= TXD_UFO_EN
;
3917 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
3918 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
3920 sp
->ufo_in_band_v
[put_off
] =
3921 (u64
)skb_shinfo(skb
)->ip6_frag_id
;
3923 sp
->ufo_in_band_v
[put_off
] =
3924 (u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
3926 txdp
->Host_Control
= (unsigned long)sp
->ufo_in_band_v
;
3927 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
3929 sizeof(u64
), PCI_DMA_TODEVICE
);
3933 txdp
->Buffer_Pointer
= pci_map_single
3934 (sp
->pdev
, skb
->data
, frg_len
, PCI_DMA_TODEVICE
);
3935 txdp
->Host_Control
= (unsigned long) skb
;
3936 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
3937 if (offload_type
== SKB_GSO_UDP
)
3938 txdp
->Control_1
|= TXD_UFO_EN
;
3940 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
3941 /* For fragmented SKB. */
3942 for (i
= 0; i
< frg_cnt
; i
++) {
3943 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3944 /* A '0' length fragment will be ignored */
3948 txdp
->Buffer_Pointer
= (u64
) pci_map_page
3949 (sp
->pdev
, frag
->page
, frag
->page_offset
,
3950 frag
->size
, PCI_DMA_TODEVICE
);
3951 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
3952 if (offload_type
== SKB_GSO_UDP
)
3953 txdp
->Control_1
|= TXD_UFO_EN
;
3955 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
3957 if (offload_type
== SKB_GSO_UDP
)
3958 frg_cnt
++; /* as Txd0 was used for inband header */
3960 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
3961 val64
= mac_control
->fifos
[queue
].list_info
[put_off
].list_phy_addr
;
3962 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
3964 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
3967 val64
|= TX_FIFO_SPECIAL_FUNC
;
3969 writeq(val64
, &tx_fifo
->List_Control
);
3974 if (put_off
== mac_control
->fifos
[queue
].tx_curr_put_info
.fifo_len
+ 1)
3976 mac_control
->fifos
[queue
].tx_curr_put_info
.offset
= put_off
;
3978 /* Avoid "put" pointer going beyond "get" pointer */
3979 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
3980 sp
->mac_control
.stats_info
->sw_stat
.fifo_full_cnt
++;
3982 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3984 netif_stop_queue(dev
);
3987 dev
->trans_start
= jiffies
;
3988 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
3994 s2io_alarm_handle(unsigned long data
)
3996 nic_t
*sp
= (nic_t
*)data
;
3998 alarm_intr_handler(sp
);
3999 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4002 static int s2io_chk_rx_buffers(nic_t
*sp
, int rng_n
)
4004 int rxb_size
, level
;
4007 rxb_size
= atomic_read(&sp
->rx_bufs_left
[rng_n
]);
4008 level
= rx_buffer_level(sp
, rxb_size
, rng_n
);
4010 if ((level
== PANIC
) && (!TASKLET_IN_USE
)) {
4012 DBG_PRINT(INTR_DBG
, "%s: Rx BD hit ", __FUNCTION__
);
4013 DBG_PRINT(INTR_DBG
, "PANIC levels\n");
4014 if ((ret
= fill_rx_buffers(sp
, rng_n
)) == -ENOMEM
) {
4015 DBG_PRINT(ERR_DBG
, "Out of memory in %s",
4017 clear_bit(0, (&sp
->tasklet_status
));
4020 clear_bit(0, (&sp
->tasklet_status
));
4021 } else if (level
== LOW
)
4022 tasklet_schedule(&sp
->task
);
4024 } else if (fill_rx_buffers(sp
, rng_n
) == -ENOMEM
) {
4025 DBG_PRINT(ERR_DBG
, "%s:Out of memory", sp
->dev
->name
);
4026 DBG_PRINT(ERR_DBG
, " in Rx Intr!!\n");
4031 static irqreturn_t
s2io_msi_handle(int irq
, void *dev_id
)
4033 struct net_device
*dev
= (struct net_device
*) dev_id
;
4034 nic_t
*sp
= dev
->priv
;
4036 mac_info_t
*mac_control
;
4037 struct config_param
*config
;
4039 atomic_inc(&sp
->isr_cnt
);
4040 mac_control
= &sp
->mac_control
;
4041 config
= &sp
->config
;
4042 DBG_PRINT(INTR_DBG
, "%s: MSI handler\n", __FUNCTION__
);
4044 /* If Intr is because of Rx Traffic */
4045 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4046 rx_intr_handler(&mac_control
->rings
[i
]);
4048 /* If Intr is because of Tx Traffic */
4049 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4050 tx_intr_handler(&mac_control
->fifos
[i
]);
4053 * If the Rx buffer count is below the panic threshold then
4054 * reallocate the buffers from the interrupt handler itself,
4055 * else schedule a tasklet to reallocate the buffers.
4057 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4058 s2io_chk_rx_buffers(sp
, i
);
4060 atomic_dec(&sp
->isr_cnt
);
4064 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4066 ring_info_t
*ring
= (ring_info_t
*)dev_id
;
4067 nic_t
*sp
= ring
->nic
;
4069 atomic_inc(&sp
->isr_cnt
);
4071 rx_intr_handler(ring
);
4072 s2io_chk_rx_buffers(sp
, ring
->ring_no
);
4074 atomic_dec(&sp
->isr_cnt
);
4078 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4080 fifo_info_t
*fifo
= (fifo_info_t
*)dev_id
;
4081 nic_t
*sp
= fifo
->nic
;
4083 atomic_inc(&sp
->isr_cnt
);
4084 tx_intr_handler(fifo
);
4085 atomic_dec(&sp
->isr_cnt
);
4088 static void s2io_txpic_intr_handle(nic_t
*sp
)
4090 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
4093 val64
= readq(&bar0
->pic_int_status
);
4094 if (val64
& PIC_INT_GPIO
) {
4095 val64
= readq(&bar0
->gpio_int_reg
);
4096 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4097 (val64
& GPIO_INT_REG_LINK_UP
)) {
4099 * This is unstable state so clear both up/down
4100 * interrupt and adapter to re-evaluate the link state.
4102 val64
|= GPIO_INT_REG_LINK_DOWN
;
4103 val64
|= GPIO_INT_REG_LINK_UP
;
4104 writeq(val64
, &bar0
->gpio_int_reg
);
4105 val64
= readq(&bar0
->gpio_int_mask
);
4106 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4107 GPIO_INT_MASK_LINK_DOWN
);
4108 writeq(val64
, &bar0
->gpio_int_mask
);
4110 else if (val64
& GPIO_INT_REG_LINK_UP
) {
4111 val64
= readq(&bar0
->adapter_status
);
4112 if (verify_xena_quiescence(sp
, val64
,
4113 sp
->device_enabled_once
)) {
4114 /* Enable Adapter */
4115 val64
= readq(&bar0
->adapter_control
);
4116 val64
|= ADAPTER_CNTL_EN
;
4117 writeq(val64
, &bar0
->adapter_control
);
4118 val64
|= ADAPTER_LED_ON
;
4119 writeq(val64
, &bar0
->adapter_control
);
4120 if (!sp
->device_enabled_once
)
4121 sp
->device_enabled_once
= 1;
4123 s2io_link(sp
, LINK_UP
);
4125 * unmask link down interrupt and mask link-up
4128 val64
= readq(&bar0
->gpio_int_mask
);
4129 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4130 val64
|= GPIO_INT_MASK_LINK_UP
;
4131 writeq(val64
, &bar0
->gpio_int_mask
);
4134 }else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4135 val64
= readq(&bar0
->adapter_status
);
4136 if (verify_xena_quiescence(sp
, val64
,
4137 sp
->device_enabled_once
)) {
4138 s2io_link(sp
, LINK_DOWN
);
4139 /* Link is down so unmaks link up interrupt */
4140 val64
= readq(&bar0
->gpio_int_mask
);
4141 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4142 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4143 writeq(val64
, &bar0
->gpio_int_mask
);
4147 val64
= readq(&bar0
->gpio_int_mask
);
4151 * s2io_isr - ISR handler of the device .
4152 * @irq: the irq of the device.
4153 * @dev_id: a void pointer to the dev structure of the NIC.
4154 * Description: This function is the ISR handler of the device. It
4155 * identifies the reason for the interrupt and calls the relevant
4156 * service routines. As a contongency measure, this ISR allocates the
4157 * recv buffers, if their numbers are below the panic value which is
4158 * presently set to 25% of the original number of rcv buffers allocated.
4160 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4161 * IRQ_NONE: will be returned if interrupt is not from our device
4163 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4165 struct net_device
*dev
= (struct net_device
*) dev_id
;
4166 nic_t
*sp
= dev
->priv
;
4167 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
4169 u64 reason
= 0, val64
, org_mask
;
4170 mac_info_t
*mac_control
;
4171 struct config_param
*config
;
4173 atomic_inc(&sp
->isr_cnt
);
4174 mac_control
= &sp
->mac_control
;
4175 config
= &sp
->config
;
4178 * Identify the cause for interrupt and call the appropriate
4179 * interrupt handler. Causes for the interrupt could be;
4183 * 4. Error in any functional blocks of the NIC.
4185 reason
= readq(&bar0
->general_int_status
);
4188 /* The interrupt was not raised by Xena. */
4189 atomic_dec(&sp
->isr_cnt
);
4193 val64
= 0xFFFFFFFFFFFFFFFFULL
;
4194 /* Store current mask before masking all interrupts */
4195 org_mask
= readq(&bar0
->general_int_mask
);
4196 writeq(val64
, &bar0
->general_int_mask
);
4198 #ifdef CONFIG_S2IO_NAPI
4199 if (reason
& GEN_INTR_RXTRAFFIC
) {
4200 if (netif_rx_schedule_prep(dev
)) {
4201 writeq(val64
, &bar0
->rx_traffic_mask
);
4202 __netif_rx_schedule(dev
);
4207 * Rx handler is called by default, without checking for the
4208 * cause of interrupt.
4209 * rx_traffic_int reg is an R1 register, writing all 1's
4210 * will ensure that the actual interrupt causing bit get's
4211 * cleared and hence a read can be avoided.
4213 writeq(val64
, &bar0
->rx_traffic_int
);
4214 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4215 rx_intr_handler(&mac_control
->rings
[i
]);
4220 * tx_traffic_int reg is an R1 register, writing all 1's
4221 * will ensure that the actual interrupt causing bit get's
4222 * cleared and hence a read can be avoided.
4224 writeq(val64
, &bar0
->tx_traffic_int
);
4226 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4227 tx_intr_handler(&mac_control
->fifos
[i
]);
4229 if (reason
& GEN_INTR_TXPIC
)
4230 s2io_txpic_intr_handle(sp
);
4232 * If the Rx buffer count is below the panic threshold then
4233 * reallocate the buffers from the interrupt handler itself,
4234 * else schedule a tasklet to reallocate the buffers.
4236 #ifndef CONFIG_S2IO_NAPI
4237 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4238 s2io_chk_rx_buffers(sp
, i
);
4240 writeq(org_mask
, &bar0
->general_int_mask
);
4241 atomic_dec(&sp
->isr_cnt
);
4248 static void s2io_updt_stats(nic_t
*sp
)
4250 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
4254 if (atomic_read(&sp
->card_state
) == CARD_UP
) {
4255 /* Apprx 30us on a 133 MHz bus */
4256 val64
= SET_UPDT_CLICKS(10) |
4257 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4258 writeq(val64
, &bar0
->stat_cfg
);
4261 val64
= readq(&bar0
->stat_cfg
);
4262 if (!(val64
& BIT(0)))
4266 break; /* Updt failed */
4269 memset(sp
->mac_control
.stats_info
, 0, sizeof(StatInfo_t
));
4274 * s2io_get_stats - Updates the device statistics structure.
4275 * @dev : pointer to the device structure.
4277 * This function updates the device statistics structure in the s2io_nic
4278 * structure and returns a pointer to the same.
4280 * pointer to the updated net_device_stats structure.
4283 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4285 nic_t
*sp
= dev
->priv
;
4286 mac_info_t
*mac_control
;
4287 struct config_param
*config
;
4290 mac_control
= &sp
->mac_control
;
4291 config
= &sp
->config
;
4293 /* Configure Stats for immediate updt */
4294 s2io_updt_stats(sp
);
4296 sp
->stats
.tx_packets
=
4297 le32_to_cpu(mac_control
->stats_info
->tmac_frms
);
4298 sp
->stats
.tx_errors
=
4299 le32_to_cpu(mac_control
->stats_info
->tmac_any_err_frms
);
4300 sp
->stats
.rx_errors
=
4301 le64_to_cpu(mac_control
->stats_info
->rmac_drop_frms
);
4302 sp
->stats
.multicast
=
4303 le32_to_cpu(mac_control
->stats_info
->rmac_vld_mcst_frms
);
4304 sp
->stats
.rx_length_errors
=
4305 le64_to_cpu(mac_control
->stats_info
->rmac_long_frms
);
4307 return (&sp
->stats
);
4311 * s2io_set_multicast - entry point for multicast address enable/disable.
4312 * @dev : pointer to the device structure
4314 * This function is a driver entry point which gets called by the kernel
4315 * whenever multicast addresses must be enabled/disabled. This also gets
4316 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4317 * determine, if multicast address must be enabled or if promiscuous mode
4318 * is to be disabled etc.
