drm/i915: Split i915_gem_execbuffer into its own file.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blobb30c6c167048907f18a104419934399a2ac3123f
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
38 static int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj,
39 struct intel_ring_buffer *pipelined);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
43 bool write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
48 static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
49 unsigned alignment,
50 bool map_and_fenceable);
51 static void i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
56 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
58 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59 int nr_to_scan,
60 gfp_t gfp_mask);
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
71 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
78 int
79 i915_gem_check_is_wedged(struct drm_device *dev)
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
93 /* Success, we reset the GPU! */
94 if (!atomic_read(&dev_priv->mm.wedged))
95 return 0;
97 /* GPU is hung, bump the completion count to account for
98 * the token we just consumed so that we never hit zero and
99 * end up waiting upon a subsequent completion event that
100 * will never happen.
102 spin_lock_irqsave(&x->wait.lock, flags);
103 x->done++;
104 spin_unlock_irqrestore(&x->wait.lock, flags);
105 return -EIO;
108 int i915_mutex_lock_interruptible(struct drm_device *dev)
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 int ret;
113 ret = i915_gem_check_is_wedged(dev);
114 if (ret)
115 return ret;
117 ret = mutex_lock_interruptible(&dev->struct_mutex);
118 if (ret)
119 return ret;
121 if (atomic_read(&dev_priv->mm.wedged)) {
122 mutex_unlock(&dev->struct_mutex);
123 return -EAGAIN;
126 WARN_ON(i915_verify_lists(dev));
127 return 0;
130 static inline bool
131 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
133 return obj->gtt_space && !obj->active && obj->pin_count == 0;
136 void i915_gem_do_init(struct drm_device *dev,
137 unsigned long start,
138 unsigned long mappable_end,
139 unsigned long end)
141 drm_i915_private_t *dev_priv = dev->dev_private;
143 drm_mm_init(&dev_priv->mm.gtt_space, start,
144 end - start);
146 dev_priv->mm.gtt_total = end - start;
147 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
148 dev_priv->mm.gtt_mappable_end = mappable_end;
152 i915_gem_init_ioctl(struct drm_device *dev, void *data,
153 struct drm_file *file)
155 struct drm_i915_gem_init *args = data;
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
161 mutex_lock(&dev->struct_mutex);
162 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
163 mutex_unlock(&dev->struct_mutex);
165 return 0;
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_get_aperture *args = data;
174 struct drm_i915_gem_object *obj;
175 size_t pinned;
177 if (!(dev->driver->driver_features & DRIVER_GEM))
178 return -ENODEV;
180 pinned = 0;
181 mutex_lock(&dev->struct_mutex);
182 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
183 pinned += obj->gtt_space->size;
184 mutex_unlock(&dev->struct_mutex);
186 args->aper_size = dev_priv->mm.gtt_total;
187 args->aper_available_size = args->aper_size -pinned;
189 return 0;
193 * Creates a new mm object and returns a handle to it.
196 i915_gem_create_ioctl(struct drm_device *dev, void *data,
197 struct drm_file *file)
199 struct drm_i915_gem_create *args = data;
200 struct drm_i915_gem_object *obj;
201 int ret;
202 u32 handle;
204 args->size = roundup(args->size, PAGE_SIZE);
206 /* Allocate the new object */
207 obj = i915_gem_alloc_object(dev, args->size);
208 if (obj == NULL)
209 return -ENOMEM;
211 ret = drm_gem_handle_create(file, &obj->base, &handle);
212 if (ret) {
213 drm_gem_object_release(&obj->base);
214 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
215 kfree(obj);
216 return ret;
219 /* drop reference from allocate - handle holds it now */
220 drm_gem_object_unreference(&obj->base);
221 trace_i915_gem_object_create(obj);
223 args->handle = handle;
224 return 0;
227 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
229 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
231 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
232 obj->tiling_mode != I915_TILING_NONE;
235 static inline void
236 slow_shmem_copy(struct page *dst_page,
237 int dst_offset,
238 struct page *src_page,
239 int src_offset,
240 int length)
242 char *dst_vaddr, *src_vaddr;
244 dst_vaddr = kmap(dst_page);
245 src_vaddr = kmap(src_page);
247 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
249 kunmap(src_page);
250 kunmap(dst_page);
253 static inline void
254 slow_shmem_bit17_copy(struct page *gpu_page,
255 int gpu_offset,
256 struct page *cpu_page,
257 int cpu_offset,
258 int length,
259 int is_read)
261 char *gpu_vaddr, *cpu_vaddr;
263 /* Use the unswizzled path if this page isn't affected. */
264 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
265 if (is_read)
266 return slow_shmem_copy(cpu_page, cpu_offset,
267 gpu_page, gpu_offset, length);
268 else
269 return slow_shmem_copy(gpu_page, gpu_offset,
270 cpu_page, cpu_offset, length);
273 gpu_vaddr = kmap(gpu_page);
274 cpu_vaddr = kmap(cpu_page);
276 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
277 * XORing with the other bits (A9 for Y, A9 and A10 for X)
279 while (length > 0) {
280 int cacheline_end = ALIGN(gpu_offset + 1, 64);
281 int this_length = min(cacheline_end - gpu_offset, length);
282 int swizzled_gpu_offset = gpu_offset ^ 64;
284 if (is_read) {
285 memcpy(cpu_vaddr + cpu_offset,
286 gpu_vaddr + swizzled_gpu_offset,
287 this_length);
288 } else {
289 memcpy(gpu_vaddr + swizzled_gpu_offset,
290 cpu_vaddr + cpu_offset,
291 this_length);
293 cpu_offset += this_length;
294 gpu_offset += this_length;
295 length -= this_length;
298 kunmap(cpu_page);
299 kunmap(gpu_page);
303 * This is the fast shmem pread path, which attempts to copy_from_user directly
304 * from the backing pages of the object to the user's address space. On a
305 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
307 static int
308 i915_gem_shmem_pread_fast(struct drm_device *dev,
309 struct drm_i915_gem_object *obj,
310 struct drm_i915_gem_pread *args,
311 struct drm_file *file)
313 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
314 ssize_t remain;
315 loff_t offset;
316 char __user *user_data;
317 int page_offset, page_length;
319 user_data = (char __user *) (uintptr_t) args->data_ptr;
320 remain = args->size;
322 offset = args->offset;
324 while (remain > 0) {
325 struct page *page;
326 char *vaddr;
327 int ret;
329 /* Operation in this page
331 * page_offset = offset within page
332 * page_length = bytes to copy for this page
334 page_offset = offset & (PAGE_SIZE-1);
335 page_length = remain;
336 if ((page_offset + remain) > PAGE_SIZE)
337 page_length = PAGE_SIZE - page_offset;
339 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
340 GFP_HIGHUSER | __GFP_RECLAIMABLE);
341 if (IS_ERR(page))
342 return PTR_ERR(page);
344 vaddr = kmap_atomic(page);
345 ret = __copy_to_user_inatomic(user_data,
346 vaddr + page_offset,
347 page_length);
348 kunmap_atomic(vaddr);
350 mark_page_accessed(page);
351 page_cache_release(page);
352 if (ret)
353 return -EFAULT;
355 remain -= page_length;
356 user_data += page_length;
357 offset += page_length;
360 return 0;
364 * This is the fallback shmem pread path, which allocates temporary storage
365 * in kernel space to copy_to_user into outside of the struct_mutex, so we
366 * can copy out of the object's backing pages while holding the struct mutex
367 * and not take page faults.
369 static int
370 i915_gem_shmem_pread_slow(struct drm_device *dev,
371 struct drm_i915_gem_object *obj,
372 struct drm_i915_gem_pread *args,
373 struct drm_file *file)
375 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
376 struct mm_struct *mm = current->mm;
377 struct page **user_pages;
378 ssize_t remain;
379 loff_t offset, pinned_pages, i;
380 loff_t first_data_page, last_data_page, num_pages;
381 int shmem_page_offset;
382 int data_page_index, data_page_offset;
383 int page_length;
384 int ret;
385 uint64_t data_ptr = args->data_ptr;
386 int do_bit17_swizzling;
388 remain = args->size;
390 /* Pin the user pages containing the data. We can't fault while
391 * holding the struct mutex, yet we want to hold it while
392 * dereferencing the user data.
394 first_data_page = data_ptr / PAGE_SIZE;
395 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
396 num_pages = last_data_page - first_data_page + 1;
398 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
399 if (user_pages == NULL)
400 return -ENOMEM;
402 mutex_unlock(&dev->struct_mutex);
403 down_read(&mm->mmap_sem);
404 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
405 num_pages, 1, 0, user_pages, NULL);
406 up_read(&mm->mmap_sem);
407 mutex_lock(&dev->struct_mutex);
408 if (pinned_pages < num_pages) {
409 ret = -EFAULT;
410 goto out;
413 ret = i915_gem_object_set_cpu_read_domain_range(obj,
414 args->offset,
415 args->size);
416 if (ret)
417 goto out;
419 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
421 offset = args->offset;
423 while (remain > 0) {
424 struct page *page;
426 /* Operation in this page
428 * shmem_page_offset = offset within page in shmem file
429 * data_page_index = page number in get_user_pages return
430 * data_page_offset = offset with data_page_index page.
431 * page_length = bytes to copy for this page
433 shmem_page_offset = offset & ~PAGE_MASK;
434 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
435 data_page_offset = data_ptr & ~PAGE_MASK;
437 page_length = remain;
438 if ((shmem_page_offset + page_length) > PAGE_SIZE)
439 page_length = PAGE_SIZE - shmem_page_offset;
440 if ((data_page_offset + page_length) > PAGE_SIZE)
441 page_length = PAGE_SIZE - data_page_offset;
443 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
444 GFP_HIGHUSER | __GFP_RECLAIMABLE);
445 if (IS_ERR(page))
446 return PTR_ERR(page);
448 if (do_bit17_swizzling) {
449 slow_shmem_bit17_copy(page,
450 shmem_page_offset,
451 user_pages[data_page_index],
452 data_page_offset,
453 page_length,
455 } else {
456 slow_shmem_copy(user_pages[data_page_index],
457 data_page_offset,
458 page,
459 shmem_page_offset,
460 page_length);
463 mark_page_accessed(page);
464 page_cache_release(page);
466 remain -= page_length;
467 data_ptr += page_length;
468 offset += page_length;
471 out:
472 for (i = 0; i < pinned_pages; i++) {
473 SetPageDirty(user_pages[i]);
474 mark_page_accessed(user_pages[i]);
475 page_cache_release(user_pages[i]);
477 drm_free_large(user_pages);
479 return ret;
483 * Reads data from the object referenced by handle.
485 * On error, the contents of *data are undefined.
488 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
489 struct drm_file *file)
491 struct drm_i915_gem_pread *args = data;
492 struct drm_i915_gem_object *obj;
493 int ret = 0;
495 if (args->size == 0)
496 return 0;
498 if (!access_ok(VERIFY_WRITE,
499 (char __user *)(uintptr_t)args->data_ptr,
500 args->size))
501 return -EFAULT;
503 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
504 args->size);
505 if (ret)
506 return -EFAULT;
508 ret = i915_mutex_lock_interruptible(dev);
509 if (ret)
510 return ret;
512 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
513 if (obj == NULL) {
514 ret = -ENOENT;
515 goto unlock;
518 /* Bounds check source. */
519 if (args->offset > obj->base.size ||
520 args->size > obj->base.size - args->offset) {
521 ret = -EINVAL;
522 goto out;
525 ret = i915_gem_object_set_cpu_read_domain_range(obj,
526 args->offset,
527 args->size);
528 if (ret)
529 goto out;
531 ret = -EFAULT;
532 if (!i915_gem_object_needs_bit17_swizzle(obj))
533 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
534 if (ret == -EFAULT)
535 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
537 out:
538 drm_gem_object_unreference(&obj->base);
539 unlock:
540 mutex_unlock(&dev->struct_mutex);
541 return ret;
544 /* This is the fast write path which cannot handle
545 * page faults in the source data
548 static inline int
549 fast_user_write(struct io_mapping *mapping,
550 loff_t page_base, int page_offset,
551 char __user *user_data,
552 int length)
554 char *vaddr_atomic;
555 unsigned long unwritten;
557 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
558 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
559 user_data, length);
560 io_mapping_unmap_atomic(vaddr_atomic);
561 return unwritten;
564 /* Here's the write path which can sleep for
565 * page faults
568 static inline void
569 slow_kernel_write(struct io_mapping *mapping,
570 loff_t gtt_base, int gtt_offset,
571 struct page *user_page, int user_offset,
572 int length)
574 char __iomem *dst_vaddr;
575 char *src_vaddr;
577 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
578 src_vaddr = kmap(user_page);
580 memcpy_toio(dst_vaddr + gtt_offset,
581 src_vaddr + user_offset,
582 length);
584 kunmap(user_page);
585 io_mapping_unmap(dst_vaddr);
589 * This is the fast pwrite path, where we copy the data directly from the
590 * user into the GTT, uncached.
