1 /*********************************************************************
5 * Description: Tiny Transport Protocol (TTP) implementation
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun Aug 31 20:14:31 1997
9 * Modified at: Wed Jan 5 11:31:27 2000
10 * Modified by: Dag Brattli <dagb@cs.uit.no>
12 * Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
13 * All Rights Reserved.
14 * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License as
18 * published by the Free Software Foundation; either version 2 of
19 * the License, or (at your option) any later version.
21 * Neither Dag Brattli nor University of Tromsø admit liability nor
22 * provide warranty for any of this software. This material is
23 * provided "AS-IS" and at no charge.
25 ********************************************************************/
27 #include <linux/skbuff.h>
28 #include <linux/init.h>
30 #include <linux/seq_file.h>
32 #include <asm/byteorder.h>
33 #include <asm/unaligned.h>
35 #include <net/irda/irda.h>
36 #include <net/irda/irlap.h>
37 #include <net/irda/irlmp.h>
38 #include <net/irda/parameters.h>
39 #include <net/irda/irttp.h>
41 static struct irttp_cb
*irttp
;
43 static void __irttp_close_tsap(struct tsap_cb
*self
);
45 static int irttp_data_indication(void *instance
, void *sap
,
47 static int irttp_udata_indication(void *instance
, void *sap
,
49 static void irttp_disconnect_indication(void *instance
, void *sap
,
50 LM_REASON reason
, struct sk_buff
*);
51 static void irttp_connect_indication(void *instance
, void *sap
,
52 struct qos_info
*qos
, __u32 max_sdu_size
,
53 __u8 header_size
, struct sk_buff
*skb
);
54 static void irttp_connect_confirm(void *instance
, void *sap
,
55 struct qos_info
*qos
, __u32 max_sdu_size
,
56 __u8 header_size
, struct sk_buff
*skb
);
57 static void irttp_run_tx_queue(struct tsap_cb
*self
);
58 static void irttp_run_rx_queue(struct tsap_cb
*self
);
60 static void irttp_flush_queues(struct tsap_cb
*self
);
61 static void irttp_fragment_skb(struct tsap_cb
*self
, struct sk_buff
*skb
);
62 static struct sk_buff
*irttp_reassemble_skb(struct tsap_cb
*self
);
63 static void irttp_todo_expired(unsigned long data
);
64 static int irttp_param_max_sdu_size(void *instance
, irda_param_t
*param
,
67 static void irttp_flow_indication(void *instance
, void *sap
, LOCAL_FLOW flow
);
68 static void irttp_status_indication(void *instance
,
69 LINK_STATUS link
, LOCK_STATUS lock
);
71 /* Information for parsing parameters in IrTTP */
72 static pi_minor_info_t pi_minor_call_table
[] = {
73 { NULL
, 0 }, /* 0x00 */
74 { irttp_param_max_sdu_size
, PV_INTEGER
| PV_BIG_ENDIAN
} /* 0x01 */
76 static pi_major_info_t pi_major_call_table
[] = {{ pi_minor_call_table
, 2 }};
77 static pi_param_info_t param_info
= { pi_major_call_table
, 1, 0x0f, 4 };
79 /************************ GLOBAL PROCEDURES ************************/
82 * Function irttp_init (void)
84 * Initialize the IrTTP layer. Called by module initialization code
87 int __init
irttp_init(void)
89 irttp
= kzalloc(sizeof(struct irttp_cb
), GFP_KERNEL
);
93 irttp
->magic
= TTP_MAGIC
;
95 irttp
->tsaps
= hashbin_new(HB_LOCK
);
97 IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
107 * Function irttp_cleanup (void)
109 * Called by module destruction/cleanup code
112 void irttp_cleanup(void)
114 /* Check for main structure */
115 IRDA_ASSERT(irttp
->magic
== TTP_MAGIC
, return;);
118 * Delete hashbin and close all TSAP instances in it
120 hashbin_delete(irttp
->tsaps
, (FREE_FUNC
) __irttp_close_tsap
);
124 /* De-allocate main structure */
130 /*************************** SUBROUTINES ***************************/
133 * Function irttp_start_todo_timer (self, timeout)
137 * Made it more effient and unsensitive to race conditions - Jean II
139 static inline void irttp_start_todo_timer(struct tsap_cb
*self
, int timeout
)
141 /* Set new value for timer */
142 mod_timer(&self
->todo_timer
, jiffies
+ timeout
);
146 * Function irttp_todo_expired (data)
148 * Todo timer has expired!
150 * One of the restriction of the timer is that it is run only on the timer
151 * interrupt which run every 10ms. This mean that even if you set the timer
152 * with a delay of 0, it may take up to 10ms before it's run.
153 * So, to minimise latency and keep cache fresh, we try to avoid using
154 * it as much as possible.
155 * Note : we can't use tasklets, because they can't be asynchronously
156 * killed (need user context), and we can't guarantee that here...