4323 static void s2io_set_multicast(struct net_device
*dev
)
4326 struct dev_mc_list
*mclist
;
4327 nic_t
*sp
= dev
->priv
;
4328 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
4329 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4331 u64 dis_addr
= 0xffffffffffffULL
, mac_addr
= 0;
4334 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4335 /* Enable all Multicast addresses */
4336 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4337 &bar0
->rmac_addr_data0_mem
);
4338 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4339 &bar0
->rmac_addr_data1_mem
);
4340 val64
= RMAC_ADDR_CMD_MEM_WE
|
4341 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4342 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET
);
4343 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4344 /* Wait till command completes */
4345 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4346 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
);
4349 sp
->all_multi_pos
= MAC_MC_ALL_MC_ADDR_OFFSET
;
4350 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4351 /* Disable all Multicast addresses */
4352 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4353 &bar0
->rmac_addr_data0_mem
);
4354 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4355 &bar0
->rmac_addr_data1_mem
);
4356 val64
= RMAC_ADDR_CMD_MEM_WE
|
4357 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4358 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4359 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4360 /* Wait till command completes */
4361 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4362 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
);
4365 sp
->all_multi_pos
= 0;
4368 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
4369 /* Put the NIC into promiscuous mode */
4370 add
= &bar0
->mac_cfg
;
4371 val64
= readq(&bar0
->mac_cfg
);
4372 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
4374 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4375 writel((u32
) val64
, add
);
4376 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4377 writel((u32
) (val64
>> 32), (add
+ 4));
4379 val64
= readq(&bar0
->mac_cfg
);
4380 sp
->promisc_flg
= 1;
4381 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
4383 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
4384 /* Remove the NIC from promiscuous mode */
4385 add
= &bar0
->mac_cfg
;
4386 val64
= readq(&bar0
->mac_cfg
);
4387 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
4389 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4390 writel((u32
) val64
, add
);
4391 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4392 writel((u32
) (val64
>> 32), (add
+ 4));
4394 val64
= readq(&bar0
->mac_cfg
);
4395 sp
->promisc_flg
= 0;
4396 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n",
4400 /* Update individual M_CAST address list */
4401 if ((!sp
->m_cast_flg
) && dev
->mc_count
) {
4403 (MAX_ADDRS_SUPPORTED
- MAC_MC_ADDR_START_OFFSET
- 1)) {
4404 DBG_PRINT(ERR_DBG
, "%s: No more Rx filters ",
4406 DBG_PRINT(ERR_DBG
, "can be added, please enable ");
4407 DBG_PRINT(ERR_DBG
, "ALL_MULTI instead\n");
4411 prev_cnt
= sp
->mc_addr_count
;
4412 sp
->mc_addr_count
= dev
->mc_count
;
4414 /* Clear out the previous list of Mc in the H/W. */
4415 for (i
= 0; i
< prev_cnt
; i
++) {
4416 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4417 &bar0
->rmac_addr_data0_mem
);
4418 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4419 &bar0
->rmac_addr_data1_mem
);
4420 val64
= RMAC_ADDR_CMD_MEM_WE
|
4421 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4422 RMAC_ADDR_CMD_MEM_OFFSET
4423 (MAC_MC_ADDR_START_OFFSET
+ i
);
4424 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4426 /* Wait for command completes */
4427 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4428 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
)) {
4429 DBG_PRINT(ERR_DBG
, "%s: Adding ",
4431 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
4436 /* Create the new Rx filter list and update the same in H/W. */
4437 for (i
= 0, mclist
= dev
->mc_list
; i
< dev
->mc_count
;
4438 i
++, mclist
= mclist
->next
) {
4439 memcpy(sp
->usr_addrs
[i
].addr
, mclist
->dmi_addr
,
4442 for (j
= 0; j
< ETH_ALEN
; j
++) {
4443 mac_addr
|= mclist
->dmi_addr
[j
];
4447 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
4448 &bar0
->rmac_addr_data0_mem
);
4449 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4450 &bar0
->rmac_addr_data1_mem
);
4451 val64
= RMAC_ADDR_CMD_MEM_WE
|
4452 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4453 RMAC_ADDR_CMD_MEM_OFFSET
4454 (i
+ MAC_MC_ADDR_START_OFFSET
);
4455 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4457 /* Wait for command completes */
4458 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4459 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
)) {
4460 DBG_PRINT(ERR_DBG
, "%s: Adding ",
4462 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
4470 * s2io_set_mac_addr - Programs the Xframe mac address
4471 * @dev : pointer to the device structure.
4472 * @addr: a uchar pointer to the new mac address which is to be set.
4473 * Description : This procedure will program the Xframe to receive
4474 * frames with new Mac Address
4475 * Return value: SUCCESS on success and an appropriate (-)ve integer
4476 * as defined in errno.h file on failure.
4479 static int s2io_set_mac_addr(struct net_device
*dev
, u8
* addr
)
4481 nic_t
*sp
= dev
->priv
;
4482 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
4483 register u64 val64
, mac_addr
= 0;
4487 * Set the new MAC address as the new unicast filter and reflect this
4488 * change on the device address registered with the OS. It will be
4491 for (i
= 0; i
< ETH_ALEN
; i
++) {
4493 mac_addr
|= addr
[i
];
4496 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
4497 &bar0
->rmac_addr_data0_mem
);
4500 RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4501 RMAC_ADDR_CMD_MEM_OFFSET(0);
4502 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4503 /* Wait till command completes */
4504 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4505 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
)) {
4506 DBG_PRINT(ERR_DBG
, "%s: set_mac_addr failed\n", dev
->name
);
4514 * s2io_ethtool_sset - Sets different link parameters.
4515 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4516 * @info: pointer to the structure with parameters given by ethtool to set
4519 * The function sets different link parameters provided by the user onto
4525 static int s2io_ethtool_sset(struct net_device
*dev
,
4526 struct ethtool_cmd
*info
)
4528 nic_t
*sp
= dev
->priv
;
4529 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
4530 (info
->speed
!= SPEED_10000
) || (info
->duplex
!= DUPLEX_FULL
))
4533 s2io_close(sp
->dev
);
4541 * s2io_ethtol_gset - Return link specific information.
4542 * @sp : private member of the device structure, pointer to the
4543 * s2io_nic structure.
4544 * @info : pointer to the structure with parameters given by ethtool
4545 * to return link information.
4547 * Returns link specific information like speed, duplex etc.. to ethtool.
4549 * return 0 on success.
4552 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
4554 nic_t
*sp
= dev
->priv
;
4555 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
4556 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
4557 info
->port
= PORT_FIBRE
;
4558 /* info->transceiver?? TODO */
4560 if (netif_carrier_ok(sp
->dev
)) {
4561 info
->speed
= 10000;
4562 info
->duplex
= DUPLEX_FULL
;
4568 info
->autoneg
= AUTONEG_DISABLE
;
4573 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4574 * @sp : private member of the device structure, which is a pointer to the
4575 * s2io_nic structure.
4576 * @info : pointer to the structure with parameters given by ethtool to
4577 * return driver information.
4579 * Returns driver specefic information like name, version etc.. to ethtool.
4584 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
4585 struct ethtool_drvinfo
*info
)
4587 nic_t
*sp
= dev
->priv
;
4589 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
4590 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
4591 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
4592 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
4593 info
->regdump_len
= XENA_REG_SPACE
;
4594 info
->eedump_len
= XENA_EEPROM_SPACE
;
4595 info
->testinfo_len
= S2IO_TEST_LEN
;
4596 info
->n_stats
= S2IO_STAT_LEN
;
4600 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4601 * @sp: private member of the device structure, which is a pointer to the
4602 * s2io_nic structure.
4603 * @regs : pointer to the structure with parameters given by ethtool for
4604 * dumping the registers.
4605 * @reg_space: The input argumnet into which all the registers are dumped.
4607 * Dumps the entire register space of xFrame NIC into the user given
4613 static void s2io_ethtool_gregs(struct net_device
*dev
,
4614 struct ethtool_regs
*regs
, void *space
)
4618 u8
*reg_space
= (u8
*) space
;
4619 nic_t
*sp
= dev
->priv
;
4621 regs
->len
= XENA_REG_SPACE
;
4622 regs
->version
= sp
->pdev
->subsystem_device
;
4624 for (i
= 0; i
< regs
->len
; i
+= 8) {
4625 reg
= readq(sp
->bar0
+ i
);
4626 memcpy((reg_space
+ i
), ®
, 8);
4631 * s2io_phy_id - timer function that alternates adapter LED.
4632 * @data : address of the private member of the device structure, which
4633 * is a pointer to the s2io_nic structure, provided as an u32.
4634 * Description: This is actually the timer function that alternates the
4635 * adapter LED bit of the adapter control bit to set/reset every time on
4636 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4637 * once every second.
4639 static void s2io_phy_id(unsigned long data
)
4641 nic_t
*sp
= (nic_t
*) data
;
4642 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
4646 subid
= sp
->pdev
->subsystem_device
;
4647 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
4648 ((subid
& 0xFF) >= 0x07)) {
4649 val64
= readq(&bar0
->gpio_control
);
4650 val64
^= GPIO_CTRL_GPIO_0
;
4651 writeq(val64
, &bar0
->gpio_control
);
4653 val64
= readq(&bar0
->adapter_control
);
4654 val64
^= ADAPTER_LED_ON
;
4655 writeq(val64
, &bar0
->adapter_control
);
4658 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
4662 * s2io_ethtool_idnic - To physically identify the nic on the system.
4663 * @sp : private member of the device structure, which is a pointer to the
4664 * s2io_nic structure.
4665 * @id : pointer to the structure with identification parameters given by
4667 * Description: Used to physically identify the NIC on the system.
4668 * The Link LED will blink for a time specified by the user for
4670 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4671 * identification is possible only if it's link is up.
4673 * int , returns 0 on success
4676 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
4678 u64 val64
= 0, last_gpio_ctrl_val
;
4679 nic_t
*sp
= dev
->priv
;
4680 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
4683 subid
= sp
->pdev
->subsystem_device
;
4684 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
4685 if ((sp
->device_type
== XFRAME_I_DEVICE
) &&
4686 ((subid
& 0xFF) < 0x07)) {
4687 val64
= readq(&bar0
->adapter_control
);
4688 if (!(val64
& ADAPTER_CNTL_EN
)) {
4690 "Adapter Link down, cannot blink LED\n");
4694 if (sp
->id_timer
.function
== NULL
) {
4695 init_timer(&sp
->id_timer
);
4696 sp
->id_timer
.function
= s2io_phy_id
;
4697 sp
->id_timer
.data
= (unsigned long) sp
;
4699 mod_timer(&sp
->id_timer
, jiffies
);
4701 msleep_interruptible(data
* HZ
);
4703 msleep_interruptible(MAX_FLICKER_TIME
);
4704 del_timer_sync(&sp
->id_timer
);
4706 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
4707 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
4708 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
4715 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4716 * @sp : private member of the device structure, which is a pointer to the
4717 * s2io_nic structure.
4718 * @ep : pointer to the structure with pause parameters given by ethtool.
4720 * Returns the Pause frame generation and reception capability of the NIC.
4724 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
4725 struct ethtool_pauseparam
*ep
)
4728 nic_t
*sp
= dev
->priv
;
4729 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
4731 val64
= readq(&bar0
->rmac_pause_cfg
);
4732 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
4733 ep
->tx_pause
= TRUE
;
4734 if (val64
& RMAC_PAUSE_RX_ENABLE
)
4735 ep
->rx_pause
= TRUE
;
4736 ep
->autoneg
= FALSE
;
4740 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4741 * @sp : private member of the device structure, which is a pointer to the
4742 * s2io_nic structure.
4743 * @ep : pointer to the structure with pause parameters given by ethtool.
4745 * It can be used to set or reset Pause frame generation or reception
4746 * support of the NIC.
4748 * int, returns 0 on Success
4751 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
4752 struct ethtool_pauseparam
*ep
)
4755 nic_t
*sp
= dev
->priv
;
4756 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
4758 val64
= readq(&bar0
->rmac_pause_cfg
);
4760 val64
|= RMAC_PAUSE_GEN_ENABLE
;
4762 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
4764 val64
|= RMAC_PAUSE_RX_ENABLE
;
4766 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
4767 writeq(val64
, &bar0
->rmac_pause_cfg
);
4772 * read_eeprom - reads 4 bytes of data from user given offset.
4773 * @sp : private member of the device structure, which is a pointer to the
4774 * s2io_nic structure.
4775 * @off : offset at which the data must be written
4776 * @data : Its an output parameter where the data read at the given
4779 * Will read 4 bytes of data from the user given offset and return the
4781 * NOTE: Will allow to read only part of the EEPROM visible through the
4784 * -1 on failure and 0 on success.