592 static int
593 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
594 struct drm_i915_gem_object *obj,
595 struct drm_i915_gem_pwrite *args,
596 struct drm_file *file)
598 drm_i915_private_t *dev_priv = dev->dev_private;
599 ssize_t remain;
600 loff_t offset, page_base;
601 char __user *user_data;
602 int page_offset, page_length;
604 user_data = (char __user *) (uintptr_t) args->data_ptr;
605 remain = args->size;
607 offset = obj->gtt_offset + args->offset;
609 while (remain > 0) {
610 /* Operation in this page
612 * page_base = page offset within aperture
613 * page_offset = offset within page
614 * page_length = bytes to copy for this page
616 page_base = (offset & ~(PAGE_SIZE-1));
617 page_offset = offset & (PAGE_SIZE-1);
618 page_length = remain;
619 if ((page_offset + remain) > PAGE_SIZE)
620 page_length = PAGE_SIZE - page_offset;
622 /* If we get a fault while copying data, then (presumably) our
623 * source page isn't available. Return the error and we'll
624 * retry in the slow path.
626 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
627 page_offset, user_data, page_length))
629 return -EFAULT;
631 remain -= page_length;
632 user_data += page_length;
633 offset += page_length;
636 return 0;
640 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
641 * the memory and maps it using kmap_atomic for copying.
643 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
644 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
646 static int
647 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
648 struct drm_i915_gem_object *obj,
649 struct drm_i915_gem_pwrite *args,
650 struct drm_file *file)
652 drm_i915_private_t *dev_priv = dev->dev_private;
653 ssize_t remain;
654 loff_t gtt_page_base, offset;
655 loff_t first_data_page, last_data_page, num_pages;
656 loff_t pinned_pages, i;
657 struct page **user_pages;
658 struct mm_struct *mm = current->mm;
659 int gtt_page_offset, data_page_offset, data_page_index, page_length;
660 int ret;
661 uint64_t data_ptr = args->data_ptr;
663 remain = args->size;
665 /* Pin the user pages containing the data. We can't fault while
666 * holding the struct mutex, and all of the pwrite implementations
667 * want to hold it while dereferencing the user data.
669 first_data_page = data_ptr / PAGE_SIZE;
670 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
671 num_pages = last_data_page - first_data_page + 1;
673 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
674 if (user_pages == NULL)
675 return -ENOMEM;
677 mutex_unlock(&dev->struct_mutex);
678 down_read(&mm->mmap_sem);
679 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
680 num_pages, 0, 0, user_pages, NULL);
681 up_read(&mm->mmap_sem);
682 mutex_lock(&dev->struct_mutex);
683 if (pinned_pages < num_pages) {
684 ret = -EFAULT;
685 goto out_unpin_pages;
688 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
689 if (ret)
690 goto out_unpin_pages;
692 offset = obj->gtt_offset + args->offset;
694 while (remain > 0) {
695 /* Operation in this page
697 * gtt_page_base = page offset within aperture
698 * gtt_page_offset = offset within page in aperture
699 * data_page_index = page number in get_user_pages return
700 * data_page_offset = offset with data_page_index page.
701 * page_length = bytes to copy for this page
703 gtt_page_base = offset & PAGE_MASK;
704 gtt_page_offset = offset & ~PAGE_MASK;
705 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
706 data_page_offset = data_ptr & ~PAGE_MASK;
708 page_length = remain;
709 if ((gtt_page_offset + page_length) > PAGE_SIZE)
710 page_length = PAGE_SIZE - gtt_page_offset;
711 if ((data_page_offset + page_length) > PAGE_SIZE)
712 page_length = PAGE_SIZE - data_page_offset;
714 slow_kernel_write(dev_priv->mm.gtt_mapping,
715 gtt_page_base, gtt_page_offset,
716 user_pages[data_page_index],
717 data_page_offset,
718 page_length);
720 remain -= page_length;
721 offset += page_length;
722 data_ptr += page_length;
725 out_unpin_pages:
726 for (i = 0; i < pinned_pages; i++)
727 page_cache_release(user_pages[i]);
728 drm_free_large(user_pages);
730 return ret;
734 * This is the fast shmem pwrite path, which attempts to directly
735 * copy_from_user into the kmapped pages backing the object.
737 static int
738 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
739 struct drm_i915_gem_object *obj,
740 struct drm_i915_gem_pwrite *args,
741 struct drm_file *file)
743 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
744 ssize_t remain;
745 loff_t offset;
746 char __user *user_data;
747 int page_offset, page_length;
749 user_data = (char __user *) (uintptr_t) args->data_ptr;
750 remain = args->size;
752 offset = args->offset;
753 obj->dirty = 1;
755 while (remain > 0) {
756 struct page *page;
757 char *vaddr;
758 int ret;
760 /* Operation in this page
762 * page_offset = offset within page
763 * page_length = bytes to copy for this page
765 page_offset = offset & (PAGE_SIZE-1);
766 page_length = remain;
767 if ((page_offset + remain) > PAGE_SIZE)
768 page_length = PAGE_SIZE - page_offset;
770 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
771 GFP_HIGHUSER | __GFP_RECLAIMABLE);
772 if (IS_ERR(page))
773 return PTR_ERR(page);
775 vaddr = kmap_atomic(page, KM_USER0);
776 ret = __copy_from_user_inatomic(vaddr + page_offset,
777 user_data,
778 page_length);
779 kunmap_atomic(vaddr, KM_USER0);
781 set_page_dirty(page);
782 mark_page_accessed(page);
783 page_cache_release(page);
785 /* If we get a fault while copying data, then (presumably) our
786 * source page isn't available. Return the error and we'll
787 * retry in the slow path.
789 if (ret)
790 return -EFAULT;
792 remain -= page_length;
793 user_data += page_length;
794 offset += page_length;
797 return 0;
801 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
802 * the memory and maps it using kmap_atomic for copying.
804 * This avoids taking mmap_sem for faulting on the user's address while the
805 * struct_mutex is held.
807 static int
808 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
809 struct drm_i915_gem_object *obj,
810 struct drm_i915_gem_pwrite *args,
811 struct drm_file *file)
813 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
814 struct mm_struct *mm = current->mm;
815 struct page **user_pages;
816 ssize_t remain;
817 loff_t offset, pinned_pages, i;
818 loff_t first_data_page, last_data_page, num_pages;
819 int shmem_page_offset;
820 int data_page_index, data_page_offset;
821 int page_length;
822 int ret;
823 uint64_t data_ptr = args->data_ptr;
824 int do_bit17_swizzling;
826 remain = args->size;
828 /* Pin the user pages containing the data. We can't fault while
829 * holding the struct mutex, and all of the pwrite implementations
830 * want to hold it while dereferencing the user data.
832 first_data_page = data_ptr / PAGE_SIZE;
833 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
834 num_pages = last_data_page - first_data_page + 1;
836 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
837 if (user_pages == NULL)
838 return -ENOMEM;
840 mutex_unlock(&dev->struct_mutex);
841 down_read(&mm->mmap_sem);
842 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
843 num_pages, 0, 0, user_pages, NULL);
844 up_read(&mm->mmap_sem);
845 mutex_lock(&dev->struct_mutex);
846 if (pinned_pages < num_pages) {
847 ret = -EFAULT;
848 goto out;
851 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
852 if (ret)
853 goto out;
855 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
857 offset = args->offset;
858 obj->dirty = 1;
860 while (remain > 0) {
861 struct page *page;
863 /* Operation in this page
865 * shmem_page_offset = offset within page in shmem file
866 * data_page_index = page number in get_user_pages return
867 * data_page_offset = offset with data_page_index page.
868 * page_length = bytes to copy for this page
870 shmem_page_offset = offset & ~PAGE_MASK;
871 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
872 data_page_offset = data_ptr & ~PAGE_MASK;
874 page_length = remain;
875 if ((shmem_page_offset + page_length) > PAGE_SIZE)
876 page_length = PAGE_SIZE - shmem_page_offset;
877 if ((data_page_offset + page_length) > PAGE_SIZE)
878 page_length = PAGE_SIZE - data_page_offset;
880 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
881 GFP_HIGHUSER | __GFP_RECLAIMABLE);
882 if (IS_ERR(page)) {
883 ret = PTR_ERR(page);
884 goto out;
887 if (do_bit17_swizzling) {
888 slow_shmem_bit17_copy(page,
889 shmem_page_offset,
890 user_pages[data_page_index],
891 data_page_offset,
892 page_length,
894 } else {
895 slow_shmem_copy(page,
896 shmem_page_offset,
897 user_pages[data_page_index],
898 data_page_offset,
899 page_length);
902 set_page_dirty(page);
903 mark_page_accessed(page);
904 page_cache_release(page);
906 remain -= page_length;
907 data_ptr += page_length;
908 offset += page_length;
911 out:
912 for (i = 0; i < pinned_pages; i++)
913 page_cache_release(user_pages[i]);
914 drm_free_large(user_pages);
916 return ret;
920 * Writes data to the object referenced by handle.
922 * On error, the contents of the buffer that were to be modified are undefined.
925 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
926 struct drm_file *file)
928 struct drm_i915_gem_pwrite *args = data;
929 struct drm_i915_gem_object *obj;
930 int ret;
932 if (args->size == 0)
933 return 0;
935 if (!access_ok(VERIFY_READ,
936 (char __user *)(uintptr_t)args->data_ptr,
937 args->size))
938 return -EFAULT;
940 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
941 args->size);
942 if (ret)
943 return -EFAULT;
945 ret = i915_mutex_lock_interruptible(dev);
946 if (ret)
947 return ret;
949 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
950 if (obj == NULL) {
951 ret = -ENOENT;
952 goto unlock;
955 /* Bounds check destination. */
956 if (args->offset > obj->base.size ||
957 args->size > obj->base.size - args->offset) {
958 ret = -EINVAL;
959 goto out;
962 /* We can only do the GTT pwrite on untiled buffers, as otherwise
963 * it would end up going through the fenced access, and we'll get
964 * different detiling behavior between reading and writing.
965 * pread/pwrite currently are reading and writing from the CPU
966 * perspective, requiring manual detiling by the client.
968 if (obj->phys_obj)
969 ret = i915_gem_phys_pwrite(dev, obj, args, file);
970 else if (obj->tiling_mode == I915_TILING_NONE &&
971 obj->gtt_space &&
972 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
973 ret = i915_gem_object_pin(obj, 0, true);
974 if (ret)
975 goto out;
977 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
978 if (ret)
979 goto out_unpin;
981 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
982 if (ret == -EFAULT)
983 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
985 out_unpin:
986 i915_gem_object_unpin(obj);
987 } else {
988 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
989 if (ret)
990 goto out;
992 ret = -EFAULT;
993 if (!i915_gem_object_needs_bit17_swizzle(obj))
994 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
995 if (ret == -EFAULT)
996 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
999 out:
1000 drm_gem_object_unreference(&obj->base);
1001 unlock:
1002 mutex_unlock(&dev->struct_mutex);
1003 return ret;
1007 * Called when user space prepares to use an object with the CPU, either
1008 * through the mmap ioctl's mapping or a GTT mapping.
1011 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1012 struct drm_file *file)
1014 struct drm_i915_private *dev_priv = dev->dev_private;
1015 struct drm_i915_gem_set_domain *args = data;
1016 struct drm_i915_gem_object *obj;
1017 uint32_t read_domains = args->read_domains;
1018 uint32_t write_domain = args->write_domain;
1019 int ret;
1021 if (!(dev->driver->driver_features & DRIVER_GEM))
1022 return -ENODEV;
1024 /* Only handle setting domains to types used by the CPU. */
1025 if (write_domain & I915_GEM_GPU_DOMAINS)
1026 return -EINVAL;
1028 if (read_domains & I915_GEM_GPU_DOMAINS)
1029 return -EINVAL;
1031 /* Having something in the write domain implies it's in the read
1032 * domain, and only that read domain. Enforce that in the request.
1034 if (write_domain != 0 && read_domains != write_domain)
1035 return -EINVAL;
1037 ret = i915_mutex_lock_interruptible(dev);
1038 if (ret)
1039 return ret;
1041 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1042 if (obj == NULL) {
1043 ret = -ENOENT;
1044 goto unlock;
1047 intel_mark_busy(dev, obj);
1049 if (read_domains & I915_GEM_DOMAIN_GTT) {
1050 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1052 /* Update the LRU on the fence for the CPU access that's
1053 * about to occur.
1055 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1056 struct drm_i915_fence_reg *reg =
1057 &dev_priv->fence_regs[obj->fence_reg];
1058 list_move_tail(&reg->lru_list,
1059 &dev_priv->mm.fence_list);
1062 /* Silently promote "you're not bound, there was nothing to do"
1063 * to success, since the client was just asking us to
1064 * make sure everything was done.