4787 #define S2IO_DEV_ID 5
4788 static int read_eeprom(nic_t
* sp
, int off
, u64
* data
)
4793 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
4795 if (sp
->device_type
== XFRAME_I_DEVICE
) {
4796 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
4797 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ
|
4798 I2C_CONTROL_CNTL_START
;
4799 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
4801 while (exit_cnt
< 5) {
4802 val64
= readq(&bar0
->i2c_control
);
4803 if (I2C_CONTROL_CNTL_END(val64
)) {
4804 *data
= I2C_CONTROL_GET_DATA(val64
);
4813 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4814 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
4815 SPI_CONTROL_BYTECNT(0x3) |
4816 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
4817 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
4818 val64
|= SPI_CONTROL_REQ
;
4819 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
4820 while (exit_cnt
< 5) {
4821 val64
= readq(&bar0
->spi_control
);
4822 if (val64
& SPI_CONTROL_NACK
) {
4825 } else if (val64
& SPI_CONTROL_DONE
) {
4826 *data
= readq(&bar0
->spi_data
);
4839 * write_eeprom - actually writes the relevant part of the data value.
4840 * @sp : private member of the device structure, which is a pointer to the
4841 * s2io_nic structure.
4842 * @off : offset at which the data must be written
4843 * @data : The data that is to be written
4844 * @cnt : Number of bytes of the data that are actually to be written into
4845 * the Eeprom. (max of 3)
4847 * Actually writes the relevant part of the data value into the Eeprom
4848 * through the I2C bus.
4850 * 0 on success, -1 on failure.
4853 static int write_eeprom(nic_t
* sp
, int off
, u64 data
, int cnt
)
4855 int exit_cnt
= 0, ret
= -1;
4857 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
4859 if (sp
->device_type
== XFRAME_I_DEVICE
) {
4860 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
4861 I2C_CONTROL_BYTE_CNT(cnt
) | I2C_CONTROL_SET_DATA((u32
)data
) |
4862 I2C_CONTROL_CNTL_START
;
4863 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
4865 while (exit_cnt
< 5) {
4866 val64
= readq(&bar0
->i2c_control
);
4867 if (I2C_CONTROL_CNTL_END(val64
)) {
4868 if (!(val64
& I2C_CONTROL_NACK
))
4877 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4878 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
4879 writeq(SPI_DATA_WRITE(data
,(cnt
<<3)), &bar0
->spi_data
);
4881 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
4882 SPI_CONTROL_BYTECNT(write_cnt
) |
4883 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
4884 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
4885 val64
|= SPI_CONTROL_REQ
;
4886 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
4887 while (exit_cnt
< 5) {
4888 val64
= readq(&bar0
->spi_control
);
4889 if (val64
& SPI_CONTROL_NACK
) {
4892 } else if (val64
& SPI_CONTROL_DONE
) {
4902 static void s2io_vpd_read(nic_t
*nic
)
4906 int i
=0, cnt
, fail
= 0;
4907 int vpd_addr
= 0x80;
4909 if (nic
->device_type
== XFRAME_II_DEVICE
) {
4910 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
4914 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
4918 vpd_data
= kmalloc(256, GFP_KERNEL
);
4922 for (i
= 0; i
< 256; i
+=4 ) {
4923 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
4924 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
4925 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
4926 for (cnt
= 0; cnt
<5; cnt
++) {
4928 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
4933 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
4937 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
4938 (u32
*)&vpd_data
[i
]);
4940 if ((!fail
) && (vpd_data
[1] < VPD_PRODUCT_NAME_LEN
)) {
4941 memset(nic
->product_name
, 0, vpd_data
[1]);
4942 memcpy(nic
->product_name
, &vpd_data
[3], vpd_data
[1]);
4948 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
4949 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4950 * @eeprom : pointer to the user level structure provided by ethtool,
4951 * containing all relevant information.
4952 * @data_buf : user defined value to be written into Eeprom.
4953 * Description: Reads the values stored in the Eeprom at given offset
4954 * for a given length. Stores these values int the input argument data
4955 * buffer 'data_buf' and returns these to the caller (ethtool.)
4960 static int s2io_ethtool_geeprom(struct net_device
*dev
,
4961 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
4965 nic_t
*sp
= dev
->priv
;
4967 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
4969 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
4970 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
4972 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
4973 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
4974 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
4978 memcpy((data_buf
+ i
), &valid
, 4);
4984 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4985 * @sp : private member of the device structure, which is a pointer to the
4986 * s2io_nic structure.
4987 * @eeprom : pointer to the user level structure provided by ethtool,
4988 * containing all relevant information.
4989 * @data_buf ; user defined value to be written into Eeprom.
4991 * Tries to write the user provided value in the Eeprom, at the offset
4992 * given by the user.
4994 * 0 on success, -EFAULT on failure.
4997 static int s2io_ethtool_seeprom(struct net_device
*dev
,
4998 struct ethtool_eeprom
*eeprom
,
5001 int len
= eeprom
->len
, cnt
= 0;
5002 u64 valid
= 0, data
;
5003 nic_t
*sp
= dev
->priv
;
5005 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5007 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5008 DBG_PRINT(ERR_DBG
, "is wrong, Its not 0x%x\n",
5014 data
= (u32
) data_buf
[cnt
] & 0x000000FF;
5016 valid
= (u32
) (data
<< 24);
5020 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5022 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5024 "write into the specified offset\n");
5035 * s2io_register_test - reads and writes into all clock domains.
5036 * @sp : private member of the device structure, which is a pointer to the
5037 * s2io_nic structure.
5038 * @data : variable that returns the result of each of the test conducted b
5041 * Read and write into all clock domains. The NIC has 3 clock domains,
5042 * see that registers in all the three regions are accessible.
5047 static int s2io_register_test(nic_t
* sp
, uint64_t * data
)
5049 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
5050 u64 val64
= 0, exp_val
;
5053 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5054 if (val64
!= 0x123456789abcdefULL
) {
5056 DBG_PRINT(INFO_DBG
, "Read Test level 1 fails\n");
5059 val64
= readq(&bar0
->rmac_pause_cfg
);
5060 if (val64
!= 0xc000ffff00000000ULL
) {
5062 DBG_PRINT(INFO_DBG
, "Read Test level 2 fails\n");
5065 val64
= readq(&bar0
->rx_queue_cfg
);
5066 if (sp
->device_type
== XFRAME_II_DEVICE
)
5067 exp_val
= 0x0404040404040404ULL
;
5069 exp_val
= 0x0808080808080808ULL
;
5070 if (val64
!= exp_val
) {
5072 DBG_PRINT(INFO_DBG
, "Read Test level 3 fails\n");
5075 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5076 if (val64
!= 0x000000001923141EULL
) {
5078 DBG_PRINT(INFO_DBG
, "Read Test level 4 fails\n");
5081 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5082 writeq(val64
, &bar0
->xmsi_data
);
5083 val64
= readq(&bar0
->xmsi_data
);
5084 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5086 DBG_PRINT(ERR_DBG
, "Write Test level 1 fails\n");
5089 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5090 writeq(val64
, &bar0
->xmsi_data
);
5091 val64
= readq(&bar0
->xmsi_data
);
5092 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5094 DBG_PRINT(ERR_DBG
, "Write Test level 2 fails\n");
5102 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5103 * @sp : private member of the device structure, which is a pointer to the
5104 * s2io_nic structure.
5105 * @data:variable that returns the result of each of the test conducted by
5108 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5114 static int s2io_eeprom_test(nic_t
* sp
, uint64_t * data
)
5117 u64 ret_data
, org_4F0
, org_7F0
;
5118 u8 saved_4F0
= 0, saved_7F0
= 0;
5119 struct net_device
*dev
= sp
->dev
;
5121 /* Test Write Error at offset 0 */
5122 /* Note that SPI interface allows write access to all areas
5123 * of EEPROM. Hence doing all negative testing only for Xframe I.
5125 if (sp
->device_type
== XFRAME_I_DEVICE
)
5126 if (!write_eeprom(sp
, 0, 0, 3))
5129 /* Save current values at offsets 0x4F0 and 0x7F0 */
5130 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
5132 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
5135 /* Test Write at offset 4f0 */
5136 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
5138 if (read_eeprom(sp
, 0x4F0, &ret_data
))
5141 if (ret_data
!= 0x012345) {
5142 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
5143 "Data written %llx Data read %llx\n",
5144 dev
->name
, (unsigned long long)0x12345,
5145 (unsigned long long)ret_data
);
5149 /* Reset the EEPROM data go FFFF */
5150 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
5152 /* Test Write Request Error at offset 0x7c */
5153 if (sp
->device_type
== XFRAME_I_DEVICE
)
5154 if (!write_eeprom(sp
, 0x07C, 0, 3))
5157 /* Test Write Request at offset 0x7f0 */
5158 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
5160 if (read_eeprom(sp
, 0x7F0, &ret_data
))
5163 if (ret_data
!= 0x012345) {
5164 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
5165 "Data written %llx Data read %llx\n",
5166 dev
->name
, (unsigned long long)0x12345,
5167 (unsigned long long)ret_data
);
5171 /* Reset the EEPROM data go FFFF */
5172 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
5174 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5175 /* Test Write Error at offset 0x80 */
5176 if (!write_eeprom(sp
, 0x080, 0, 3))
5179 /* Test Write Error at offset 0xfc */
5180 if (!write_eeprom(sp
, 0x0FC, 0, 3))
5183 /* Test Write Error at offset 0x100 */
5184 if (!write_eeprom(sp
, 0x100, 0, 3))
5187 /* Test Write Error at offset 4ec */
5188 if (!write_eeprom(sp
, 0x4EC, 0, 3))
5192 /* Restore values at offsets 0x4F0 and 0x7F0 */
5194 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
5196 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
5203 * s2io_bist_test - invokes the MemBist test of the card .
5204 * @sp : private member of the device structure, which is a pointer to the
5205 * s2io_nic structure.
5206 * @data:variable that returns the result of each of the test conducted by
5209 * This invokes the MemBist test of the card. We give around
5210 * 2 secs time for the Test to complete. If it's still not complete
5211 * within this peiod, we consider that the test failed.
5213 * 0 on success and -1 on failure.
5216 static int s2io_bist_test(nic_t
* sp
, uint64_t * data
)
5219 int cnt
= 0, ret
= -1;
5221 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
5222 bist
|= PCI_BIST_START
;
5223 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
5226 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
5227 if (!(bist
& PCI_BIST_START
)) {
5228 *data
= (bist
& PCI_BIST_CODE_MASK
);
5240 * s2io-link_test - verifies the link state of the nic
5241 * @sp ; private member of the device structure, which is a pointer to the
5242 * s2io_nic structure.
5243 * @data: variable that returns the result of each of the test conducted by
5246 * The function verifies the link state of the NIC and updates the input
5247 * argument 'data' appropriately.
5252 static int s2io_link_test(nic_t
* sp
, uint64_t * data
)
5254 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
5257 val64
= readq(&bar0
->adapter_status
);
5258 if(!(LINK_IS_UP(val64
)))
5267 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5268 * @sp - private member of the device structure, which is a pointer to the
5269 * s2io_nic structure.
5270 * @data - variable that returns the result of each of the test
5271 * conducted by the driver.
5273 * This is one of the offline test that tests the read and write
5274 * access to the RldRam chip on the NIC.
5279 static int s2io_rldram_test(nic_t
* sp
, uint64_t * data
)
5281 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
5283 int cnt
, iteration
= 0, test_fail
= 0;
5285 val64
= readq(&bar0
->adapter_control
);
5286 val64
&= ~ADAPTER_ECC_EN
;
5287 writeq(val64
, &bar0
->adapter_control
);
5289 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5290 val64
|= MC_RLDRAM_TEST_MODE
;
5291 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5293 val64
= readq(&bar0
->mc_rldram_mrs
);
5294 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
5295 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
5297 val64
|= MC_RLDRAM_MRS_ENABLE
;
5298 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
5300 while (iteration
< 2) {
5301 val64
= 0x55555555aaaa0000ULL
;
5302 if (iteration
== 1) {
5303 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5305 writeq(val64
, &bar0
->mc_rldram_test_d0
);
5307 val64
= 0xaaaa5a5555550000ULL
;
5308 if (iteration
== 1) {
5309 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5311 writeq(val64
, &bar0
->mc_rldram_test_d1
);
5313 val64
= 0x55aaaaaaaa5a0000ULL
;
5314 if (iteration
== 1) {
5315 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5317 writeq(val64
, &bar0
->mc_rldram_test_d2
);
5319 val64
= (u64
) (0x0000003ffffe0100ULL
);
5320 writeq(val64
, &bar0
->mc_rldram_test_add
);
5322 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_WRITE
|
5324 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5326 for (cnt
= 0; cnt
< 5; cnt
++) {
5327 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5328 if (val64
& MC_RLDRAM_TEST_DONE
)
5336 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
5337 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5339 for (cnt
= 0; cnt
< 5; cnt
++) {
5340 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5341 if (val64
& MC_RLDRAM_TEST_DONE
)
5349 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5350 if (!(val64
& MC_RLDRAM_TEST_PASS
))
5358 /* Bring the adapter out of test mode */
5359 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
5365 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5366 * @sp : private member of the device structure, which is a pointer to the
5367 * s2io_nic structure.
5368 * @ethtest : pointer to a ethtool command specific structure that will be
5369 * returned to the user.
5370 * @data : variable that returns the result of each of the test
5371 * conducted by the driver.
5373 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5374 * the health of the card.