1066 if (ret == -EINVAL)
1067 ret = 0;
1068 } else {
1069 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1072 /* Maintain LRU order of "inactive" objects */
1073 if (ret == 0 && i915_gem_object_is_inactive(obj))
1074 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1076 drm_gem_object_unreference(&obj->base);
1077 unlock:
1078 mutex_unlock(&dev->struct_mutex);
1079 return ret;
1083 * Called when user space has done writes to this buffer
1086 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1087 struct drm_file *file)
1089 struct drm_i915_gem_sw_finish *args = data;
1090 struct drm_i915_gem_object *obj;
1091 int ret = 0;
1093 if (!(dev->driver->driver_features & DRIVER_GEM))
1094 return -ENODEV;
1096 ret = i915_mutex_lock_interruptible(dev);
1097 if (ret)
1098 return ret;
1100 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1101 if (obj == NULL) {
1102 ret = -ENOENT;
1103 goto unlock;
1106 /* Pinned buffers may be scanout, so flush the cache */
1107 if (obj->pin_count)
1108 i915_gem_object_flush_cpu_write_domain(obj);
1110 drm_gem_object_unreference(&obj->base);
1111 unlock:
1112 mutex_unlock(&dev->struct_mutex);
1113 return ret;
1117 * Maps the contents of an object, returning the address it is mapped
1118 * into.
1120 * While the mapping holds a reference on the contents of the object, it doesn't
1121 * imply a ref on the object itself.
1124 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1125 struct drm_file *file)
1127 struct drm_i915_private *dev_priv = dev->dev_private;
1128 struct drm_i915_gem_mmap *args = data;
1129 struct drm_gem_object *obj;
1130 loff_t offset;
1131 unsigned long addr;
1133 if (!(dev->driver->driver_features & DRIVER_GEM))
1134 return -ENODEV;
1136 obj = drm_gem_object_lookup(dev, file, args->handle);
1137 if (obj == NULL)
1138 return -ENOENT;
1140 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1141 drm_gem_object_unreference_unlocked(obj);
1142 return -E2BIG;
1145 offset = args->offset;
1147 down_write(&current->mm->mmap_sem);
1148 addr = do_mmap(obj->filp, 0, args->size,
1149 PROT_READ | PROT_WRITE, MAP_SHARED,
1150 args->offset);
1151 up_write(&current->mm->mmap_sem);
1152 drm_gem_object_unreference_unlocked(obj);
1153 if (IS_ERR((void *)addr))
1154 return addr;
1156 args->addr_ptr = (uint64_t) addr;
1158 return 0;
1162 * i915_gem_fault - fault a page into the GTT
1163 * vma: VMA in question
1164 * vmf: fault info
1166 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1167 * from userspace. The fault handler takes care of binding the object to
1168 * the GTT (if needed), allocating and programming a fence register (again,
1169 * only if needed based on whether the old reg is still valid or the object
1170 * is tiled) and inserting a new PTE into the faulting process.
1172 * Note that the faulting process may involve evicting existing objects
1173 * from the GTT and/or fence registers to make room. So performance may
1174 * suffer if the GTT working set is large or there are few fence registers
1175 * left.
1177 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1179 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1180 struct drm_device *dev = obj->base.dev;
1181 drm_i915_private_t *dev_priv = dev->dev_private;
1182 pgoff_t page_offset;
1183 unsigned long pfn;
1184 int ret = 0;
1185 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1187 /* We don't use vmf->pgoff since that has the fake offset */
1188 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1189 PAGE_SHIFT;
1191 /* Now bind it into the GTT if needed */
1192 mutex_lock(&dev->struct_mutex);
1194 if (!obj->map_and_fenceable) {
1195 ret = i915_gem_object_unbind(obj);
1196 if (ret)
1197 goto unlock;
1199 if (!obj->gtt_space) {
1200 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1201 if (ret)
1202 goto unlock;
1205 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1206 if (ret)
1207 goto unlock;
1209 /* Need a new fence register? */
1210 if (obj->tiling_mode != I915_TILING_NONE) {
1211 ret = i915_gem_object_get_fence_reg(obj, true);
1212 if (ret)
1213 goto unlock;
1216 if (i915_gem_object_is_inactive(obj))
1217 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1219 obj->fault_mappable = true;
1221 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1222 page_offset;
1224 /* Finally, remap it using the new GTT offset */
1225 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1226 unlock:
1227 mutex_unlock(&dev->struct_mutex);
1229 switch (ret) {
1230 case -EAGAIN:
1231 set_need_resched();
1232 case 0:
1233 case -ERESTARTSYS:
1234 return VM_FAULT_NOPAGE;
1235 case -ENOMEM:
1236 return VM_FAULT_OOM;
1237 default:
1238 return VM_FAULT_SIGBUS;
1243 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1244 * @obj: obj in question
1246 * GEM memory mapping works by handing back to userspace a fake mmap offset
1247 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1248 * up the object based on the offset and sets up the various memory mapping
1249 * structures.
1251 * This routine allocates and attaches a fake offset for @obj.
1253 static int
1254 i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1256 struct drm_device *dev = obj->base.dev;
1257 struct drm_gem_mm *mm = dev->mm_private;
1258 struct drm_map_list *list;
1259 struct drm_local_map *map;
1260 int ret = 0;
1262 /* Set the object up for mmap'ing */
1263 list = &obj->base.map_list;
1264 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1265 if (!list->map)
1266 return -ENOMEM;
1268 map = list->map;
1269 map->type = _DRM_GEM;
1270 map->size = obj->base.size;
1271 map->handle = obj;
1273 /* Get a DRM GEM mmap offset allocated... */
1274 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1275 obj->base.size / PAGE_SIZE,
1276 0, 0);
1277 if (!list->file_offset_node) {
1278 DRM_ERROR("failed to allocate offset for bo %d\n",
1279 obj->base.name);
1280 ret = -ENOSPC;
1281 goto out_free_list;
1284 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1285 obj->base.size / PAGE_SIZE,
1287 if (!list->file_offset_node) {
1288 ret = -ENOMEM;
1289 goto out_free_list;
1292 list->hash.key = list->file_offset_node->start;
1293 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1294 if (ret) {
1295 DRM_ERROR("failed to add to map hash\n");
1296 goto out_free_mm;
1299 return 0;
1301 out_free_mm:
1302 drm_mm_put_block(list->file_offset_node);
1303 out_free_list:
1304 kfree(list->map);
1305 list->map = NULL;
1307 return ret;
1311 * i915_gem_release_mmap - remove physical page mappings
1312 * @obj: obj in question
1314 * Preserve the reservation of the mmapping with the DRM core code, but
1315 * relinquish ownership of the pages back to the system.
1317 * It is vital that we remove the page mapping if we have mapped a tiled
1318 * object through the GTT and then lose the fence register due to
1319 * resource pressure. Similarly if the object has been moved out of the
1320 * aperture, than pages mapped into userspace must be revoked. Removing the
1321 * mapping will then trigger a page fault on the next user access, allowing
1322 * fixup by i915_gem_fault().
1324 void
1325 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1327 if (!obj->fault_mappable)
1328 return;
1330 unmap_mapping_range(obj->base.dev->dev_mapping,
1331 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1332 obj->base.size, 1);
1334 obj->fault_mappable = false;
1337 static void
1338 i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1340 struct drm_device *dev = obj->base.dev;
1341 struct drm_gem_mm *mm = dev->mm_private;
1342 struct drm_map_list *list = &obj->base.map_list;
1344 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1345 drm_mm_put_block(list->file_offset_node);
1346 kfree(list->map);
1347 list->map = NULL;
1350 static uint32_t
1351 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1353 struct drm_device *dev = obj->base.dev;
1354 uint32_t size;
1356 if (INTEL_INFO(dev)->gen >= 4 ||
1357 obj->tiling_mode == I915_TILING_NONE)
1358 return obj->base.size;
1360 /* Previous chips need a power-of-two fence region when tiling */
1361 if (INTEL_INFO(dev)->gen == 3)
1362 size = 1024*1024;
1363 else
1364 size = 512*1024;
1366 while (size < obj->base.size)
1367 size <<= 1;
1369 return size;
1373 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1374 * @obj: object to check
1376 * Return the required GTT alignment for an object, taking into account
1377 * potential fence register mapping.
1379 static uint32_t
1380 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1382 struct drm_device *dev = obj->base.dev;
1385 * Minimum alignment is 4k (GTT page size), but might be greater
1386 * if a fence register is needed for the object.
1388 if (INTEL_INFO(dev)->gen >= 4 ||
1389 obj->tiling_mode == I915_TILING_NONE)
1390 return 4096;
1393 * Previous chips need to be aligned to the size of the smallest
1394 * fence register that can contain the object.
1396 return i915_gem_get_gtt_size(obj);
1400 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1401 * unfenced object
1402 * @obj: object to check
1404 * Return the required GTT alignment for an object, only taking into account
1405 * unfenced tiled surface requirements.
1407 static uint32_t
1408 i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1410 struct drm_device *dev = obj->base.dev;
1411 int tile_height;
1414 * Minimum alignment is 4k (GTT page size) for sane hw.
1416 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1417 obj->tiling_mode == I915_TILING_NONE)
1418 return 4096;
1421 * Older chips need unfenced tiled buffers to be aligned to the left
1422 * edge of an even tile row (where tile rows are counted as if the bo is
1423 * placed in a fenced gtt region).
1425 if (IS_GEN2(dev) ||
1426 (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1427 tile_height = 32;
1428 else
1429 tile_height = 8;
1431 return tile_height * obj->stride * 2;
1435 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1436 * @dev: DRM device
1437 * @data: GTT mapping ioctl data
1438 * @file: GEM object info
1440 * Simply returns the fake offset to userspace so it can mmap it.
1441 * The mmap call will end up in drm_gem_mmap(), which will set things
1442 * up so we can get faults in the handler above.
1444 * The fault handler will take care of binding the object into the GTT
1445 * (since it may have been evicted to make room for something), allocating
1446 * a fence register, and mapping the appropriate aperture address into
1447 * userspace.
1450 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1451 struct drm_file *file)
1453 struct drm_i915_private *dev_priv = dev->dev_private;
1454 struct drm_i915_gem_mmap_gtt *args = data;
1455 struct drm_i915_gem_object *obj;
1456 int ret;
1458 if (!(dev->driver->driver_features & DRIVER_GEM))
1459 return -ENODEV;
1461 ret = i915_mutex_lock_interruptible(dev);
1462 if (ret)
1463 return ret;
1465 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1466 if (obj == NULL) {
1467 ret = -ENOENT;
1468 goto unlock;
1471 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1472 ret = -E2BIG;
1473 goto unlock;
1476 if (obj->madv != I915_MADV_WILLNEED) {
1477 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1478 ret = -EINVAL;
1479 goto out;
1482 if (!obj->base.map_list.map) {
1483 ret = i915_gem_create_mmap_offset(obj);
1484 if (ret)
1485 goto out;
1488 args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1490 out:
1491 drm_gem_object_unreference(&obj->base);
1492 unlock:
1493 mutex_unlock(&dev->struct_mutex);
1494 return ret;
1497 static int
1498 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1499 gfp_t gfpmask)
1501 int page_count, i;
1502 struct address_space *mapping;
1503 struct inode *inode;
1504 struct page *page;
1506 /* Get the list of pages out of our struct file. They'll be pinned
1507 * at this point until we release them.
1509 page_count = obj->base.size / PAGE_SIZE;
1510 BUG_ON(obj->pages != NULL);
1511 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1512 if (obj->pages == NULL)
1513 return -ENOMEM;
1515 inode = obj->base.filp->f_path.dentry->d_inode;
1516 mapping = inode->i_mapping;
1517 for (i = 0; i < page_count; i++) {
1518 page = read_cache_page_gfp(mapping, i,
1519 GFP_HIGHUSER |
1520 __GFP_COLD |
1521 __GFP_RECLAIMABLE |
1522 gfpmask);
1523 if (IS_ERR(page))
1524 goto err_pages;
1526 obj->pages[i] = page;
1529 if (obj->tiling_mode != I915_TILING_NONE)
1530 i915_gem_object_do_bit_17_swizzle(obj);
1532 return 0;
1534 err_pages:
1535 while (i--)
1536 page_cache_release(obj->pages[i]);
1538 drm_free_large(obj->pages);
1539 obj->pages = NULL;
1540 return PTR_ERR(page);
1543 static void
1544 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1546 int page_count = obj->base.size / PAGE_SIZE;
1547 int i;
1549 BUG_ON(obj->madv == __I915_MADV_PURGED);
1551 if (obj->tiling_mode != I915_TILING_NONE)
1552 i915_gem_object_save_bit_17_swizzle(obj);
1554 if (obj->madv == I915_MADV_DONTNEED)
1555 obj->dirty = 0;
1557 for (i = 0; i < page_count; i++) {
1558 if (obj->dirty)
1559 set_page_dirty(obj->pages[i]);
1561 if (obj->madv == I915_MADV_WILLNEED)
1562 mark_page_accessed(obj->pages[i]);
1564 page_cache_release(obj->pages[i]);
1566 obj->dirty = 0;
1568 drm_free_large(obj->pages);
1569 obj->pages = NULL;
1572 void
1573 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1574 struct intel_ring_buffer *ring)
1576 struct drm_device *dev = obj->base.dev;
1577 struct drm_i915_private *dev_priv = dev->dev_private;
1578 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1580 BUG_ON(ring == NULL);
1581 obj->ring = ring;
1583 /* Add a reference if we're newly entering the active list. */
1584 if (!obj->active) {
1585 drm_gem_object_reference(&obj->base);
1586 obj->active = 1;
1589 /* Move from whatever list we were on to the tail of execution. */
1590 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1591 list_move_tail(&obj->ring_list, &ring->active_list);
1593 obj->last_rendering_seqno = seqno;
1594 if (obj->fenced_gpu_access) {
1595 struct drm_i915_fence_reg *reg;
1597 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1599 obj->last_fenced_seqno = seqno;
1600 obj->last_fenced_ring = ring;
1602 reg = &dev_priv->fence_regs[obj->fence_reg];
1603 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1607 static void
1608 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1610 list_del_init(&obj->ring_list);
1611 obj->last_rendering_seqno = 0;
1612 obj->last_fenced_seqno = 0;
1615 static void
1616 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1618 struct drm_device *dev = obj->base.dev;
1619 drm_i915_private_t *dev_priv = dev->dev_private;
1621 BUG_ON(!obj->active);
1622 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1624 i915_gem_object_move_off_active(obj);
1627 static void
1628 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1630 struct drm_device *dev = obj->base.dev;
1631 struct drm_i915_private *dev_priv = dev->dev_private;
1633 if (obj->pin_count != 0)
1634 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1635 else
1636 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1638 BUG_ON(!list_empty(&obj->gpu_write_list));
1639 BUG_ON(!obj->active);
1640 obj->ring = NULL;
1642 i915_gem_object_move_off_active(obj);
1643 obj->fenced_gpu_access = false;
1644 obj->last_fenced_ring = NULL;
1646 obj->active = 0;
1647 drm_gem_object_unreference(&obj->base);
1649 WARN_ON(i915_verify_lists(dev));
1652 /* Immediately discard the backing storage */
1653 static void
1654 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1656 struct inode *inode;
1658 /* Our goal here is to return as much of the memory as
1659 * is possible back to the system as we are called from OOM.
1660 * To do this we must instruct the shmfs to drop all of its
1661 * backing pages, *now*. Here we mirror the actions taken
1662 * when by shmem_delete_inode() to release the backing store.
1664 inode = obj->base.filp->f_path.dentry->d_inode;
1665 truncate_inode_pages(inode->i_mapping, 0);
1666 if (inode->i_op->truncate_range)
1667 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1669 obj->madv = __I915_MADV_PURGED;
1672 static inline int
1673 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1675 return obj->madv == I915_MADV_DONTNEED;
1678 static void
1679 i915_gem_process_flushing_list(struct drm_device *dev,
1680 uint32_t flush_domains,
1681 struct intel_ring_buffer *ring)
1683 struct drm_i915_gem_object *obj, *next;
1685 list_for_each_entry_safe(obj, next,
1686 &ring->gpu_write_list,
1687 gpu_write_list) {
1688 if (obj->base.write_domain & flush_domains) {
1689 uint32_t old_write_domain = obj->base.write_domain;
1691 obj->base.write_domain = 0;
1692 list_del_init(&obj->gpu_write_list);
1693 i915_gem_object_move_to_active(obj, ring);
1695 trace_i915_gem_object_change_domain(obj,
1696 obj->base.read_domains,
1697 old_write_domain);
1703 i915_add_request(struct drm_device *dev,
1704 struct drm_file *file,
1705 struct drm_i915_gem_request *request,
1706 struct intel_ring_buffer *ring)
1708 drm_i915_private_t *dev_priv = dev->dev_private;
1709 struct drm_i915_file_private *file_priv = NULL;
1710 uint32_t seqno;
1711 int was_empty;
1712 int ret;
1714 BUG_ON(request == NULL);
1716 if (file != NULL)
1717 file_priv = file->driver_priv;
1719 ret = ring->add_request(ring, &seqno);
1720 if (ret)
1721 return ret;
1723 ring->outstanding_lazy_request = false;
1725 request->seqno = seqno;
1726 request->ring = ring;
1727 request->emitted_jiffies = jiffies;
1728 was_empty = list_empty(&ring->request_list);
1729 list_add_tail(&request->list, &ring->request_list);
1731 if (file_priv) {
1732 spin_lock(&file_priv->mm.lock);
1733 request->file_priv = file_priv;
1734 list_add_tail(&request->client_list,
1735 &file_priv->mm.request_list);
1736 spin_unlock(&file_priv->mm.lock);
1739 if (!dev_priv->mm.suspended) {
1740 mod_timer(&dev_priv->hangcheck_timer,
1741 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1742 if (was_empty)
1743 queue_delayed_work(dev_priv->wq,
1744 &dev_priv->mm.retire_work, HZ);
1746 return 0;
1749 static inline void
1750 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1752 struct drm_i915_file_private *file_priv = request->file_priv;
1754 if (!file_priv)
1755 return;
1757 spin_lock(&file_priv->mm.lock);
1758 list_del(&request->client_list);
1759 request->file_priv = NULL;
1760 spin_unlock(&file_priv->mm.lock);
1763 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1764 struct intel_ring_buffer *ring)
1766 while (!list_empty(&ring->request_list)) {
1767 struct drm_i915_gem_request *request;
1769 request = list_first_entry(&ring->request_list,
1770 struct drm_i915_gem_request,
1771 list);
1773 list_del(&request->list);
1774 i915_gem_request_remove_from_client(request);
1775 kfree(request);
1778 while (!list_empty(&ring->active_list)) {
1779 struct drm_i915_gem_object *obj;
1781 obj = list_first_entry(&ring->active_list,
1782 struct drm_i915_gem_object,
1783 ring_list);
1785 obj->base.write_domain = 0;
1786 list_del_init(&obj->gpu_write_list);
1787 i915_gem_object_move_to_inactive(obj);
1791 static void i915_gem_reset_fences(struct drm_device *dev)
1793 struct drm_i915_private *dev_priv = dev->dev_private;
1794 int i;
1796 for (i = 0; i < 16; i++) {
1797 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1798 if (reg->obj)
1799 i915_gem_clear_fence_reg(reg->obj);
1803 void i915_gem_reset(struct drm_device *dev)
1805 struct drm_i915_private *dev_priv = dev->dev_private;
1806 struct drm_i915_gem_object *obj;
1808 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1809 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1810 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1812 /* Remove anything from the flushing lists. The GPU cache is likely
1813 * to be lost on reset along with the data, so simply move the
1814 * lost bo to the inactive list.
1816 while (!list_empty(&dev_priv->mm.flushing_list)) {
1817 obj= list_first_entry(&dev_priv->mm.flushing_list,
1818 struct drm_i915_gem_object,
1819 mm_list);
1821 obj->base.write_domain = 0;
1822 list_del_init(&obj->gpu_write_list);
1823 i915_gem_object_move_to_inactive(obj);
1826 /* Move everything out of the GPU domains to ensure we do any
1827 * necessary invalidation upon reuse.
1829 list_for_each_entry(obj,
1830 &dev_priv->mm.inactive_list,
1831 mm_list)
1833 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1836 /* The fence registers are invalidated so clear them out */
1837 i915_gem_reset_fences(dev);
1841 * This function clears the request list as sequence numbers are passed.
1843 static void
1844 i915_gem_retire_requests_ring(struct drm_device *dev,
1845 struct intel_ring_buffer *ring)
1847 drm_i915_private_t *dev_priv = dev->dev_private;
1848 uint32_t seqno;
1850 if (!ring->status_page.page_addr ||
1851 list_empty(&ring->request_list))
1852 return;
1854 WARN_ON(i915_verify_lists(dev));
1856 seqno = ring->get_seqno(ring);
1857 while (!list_empty(&ring->request_list)) {
1858 struct drm_i915_gem_request *request;
1860 request = list_first_entry(&ring->request_list,
1861 struct drm_i915_gem_request,
1862 list);
1864 if (!i915_seqno_passed(seqno, request->seqno))
1865 break;
1867 trace_i915_gem_request_retire(dev, request->seqno);
1869 list_del(&request->list);
1870 i915_gem_request_remove_from_client(request);
1871 kfree(request);
1874 /* Move any buffers on the active list that are no longer referenced
1875 * by the ringbuffer to the flushing/inactive lists as appropriate.
1877 while (!list_empty(&ring->active_list)) {
1878 struct drm_i915_gem_object *obj;
1880 obj= list_first_entry(&ring->active_list,
1881 struct drm_i915_gem_object,
1882 ring_list);
1884 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1885 break;
1887 if (obj->base.write_domain != 0)
1888 i915_gem_object_move_to_flushing(obj);
1889 else
1890 i915_gem_object_move_to_inactive(obj);
1893 if (unlikely (dev_priv->trace_irq_seqno &&
1894 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1895 ring->user_irq_put(ring);
1896 dev_priv->trace_irq_seqno = 0;
1899 WARN_ON(i915_verify_lists(dev));
1902 void
1903 i915_gem_retire_requests(struct drm_device *dev)
1905 drm_i915_private_t *dev_priv = dev->dev_private;
1907 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1908 struct drm_i915_gem_object *obj, *next;
1910 /* We must be careful that during unbind() we do not
1911 * accidentally infinitely recurse into retire requests.
1912 * Currently:
1913 * retire -> free -> unbind -> wait -> retire_ring
1915 list_for_each_entry_safe(obj, next,
1916 &dev_priv->mm.deferred_free_list,
1917 mm_list)
1918 i915_gem_free_object_tail(obj);
1921 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1922 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1923 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
1926 static void
1927 i915_gem_retire_work_handler(struct work_struct *work)
1929 drm_i915_private_t *dev_priv;
1930 struct drm_device *dev;
1932 dev_priv = container_of(work, drm_i915_private_t,
1933 mm.retire_work.work);
1934 dev = dev_priv->dev;
1936 /* Come back later if the device is busy... */
1937 if (!mutex_trylock(&dev->struct_mutex)) {
1938 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1939 return;
1942 i915_gem_retire_requests(dev);
1944 if (!dev_priv->mm.suspended &&
1945 (!list_empty(&dev_priv->render_ring.request_list) ||
1946 !list_empty(&dev_priv->bsd_ring.request_list) ||
1947 !list_empty(&dev_priv->blt_ring.request_list)))
1948 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1949 mutex_unlock(&dev->struct_mutex);
1953 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1954 bool interruptible, struct intel_ring_buffer *ring)
1956 drm_i915_private_t *dev_priv = dev->dev_private;
1957 u32 ier;
1958 int ret = 0;
1960 BUG_ON(seqno == 0);
1962 if (atomic_read(&dev_priv->mm.wedged))
1963 return -EAGAIN;
1965 if (seqno == ring->outstanding_lazy_request) {
1966 struct drm_i915_gem_request *request;
1968 request = kzalloc(sizeof(*request), GFP_KERNEL);
1969 if (request == NULL)
1970 return -ENOMEM;
1972 ret = i915_add_request(dev, NULL, request, ring);
1973 if (ret) {
1974 kfree(request);
1975 return ret;
1978 seqno = request->seqno;
1981 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
1982 if (HAS_PCH_SPLIT(dev))
1983 ier = I915_READ(DEIER) | I915_READ(GTIER);
1984 else
1985 ier = I915_READ(IER);
1986 if (!ier) {
1987 DRM_ERROR("something (likely vbetool) disabled "
1988 "interrupts, re-enabling\n");
1989 i915_driver_irq_preinstall(dev);
1990 i915_driver_irq_postinstall(dev);
1993 trace_i915_gem_request_wait_begin(dev, seqno);
1995 ring->waiting_seqno = seqno;
1996 ring->user_irq_get(ring);
1997 if (interruptible)
1998 ret = wait_event_interruptible(ring->irq_queue,
1999 i915_seqno_passed(ring->get_seqno(ring), seqno)
2000 || atomic_read(&dev_priv->mm.wedged));
2001 else
2002 wait_event(ring->irq_queue,
2003 i915_seqno_passed(ring->get_seqno(ring), seqno)
2004 || atomic_read(&dev_priv->mm.wedged));
2006 ring->user_irq_put(ring);
2007 ring->waiting_seqno = 0;
2009 trace_i915_gem_request_wait_end(dev, seqno);
2011 if (atomic_read(&dev_priv->mm.wedged))
2012 ret = -EAGAIN;
2014 if (ret && ret != -ERESTARTSYS)
2015 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2016 __func__, ret, seqno, ring->get_seqno(ring),
2017 dev_priv->next_seqno);
2019 /* Directly dispatch request retiring. While we have the work queue
2020 * to handle this, the waiter on a request often wants an associated
2021 * buffer to have made it to the inactive list, and we would need
2022 * a separate wait queue to handle that.