5379 static void s2io_ethtool_test(struct net_device
*dev
,
5380 struct ethtool_test
*ethtest
,
5383 nic_t
*sp
= dev
->priv
;
5384 int orig_state
= netif_running(sp
->dev
);
5386 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
5387 /* Offline Tests. */
5389 s2io_close(sp
->dev
);
5391 if (s2io_register_test(sp
, &data
[0]))
5392 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5396 if (s2io_rldram_test(sp
, &data
[3]))
5397 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5401 if (s2io_eeprom_test(sp
, &data
[1]))
5402 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5404 if (s2io_bist_test(sp
, &data
[4]))
5405 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5415 "%s: is not up, cannot run test\n",
5424 if (s2io_link_test(sp
, &data
[2]))
5425 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5434 static void s2io_get_ethtool_stats(struct net_device
*dev
,
5435 struct ethtool_stats
*estats
,
5439 nic_t
*sp
= dev
->priv
;
5440 StatInfo_t
*stat_info
= sp
->mac_control
.stats_info
;
5442 s2io_updt_stats(sp
);
5444 (u64
)le32_to_cpu(stat_info
->tmac_frms_oflow
) << 32 |
5445 le32_to_cpu(stat_info
->tmac_frms
);
5447 (u64
)le32_to_cpu(stat_info
->tmac_data_octets_oflow
) << 32 |
5448 le32_to_cpu(stat_info
->tmac_data_octets
);
5449 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_drop_frms
);
5451 (u64
)le32_to_cpu(stat_info
->tmac_mcst_frms_oflow
) << 32 |
5452 le32_to_cpu(stat_info
->tmac_mcst_frms
);
5454 (u64
)le32_to_cpu(stat_info
->tmac_bcst_frms_oflow
) << 32 |
5455 le32_to_cpu(stat_info
->tmac_bcst_frms
);
5456 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_pause_ctrl_frms
);
5458 (u64
)le32_to_cpu(stat_info
->tmac_ttl_octets_oflow
) << 32 |
5459 le32_to_cpu(stat_info
->tmac_ttl_octets
);
5461 (u64
)le32_to_cpu(stat_info
->tmac_ucst_frms_oflow
) << 32 |
5462 le32_to_cpu(stat_info
->tmac_ucst_frms
);
5464 (u64
)le32_to_cpu(stat_info
->tmac_nucst_frms_oflow
) << 32 |
5465 le32_to_cpu(stat_info
->tmac_nucst_frms
);
5467 (u64
)le32_to_cpu(stat_info
->tmac_any_err_frms_oflow
) << 32 |
5468 le32_to_cpu(stat_info
->tmac_any_err_frms
);
5469 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_ttl_less_fb_octets
);
5470 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_vld_ip_octets
);
5472 (u64
)le32_to_cpu(stat_info
->tmac_vld_ip_oflow
) << 32 |
5473 le32_to_cpu(stat_info
->tmac_vld_ip
);
5475 (u64
)le32_to_cpu(stat_info
->tmac_drop_ip_oflow
) << 32 |
5476 le32_to_cpu(stat_info
->tmac_drop_ip
);
5478 (u64
)le32_to_cpu(stat_info
->tmac_icmp_oflow
) << 32 |
5479 le32_to_cpu(stat_info
->tmac_icmp
);
5481 (u64
)le32_to_cpu(stat_info
->tmac_rst_tcp_oflow
) << 32 |
5482 le32_to_cpu(stat_info
->tmac_rst_tcp
);
5483 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_tcp
);
5484 tmp_stats
[i
++] = (u64
)le32_to_cpu(stat_info
->tmac_udp_oflow
) << 32 |
5485 le32_to_cpu(stat_info
->tmac_udp
);
5487 (u64
)le32_to_cpu(stat_info
->rmac_vld_frms_oflow
) << 32 |
5488 le32_to_cpu(stat_info
->rmac_vld_frms
);
5490 (u64
)le32_to_cpu(stat_info
->rmac_data_octets_oflow
) << 32 |
5491 le32_to_cpu(stat_info
->rmac_data_octets
);
5492 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_fcs_err_frms
);
5493 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_drop_frms
);
5495 (u64
)le32_to_cpu(stat_info
->rmac_vld_mcst_frms_oflow
) << 32 |
5496 le32_to_cpu(stat_info
->rmac_vld_mcst_frms
);
5498 (u64
)le32_to_cpu(stat_info
->rmac_vld_bcst_frms_oflow
) << 32 |
5499 le32_to_cpu(stat_info
->rmac_vld_bcst_frms
);
5500 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_in_rng_len_err_frms
);
5501 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_out_rng_len_err_frms
);
5502 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_long_frms
);
5503 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_pause_ctrl_frms
);
5504 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_unsup_ctrl_frms
);
5506 (u64
)le32_to_cpu(stat_info
->rmac_ttl_octets_oflow
) << 32 |
5507 le32_to_cpu(stat_info
->rmac_ttl_octets
);
5509 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ucst_frms_oflow
)
5510 << 32 | le32_to_cpu(stat_info
->rmac_accepted_ucst_frms
);
5512 (u64
)le32_to_cpu(stat_info
->rmac_accepted_nucst_frms_oflow
)
5513 << 32 | le32_to_cpu(stat_info
->rmac_accepted_nucst_frms
);
5515 (u64
)le32_to_cpu(stat_info
->rmac_discarded_frms_oflow
) << 32 |
5516 le32_to_cpu(stat_info
->rmac_discarded_frms
);
5518 (u64
)le32_to_cpu(stat_info
->rmac_drop_events_oflow
)
5519 << 32 | le32_to_cpu(stat_info
->rmac_drop_events
);
5520 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_less_fb_octets
);
5521 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_frms
);
5523 (u64
)le32_to_cpu(stat_info
->rmac_usized_frms_oflow
) << 32 |
5524 le32_to_cpu(stat_info
->rmac_usized_frms
);
5526 (u64
)le32_to_cpu(stat_info
->rmac_osized_frms_oflow
) << 32 |
5527 le32_to_cpu(stat_info
->rmac_osized_frms
);
5529 (u64
)le32_to_cpu(stat_info
->rmac_frag_frms_oflow
) << 32 |
5530 le32_to_cpu(stat_info
->rmac_frag_frms
);
5532 (u64
)le32_to_cpu(stat_info
->rmac_jabber_frms_oflow
) << 32 |
5533 le32_to_cpu(stat_info
->rmac_jabber_frms
);
5534 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_64_frms
);
5535 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_65_127_frms
);
5536 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_128_255_frms
);
5537 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_256_511_frms
);
5538 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_512_1023_frms
);
5539 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_1024_1518_frms
);
5541 (u64
)le32_to_cpu(stat_info
->rmac_ip_oflow
) << 32 |
5542 le32_to_cpu(stat_info
->rmac_ip
);
5543 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ip_octets
);
5544 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_hdr_err_ip
);
5546 (u64
)le32_to_cpu(stat_info
->rmac_drop_ip_oflow
) << 32 |
5547 le32_to_cpu(stat_info
->rmac_drop_ip
);
5549 (u64
)le32_to_cpu(stat_info
->rmac_icmp_oflow
) << 32 |
5550 le32_to_cpu(stat_info
->rmac_icmp
);
5551 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_tcp
);
5553 (u64
)le32_to_cpu(stat_info
->rmac_udp_oflow
) << 32 |
5554 le32_to_cpu(stat_info
->rmac_udp
);
5556 (u64
)le32_to_cpu(stat_info
->rmac_err_drp_udp_oflow
) << 32 |
5557 le32_to_cpu(stat_info
->rmac_err_drp_udp
);
5558 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_err_sym
);
5559 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q0
);
5560 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q1
);
5561 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q2
);
5562 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q3
);
5563 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q4
);
5564 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q5
);
5565 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q6
);
5566 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q7
);
5567 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q0
);
5568 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q1
);
5569 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q2
);
5570 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q3
);
5571 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q4
);
5572 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q5
);
5573 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q6
);
5574 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q7
);
5576 (u64
)le32_to_cpu(stat_info
->rmac_pause_cnt_oflow
) << 32 |
5577 le32_to_cpu(stat_info
->rmac_pause_cnt
);
5578 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_data_err_cnt
);
5579 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_ctrl_err_cnt
);
5581 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ip_oflow
) << 32 |
5582 le32_to_cpu(stat_info
->rmac_accepted_ip
);
5583 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_err_tcp
);
5584 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_req_cnt
);
5585 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_cnt
);
5586 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_rtry_cnt
);
5587 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_cnt
);
5588 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_rd_ack_cnt
);
5589 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_req_cnt
);
5590 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_cnt
);
5591 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_rtry_cnt
);
5592 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_cnt
);
5593 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_disc_cnt
);
5594 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_wr_ack_cnt
);
5595 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txp_wr_cnt
);
5596 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_rd_cnt
);
5597 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_wr_cnt
);
5598 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_rd_cnt
);
5599 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_wr_cnt
);
5600 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txf_rd_cnt
);
5601 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxf_wr_cnt
);
5602 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_1519_4095_frms
);
5603 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_4096_8191_frms
);
5604 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_8192_max_frms
);
5605 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_gt_max_frms
);
5606 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_osized_alt_frms
);
5607 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_jabber_alt_frms
);
5608 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_gt_max_alt_frms
);
5609 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_vlan_frms
);
5610 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_len_discard
);
5611 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_fcs_discard
);
5612 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_pf_discard
);
5613 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_da_discard
);
5614 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_red_discard
);
5615 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_rts_discard
);
5616 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_ingm_full_discard
);
5617 tmp_stats
[i
++] = le32_to_cpu(stat_info
->link_fault_cnt
);
5619 tmp_stats
[i
++] = stat_info
->sw_stat
.single_ecc_errs
;
5620 tmp_stats
[i
++] = stat_info
->sw_stat
.double_ecc_errs
;
5621 tmp_stats
[i
++] = stat_info
->sw_stat
.parity_err_cnt
;
5622 tmp_stats
[i
++] = stat_info
->sw_stat
.serious_err_cnt
;
5623 tmp_stats
[i
++] = stat_info
->sw_stat
.soft_reset_cnt
;
5624 tmp_stats
[i
++] = stat_info
->sw_stat
.fifo_full_cnt
;
5625 tmp_stats
[i
++] = stat_info
->sw_stat
.ring_full_cnt
;
5626 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_high
;
5627 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_low
;
5628 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_high
;
5629 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_low
;
5630 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_high
;
5631 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_low
;
5632 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_high
;
5633 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_low
;
5634 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_high
;
5635 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_low
;
5636 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_high
;
5637 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_low
;
5638 tmp_stats
[i
++] = stat_info
->sw_stat
.clubbed_frms_cnt
;
5639 tmp_stats
[i
++] = stat_info
->sw_stat
.sending_both
;
5640 tmp_stats
[i
++] = stat_info
->sw_stat
.outof_sequence_pkts
;
5641 tmp_stats
[i
++] = stat_info
->sw_stat
.flush_max_pkts
;
5642 if (stat_info
->sw_stat
.num_aggregations
) {
5643 u64 tmp
= stat_info
->sw_stat
.sum_avg_pkts_aggregated
;
5646 * Since 64-bit divide does not work on all platforms,
5647 * do repeated subtraction.
5649 while (tmp
>= stat_info
->sw_stat
.num_aggregations
) {
5650 tmp
-= stat_info
->sw_stat
.num_aggregations
;
5653 tmp_stats
[i
++] = count
;
5659 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
5661 return (XENA_REG_SPACE
);
5665 static u32
s2io_ethtool_get_rx_csum(struct net_device
* dev
)
5667 nic_t
*sp
= dev
->priv
;
5669 return (sp
->rx_csum
);
5672 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
5674 nic_t
*sp
= dev
->priv
;
5684 static int s2io_get_eeprom_len(struct net_device
*dev
)
5686 return (XENA_EEPROM_SPACE
);
5689 static int s2io_ethtool_self_test_count(struct net_device
*dev
)
5691 return (S2IO_TEST_LEN
);
5694 static void s2io_ethtool_get_strings(struct net_device
*dev
,
5695 u32 stringset
, u8
* data
)
5697 switch (stringset
) {
5699 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
5702 memcpy(data
, ðtool_stats_keys
,
5703 sizeof(ethtool_stats_keys
));
5706 static int s2io_ethtool_get_stats_count(struct net_device
*dev
)
5708 return (S2IO_STAT_LEN
);
5711 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
5714 dev
->features
|= NETIF_F_IP_CSUM
;
5716 dev
->features
&= ~NETIF_F_IP_CSUM
;
5721 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
5723 return (dev
->features
& NETIF_F_TSO
) != 0;
5725 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
5728 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
5730 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
5735 static const struct ethtool_ops netdev_ethtool_ops
= {
5736 .get_settings
= s2io_ethtool_gset
,
5737 .set_settings
= s2io_ethtool_sset
,
5738 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
5739 .get_regs_len
= s2io_ethtool_get_regs_len
,
5740 .get_regs
= s2io_ethtool_gregs
,
5741 .get_link
= ethtool_op_get_link
,
5742 .get_eeprom_len
= s2io_get_eeprom_len
,
5743 .get_eeprom
= s2io_ethtool_geeprom
,
5744 .set_eeprom
= s2io_ethtool_seeprom
,
5745 .get_pauseparam
= s2io_ethtool_getpause_data
,
5746 .set_pauseparam
= s2io_ethtool_setpause_data
,
5747 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
5748 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
5749 .get_tx_csum
= ethtool_op_get_tx_csum
,
5750 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
5751 .get_sg
= ethtool_op_get_sg
,
5752 .set_sg
= ethtool_op_set_sg
,
5754 .get_tso
= s2io_ethtool_op_get_tso
,
5755 .set_tso
= s2io_ethtool_op_set_tso
,
5757 .get_ufo
= ethtool_op_get_ufo
,
5758 .set_ufo
= ethtool_op_set_ufo
,
5759 .self_test_count
= s2io_ethtool_self_test_count
,
5760 .self_test
= s2io_ethtool_test
,
5761 .get_strings
= s2io_ethtool_get_strings
,
5762 .phys_id
= s2io_ethtool_idnic
,
5763 .get_stats_count
= s2io_ethtool_get_stats_count
,
5764 .get_ethtool_stats
= s2io_get_ethtool_stats
5768 * s2io_ioctl - Entry point for the Ioctl
5769 * @dev : Device pointer.