2024 if (ret == 0)
2025 i915_gem_retire_requests_ring(dev, ring);
2027 return ret;
2031 * Waits for a sequence number to be signaled, and cleans up the
2032 * request and object lists appropriately for that event.
2034 static int
2035 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2036 struct intel_ring_buffer *ring)
2038 return i915_do_wait_request(dev, seqno, 1, ring);
2042 * Ensures that all rendering to the object has completed and the object is
2043 * safe to unbind from the GTT or access from the CPU.
2046 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2047 bool interruptible)
2049 struct drm_device *dev = obj->base.dev;
2050 int ret;
2052 /* This function only exists to support waiting for existing rendering,
2053 * not for emitting required flushes.
2055 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2057 /* If there is rendering queued on the buffer being evicted, wait for
2058 * it.
2060 if (obj->active) {
2061 ret = i915_do_wait_request(dev,
2062 obj->last_rendering_seqno,
2063 interruptible,
2064 obj->ring);
2065 if (ret)
2066 return ret;
2069 return 0;
2073 * Unbinds an object from the GTT aperture.
2076 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2078 int ret = 0;
2080 if (obj->gtt_space == NULL)
2081 return 0;
2083 if (obj->pin_count != 0) {
2084 DRM_ERROR("Attempting to unbind pinned buffer\n");
2085 return -EINVAL;
2088 /* blow away mappings if mapped through GTT */
2089 i915_gem_release_mmap(obj);
2091 /* Move the object to the CPU domain to ensure that
2092 * any possible CPU writes while it's not in the GTT
2093 * are flushed when we go to remap it. This will
2094 * also ensure that all pending GPU writes are finished
2095 * before we unbind.
2097 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2098 if (ret == -ERESTARTSYS)
2099 return ret;
2100 /* Continue on if we fail due to EIO, the GPU is hung so we
2101 * should be safe and we need to cleanup or else we might
2102 * cause memory corruption through use-after-free.
2104 if (ret) {
2105 i915_gem_clflush_object(obj);
2106 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2109 /* release the fence reg _after_ flushing */
2110 if (obj->fence_reg != I915_FENCE_REG_NONE)
2111 i915_gem_clear_fence_reg(obj);
2113 i915_gem_gtt_unbind_object(obj);
2114 i915_gem_object_put_pages_gtt(obj);
2116 list_del_init(&obj->gtt_list);
2117 list_del_init(&obj->mm_list);
2118 /* Avoid an unnecessary call to unbind on rebind. */
2119 obj->map_and_fenceable = true;
2121 drm_mm_put_block(obj->gtt_space);
2122 obj->gtt_space = NULL;
2123 obj->gtt_offset = 0;
2125 if (i915_gem_object_is_purgeable(obj))
2126 i915_gem_object_truncate(obj);
2128 trace_i915_gem_object_unbind(obj);
2130 return ret;
2133 void
2134 i915_gem_flush_ring(struct drm_device *dev,
2135 struct intel_ring_buffer *ring,
2136 uint32_t invalidate_domains,
2137 uint32_t flush_domains)
2139 ring->flush(ring, invalidate_domains, flush_domains);
2140 i915_gem_process_flushing_list(dev, flush_domains, ring);
2143 static int i915_ring_idle(struct drm_device *dev,
2144 struct intel_ring_buffer *ring)
2146 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2147 return 0;
2149 i915_gem_flush_ring(dev, ring,
2150 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2151 return i915_wait_request(dev,
2152 i915_gem_next_request_seqno(dev, ring),
2153 ring);
2157 i915_gpu_idle(struct drm_device *dev)
2159 drm_i915_private_t *dev_priv = dev->dev_private;
2160 bool lists_empty;
2161 int ret;
2163 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2164 list_empty(&dev_priv->mm.active_list));
2165 if (lists_empty)
2166 return 0;
2168 /* Flush everything onto the inactive list. */
2169 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2170 if (ret)
2171 return ret;
2173 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2174 if (ret)
2175 return ret;
2177 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2178 if (ret)
2179 return ret;
2181 return 0;
2184 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2185 struct intel_ring_buffer *pipelined)
2187 struct drm_device *dev = obj->base.dev;
2188 drm_i915_private_t *dev_priv = dev->dev_private;
2189 u32 size = obj->gtt_space->size;
2190 int regnum = obj->fence_reg;
2191 uint64_t val;
2193 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2194 0xfffff000) << 32;
2195 val |= obj->gtt_offset & 0xfffff000;
2196 val |= (uint64_t)((obj->stride / 128) - 1) <<
2197 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2199 if (obj->tiling_mode == I915_TILING_Y)
2200 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2201 val |= I965_FENCE_REG_VALID;
2203 if (pipelined) {
2204 int ret = intel_ring_begin(pipelined, 6);
2205 if (ret)
2206 return ret;
2208 intel_ring_emit(pipelined, MI_NOOP);
2209 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2210 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2211 intel_ring_emit(pipelined, (u32)val);
2212 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2213 intel_ring_emit(pipelined, (u32)(val >> 32));
2214 intel_ring_advance(pipelined);
2215 } else
2216 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2218 return 0;
2221 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2222 struct intel_ring_buffer *pipelined)
2224 struct drm_device *dev = obj->base.dev;
2225 drm_i915_private_t *dev_priv = dev->dev_private;
2226 u32 size = obj->gtt_space->size;
2227 int regnum = obj->fence_reg;
2228 uint64_t val;
2230 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2231 0xfffff000) << 32;
2232 val |= obj->gtt_offset & 0xfffff000;
2233 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2234 if (obj->tiling_mode == I915_TILING_Y)
2235 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2236 val |= I965_FENCE_REG_VALID;
2238 if (pipelined) {
2239 int ret = intel_ring_begin(pipelined, 6);
2240 if (ret)
2241 return ret;
2243 intel_ring_emit(pipelined, MI_NOOP);
2244 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2245 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2246 intel_ring_emit(pipelined, (u32)val);
2247 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2248 intel_ring_emit(pipelined, (u32)(val >> 32));
2249 intel_ring_advance(pipelined);
2250 } else
2251 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2253 return 0;
2256 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2257 struct intel_ring_buffer *pipelined)
2259 struct drm_device *dev = obj->base.dev;
2260 drm_i915_private_t *dev_priv = dev->dev_private;
2261 u32 size = obj->gtt_space->size;
2262 u32 fence_reg, val, pitch_val;
2263 int tile_width;
2265 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2266 (size & -size) != size ||
2267 (obj->gtt_offset & (size - 1)),
2268 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2269 obj->gtt_offset, obj->map_and_fenceable, size))
2270 return -EINVAL;
2272 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2273 tile_width = 128;
2274 else
2275 tile_width = 512;
2277 /* Note: pitch better be a power of two tile widths */
2278 pitch_val = obj->stride / tile_width;
2279 pitch_val = ffs(pitch_val) - 1;
2281 val = obj->gtt_offset;
2282 if (obj->tiling_mode == I915_TILING_Y)
2283 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2284 val |= I915_FENCE_SIZE_BITS(size);
2285 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2286 val |= I830_FENCE_REG_VALID;
2288 fence_reg = obj->fence_reg;
2289 if (fence_reg < 8)
2290 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2291 else
2292 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2294 if (pipelined) {
2295 int ret = intel_ring_begin(pipelined, 4);
2296 if (ret)
2297 return ret;
2299 intel_ring_emit(pipelined, MI_NOOP);
2300 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2301 intel_ring_emit(pipelined, fence_reg);
2302 intel_ring_emit(pipelined, val);
2303 intel_ring_advance(pipelined);
2304 } else
2305 I915_WRITE(fence_reg, val);
2307 return 0;
2310 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2311 struct intel_ring_buffer *pipelined)
2313 struct drm_device *dev = obj->base.dev;
2314 drm_i915_private_t *dev_priv = dev->dev_private;
2315 u32 size = obj->gtt_space->size;
2316 int regnum = obj->fence_reg;
2317 uint32_t val;
2318 uint32_t pitch_val;
2320 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2321 (size & -size) != size ||
2322 (obj->gtt_offset & (size - 1)),
2323 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2324 obj->gtt_offset, size))
2325 return -EINVAL;
2327 pitch_val = obj->stride / 128;
2328 pitch_val = ffs(pitch_val) - 1;
2330 val = obj->gtt_offset;
2331 if (obj->tiling_mode == I915_TILING_Y)
2332 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2333 val |= I830_FENCE_SIZE_BITS(size);
2334 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2335 val |= I830_FENCE_REG_VALID;
2337 if (pipelined) {
2338 int ret = intel_ring_begin(pipelined, 4);
2339 if (ret)
2340 return ret;
2342 intel_ring_emit(pipelined, MI_NOOP);
2343 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2344 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2345 intel_ring_emit(pipelined, val);
2346 intel_ring_advance(pipelined);
2347 } else
2348 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2350 return 0;
2353 static int i915_find_fence_reg(struct drm_device *dev,
2354 bool interruptible)
2356 struct drm_i915_private *dev_priv = dev->dev_private;
2357 struct drm_i915_fence_reg *reg;
2358 struct drm_i915_gem_object *obj = NULL;
2359 int i, avail, ret;
2361 /* First try to find a free reg */
2362 avail = 0;
2363 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2364 reg = &dev_priv->fence_regs[i];
2365 if (!reg->obj)
2366 return i;
2368 if (!reg->obj->pin_count)
2369 avail++;
2372 if (avail == 0)
2373 return -ENOSPC;
2375 /* None available, try to steal one or wait for a user to finish */
2376 avail = I915_FENCE_REG_NONE;
2377 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2378 lru_list) {
2379 obj = reg->obj;
2380 if (obj->pin_count)
2381 continue;
2383 /* found one! */
2384 avail = obj->fence_reg;
2385 break;
2388 BUG_ON(avail == I915_FENCE_REG_NONE);
2390 /* We only have a reference on obj from the active list. put_fence_reg
2391 * might drop that one, causing a use-after-free in it. So hold a
2392 * private reference to obj like the other callers of put_fence_reg
2393 * (set_tiling ioctl) do. */
2394 drm_gem_object_reference(&obj->base);
2395 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2396 drm_gem_object_unreference(&obj->base);
2397 if (ret != 0)
2398 return ret;
2400 return avail;
2404 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2405 * @obj: object to map through a fence reg
2407 * When mapping objects through the GTT, userspace wants to be able to write
2408 * to them without having to worry about swizzling if the object is tiled.
2410 * This function walks the fence regs looking for a free one for @obj,
2411 * stealing one if it can't find any.
2413 * It then sets up the reg based on the object's properties: address, pitch
2414 * and tiling format.
2417 i915_gem_object_get_fence_reg(struct drm_i915_gem_object *obj,
2418 bool interruptible)
2420 struct drm_device *dev = obj->base.dev;
2421 struct drm_i915_private *dev_priv = dev->dev_private;
2422 struct drm_i915_fence_reg *reg = NULL;
2423 struct intel_ring_buffer *pipelined = NULL;
2424 int ret;
2426 /* Just update our place in the LRU if our fence is getting used. */
2427 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2428 reg = &dev_priv->fence_regs[obj->fence_reg];
2429 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2430 return 0;
2433 switch (obj->tiling_mode) {
2434 case I915_TILING_NONE:
2435 WARN(1, "allocating a fence for non-tiled object?\n");
2436 break;
2437 case I915_TILING_X:
2438 if (!obj->stride)
2439 return -EINVAL;
2440 WARN((obj->stride & (512 - 1)),
2441 "object 0x%08x is X tiled but has non-512B pitch\n",
2442 obj->gtt_offset);
2443 break;
2444 case I915_TILING_Y:
2445 if (!obj->stride)
2446 return -EINVAL;
2447 WARN((obj->stride & (128 - 1)),
2448 "object 0x%08x is Y tiled but has non-128B pitch\n",
2449 obj->gtt_offset);
2450 break;
2453 ret = i915_find_fence_reg(dev, interruptible);
2454 if (ret < 0)
2455 return ret;
2457 obj->fence_reg = ret;
2458 reg = &dev_priv->fence_regs[obj->fence_reg];
2459 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2461 reg->obj = obj;
2463 switch (INTEL_INFO(dev)->gen) {
2464 case 6:
2465 ret = sandybridge_write_fence_reg(obj, pipelined);
2466 break;
2467 case 5:
2468 case 4:
2469 ret = i965_write_fence_reg(obj, pipelined);
2470 break;
2471 case 3:
2472 ret = i915_write_fence_reg(obj, pipelined);
2473 break;
2474 case 2:
2475 ret = i830_write_fence_reg(obj, pipelined);
2476 break;
2479 trace_i915_gem_object_get_fence(obj,
2480 obj->fence_reg,
2481 obj->tiling_mode);
2482 return ret;
2486 * i915_gem_clear_fence_reg - clear out fence register info
2487 * @obj: object to clear
2489 * Zeroes out the fence register itself and clears out the associated
2490 * data structures in dev_priv and obj.