5770 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5771 * a proprietary structure used to pass information to the driver.
5772 * @cmd : This is used to distinguish between the different commands that
5773 * can be passed to the IOCTL functions.
5775 * Currently there are no special functionality supported in IOCTL, hence
5776 * function always return EOPNOTSUPPORTED
5779 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
5785 * s2io_change_mtu - entry point to change MTU size for the device.
5786 * @dev : device pointer.
5787 * @new_mtu : the new MTU size for the device.
5788 * Description: A driver entry point to change MTU size for the device.
5789 * Before changing the MTU the device must be stopped.
5791 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5795 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
5797 nic_t
*sp
= dev
->priv
;
5799 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
5800 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n",
5806 if (netif_running(dev
)) {
5808 netif_stop_queue(dev
);
5809 if (s2io_card_up(sp
)) {
5810 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
5813 if (netif_queue_stopped(dev
))
5814 netif_wake_queue(dev
);
5815 } else { /* Device is down */
5816 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
5817 u64 val64
= new_mtu
;
5819 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
5826 * s2io_tasklet - Bottom half of the ISR.
5827 * @dev_adr : address of the device structure in dma_addr_t format.
5829 * This is the tasklet or the bottom half of the ISR. This is
5830 * an extension of the ISR which is scheduled by the scheduler to be run
5831 * when the load on the CPU is low. All low priority tasks of the ISR can
5832 * be pushed into the tasklet. For now the tasklet is used only to
5833 * replenish the Rx buffers in the Rx buffer descriptors.
5838 static void s2io_tasklet(unsigned long dev_addr
)
5840 struct net_device
*dev
= (struct net_device
*) dev_addr
;
5841 nic_t
*sp
= dev
->priv
;
5843 mac_info_t
*mac_control
;
5844 struct config_param
*config
;
5846 mac_control
= &sp
->mac_control
;
5847 config
= &sp
->config
;
5849 if (!TASKLET_IN_USE
) {
5850 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
5851 ret
= fill_rx_buffers(sp
, i
);
5852 if (ret
== -ENOMEM
) {
5853 DBG_PRINT(ERR_DBG
, "%s: Out of ",
5855 DBG_PRINT(ERR_DBG
, "memory in tasklet\n");
5857 } else if (ret
== -EFILL
) {
5859 "%s: Rx Ring %d is full\n",
5864 clear_bit(0, (&sp
->tasklet_status
));
5869 * s2io_set_link - Set the LInk status
5870 * @data: long pointer to device private structue
5871 * Description: Sets the link status for the adapter
5874 static void s2io_set_link(struct work_struct
*work
)
5876 nic_t
*nic
= container_of(work
, nic_t
, set_link_task
);
5877 struct net_device
*dev
= nic
->dev
;
5878 XENA_dev_config_t __iomem
*bar0
= nic
->bar0
;
5882 if (test_and_set_bit(0, &(nic
->link_state
))) {
5883 /* The card is being reset, no point doing anything */
5887 subid
= nic
->pdev
->subsystem_device
;
5888 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
5890 * Allow a small delay for the NICs self initiated
5891 * cleanup to complete.
5896 val64
= readq(&bar0
->adapter_status
);
5897 if (verify_xena_quiescence(nic
, val64
, nic
->device_enabled_once
)) {
5898 if (LINK_IS_UP(val64
)) {
5899 val64
= readq(&bar0
->adapter_control
);
5900 val64
|= ADAPTER_CNTL_EN
;
5901 writeq(val64
, &bar0
->adapter_control
);
5902 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
5904 val64
= readq(&bar0
->gpio_control
);
5905 val64
|= GPIO_CTRL_GPIO_0
;
5906 writeq(val64
, &bar0
->gpio_control
);
5907 val64
= readq(&bar0
->gpio_control
);
5909 val64
|= ADAPTER_LED_ON
;
5910 writeq(val64
, &bar0
->adapter_control
);
5912 if (s2io_link_fault_indication(nic
) ==
5913 MAC_RMAC_ERR_TIMER
) {
5914 val64
= readq(&bar0
->adapter_status
);
5915 if (!LINK_IS_UP(val64
)) {
5916 DBG_PRINT(ERR_DBG
, "%s:", dev
->name
);
5917 DBG_PRINT(ERR_DBG
, " Link down");
5918 DBG_PRINT(ERR_DBG
, "after ");
5919 DBG_PRINT(ERR_DBG
, "enabling ");
5920 DBG_PRINT(ERR_DBG
, "device \n");
5923 if (nic
->device_enabled_once
== FALSE
) {
5924 nic
->device_enabled_once
= TRUE
;
5926 s2io_link(nic
, LINK_UP
);
5928 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
5930 val64
= readq(&bar0
->gpio_control
);
5931 val64
&= ~GPIO_CTRL_GPIO_0
;
5932 writeq(val64
, &bar0
->gpio_control
);
5933 val64
= readq(&bar0
->gpio_control
);
5935 s2io_link(nic
, LINK_DOWN
);
5937 } else { /* NIC is not Quiescent. */
5938 DBG_PRINT(ERR_DBG
, "%s: Error: ", dev
->name
);
5939 DBG_PRINT(ERR_DBG
, "device is not Quiescent\n");
5940 netif_stop_queue(dev
);
5942 clear_bit(0, &(nic
->link_state
));
5945 static int set_rxd_buffer_pointer(nic_t
*sp
, RxD_t
*rxdp
, buffAdd_t
*ba
,
5946 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
5947 u64
*temp2
, int size
)
5949 struct net_device
*dev
= sp
->dev
;
5950 struct sk_buff
*frag_list
;
5952 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
5955 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
5957 * As Rx frame are not going to be processed,
5958 * using same mapped address for the Rxd
5961 ((RxD1_t
*)rxdp
)->Buffer0_ptr
= *temp0
;
5963 *skb
= dev_alloc_skb(size
);
5965 DBG_PRINT(ERR_DBG
, "%s: Out of ", dev
->name
);
5966 DBG_PRINT(ERR_DBG
, "memory to allocate SKBs\n");
5969 /* storing the mapped addr in a temp variable
5970 * such it will be used for next rxd whose
5971 * Host Control is NULL
5973 ((RxD1_t
*)rxdp
)->Buffer0_ptr
= *temp0
=
5974 pci_map_single( sp
->pdev
, (*skb
)->data
,
5975 size
- NET_IP_ALIGN
,
5976 PCI_DMA_FROMDEVICE
);
5977 rxdp
->Host_Control
= (unsigned long) (*skb
);
5979 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
5980 /* Two buffer Mode */
5982 ((RxD3_t
*)rxdp
)->Buffer2_ptr
= *temp2
;
5983 ((RxD3_t
*)rxdp
)->Buffer0_ptr
= *temp0
;
5984 ((RxD3_t
*)rxdp
)->Buffer1_ptr
= *temp1
;
5986 *skb
= dev_alloc_skb(size
);
5988 DBG_PRINT(ERR_DBG
, "%s: dev_alloc_skb failed\n",
5992 ((RxD3_t
*)rxdp
)->Buffer2_ptr
= *temp2
=
5993 pci_map_single(sp
->pdev
, (*skb
)->data
,
5995 PCI_DMA_FROMDEVICE
);
5996 ((RxD3_t
*)rxdp
)->Buffer0_ptr
= *temp0
=
5997 pci_map_single( sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
5998 PCI_DMA_FROMDEVICE
);
5999 rxdp
->Host_Control
= (unsigned long) (*skb
);
6001 /* Buffer-1 will be dummy buffer not used */
6002 ((RxD3_t
*)rxdp
)->Buffer1_ptr
= *temp1
=
6003 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6004 PCI_DMA_FROMDEVICE
);
6006 } else if ((rxdp
->Host_Control
== 0)) {
6007 /* Three buffer mode */
6009 ((RxD3_t
*)rxdp
)->Buffer0_ptr
= *temp0
;
6010 ((RxD3_t
*)rxdp
)->Buffer1_ptr
= *temp1
;
6011 ((RxD3_t
*)rxdp
)->Buffer2_ptr
= *temp2
;
6013 *skb
= dev_alloc_skb(size
);
6015 DBG_PRINT(ERR_DBG
, "%s: dev_alloc_skb failed\n",
6019 ((RxD3_t
*)rxdp
)->Buffer0_ptr
= *temp0
=
6020 pci_map_single(sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6021 PCI_DMA_FROMDEVICE
);
6022 /* Buffer-1 receives L3/L4 headers */
6023 ((RxD3_t
*)rxdp
)->Buffer1_ptr
= *temp1
=
6024 pci_map_single( sp
->pdev
, (*skb
)->data
,
6026 PCI_DMA_FROMDEVICE
);
6028 * skb_shinfo(skb)->frag_list will have L4
6031 skb_shinfo(*skb
)->frag_list
= dev_alloc_skb(dev
->mtu
+
6033 if (skb_shinfo(*skb
)->frag_list
== NULL
) {
6034 DBG_PRINT(ERR_DBG
, "%s: dev_alloc_skb \
6035 failed\n ", dev
->name
);
6038 frag_list
= skb_shinfo(*skb
)->frag_list
;
6039 frag_list
->next
= NULL
;
6041 * Buffer-2 receives L4 data payload
6043 ((RxD3_t
*)rxdp
)->Buffer2_ptr
= *temp2
=
6044 pci_map_single( sp
->pdev
, frag_list
->data
,
6045 dev
->mtu
, PCI_DMA_FROMDEVICE
);
6050 static void set_rxd_buffer_size(nic_t
*sp
, RxD_t
*rxdp
, int size
)
6052 struct net_device
*dev
= sp
->dev
;
6053 if (sp
->rxd_mode
== RXD_MODE_1
) {
6054 rxdp
->Control_2
= SET_BUFFER0_SIZE_1( size
- NET_IP_ALIGN
);
6055 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6056 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6057 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6058 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3( dev
->mtu
+ 4);
6060 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6061 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(l3l4hdr_size
+ 4);
6062 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
);
6066 static int rxd_owner_bit_reset(nic_t
*sp
)
6068 int i
, j
, k
, blk_cnt
= 0, size
;
6069 mac_info_t
* mac_control
= &sp
->mac_control
;
6070 struct config_param
*config
= &sp
->config
;
6071 struct net_device
*dev
= sp
->dev
;
6073 struct sk_buff
*skb
= NULL
;
6074 buffAdd_t
*ba
= NULL
;
6075 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6077 /* Calculate the size based on ring mode */
6078 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6079 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6080 if (sp
->rxd_mode
== RXD_MODE_1
)
6081 size
+= NET_IP_ALIGN
;
6082 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6083 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6085 size
= l3l4hdr_size
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6087 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6088 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
6089 (rxd_count
[sp
->rxd_mode
] +1);
6091 for (j
= 0; j
< blk_cnt
; j
++) {
6092 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6093 rxdp
= mac_control
->rings
[i
].