2492 static void
2493 i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj)
2495 struct drm_device *dev = obj->base.dev;
2496 drm_i915_private_t *dev_priv = dev->dev_private;
2497 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[obj->fence_reg];
2498 uint32_t fence_reg;
2500 switch (INTEL_INFO(dev)->gen) {
2501 case 6:
2502 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2503 (obj->fence_reg * 8), 0);
2504 break;
2505 case 5:
2506 case 4:
2507 I915_WRITE64(FENCE_REG_965_0 + (obj->fence_reg * 8), 0);
2508 break;
2509 case 3:
2510 if (obj->fence_reg >= 8)
2511 fence_reg = FENCE_REG_945_8 + (obj->fence_reg - 8) * 4;
2512 else
2513 case 2:
2514 fence_reg = FENCE_REG_830_0 + obj->fence_reg * 4;
2516 I915_WRITE(fence_reg, 0);
2517 break;
2520 reg->obj = NULL;
2521 obj->fence_reg = I915_FENCE_REG_NONE;
2522 list_del_init(&reg->lru_list);
2526 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2527 * to the buffer to finish, and then resets the fence register.
2528 * @obj: tiled object holding a fence register.
2529 * @bool: whether the wait upon the fence is interruptible
2531 * Zeroes out the fence register itself and clears out the associated
2532 * data structures in dev_priv and obj.
2535 i915_gem_object_put_fence_reg(struct drm_i915_gem_object *obj,
2536 bool interruptible)
2538 struct drm_device *dev = obj->base.dev;
2539 int ret;
2541 if (obj->fence_reg == I915_FENCE_REG_NONE)
2542 return 0;
2544 /* If we've changed tiling, GTT-mappings of the object
2545 * need to re-fault to ensure that the correct fence register
2546 * setup is in place.
2548 i915_gem_release_mmap(obj);
2550 /* On the i915, GPU access to tiled buffers is via a fence,
2551 * therefore we must wait for any outstanding access to complete
2552 * before clearing the fence.
2554 if (obj->fenced_gpu_access) {
2555 ret = i915_gem_object_flush_gpu_write_domain(obj, NULL);
2556 if (ret)
2557 return ret;
2559 obj->fenced_gpu_access = false;
2562 if (obj->last_fenced_seqno) {
2563 ret = i915_do_wait_request(dev,
2564 obj->last_fenced_seqno,
2565 interruptible,
2566 obj->last_fenced_ring);
2567 if (ret)
2568 return ret;
2570 obj->last_fenced_seqno = false;
2573 i915_gem_object_flush_gtt_write_domain(obj);
2574 i915_gem_clear_fence_reg(obj);
2576 return 0;
2580 * Finds free space in the GTT aperture and binds the object there.
2582 static int
2583 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2584 unsigned alignment,
2585 bool map_and_fenceable)
2587 struct drm_device *dev = obj->base.dev;
2588 drm_i915_private_t *dev_priv = dev->dev_private;
2589 struct drm_mm_node *free_space;
2590 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2591 u32 size, fence_size, fence_alignment, unfenced_alignment;
2592 bool mappable, fenceable;
2593 int ret;
2595 if (obj->madv != I915_MADV_WILLNEED) {
2596 DRM_ERROR("Attempting to bind a purgeable object\n");
2597 return -EINVAL;
2600 fence_size = i915_gem_get_gtt_size(obj);
2601 fence_alignment = i915_gem_get_gtt_alignment(obj);
2602 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2604 if (alignment == 0)
2605 alignment = map_and_fenceable ? fence_alignment :
2606 unfenced_alignment;
2607 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2608 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2609 return -EINVAL;
2612 size = map_and_fenceable ? fence_size : obj->base.size;
2614 /* If the object is bigger than the entire aperture, reject it early
2615 * before evicting everything in a vain attempt to find space.
2617 if (obj->base.size >
2618 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2619 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2620 return -E2BIG;
2623 search_free:
2624 if (map_and_fenceable)
2625 free_space =
2626 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2627 size, alignment, 0,
2628 dev_priv->mm.gtt_mappable_end,
2630 else
2631 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2632 size, alignment, 0);
2634 if (free_space != NULL) {
2635 if (map_and_fenceable)
2636 obj->gtt_space =
2637 drm_mm_get_block_range_generic(free_space,
2638 size, alignment, 0,
2639 dev_priv->mm.gtt_mappable_end,
2641 else
2642 obj->gtt_space =
2643 drm_mm_get_block(free_space, size, alignment);
2645 if (obj->gtt_space == NULL) {
2646 /* If the gtt is empty and we're still having trouble
2647 * fitting our object in, we're out of memory.
2649 ret = i915_gem_evict_something(dev, size, alignment,
2650 map_and_fenceable);
2651 if (ret)
2652 return ret;
2654 goto search_free;
2657 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2658 if (ret) {
2659 drm_mm_put_block(obj->gtt_space);
2660 obj->gtt_space = NULL;
2662 if (ret == -ENOMEM) {
2663 /* first try to clear up some space from the GTT */
2664 ret = i915_gem_evict_something(dev, size,
2665 alignment,
2666 map_and_fenceable);
2667 if (ret) {
2668 /* now try to shrink everyone else */
2669 if (gfpmask) {
2670 gfpmask = 0;
2671 goto search_free;
2674 return ret;
2677 goto search_free;
2680 return ret;
2683 ret = i915_gem_gtt_bind_object(obj);
2684 if (ret) {
2685 i915_gem_object_put_pages_gtt(obj);
2686 drm_mm_put_block(obj->gtt_space);
2687 obj->gtt_space = NULL;
2689 ret = i915_gem_evict_something(dev, size,
2690 alignment, map_and_fenceable);
2691 if (ret)
2692 return ret;
2694 goto search_free;
2697 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2698 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2700 /* Assert that the object is not currently in any GPU domain. As it
2701 * wasn't in the GTT, there shouldn't be any way it could have been in
2702 * a GPU cache
2704 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2705 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2707 obj->gtt_offset = obj->gtt_space->start;
2709 fenceable =
2710 obj->gtt_space->size == fence_size &&
2711 (obj->gtt_space->start & (fence_alignment -1)) == 0;
2713 mappable =
2714 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2716 obj->map_and_fenceable = mappable && fenceable;
2718 trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
2719 return 0;
2722 void
2723 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2725 /* If we don't have a page list set up, then we're not pinned
2726 * to GPU, and we can ignore the cache flush because it'll happen
2727 * again at bind time.
2729 if (obj->pages == NULL)
2730 return;
2732 trace_i915_gem_object_clflush(obj);
2734 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2737 /** Flushes any GPU write domain for the object if it's dirty. */
2738 static int
2739 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj,
2740 struct intel_ring_buffer *pipelined)
2742 struct drm_device *dev = obj->base.dev;
2744 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2745 return 0;
2747 /* Queue the GPU write cache flushing we need. */
2748 i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
2749 BUG_ON(obj->base.write_domain);
2751 if (pipelined && pipelined == obj->ring)
2752 return 0;
2754 return i915_gem_object_wait_rendering(obj, true);
2757 /** Flushes the GTT write domain for the object if it's dirty. */
2758 static void
2759 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2761 uint32_t old_write_domain;
2763 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2764 return;
2766 /* No actual flushing is required for the GTT write domain. Writes
2767 * to it immediately go to main memory as far as we know, so there's
2768 * no chipset flush. It also doesn't land in render cache.
2770 i915_gem_release_mmap(obj);
2772 old_write_domain = obj->base.write_domain;
2773 obj->base.write_domain = 0;
2775 trace_i915_gem_object_change_domain(obj,
2776 obj->base.read_domains,
2777 old_write_domain);
2780 /** Flushes the CPU write domain for the object if it's dirty. */
2781 static void
2782 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2784 uint32_t old_write_domain;
2786 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2787 return;
2789 i915_gem_clflush_object(obj);
2790 intel_gtt_chipset_flush();
2791 old_write_domain = obj->base.write_domain;
2792 obj->base.write_domain = 0;
2794 trace_i915_gem_object_change_domain(obj,
2795 obj->base.read_domains,
2796 old_write_domain);
2800 * Moves a single object to the GTT read, and possibly write domain.
2802 * This function returns when the move is complete, including waiting on
2803 * flushes to occur.
2806 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2808 uint32_t old_write_domain, old_read_domains;
2809 int ret;
2811 /* Not valid to be called on unbound objects. */
2812 if (obj->gtt_space == NULL)
2813 return -EINVAL;
2815 ret = i915_gem_object_flush_gpu_write_domain(obj, NULL);
2816 if (ret != 0)
2817 return ret;
2819 i915_gem_object_flush_cpu_write_domain(obj);
2821 if (write) {
2822 ret = i915_gem_object_wait_rendering(obj, true);
2823 if (ret)
2824 return ret;
2827 old_write_domain = obj->base.write_domain;
2828 old_read_domains = obj->base.read_domains;
2830 /* It should now be out of any other write domains, and we can update
2831 * the domain values for our changes.
2833 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2834 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2835 if (write) {
2836 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2837 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2838 obj->dirty = 1;
2841 trace_i915_gem_object_change_domain(obj,
2842 old_read_domains,
2843 old_write_domain);
2845 return 0;
2849 * Prepare buffer for display plane. Use uninterruptible for possible flush
2850 * wait, as in modesetting process we're not supposed to be interrupted.
2853 i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
2854 struct intel_ring_buffer *pipelined)
2856 uint32_t old_read_domains;
2857 int ret;
2859 /* Not valid to be called on unbound objects. */
2860 if (obj->gtt_space == NULL)
2861 return -EINVAL;
2863 ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
2864 if (ret)
2865 return ret;
2867 /* Currently, we are always called from an non-interruptible context. */
2868 if (!pipelined) {
2869 ret = i915_gem_object_wait_rendering(obj, false);
2870 if (ret)
2871 return ret;
2874 i915_gem_object_flush_cpu_write_domain(obj);
2876 old_read_domains = obj->base.read_domains;
2877 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2879 trace_i915_gem_object_change_domain(obj,
2880 old_read_domains,
2881 obj->base.write_domain);
2883 return 0;
2887 i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
2888 bool interruptible)
2890 if (!obj->active)
2891 return 0;
2893 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
2894 i915_gem_flush_ring(obj->base.dev, obj->ring,
2895 0, obj->base.write_domain);
2897 return i915_gem_object_wait_rendering(obj, interruptible);
2901 * Moves a single object to the CPU read, and possibly write domain.
2903 * This function returns when the move is complete, including waiting on
2904 * flushes to occur.
2906 static int
2907 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2909 uint32_t old_write_domain, old_read_domains;
2910 int ret;
2912 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2913 if (ret != 0)
2914 return ret;
2916 i915_gem_object_flush_gtt_write_domain(obj);
2918 /* If we have a partially-valid cache of the object in the CPU,
2919 * finish invalidating it and free the per-page flags.
2921 i915_gem_object_set_to_full_cpu_read_domain(obj);
2923 if (write) {
2924 ret = i915_gem_object_wait_rendering(obj, true);
2925 if (ret)
2926 return ret;
2929 old_write_domain = obj->base.write_domain;
2930 old_read_domains = obj->base.read_domains;
2932 /* Flush the CPU cache if it's still invalid. */
2933 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2934 i915_gem_clflush_object(obj);
2936 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2939 /* It should now be out of any other write domains, and we can update
2940 * the domain values for our changes.
2942 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2944 /* If we're writing through the CPU, then the GPU read domains will
2945 * need to be invalidated at next use.
2947 if (write) {
2948 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2949 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2952 trace_i915_gem_object_change_domain(obj,
2953 old_read_domains,
2954 old_write_domain);
2956 return 0;
2960 * Moves the object from a partially CPU read to a full one.
2962 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2963 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2965 static void
2966 i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
2968 if (!obj->page_cpu_valid)
2969 return;
2971 /* If we're partially in the CPU read domain, finish moving it in.
2973 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
2974 int i;
2976 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
2977 if (obj->page_cpu_valid[i])
2978 continue;
2979 drm_clflush_pages(obj->pages + i, 1);
2983 /* Free the page_cpu_valid mappings which are now stale, whether
2984 * or not we've got I915_GEM_DOMAIN_CPU.
2986 kfree(obj->page_cpu_valid);
2987 obj->page_cpu_valid = NULL;
2991 * Set the CPU read domain on a range of the object.
2993 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2994 * not entirely valid. The page_cpu_valid member of the object flags which
2995 * pages have been flushed, and will be respected by
2996 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2997 * of the whole object.
2999 * This function returns when the move is complete, including waiting on
3000 * flushes to occur.
3002 static int
3003 i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3004 uint64_t offset, uint64_t size)
3006 uint32_t old_read_domains;
3007 int i, ret;
3009 if (offset == 0 && size == obj->base.size)
3010 return i915_gem_object_set_to_cpu_domain(obj, 0);
3012 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3013 if (ret != 0)
3014 return ret;
3015 i915_gem_object_flush_gtt_write_domain(obj);
3017 /* If we're already fully in the CPU read domain, we're done. */
3018 if (obj->page_cpu_valid == NULL &&
3019 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3020 return 0;
3022 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3023 * newly adding I915_GEM_DOMAIN_CPU
3025 if (obj->page_cpu_valid == NULL) {
3026 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3027 GFP_KERNEL);
3028 if (obj->page_cpu_valid == NULL)
3029 return -ENOMEM;
3030 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3031 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3033 /* Flush the cache on any pages that are still invalid from the CPU's
3034 * perspective.
3036 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3037 i++) {
3038 if (obj->page_cpu_valid[i])
3039 continue;
3041 drm_clflush_pages(obj->pages + i, 1);
3043 obj->page_cpu_valid[i] = 1;
3046 /* It should now be out of any other write domains, and we can update
3047 * the domain values for our changes.
3049 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3051 old_read_domains = obj->base.read_domains;
3052 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3054 trace_i915_gem_object_change_domain(obj,
3055 old_read_domains,
3056 obj->base.write_domain);
3058 return 0;
3061 /* Throttle our rendering by waiting until the ring has completed our requests
3062 * emitted over 20 msec ago.
3064 * Note that if we were to use the current jiffies each time around the loop,
3065 * we wouldn't escape the function with any frames outstanding if the time to
3066 * render a frame was over 20ms.
3068 * This should get us reasonable parallelism between CPU and GPU but also
3069 * relatively low latency when blocking on a particular request to finish.
3071 static int
3072 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3074 struct drm_i915_private *dev_priv = dev->dev_private;
3075 struct drm_i915_file_private *file_priv = file->driver_priv;
3076 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3077 struct drm_i915_gem_request *request;
3078 struct intel_ring_buffer *ring = NULL;
3079 u32 seqno = 0;
3080 int ret;
3082 spin_lock(&file_priv->mm.lock);
3083 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3084 if (time_after_eq(request->emitted_jiffies, recent_enough))
3085 break;
3087 ring = request->ring;
3088 seqno = request->seqno;
3090 spin_unlock(&file_priv->mm.lock);
3092 if (seqno == 0)
3093 return 0;
3095 ret = 0;
3096 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3097 /* And wait for the seqno passing without holding any locks and
3098 * causing extra latency for others. This is safe as the irq
3099 * generation is designed to be run atomically and so is
3100 * lockless.
3102 ring->user_irq_get(ring);
3103 ret = wait_event_interruptible(ring->irq_queue,
3104 i915_seqno_passed(ring->get_seqno(ring), seqno)
3105 || atomic_read(&dev_priv->mm.wedged));
3106 ring->user_irq_put(ring);
3108 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3109 ret = -EIO;
3112 if (ret == 0)
3113 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3115 return ret;
3119 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3120 uint32_t alignment,
3121 bool map_and_fenceable)
3123 struct drm_device *dev = obj->base.dev;
3124 struct drm_i915_private *dev_priv = dev->dev_private;
3125 int ret;
3127 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3128 WARN_ON(i915_verify_lists(dev));
3130 if (obj->gtt_space != NULL) {
3131 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3132 (map_and_fenceable && !obj->map_and_fenceable)) {
3133 WARN(obj->pin_count,
3134 "bo is already pinned with incorrect alignment:"
3135 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3136 " obj->map_and_fenceable=%d\n",
3137 obj->gtt_offset, alignment,
3138 map_and_fenceable,
3139 obj->map_and_fenceable);
3140 ret = i915_gem_object_unbind(obj);
3141 if (ret)
3142 return ret;
3146 if (obj->gtt_space == NULL) {
3147 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3148 map_and_fenceable);
3149 if (ret)
3150 return ret;
3153 if (obj->pin_count++ == 0) {
3154 if (!obj->active)
3155 list_move_tail(&obj->mm_list,
3156 &dev_priv->mm.pinned_list);
3158 obj->pin_mappable |= map_and_fenceable;
3160 WARN_ON(i915_verify_lists(dev));
3161 return 0;
3164 void
3165 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3167 struct drm_device *dev = obj->base.dev;
3168 drm_i915_private_t *dev_priv = dev->dev_private;
3170 WARN_ON(i915_verify_lists(dev));
3171 BUG_ON(obj->pin_count == 0);
3172 BUG_ON(obj->gtt_space == NULL);
3174 if (--obj->pin_count == 0) {
3175 if (!obj->active)
3176 list_move_tail(&obj->mm_list,
3177 &dev_priv->mm.inactive_list);
3178 obj->pin_mappable = false;
3180 WARN_ON(i915_verify_lists(dev));
3184 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3185 struct drm_file *file)
3187 struct drm_i915_gem_pin *args = data;
3188 struct drm_i915_gem_object *obj;
3189 int ret;
3191 ret = i915_mutex_lock_interruptible(dev);
3192 if (ret)
3193 return ret;
3195 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3196 if (obj == NULL) {
3197 ret = -ENOENT;
3198 goto unlock;
3201 if (obj->madv != I915_MADV_WILLNEED) {
3202 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3203 ret = -EINVAL;
3204 goto out;
3207 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3208 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3209 args->handle);
3210 ret = -EINVAL;
3211 goto out;
3214 obj->user_pin_count++;
3215 obj->pin_filp = file;
3216 if (obj->user_pin_count == 1) {
3217 ret = i915_gem_object_pin(obj, args->alignment, true);
3218 if (ret)
3219 goto out;
3222 /* XXX - flush the CPU caches for pinned objects
3223 * as the X server doesn't manage domains yet
3225 i915_gem_object_flush_cpu_write_domain(obj);
3226 args->offset = obj->gtt_offset;
3227 out:
3228 drm_gem_object_unreference(&obj->base);
3229 unlock:
3230 mutex_unlock(&dev->struct_mutex);
3231 return ret;
3235 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3236 struct drm_file *file)
3238 struct drm_i915_gem_pin *args = data;
3239 struct drm_i915_gem_object *obj;
3240 int ret;
3242 ret = i915_mutex_lock_interruptible(dev);
3243 if (ret)
3244 return ret;
3246 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3247 if (obj == NULL) {
3248 ret = -ENOENT;
3249 goto unlock;
3252 if (obj->pin_filp != file) {
3253 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3254 args->handle);
3255 ret = -EINVAL;
3256 goto out;
3258 obj->user_pin_count--;
3259 if (obj->user_pin_count == 0) {
3260 obj->pin_filp = NULL;
3261 i915_gem_object_unpin(obj);
3264 out:
3265 drm_gem_object_unreference(&obj->base);
3266 unlock:
3267 mutex_unlock(&dev->struct_mutex);
3268 return ret;
3272 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3273 struct drm_file *file)
3275 struct drm_i915_gem_busy *args = data;
3276 struct drm_i915_gem_object *obj;
3277 int ret;
3279 ret = i915_mutex_lock_interruptible(dev);
3280 if (ret)
3281 return ret;
3283 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3284 if (obj == NULL) {
3285 ret = -ENOENT;
3286 goto unlock;
3289 /* Count all active objects as busy, even if they are currently not used
3290 * by the gpu. Users of this interface expect objects to eventually
3291 * become non-busy without any further actions, therefore emit any
3292 * necessary flushes here.
3294 args->busy = obj->active;
3295 if (args->busy) {
3296 /* Unconditionally flush objects, even when the gpu still uses this
3297 * object. Userspace calling this function indicates that it wants to
3298 * use this buffer rather sooner than later, so issuing the required
3299 * flush earlier is beneficial.
3301 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
3302 i915_gem_flush_ring(dev, obj->ring,
3303 0, obj->base.write_domain);
3305 /* Update the active list for the hardware's current position.
3306 * Otherwise this only updates on a delayed timer or when irqs
3307 * are actually unmasked, and our working set ends up being
3308 * larger than required.
3310 i915_gem_retire_requests_ring(dev, obj->ring);
3312 args->busy = obj->active;
3315 drm_gem_object_unreference(&obj->base);
3316 unlock:
3317 mutex_unlock(&dev->struct_mutex);
3318 return ret;
3322 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3323 struct drm_file *file_priv)
3325 return i915_gem_ring_throttle(dev, file_priv);
3329 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3330 struct drm_file *file_priv)
3332 struct drm_i915_gem_madvise *args = data;
3333 struct drm_i915_gem_object *obj;
3334 int ret;
3336 switch (args->madv) {
3337 case I915_MADV_DONTNEED:
3338 case I915_MADV_WILLNEED:
3339 break;
3340 default:
3341 return -EINVAL;
3344 ret = i915_mutex_lock_interruptible(dev);
3345 if (ret)
3346 return ret;
3348 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3349 if (obj == NULL) {
3350 ret = -ENOENT;
3351 goto unlock;
3354 if (obj->pin_count) {
3355 ret = -EINVAL;
3356 goto out;
3359 if (obj->madv != __I915_MADV_PURGED)
3360 obj->madv = args->madv;
3362 /* if the object is no longer bound, discard its backing storage */
3363 if (i915_gem_object_is_purgeable(obj) &&
3364 obj->gtt_space == NULL)
3365 i915_gem_object_truncate(obj);
3367 args->retained = obj->madv != __I915_MADV_PURGED;
3369 out:
3370 drm_gem_object_unreference(&obj->base);
3371 unlock:
3372 mutex_unlock(&dev->struct_mutex);
3373 return ret;
3376 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3377 size_t size)
3379 struct drm_i915_private *dev_priv = dev->dev_private;
3380 struct drm_i915_gem_object *obj;
3382 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3383 if (obj == NULL)
3384 return NULL;
3386 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3387 kfree(obj);
3388 return NULL;
3391 i915_gem_info_add_obj(dev_priv, size);
3393 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3394 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3396 obj->agp_type = AGP_USER_MEMORY;
3397 obj->base.driver_private = NULL;
3398 obj->fence_reg = I915_FENCE_REG_NONE;
3399 INIT_LIST_HEAD(&obj->mm_list);
3400 INIT_LIST_HEAD(&obj->gtt_list);
3401 INIT_LIST_HEAD(&obj->ring_list);
3402 INIT_LIST_HEAD(&obj->gpu_write_list);
3403 obj->madv = I915_MADV_WILLNEED;
3404 /* Avoid an unnecessary call to unbind on the first bind. */
3405 obj->map_and_fenceable = true;
3407 return obj;
3410 int i915_gem_init_object(struct drm_gem_object *obj)
3412 BUG();
3414 return 0;
3417 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3419 struct drm_device *dev = obj->base.dev;
3420 drm_i915_private_t *dev_priv = dev->dev_private;
3421 int ret;
3423 ret = i915_gem_object_unbind(obj);
3424 if (ret == -ERESTARTSYS) {
3425 list_move(&obj->mm_list,
3426 &dev_priv->mm.deferred_free_list);
3427 return;
3430 if (obj->base.map_list.map)
3431 i915_gem_free_mmap_offset(obj);
3433 drm_gem_object_release(&obj->base);
3434 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3436 kfree(obj->page_cpu_valid);
3437 kfree(obj->bit_17);
3438 kfree(obj);
3441 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3443 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3444 struct drm_device *dev = obj->base.dev;
3446 trace_i915_gem_object_destroy(obj);
3448 while (obj->pin_count > 0)
3449 i915_gem_object_unpin(obj);
3451 if (obj->phys_obj)
3452 i915_gem_detach_phys_object(dev, obj);
3454 i915_gem_free_object_tail(obj);
3458 i915_gem_idle(struct drm_device *dev)
3460 drm_i915_private_t *dev_priv = dev->dev_private;
3461 int ret;
3463 mutex_lock(&dev->struct_mutex);
3465 if (dev_priv->mm.suspended) {
3466 mutex_unlock(&dev->struct_mutex);
3467 return 0;
3470 ret = i915_gpu_idle(dev);
3471 if (ret) {
3472 mutex_unlock(&dev->struct_mutex);
3473 return ret;
3476 /* Under UMS, be paranoid and evict. */
3477 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3478 ret = i915_gem_evict_inactive(dev, false);
3479 if (ret) {
3480 mutex_unlock(&dev->struct_mutex);
3481 return ret;
3485 i915_gem_reset_fences(dev);
3487 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3488 * We need to replace this with a semaphore, or something.
3489 * And not confound mm.suspended!