6094 rx_blocks
[j
].rxds
[k
].virt_addr
;
6095 if(sp
->rxd_mode
>= RXD_MODE_3A
)
6096 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
6097 set_rxd_buffer_pointer(sp
, rxdp
, ba
,
6098 &skb
,(u64
*)&temp0_64
,
6100 (u64
*)&temp2_64
, size
);
6102 set_rxd_buffer_size(sp
, rxdp
, size
);
6104 /* flip the Ownership bit to Hardware */
6105 rxdp
->Control_1
|= RXD_OWN_XENA
;
6113 static int s2io_add_isr(nic_t
* sp
)
6116 struct net_device
*dev
= sp
->dev
;
6119 if (sp
->intr_type
== MSI
)
6120 ret
= s2io_enable_msi(sp
);
6121 else if (sp
->intr_type
== MSI_X
)
6122 ret
= s2io_enable_msi_x(sp
);
6124 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
6125 sp
->intr_type
= INTA
;
6128 /* Store the values of the MSIX table in the nic_t structure */
6129 store_xmsi_data(sp
);
6131 /* After proper initialization of H/W, register ISR */
6132 if (sp
->intr_type
== MSI
) {
6133 err
= request_irq((int) sp
->pdev
->irq
, s2io_msi_handle
,
6134 IRQF_SHARED
, sp
->name
, dev
);
6136 pci_disable_msi(sp
->pdev
);
6137 DBG_PRINT(ERR_DBG
, "%s: MSI registration failed\n",
6142 if (sp
->intr_type
== MSI_X
) {
6145 for (i
=1; (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
); i
++) {
6146 if (sp
->s2io_entries
[i
].type
== MSIX_FIFO_TYPE
) {
6147 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
6149 err
= request_irq(sp
->entries
[i
].vector
,
6150 s2io_msix_fifo_handle
, 0, sp
->desc
[i
],
6151 sp
->s2io_entries
[i
].arg
);
6152 DBG_PRINT(ERR_DBG
, "%s @ 0x%llx\n", sp
->desc
[i
],
6153 (unsigned long long)sp
->msix_info
[i
].addr
);
6155 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
6157 err
= request_irq(sp
->entries
[i
].vector
,
6158 s2io_msix_ring_handle
, 0, sp
->desc
[i
],
6159 sp
->s2io_entries
[i
].arg
);
6160 DBG_PRINT(ERR_DBG
, "%s @ 0x%llx\n", sp
->desc
[i
],
6161 (unsigned long long)sp
->msix_info
[i
].addr
);
6164 DBG_PRINT(ERR_DBG
,"%s:MSI-X-%d registration "
6165 "failed\n", dev
->name
, i
);
6166 DBG_PRINT(ERR_DBG
, "Returned: %d\n", err
);
6169 sp
->s2io_entries
[i
].in_use
= MSIX_REGISTERED_SUCCESS
;
6172 if (sp
->intr_type
== INTA
) {
6173 err
= request_irq((int) sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
6176 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
6183 static void s2io_rem_isr(nic_t
* sp
)
6186 struct net_device
*dev
= sp
->dev
;
6188 if (sp
->intr_type
== MSI_X
) {
6192 for (i
=1; (sp
->s2io_entries
[i
].in_use
==
6193 MSIX_REGISTERED_SUCCESS
); i
++) {
6194 int vector
= sp
->entries
[i
].vector
;
6195 void *arg
= sp
->s2io_entries
[i
].arg
;
6197 free_irq(vector
, arg
);
6199 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
6200 msi_control
&= 0xFFFE; /* Disable MSI */
6201 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
6203 pci_disable_msix(sp
->pdev
);
6205 free_irq(sp
->pdev
->irq
, dev
);
6206 if (sp
->intr_type
== MSI
) {
6209 pci_disable_msi(sp
->pdev
);
6210 pci_read_config_word(sp
->pdev
, 0x4c, &val
);
6212 pci_write_config_word(sp
->pdev
, 0x4c, val
);
6215 /* Waiting till all Interrupt handlers are complete */
6219 if (!atomic_read(&sp
->isr_cnt
))
6225 static void s2io_card_down(nic_t
* sp
)
6228 XENA_dev_config_t __iomem
*bar0
= sp
->bar0
;
6229 unsigned long flags
;
6230 register u64 val64
= 0;
6232 del_timer_sync(&sp
->alarm_timer
);
6233 /* If s2io_set_link task is executing, wait till it completes. */
6234 while (test_and_set_bit(0, &(sp
->link_state
))) {
6237 atomic_set(&sp
->card_state
, CARD_DOWN
);
6239 /* disable Tx and Rx traffic on the NIC */
6245 tasklet_kill(&sp
->task
);
6247 /* Check if the device is Quiescent and then Reset the NIC */
6249 /* As per the HW requirement we need to replenish the
6250 * receive buffer to avoid the ring bump. Since there is
6251 * no intention of processing the Rx frame at this pointwe are
6252 * just settting the ownership bit of rxd in Each Rx
6253 * ring to HW and set the appropriate buffer size
6254 * based on the ring mode
6256 rxd_owner_bit_reset(sp
);
6258 val64
= readq(&bar0
->adapter_status
);
6259 if (verify_xena_quiescence(sp
, val64
, sp
->device_enabled_once
)) {
6267 "s2io_close:Device not Quiescent ");
6268 DBG_PRINT(ERR_DBG
, "adaper status reads 0x%llx\n",
6269 (unsigned long long) val64
);
6275 spin_lock_irqsave(&sp
->tx_lock
, flags
);
6276 /* Free all Tx buffers */
6277 free_tx_buffers(sp
);
6278 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
6280 /* Free all Rx buffers */
6281 spin_lock_irqsave(&sp
->rx_lock
, flags
);
6282 free_rx_buffers(sp
);
6283 spin_unlock_irqrestore(&sp
->rx_lock
, flags
);
6285 clear_bit(0, &(sp
->link_state
));
6288 static int s2io_card_up(nic_t
* sp
)
6291 mac_info_t
*mac_control
;
6292 struct config_param
*config
;
6293 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
6296 /* Initialize the H/W I/O registers */
6297 if (init_nic(sp
) != 0) {
6298 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
6305 * Initializing the Rx buffers. For now we are considering only 1
6306 * Rx ring and initializing buffers into 30 Rx blocks
6308 mac_control
= &sp
->mac_control
;
6309 config
= &sp
->config
;
6311 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6312 if ((ret
= fill_rx_buffers(sp
, i
))) {
6313 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
6316 free_rx_buffers(sp
);
6319 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
6320 atomic_read(&sp
->rx_bufs_left
[i
]));
6323 /* Setting its receive mode */
6324 s2io_set_multicast(dev
);
6327 /* Initialize max aggregatable pkts per session based on MTU */
6328 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
6329 /* Check if we can use(if specified) user provided value */
6330 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
6331 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
6334 /* Enable Rx Traffic and interrupts on the NIC */
6335 if (start_nic(sp
)) {
6336 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
6338 free_rx_buffers(sp
);
6342 /* Add interrupt service routine */
6343 if (s2io_add_isr(sp
) != 0) {
6344 if (sp
->intr_type
== MSI_X
)
6347 free_rx_buffers(sp
);
6351 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
6353 /* Enable tasklet for the device */
6354 tasklet_init(&sp
->task
, s2io_tasklet
, (unsigned long) dev
);
6356 /* Enable select interrupts */
6357 if (sp
->intr_type
!= INTA
)
6358 en_dis_able_nic_intrs(sp
, ENA_ALL_INTRS
, DISABLE_INTRS
);
6360 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
6361 interruptible
|= TX_PIC_INTR
| RX_PIC_INTR
;
6362 interruptible
|= TX_MAC_INTR
| RX_MAC_INTR
;
6363 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
6367 atomic_set(&sp
->card_state
, CARD_UP
);
6372 * s2io_restart_nic - Resets the NIC.
6373 * @data : long pointer to the device private structure
6375 * This function is scheduled to be run by the s2io_tx_watchdog
6376 * function after 0.5 secs to reset the NIC. The idea is to reduce
6377 * the run time of the watch dog routine which is run holding a
6381 static void s2io_restart_nic(struct work_struct
*work
)
6383 nic_t
*sp
= container_of(work
, nic_t
, rst_timer_task
);
6384 struct net_device
*dev
= sp
->dev
;
6387 if (s2io_card_up(sp
)) {
6388 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6391 netif_wake_queue(dev
);
6392 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n",
6398 * s2io_tx_watchdog - Watchdog for transmit side.
6399 * @dev : Pointer to net device structure
6401 * This function is triggered if the Tx Queue is stopped
6402 * for a pre-defined amount of time when the Interface is still up.
6403 * If the Interface is jammed in such a situation, the hardware is
6404 * reset (by s2io_close) and restarted again (by s2io_open) to
6405 * overcome any problem that might have been caused in the hardware.
6410 static void s2io_tx_watchdog(struct net_device
*dev
)
6412 nic_t
*sp
= dev
->priv
;
6414 if (netif_carrier_ok(dev
)) {
6415 schedule_work(&sp
->rst_timer_task
);
6416 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
6421 * rx_osm_handler - To perform some OS related operations on SKB.
6422 * @sp: private member of the device structure,pointer to s2io_nic structure.
6423 * @skb : the socket buffer pointer.
6424 * @len : length of the packet
6425 * @cksum : FCS checksum of the frame.
6426 * @ring_no : the ring from which this RxD was extracted.
6428 * This function is called by the Rx interrupt serivce routine to perform
6429 * some OS related operations on the SKB before passing it to the upper
6430 * layers. It mainly checks if the checksum is OK, if so adds it to the
6431 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6432 * to the upper layer. If the checksum is wrong, it increments the Rx
6433 * packet error count, frees the SKB and returns error.
6435 * SUCCESS on success and -1 on failure.
6437 static int rx_osm_handler(ring_info_t
*ring_data
, RxD_t
* rxdp
)
6439 nic_t
*sp
= ring_data
->nic
;
6440 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
6441 struct sk_buff
*skb
= (struct sk_buff
*)
6442 ((unsigned long) rxdp
->Host_Control
);
6443 int ring_no
= ring_data
->ring_no
;
6444 u16 l3_csum
, l4_csum
;
6445 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
6451 /* Check for parity error */
6453 sp
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
6457 * Drop the packet if bad transfer code. Exception being
6458 * 0x5, which could be due to unsupported IPv6 extension header.
6459 * In this case, we let stack handle the packet.
6460 * Note that in this case, since checksum will be incorrect,
6461 * stack will validate the same.
6463 if (err
&& ((err
>> 48) != 0x5)) {
6464 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%llx\n",
6466 sp
->stats
.rx_crc_errors
++;
6468 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
6469 rxdp
->Host_Control
= 0;
6474 /* Updating statistics */
6475 rxdp
->Host_Control
= 0;
6477 sp
->stats
.rx_packets
++;
6478 if (sp
->rxd_mode
== RXD_MODE_1
) {
6479 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
6481 sp
->stats
.rx_bytes
+= len
;
6484 } else if (sp
->rxd_mode
>= RXD_MODE_3A
) {
6485 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
6486 int get_off
= ring_data
->rx_curr_get_info
.offset
;
6487 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
6488 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
6489 unsigned char *buff
= skb_push(skb
, buf0_len
);
6491 buffAdd_t
*ba
= &ring_data
->ba
[get_block
][get_off
];
6492 sp
->stats
.rx_bytes
+= buf0_len
+ buf2_len
;
6493 memcpy(buff
, ba
->ba_0
, buf0_len
);
6495 if (sp
->rxd_mode
== RXD_MODE_3A
) {
6496 int buf1_len
= RXD_GET_BUFFER1_SIZE_3(rxdp
->Control_2
);
6498 skb_put(skb
, buf1_len
);
6499 skb
->len
+= buf2_len
;
6500 skb
->data_len
+= buf2_len
;
6501 skb
->truesize
+= buf2_len
;
6502 skb_put(skb_shinfo(skb
)->frag_list
, buf2_len
);
6503 sp
->stats
.rx_bytes
+= buf1_len
;
6506 skb_put(skb
, buf2_len
);
6509 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) && ((!sp
->lro
) ||
6510 (sp
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
6512 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
6513 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
6514 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
6516 * NIC verifies if the Checksum of the received
6517 * frame is Ok or not and accordingly returns
6518 * a flag in the RxD.
6520 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
6526 ret
= s2io_club_tcp_session(skb
->data
, &tcp
,
6527 &tcp_len
, &lro
, rxdp
, sp
);
6529 case 3: /* Begin anew */
6532 case 1: /* Aggregate */
6534 lro_append_pkt(sp
, lro
,
6538 case 4: /* Flush session */
6540 lro_append_pkt(sp
, lro
,
6542 queue_rx_frame(lro
->parent
);
6543 clear_lro_session(lro
);
6544 sp
->mac_control
.stats_info
->
6545 sw_stat
.flush_max_pkts
++;
6548 case 2: /* Flush both */
6549 lro
->parent
->data_len
=
6551 sp
->mac_control
.stats_info
->
6552 sw_stat
.sending_both
++;
6553 queue_rx_frame(lro
->parent
);
6554 clear_lro_session(lro
);
6556 case 0: /* sessions exceeded */
6557 case -1: /* non-TCP or not
6561 * First pkt in session not
6562 * L3/L4 aggregatable
6567 "%s: Samadhana!!\n",
6574 * Packet with erroneous checksum, let the
6575 * upper layers deal with it.
6577 skb
->ip_summed
= CHECKSUM_NONE
;
6580 skb
->ip_summed
= CHECKSUM_NONE
;
6584 skb
->protocol
= eth_type_trans(skb
, dev
);
6585 #ifdef CONFIG_S2IO_NAPI
6586 if (sp
->vlgrp
&& RXD_GET_VLAN_TAG(rxdp
->Control_2
)) {
6587 /* Queueing the vlan frame to the upper layer */
6588 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
,
6589 RXD_GET_VLAN_TAG(rxdp
->Control_2
));
6591 netif_receive_skb(skb
);
6594 if (sp
->vlgrp
&& RXD_GET_VLAN_TAG(rxdp
->Control_2
)) {
6595 /* Queueing the vlan frame to the upper layer */
6596 vlan_hwaccel_rx(skb
, sp
->vlgrp
,
6597 RXD_GET_VLAN_TAG(rxdp
->Control_2
));
6604 queue_rx_frame(skb
);
6606 dev
->last_rx
= jiffies
;
6608 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
6613 * s2io_link - stops/starts the Tx queue.
6614 * @sp : private member of the device structure, which is a pointer to the
6615 * s2io_nic structure.
6616 * @link : inidicates whether link is UP/DOWN.
6618 * This function stops/starts the Tx queue depending on whether the link
6619 * status of the NIC is is down or up. This is called by the Alarm
6620 * interrupt handler whenever a link change interrupt comes up.
6625 static void s2io_link(nic_t
* sp
, int link
)
6627 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
6629 if (link
!= sp
->last_link_state
) {
6630 if (link
== LINK_DOWN
) {
6631 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
6632 netif_carrier_off(dev
);
6634 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
6635 netif_carrier_on(dev
);
6638 sp
->last_link_state
= link
;
6642 * get_xena_rev_id - to identify revision ID of xena.
6643 * @pdev : PCI Dev structure
6645 * Function to identify the Revision ID of xena.
6647 * returns the revision ID of the device.
6650 static int get_xena_rev_id(struct pci_dev
*pdev
)
6654 ret
= pci_read_config_byte(pdev
, PCI_REVISION_ID
, (u8
*) & id
);
6659 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6660 * @sp : private member of the device structure, which is a pointer to the
6661 * s2io_nic structure.
6663 * This function initializes a few of the PCI and PCI-X configuration registers
6664 * with recommended values.
6669 static void s2io_init_pci(nic_t
* sp
)
6671 u16 pci_cmd
= 0, pcix_cmd
= 0;
6673 /* Enable Data Parity Error Recovery in PCI-X command register. */
6674 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
6676 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
6678 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
6681 /* Set the PErr Response bit in PCI command register. */
6682 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
6683 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
6684 (pci_cmd
| PCI_COMMAND_PARITY
));
6685 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
6688 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
)
6690 if ( tx_fifo_num
> 8) {
6691 DBG_PRINT(ERR_DBG
, "s2io: Requested number of Tx fifos not "
6693 DBG_PRINT(ERR_DBG
, "s2io: Default to 8 Tx fifos\n");
6696 if ( rx_ring_num
> 8) {
6697 DBG_PRINT(ERR_DBG
, "s2io: Requested number of Rx rings not "
6699 DBG_PRINT(ERR_DBG
, "s2io: Default to 8 Rx rings\n");
6702 #ifdef CONFIG_S2IO_NAPI
6703 if (*dev_intr_type
!= INTA
) {
6704 DBG_PRINT(ERR_DBG
, "s2io: NAPI cannot be enabled when "
6705 "MSI/MSI-X is enabled. Defaulting to INTA\n");
6706 *dev_intr_type
= INTA
;
6709 #ifndef CONFIG_PCI_MSI
6710 if (*dev_intr_type
!= INTA
) {
6711 DBG_PRINT(ERR_DBG
, "s2io: This kernel does not support"
6712 "MSI/MSI-X. Defaulting to INTA\n");
6713 *dev_intr_type
= INTA
;
6716 if (*dev_intr_type
> MSI_X
) {
6717 DBG_PRINT(ERR_DBG
, "s2io: Wrong intr_type requested. "
6718 "Defaulting to INTA\n");
6719 *dev_intr_type
= INTA
;
6722 if ((*dev_intr_type
== MSI_X
) &&
6723 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
6724 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
6725 DBG_PRINT(ERR_DBG
, "s2io: Xframe I does not support MSI_X. "
6726 "Defaulting to INTA\n");
6727 *dev_intr_type
= INTA
;
6729 if (rx_ring_mode
> 3) {
6730 DBG_PRINT(ERR_DBG
, "s2io: Requested ring mode not supported\n");
6731 DBG_PRINT(ERR_DBG
, "s2io: Defaulting to 3-buffer mode\n");
6738 * s2io_init_nic - Initialization of the adapter .
6739 * @pdev : structure containing the PCI related information of the device.
6740 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6742 * The function initializes an adapter identified by the pci_dec structure.
6743 * All OS related initialization including memory and device structure and
6744 * initlaization of the device private variable is done. Also the swapper
6745 * control register is initialized to enable read and write into the I/O
6746 * registers of the device.
6748 * returns 0 on success and negative on failure.
6751 static int __devinit
6752 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
6755 struct net_device
*dev
;
6757 int dma_flag
= FALSE
;
6758 u32 mac_up
, mac_down
;
6759 u64 val64
= 0, tmp64
= 0;
6760 XENA_dev_config_t __iomem
*bar0
= NULL
;
6762 mac_info_t
*mac_control
;
6763 struct config_param
*config
;
6765 u8 dev_intr_type
= intr_type
;
6767 if ((ret
= s2io_verify_parm(pdev
, &dev_intr_type
)))
6770 if ((ret
= pci_enable_device(pdev
))) {
6772 "s2io_init_nic: pci_enable_device failed\n");
6776 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
6777 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 64bit DMA\n");
6779 if (pci_set_consistent_dma_mask
6780 (pdev
, DMA_64BIT_MASK
)) {
6782 "Unable to obtain 64bit DMA for \
6783 consistent allocations\n");
6784 pci_disable_device(pdev
);
6787 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
6788 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 32bit DMA\n");
6790 pci_disable_device(pdev
);
6793 if (dev_intr_type
!= MSI_X
) {
6794 if (pci_request_regions(pdev
, s2io_driver_name
)) {
6795 DBG_PRINT(ERR_DBG
, "Request Regions failed\n");
6796 pci_disable_device(pdev
);
6801 if (!(request_mem_region(pci_resource_start(pdev
, 0),
6802 pci_resource_len(pdev
, 0), s2io_driver_name
))) {
6803 DBG_PRINT(ERR_DBG
, "bar0 Request Regions failed\n");
6804 pci_disable_device(pdev
);
6807 if (!(request_mem_region(pci_resource_start(pdev
, 2),
6808 pci_resource_len(pdev
, 2), s2io_driver_name
))) {
6809 DBG_PRINT(ERR_DBG
, "bar1 Request Regions failed\n");
6810 release_mem_region(pci_resource_start(pdev
, 0),
6811 pci_resource_len(pdev
, 0));
6812 pci_disable_device(pdev
);
6817 dev
= alloc_etherdev(sizeof(nic_t
));
6819 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
6820 pci_disable_device(pdev
);
6821 pci_release_regions(pdev
);
6825 pci_set_master(pdev
);
6826 pci_set_drvdata(pdev
, dev
);
6827 SET_MODULE_OWNER(dev
);
6828 SET_NETDEV_DEV(dev
, &pdev
->dev
);
6830 /* Private member variable initialized to s2io NIC structure */
6832 memset(sp
, 0, sizeof(nic_t
));
6835 sp
->high_dma_flag
= dma_flag
;
6836 sp
->device_enabled_once
= FALSE
;
6837 if (rx_ring_mode
== 1)
6838 sp
->rxd_mode
= RXD_MODE_1
;
6839 if (rx_ring_mode
== 2)
6840 sp
->rxd_mode
= RXD_MODE_3B
;
6841 if (rx_ring_mode
== 3)
6842 sp
->rxd_mode
= RXD_MODE_3A
;
6844 sp
->intr_type
= dev_intr_type
;
6846 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
6847 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
6848 sp
->device_type
= XFRAME_II_DEVICE
;
6850 sp
->device_type
= XFRAME_I_DEVICE
;
6854 /* Initialize some PCI/PCI-X fields of the NIC. */
6858 * Setting the device configuration parameters.
6859 * Most of these parameters can be specified by the user during
6860 * module insertion as they are module loadable parameters. If
6861 * these parameters are not not specified during load time, they
6862 * are initialized with default values.
6864 mac_control
= &sp
->mac_control
;
6865 config
= &sp
->config
;
6867 /* Tx side parameters. */
6868 config
->tx_fifo_num
= tx_fifo_num
;
6869 for (i
= 0; i
< MAX_TX_FIFOS
; i
++) {
6870 config
->tx_cfg
[i
].fifo_len
= tx_fifo_len
[i
];
6871 config
->tx_cfg
[i
].fifo_priority
= i
;
6874 /* mapping the QoS priority to the configured fifos */
6875 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
6876 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
][i
];
6878 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
6879 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
6880 config
->tx_cfg
[i
].f_no_snoop
=
6881 (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
6882 if (config
->tx_cfg
[i
].fifo_len
< 65) {
6883 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
6887 /* + 2 because one Txd for skb->data and one Txd for UFO */
6888 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
6890 /* Rx side parameters. */
6891 config
->rx_ring_num
= rx_ring_num
;
6892 for (i
= 0; i
< MAX_RX_RINGS
; i
++) {
6893 config
->rx_cfg
[i
].num_rxd
= rx_ring_sz
[i
] *
6894 (rxd_count
[sp
->rxd_mode
] + 1);
6895 config
->rx_cfg
[i
].ring_priority
= i
;
6898 for (i
= 0; i
< rx_ring_num
; i
++) {
6899 config
->rx_cfg
[i
].ring_org
= RING_ORG_BUFF1
;
6900 config
->rx_cfg
[i
].f_no_snoop
=
6901 (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
6904 /* Setting Mac Control parameters */
6905 mac_control
->rmac_pause_time
= rmac_pause_time
;
6906 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
6907 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
6910 /* Initialize Ring buffer parameters. */
6911 for (i
= 0; i
< config
->rx_ring_num
; i
++)
6912 atomic_set(&sp
->rx_bufs_left
[i
], 0);
6914 /* Initialize the number of ISRs currently running */
6915 atomic_set(&sp
->isr_cnt
, 0);
6917 /* initialize the shared memory used by the NIC and the host */
6918 if (init_shared_mem(sp
)) {
6919 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n",
6922 goto mem_alloc_failed
;
6925 sp
->bar0
= ioremap(pci_resource_start(pdev
, 0),
6926 pci_resource_len(pdev
, 0));
6928 DBG_PRINT(ERR_DBG
, "%s: S2IO: cannot remap io mem1\n",
6931 goto bar0_remap_failed
;
6934 sp
->bar1
= ioremap(pci_resource_start(pdev
, 2),
6935 pci_resource_len(pdev
, 2));
6937 DBG_PRINT(ERR_DBG
, "%s: S2IO: cannot remap io mem2\n",
6940 goto bar1_remap_failed
;
6943 dev
->irq
= pdev
->irq
;
6944 dev
->base_addr
= (unsigned long) sp
->bar0
;
6946 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6947 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
6948 mac_control
->tx_FIFO_start
[j
] = (TxFIFO_element_t __iomem
*)
6949 (sp
->bar1
+ (j
* 0x00020000));
6952 /* Driver entry points */
6953 dev
->open
= &s2io_open
;
6954 dev
->stop
= &s2io_close
;
6955 dev
->hard_start_xmit
= &s2io_xmit
;
6956 dev
->get_stats
= &s2io_get_stats
;
6957 dev
->set_multicast_list
= &s2io_set_multicast
;
6958 dev
->do_ioctl
= &s2io_ioctl
;
6959 dev
->change_mtu
= &s2io_change_mtu
;
6960 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
6961 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
6962 dev
->vlan_rx_register
= s2io_vlan_rx_register
;
6963 dev
->vlan_rx_kill_vid
= (void *)s2io_vlan_rx_kill_vid
;
6966 * will use eth_mac_addr() for dev->set_mac_address
6967 * mac address will be set every time dev->open() is called
6969 #if defined(CONFIG_S2IO_NAPI)
6970 dev
->poll
= s2io_poll
;
6974 #ifdef CONFIG_NET_POLL_CONTROLLER
6975 dev
->poll_controller
= s2io_netpoll
;
6978 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
6979 if (sp
->high_dma_flag
== TRUE
)
6980 dev
->features
|= NETIF_F_HIGHDMA
;
6982 dev
->features
|= NETIF_F_TSO
;
6985 dev
->features
|= NETIF_F_TSO6
;
6987 if (sp
->device_type
& XFRAME_II_DEVICE
) {
6988 dev
->features
|= NETIF_F_UFO
;
6989 dev
->features
|= NETIF_F_HW_CSUM
;
6992 dev
->tx_timeout
= &s2io_tx_watchdog
;
6993 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
6994 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
6995 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
6997 pci_save_state(sp
->pdev
);
6999 /* Setting swapper control on the NIC, for proper reset operation */
7000 if (s2io_set_swapper(sp
)) {
7001 DBG_PRINT(ERR_DBG
, "%s:swapper settings are wrong\n",
7004 goto set_swap_failed
;
7007 /* Verify if the Herc works on the slot its placed into */
7008 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7009 mode
= s2io_verify_pci_mode(sp
);
7011 DBG_PRINT(ERR_DBG
, "%s: ", __FUNCTION__
);
7012 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7014 goto set_swap_failed
;
7018 /* Not needed for Herc */
7019 if (sp
->device_type
& XFRAME_I_DEVICE
) {
7021 * Fix for all "FFs" MAC address problems observed on
7024 fix_mac_address(sp
);
7029 * MAC address initialization.
7030 * For now only one mac address will be read and used.