3491 dev_priv->mm.suspended = 1;
3492 del_timer_sync(&dev_priv->hangcheck_timer);
3494 i915_kernel_lost_context(dev);
3495 i915_gem_cleanup_ringbuffer(dev);
3497 mutex_unlock(&dev->struct_mutex);
3499 /* Cancel the retire work handler, which should be idle now. */
3500 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3502 return 0;
3506 i915_gem_init_ringbuffer(struct drm_device *dev)
3508 drm_i915_private_t *dev_priv = dev->dev_private;
3509 int ret;
3511 ret = intel_init_render_ring_buffer(dev);
3512 if (ret)
3513 return ret;
3515 if (HAS_BSD(dev)) {
3516 ret = intel_init_bsd_ring_buffer(dev);
3517 if (ret)
3518 goto cleanup_render_ring;
3521 if (HAS_BLT(dev)) {
3522 ret = intel_init_blt_ring_buffer(dev);
3523 if (ret)
3524 goto cleanup_bsd_ring;
3527 dev_priv->next_seqno = 1;
3529 return 0;
3531 cleanup_bsd_ring:
3532 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
3533 cleanup_render_ring:
3534 intel_cleanup_ring_buffer(&dev_priv->render_ring);
3535 return ret;
3538 void
3539 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3541 drm_i915_private_t *dev_priv = dev->dev_private;
3543 intel_cleanup_ring_buffer(&dev_priv->render_ring);
3544 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
3545 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
3549 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3550 struct drm_file *file_priv)
3552 drm_i915_private_t *dev_priv = dev->dev_private;
3553 int ret;
3555 if (drm_core_check_feature(dev, DRIVER_MODESET))
3556 return 0;
3558 if (atomic_read(&dev_priv->mm.wedged)) {
3559 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3560 atomic_set(&dev_priv->mm.wedged, 0);
3563 mutex_lock(&dev->struct_mutex);
3564 dev_priv->mm.suspended = 0;
3566 ret = i915_gem_init_ringbuffer(dev);
3567 if (ret != 0) {
3568 mutex_unlock(&dev->struct_mutex);
3569 return ret;
3572 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3573 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
3574 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
3575 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
3576 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3577 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3578 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
3579 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
3580 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
3581 mutex_unlock(&dev->struct_mutex);
3583 ret = drm_irq_install(dev);
3584 if (ret)
3585 goto cleanup_ringbuffer;
3587 return 0;
3589 cleanup_ringbuffer:
3590 mutex_lock(&dev->struct_mutex);
3591 i915_gem_cleanup_ringbuffer(dev);
3592 dev_priv->mm.suspended = 1;
3593 mutex_unlock(&dev->struct_mutex);
3595 return ret;
3599 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3600 struct drm_file *file_priv)
3602 if (drm_core_check_feature(dev, DRIVER_MODESET))
3603 return 0;
3605 drm_irq_uninstall(dev);
3606 return i915_gem_idle(dev);
3609 void
3610 i915_gem_lastclose(struct drm_device *dev)
3612 int ret;
3614 if (drm_core_check_feature(dev, DRIVER_MODESET))
3615 return;
3617 ret = i915_gem_idle(dev);
3618 if (ret)
3619 DRM_ERROR("failed to idle hardware: %d\n", ret);
3622 static void
3623 init_ring_lists(struct intel_ring_buffer *ring)
3625 INIT_LIST_HEAD(&ring->active_list);
3626 INIT_LIST_HEAD(&ring->request_list);
3627 INIT_LIST_HEAD(&ring->gpu_write_list);
3630 void
3631 i915_gem_load(struct drm_device *dev)
3633 int i;
3634 drm_i915_private_t *dev_priv = dev->dev_private;
3636 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3637 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3638 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3639 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3640 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3641 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3642 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3643 init_ring_lists(&dev_priv->render_ring);
3644 init_ring_lists(&dev_priv->bsd_ring);
3645 init_ring_lists(&dev_priv->blt_ring);
3646 for (i = 0; i < 16; i++)
3647 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3648 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3649 i915_gem_retire_work_handler);
3650 init_completion(&dev_priv->error_completion);
3652 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3653 if (IS_GEN3(dev)) {
3654 u32 tmp = I915_READ(MI_ARB_STATE);
3655 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3656 /* arb state is a masked write, so set bit + bit in mask */
3657 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3658 I915_WRITE(MI_ARB_STATE, tmp);
3662 /* Old X drivers will take 0-2 for front, back, depth buffers */
3663 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3664 dev_priv->fence_reg_start = 3;
3666 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3667 dev_priv->num_fence_regs = 16;
3668 else
3669 dev_priv->num_fence_regs = 8;
3671 /* Initialize fence registers to zero */
3672 switch (INTEL_INFO(dev)->gen) {
3673 case 6:
3674 for (i = 0; i < 16; i++)
3675 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
3676 break;
3677 case 5:
3678 case 4:
3679 for (i = 0; i < 16; i++)
3680 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
3681 break;
3682 case 3:
3683 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3684 for (i = 0; i < 8; i++)
3685 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
3686 case 2:
3687 for (i = 0; i < 8; i++)
3688 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
3689 break;
3691 i915_gem_detect_bit_6_swizzle(dev);
3692 init_waitqueue_head(&dev_priv->pending_flip_queue);
3694 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3695 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3696 register_shrinker(&dev_priv->mm.inactive_shrinker);
3700 * Create a physically contiguous memory object for this object
3701 * e.g. for cursor + overlay regs
3703 static int i915_gem_init_phys_object(struct drm_device *dev,
3704 int id, int size, int align)
3706 drm_i915_private_t *dev_priv = dev->dev_private;
3707 struct drm_i915_gem_phys_object *phys_obj;
3708 int ret;
3710 if (dev_priv->mm.phys_objs[id - 1] || !size)
3711 return 0;
3713 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3714 if (!phys_obj)
3715 return -ENOMEM;
3717 phys_obj->id = id;
3719 phys_obj->handle = drm_pci_alloc(dev, size, align);
3720 if (!phys_obj->handle) {
3721 ret = -ENOMEM;
3722 goto kfree_obj;
3724 #ifdef CONFIG_X86
3725 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3726 #endif
3728 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3730 return 0;
3731 kfree_obj:
3732 kfree(phys_obj);
3733 return ret;
3736 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3738 drm_i915_private_t *dev_priv = dev->dev_private;
3739 struct drm_i915_gem_phys_object *phys_obj;
3741 if (!dev_priv->mm.phys_objs[id - 1])
3742 return;
3744 phys_obj = dev_priv->mm.phys_objs[id - 1];
3745 if (phys_obj->cur_obj) {
3746 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3749 #ifdef CONFIG_X86
3750 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3751 #endif
3752 drm_pci_free(dev, phys_obj->handle);
3753 kfree(phys_obj);
3754 dev_priv->mm.phys_objs[id - 1] = NULL;
3757 void i915_gem_free_all_phys_object(struct drm_device *dev)
3759 int i;
3761 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3762 i915_gem_free_phys_object(dev, i);
3765 void i915_gem_detach_phys_object(struct drm_device *dev,
3766 struct drm_i915_gem_object *obj)
3768 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3769 char *vaddr;
3770 int i;
3771 int page_count;
3773 if (!obj->phys_obj)
3774 return;
3775 vaddr = obj->phys_obj->handle->vaddr;
3777 page_count = obj->base.size / PAGE_SIZE;
3778 for (i = 0; i < page_count; i++) {
3779 struct page *page = read_cache_page_gfp(mapping, i,
3780 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3781 if (!IS_ERR(page)) {
3782 char *dst = kmap_atomic(page);
3783 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3784 kunmap_atomic(dst);
3786 drm_clflush_pages(&page, 1);
3788 set_page_dirty(page);
3789 mark_page_accessed(page);
3790 page_cache_release(page);
3793 intel_gtt_chipset_flush();
3795 obj->phys_obj->cur_obj = NULL;
3796 obj->phys_obj = NULL;
3800 i915_gem_attach_phys_object(struct drm_device *dev,
3801 struct drm_i915_gem_object *obj,
3802 int id,
3803 int align)
3805 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3806 drm_i915_private_t *dev_priv = dev->dev_private;
3807 int ret = 0;
3808 int page_count;
3809 int i;
3811 if (id > I915_MAX_PHYS_OBJECT)
3812 return -EINVAL;
3814 if (obj->phys_obj) {
3815 if (obj->phys_obj->id == id)
3816 return 0;
3817 i915_gem_detach_phys_object(dev, obj);
3820 /* create a new object */
3821 if (!dev_priv->mm.phys_objs[id - 1]) {
3822 ret = i915_gem_init_phys_object(dev, id,
3823 obj->base.size, align);
3824 if (ret) {
3825 DRM_ERROR("failed to init phys object %d size: %zu\n",
3826 id, obj->base.size);
3827 return ret;
3831 /* bind to the object */
3832 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3833 obj->phys_obj->cur_obj = obj;
3835 page_count = obj->base.size / PAGE_SIZE;
3837 for (i = 0; i < page_count; i++) {
3838 struct page *page;
3839 char *dst, *src;
3841 page = read_cache_page_gfp(mapping, i,
3842 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3843 if (IS_ERR(page))
3844 return PTR_ERR(page);
3846 src = kmap_atomic(page);
3847 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3848 memcpy(dst, src, PAGE_SIZE);
3849 kunmap_atomic(src);
3851 mark_page_accessed(page);
3852 page_cache_release(page);
3855 return 0;
3858 static int
3859 i915_gem_phys_pwrite(struct drm_device *dev,
3860 struct drm_i915_gem_object *obj,
3861 struct drm_i915_gem_pwrite *args,
3862 struct drm_file *file_priv)
3864 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3865 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3867 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3868 unsigned long unwritten;
3870 /* The physical object once assigned is fixed for the lifetime
3871 * of the obj, so we can safely drop the lock and continue
3872 * to access vaddr.
3874 mutex_unlock(&dev->struct_mutex);
3875 unwritten = copy_from_user(vaddr, user_data, args->size);
3876 mutex_lock(&dev->struct_mutex);
3877 if (unwritten)
3878 return -EFAULT;
3881 intel_gtt_chipset_flush();
3882 return 0;
3885 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3887 struct drm_i915_file_private *file_priv = file->driver_priv;
3889 /* Clean up our request list when the client is going away, so that
3890 * later retire_requests won't dereference our soon-to-be-gone
3891 * file_priv.
3893 spin_lock(&file_priv->mm.lock);
3894 while (!list_empty(&file_priv->mm.request_list)) {
3895 struct drm_i915_gem_request *request;
3897 request = list_first_entry(&file_priv->mm.request_list,
3898 struct drm_i915_gem_request,
3899 client_list);
3900 list_del(&request->client_list);
3901 request->file_priv = NULL;
3903 spin_unlock(&file_priv->mm.lock);
3906 static int
3907 i915_gpu_is_active(struct drm_device *dev)
3909 drm_i915_private_t *dev_priv = dev->dev_private;
3910 int lists_empty;
3912 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
3913 list_empty(&dev_priv->mm.active_list);
3915 return !lists_empty;
3918 static int
3919 i915_gem_inactive_shrink(struct shrinker *shrinker,
3920 int nr_to_scan,
3921 gfp_t gfp_mask)
3923 struct drm_i915_private *dev_priv =
3924 container_of(shrinker,
3925 struct drm_i915_private,
3926 mm.inactive_shrinker);
3927 struct drm_device *dev = dev_priv->dev;
3928 struct drm_i915_gem_object *obj, *next;
3929 int cnt;
3931 if (!mutex_trylock(&dev->struct_mutex))
3932 return 0;
3934 /* "fast-path" to count number of available objects */
3935 if (nr_to_scan == 0) {
3936 cnt = 0;
3937 list_for_each_entry(obj,
3938 &dev_priv->mm.inactive_list,
3939 mm_list)
3940 cnt++;
3941 mutex_unlock(&dev->struct_mutex);
3942 return cnt / 100 * sysctl_vfs_cache_pressure;
3945 rescan:
3946 /* first scan for clean buffers */
3947 i915_gem_retire_requests(dev);
3949 list_for_each_entry_safe(obj, next,
3950 &dev_priv->mm.inactive_list,
3951 mm_list) {
3952 if (i915_gem_object_is_purgeable(obj)) {
3953 if (i915_gem_object_unbind(obj) == 0 &&
3954 --nr_to_scan == 0)
3955 break;
3959 /* second pass, evict/count anything still on the inactive list */
3960 cnt = 0;
3961 list_for_each_entry_safe(obj, next,
3962 &dev_priv->mm.inactive_list,
3963 mm_list) {
3964 if (nr_to_scan &&
3965 i915_gem_object_unbind(obj) == 0)
3966 nr_to_scan--;
3967 else
3968 cnt++;
3971 if (nr_to_scan && i915_gpu_is_active(dev)) {
3973 * We are desperate for pages, so as a last resort, wait
3974 * for the GPU to finish and discard whatever we can.
3975 * This has a dramatic impact to reduce the number of
3976 * OOM-killer events whilst running the GPU aggressively.
3978 if (i915_gpu_idle(dev) == 0)
3979 goto rescan;
3981 mutex_unlock(&dev->struct_mutex);
3982 return cnt / 100 * sysctl_vfs_cache_pressure;