7033 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
7034 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET
);
7035 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
7036 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
7037 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
);
7038 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
7039 mac_down
= (u32
) tmp64
;
7040 mac_up
= (u32
) (tmp64
>> 32);
7042 memset(sp
->def_mac_addr
[0].mac_addr
, 0, sizeof(ETH_ALEN
));
7044 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
7045 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
7046 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
7047 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
7048 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
7049 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
7051 /* Set the factory defined MAC address initially */
7052 dev
->addr_len
= ETH_ALEN
;
7053 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
7055 /* reset Nic and bring it to known state */
7059 * Initialize the tasklet status and link state flags
7060 * and the card state parameter
7062 atomic_set(&(sp
->card_state
), 0);
7063 sp
->tasklet_status
= 0;
7066 /* Initialize spinlocks */
7067 spin_lock_init(&sp
->tx_lock
);
7068 #ifndef CONFIG_S2IO_NAPI
7069 spin_lock_init(&sp
->put_lock
);
7071 spin_lock_init(&sp
->rx_lock
);
7074 * SXE-002: Configure link and activity LED to init state
7077 subid
= sp
->pdev
->subsystem_device
;
7078 if ((subid
& 0xFF) >= 0x07) {
7079 val64
= readq(&bar0
->gpio_control
);
7080 val64
|= 0x0000800000000000ULL
;
7081 writeq(val64
, &bar0
->gpio_control
);
7082 val64
= 0x0411040400000000ULL
;
7083 writeq(val64
, (void __iomem
*) bar0
+ 0x2700);
7084 val64
= readq(&bar0
->gpio_control
);
7087 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
7089 if (register_netdev(dev
)) {
7090 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
7092 goto register_failed
;
7095 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2005 Neterion Inc.\n");
7096 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n",dev
->name
,
7097 sp
->product_name
, get_xena_rev_id(sp
->pdev
));
7098 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
7099 s2io_driver_version
);
7100 DBG_PRINT(ERR_DBG
, "%s: MAC ADDR: "
7101 "%02x:%02x:%02x:%02x:%02x:%02x\n", dev
->name
,
7102 sp
->def_mac_addr
[0].mac_addr
[0],
7103 sp
->def_mac_addr
[0].mac_addr
[1],
7104 sp
->def_mac_addr
[0].mac_addr
[2],
7105 sp
->def_mac_addr
[0].mac_addr
[3],
7106 sp
->def_mac_addr
[0].mac_addr
[4],
7107 sp
->def_mac_addr
[0].mac_addr
[5]);
7108 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7109 mode
= s2io_print_pci_mode(sp
);
7111 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7113 unregister_netdev(dev
);
7114 goto set_swap_failed
;
7117 switch(sp
->rxd_mode
) {
7119 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
7123 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
7127 DBG_PRINT(ERR_DBG
, "%s: 3-Buffer receive mode enabled\n",
7131 #ifdef CONFIG_S2IO_NAPI
7132 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
7134 switch(sp
->intr_type
) {
7136 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
7139 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI\n", dev
->name
);
7142 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
7146 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
7149 /* Initialize device name */
7150 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
7152 /* Initialize bimodal Interrupts */
7153 sp
->config
.bimodal
= bimodal
;
7154 if (!(sp
->device_type
& XFRAME_II_DEVICE
) && bimodal
) {
7155 sp
->config
.bimodal
= 0;
7156 DBG_PRINT(ERR_DBG
,"%s:Bimodal intr not supported by Xframe I\n",
7161 * Make Link state as off at this point, when the Link change
7162 * interrupt comes the state will be automatically changed to
7165 netif_carrier_off(dev
);
7176 free_shared_mem(sp
);
7177 pci_disable_device(pdev
);
7178 if (dev_intr_type
!= MSI_X
)
7179 pci_release_regions(pdev
);
7181 release_mem_region(pci_resource_start(pdev
, 0),
7182 pci_resource_len(pdev
, 0));
7183 release_mem_region(pci_resource_start(pdev
, 2),
7184 pci_resource_len(pdev
, 2));
7186 pci_set_drvdata(pdev
, NULL
);
7193 * s2io_rem_nic - Free the PCI device
7194 * @pdev: structure containing the PCI related information of the device.
7195 * Description: This function is called by the Pci subsystem to release a
7196 * PCI device and free up all resource held up by the device. This could
7197 * be in response to a Hot plug event or when the driver is to be removed
7201 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
7203 struct net_device
*dev
=
7204 (struct net_device
*) pci_get_drvdata(pdev
);
7208 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
7213 unregister_netdev(dev
);
7215 free_shared_mem(sp
);
7218 pci_disable_device(pdev
);
7219 if (sp
->intr_type
!= MSI_X
)
7220 pci_release_regions(pdev
);
7222 release_mem_region(pci_resource_start(pdev
, 0),
7223 pci_resource_len(pdev
, 0));
7224 release_mem_region(pci_resource_start(pdev
, 2),
7225 pci_resource_len(pdev
, 2));
7227 pci_set_drvdata(pdev
, NULL
);
7232 * s2io_starter - Entry point for the driver
7233 * Description: This function is the entry point for the driver. It verifies
7234 * the module loadable parameters and initializes PCI configuration space.
7237 int __init
s2io_starter(void)
7239 return pci_register_driver(&s2io_driver
);
7243 * s2io_closer - Cleanup routine for the driver
7244 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7247 static void s2io_closer(void)
7249 pci_unregister_driver(&s2io_driver
);
7250 DBG_PRINT(INIT_DBG
, "cleanup done\n");
7253 module_init(s2io_starter
);
7254 module_exit(s2io_closer
);
7256 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
7257 struct tcphdr
**tcp
, RxD_t
*rxdp
)
7260 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
7262 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
7263 DBG_PRINT(INIT_DBG
,"%s: Non-TCP frames not supported for LRO\n",
7269 * By default the VLAN field in the MAC is stripped by the card, if this
7270 * feature is turned off in rx_pa_cfg register, then the ip_off field
7271 * has to be shifted by a further 2 bytes
7274 case 0: /* DIX type */
7275 case 4: /* DIX type with VLAN */
7276 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
7278 /* LLC, SNAP etc are considered non-mergeable */
7283 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
7284 ip_len
= (u8
)((*ip
)->ihl
);
7286 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
7291 static int check_for_socket_match(lro_t
*lro
, struct iphdr
*ip
,
7294 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7295 if ((lro
->iph
->saddr
!= ip
->saddr
) || (lro
->iph
->daddr
!= ip
->daddr
) ||
7296 (lro
->tcph
->source
!= tcp
->source
) || (lro
->tcph
->dest
!= tcp
->dest
))
7301 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
7303 return(ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2));
7306 static void initiate_new_session(lro_t
*lro
, u8
*l2h
,
7307 struct iphdr
*ip
, struct tcphdr
*tcp
, u32 tcp_pyld_len
)
7309 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7313 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
7314 lro
->tcp_ack
= ntohl(tcp
->ack_seq
);
7316 lro
->total_len
= ntohs(ip
->tot_len
);
7319 * check if we saw TCP timestamp. Other consistency checks have
7320 * already been done.
7322 if (tcp
->doff
== 8) {
7324 ptr
= (u32
*)(tcp
+1);
7326 lro
->cur_tsval
= *(ptr
+1);
7327 lro
->cur_tsecr
= *(ptr
+2);
7332 static void update_L3L4_header(nic_t
*sp
, lro_t
*lro
)
7334 struct iphdr
*ip
= lro
->iph
;
7335 struct tcphdr
*tcp
= lro
->tcph
;
7337 StatInfo_t
*statinfo
= sp
->mac_control
.stats_info
;
7338 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7340 /* Update L3 header */
7341 ip
->tot_len
= htons(lro
->total_len
);
7343 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
7346 /* Update L4 header */
7347 tcp
->ack_seq
= lro
->tcp_ack
;
7348 tcp
->window
= lro
->window
;
7350 /* Update tsecr field if this session has timestamps enabled */
7352 u32
*ptr
= (u32
*)(tcp
+ 1);
7353 *(ptr
+2) = lro
->cur_tsecr
;
7356 /* Update counters required for calculation of
7357 * average no. of packets aggregated.
7359 statinfo
->sw_stat
.sum_avg_pkts_aggregated
+= lro
->sg_num
;
7360 statinfo
->sw_stat
.num_aggregations
++;
7363 static void aggregate_new_rx(lro_t
*lro
, struct iphdr
*ip
,
7364 struct tcphdr
*tcp
, u32 l4_pyld
)
7366 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7367 lro
->total_len
+= l4_pyld
;
7368 lro
->frags_len
+= l4_pyld
;
7369 lro
->tcp_next_seq
+= l4_pyld
;
7372 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7373 lro
->tcp_ack
= tcp
->ack_seq
;
7374 lro
->window
= tcp
->window
;
7378 /* Update tsecr and tsval from this packet */
7379 ptr
= (u32
*) (tcp
+ 1);
7380 lro
->cur_tsval
= *(ptr
+ 1);
7381 lro
->cur_tsecr
= *(ptr
+ 2);
7385 static int verify_l3_l4_lro_capable(lro_t
*l_lro
, struct iphdr
*ip
,
7386 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
7390 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7392 if (!tcp_pyld_len
) {
7393 /* Runt frame or a pure ack */
7397 if (ip
->ihl
!= 5) /* IP has options */
7400 /* If we see CE codepoint in IP header, packet is not mergeable */
7401 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
7404 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7405 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
|| tcp
->syn
|| tcp
->fin
||
7406 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
7408 * Currently recognize only the ack control word and
7409 * any other control field being set would result in
7410 * flushing the LRO session
7416 * Allow only one TCP timestamp option. Don't aggregate if
7417 * any other options are detected.
7419 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
7422 if (tcp
->doff
== 8) {
7423 ptr
= (u8
*)(tcp
+ 1);
7424 while (*ptr
== TCPOPT_NOP
)
7426 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
7429 /* Ensure timestamp value increases monotonically */
7431 if (l_lro
->cur_tsval
> *((u32
*)(ptr
+2)))
7434 /* timestamp echo reply should be non-zero */
7435 if (*((u32
*)(ptr
+6)) == 0)
7443 s2io_club_tcp_session(u8
*buffer
, u8
**tcp
, u32
*tcp_len
, lro_t
**lro
,
7444 RxD_t
*rxdp
, nic_t
*sp
)
7447 struct tcphdr
*tcph
;
7450 if (!(ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
7452 DBG_PRINT(INFO_DBG
,"IP Saddr: %x Daddr: %x\n",
7453 ip
->saddr
, ip
->daddr
);
7458 tcph
= (struct tcphdr
*)*tcp
;
7459 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
7460 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
7461 lro_t
*l_lro
= &sp
->lro0_n
[i
];
7462 if (l_lro
->in_use
) {
7463 if (check_for_socket_match(l_lro
, ip
, tcph
))
7465 /* Sock pair matched */
7468 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
7469 DBG_PRINT(INFO_DBG
, "%s:Out of order. expected "
7470 "0x%x, actual 0x%x\n", __FUNCTION__
,
7471 (*lro
)->tcp_next_seq
,
7474 sp
->mac_control
.stats_info
->
7475 sw_stat
.outof_sequence_pkts
++;
7480 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,*tcp_len
))
7481 ret
= 1; /* Aggregate */
7483 ret
= 2; /* Flush both */
7489 /* Before searching for available LRO objects,
7490 * check if the pkt is L3/L4 aggregatable. If not
7491 * don't create new LRO session. Just send this
7494 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
)) {
7498 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
7499 lro_t
*l_lro
= &sp
->lro0_n
[i
];
7500 if (!(l_lro
->in_use
)) {
7502 ret
= 3; /* Begin anew */
7508 if (ret
== 0) { /* sessions exceeded */
7509 DBG_PRINT(INFO_DBG
,"%s:All LRO sessions already in use\n",
7517 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
);
7520 update_L3L4_header(sp
, *lro
);
7523 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
7524 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
7525 update_L3L4_header(sp
, *lro
);
7526 ret
= 4; /* Flush the LRO */
7530 DBG_PRINT(ERR_DBG
,"%s:Dont know, can't say!!\n",
7538 static void clear_lro_session(lro_t
*lro
)
7540 static u16 lro_struct_size
= sizeof(lro_t
);
7542 memset(lro
, 0, lro_struct_size
);
7545 static void queue_rx_frame(struct sk_buff
*skb
)
7547 struct net_device
*dev
= skb
->dev
;
7549 skb
->protocol
= eth_type_trans(skb
, dev
);
7550 #ifdef CONFIG_S2IO_NAPI
7551 netif_receive_skb(skb
);
7557 static void lro_append_pkt(nic_t
*sp
, lro_t
*lro
, struct sk_buff
*skb
,
7560 struct sk_buff
*first
= lro
->parent
;
7562 first
->len
+= tcp_len
;
7563 first
->data_len
= lro
->frags_len
;
7564 skb_pull(skb
, (skb
->len
- tcp_len
));
7565 if (skb_shinfo(first
)->frag_list
)
7566 lro
->last_frag
->next
= skb
;
7568 skb_shinfo(first
)->frag_list
= skb
;
7569 lro
->last_frag
= skb
;
7570 sp
->mac_control
.stats_info
->sw_stat
.clubbed_frms_cnt
++;