159 static void irttp_todo_expired(unsigned long data
)
161 struct tsap_cb
*self
= (struct tsap_cb
*) data
;
163 /* Check that we still exist */
164 if (!self
|| self
->magic
!= TTP_TSAP_MAGIC
)
167 IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__
, self
);
169 /* Try to make some progress, especially on Tx side - Jean II */
170 irttp_run_rx_queue(self
);
171 irttp_run_tx_queue(self
);
173 /* Check if time for disconnect */
174 if (test_bit(0, &self
->disconnect_pend
)) {
175 /* Check if it's possible to disconnect yet */
176 if (skb_queue_empty(&self
->tx_queue
)) {
177 /* Make sure disconnect is not pending anymore */
178 clear_bit(0, &self
->disconnect_pend
); /* FALSE */
180 /* Note : self->disconnect_skb may be NULL */
181 irttp_disconnect_request(self
, self
->disconnect_skb
,
183 self
->disconnect_skb
= NULL
;
185 /* Try again later */
186 irttp_start_todo_timer(self
, HZ
/10);
188 /* No reason to try and close now */
193 /* Check if it's closing time */
194 if (self
->close_pend
)
196 irttp_close_tsap(self
);
200 * Function irttp_flush_queues (self)
202 * Flushes (removes all frames) in transitt-buffer (tx_list)
204 void irttp_flush_queues(struct tsap_cb
*self
)
208 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
210 IRDA_ASSERT(self
!= NULL
, return;);
211 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
213 /* Deallocate frames waiting to be sent */
214 while ((skb
= skb_dequeue(&self
->tx_queue
)) != NULL
)
217 /* Deallocate received frames */
218 while ((skb
= skb_dequeue(&self
->rx_queue
)) != NULL
)
221 /* Deallocate received fragments */
222 while ((skb
= skb_dequeue(&self
->rx_fragments
)) != NULL
)
227 * Function irttp_reassemble (self)
229 * Makes a new (continuous) skb of all the fragments in the fragment
233 static struct sk_buff
*irttp_reassemble_skb(struct tsap_cb
*self
)
235 struct sk_buff
*skb
, *frag
;
236 int n
= 0; /* Fragment index */
238 IRDA_ASSERT(self
!= NULL
, return NULL
;);
239 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return NULL
;);
241 IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __FUNCTION__
,
244 skb
= dev_alloc_skb(TTP_HEADER
+ self
->rx_sdu_size
);
249 * Need to reserve space for TTP header in case this skb needs to
250 * be requeued in case delivery failes
252 skb_reserve(skb
, TTP_HEADER
);
253 skb_put(skb
, self
->rx_sdu_size
);
256 * Copy all fragments to a new buffer
258 while ((frag
= skb_dequeue(&self
->rx_fragments
)) != NULL
) {
259 skb_copy_to_linear_data_offset(skb
, n
, frag
->data
, frag
->len
);
266 "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
267 __FUNCTION__
, n
, self
->rx_sdu_size
, self
->rx_max_sdu_size
);
268 /* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
269 * by summing the size of all fragments, so we should always
270 * have n == self->rx_sdu_size, except in cases where we
271 * droped the last fragment (when self->rx_sdu_size exceed
272 * self->rx_max_sdu_size), where n < self->rx_sdu_size.
274 IRDA_ASSERT(n
<= self
->rx_sdu_size
, n
= self
->rx_sdu_size
;);
276 /* Set the new length */
279 self
->rx_sdu_size
= 0;
285 * Function irttp_fragment_skb (skb)
287 * Fragments a frame and queues all the fragments for transmission
290 static inline void irttp_fragment_skb(struct tsap_cb
*self
,
293 struct sk_buff
*frag
;
296 IRDA_DEBUG(2, "%s()\n", __FUNCTION__
);
298 IRDA_ASSERT(self
!= NULL
, return;);
299 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
300 IRDA_ASSERT(skb
!= NULL
, return;);
303 * Split frame into a number of segments
305 while (skb
->len
> self
->max_seg_size
) {
306 IRDA_DEBUG(2, "%s(), fragmenting ...\n", __FUNCTION__
);
308 /* Make new segment */
309 frag
= alloc_skb(self
->max_seg_size
+self
->max_header_size
,
314 skb_reserve(frag
, self
->max_header_size
);
316 /* Copy data from the original skb into this fragment. */
317 skb_copy_from_linear_data(skb
, skb_put(frag
, self
->max_seg_size
),
320 /* Insert TTP header, with the more bit set */
321 frame
= skb_push(frag
, TTP_HEADER
);
324 /* Hide the copied data from the original skb */
325 skb_pull(skb
, self
->max_seg_size
);
328 skb_queue_tail(&self
->tx_queue
, frag
);
330 /* Queue what is left of the original skb */
331 IRDA_DEBUG(2, "%s(), queuing last segment\n", __FUNCTION__
);
333 frame
= skb_push(skb
, TTP_HEADER
);
334 frame
[0] = 0x00; /* Clear more bit */
337 skb_queue_tail(&self
->tx_queue
, skb
);
341 * Function irttp_param_max_sdu_size (self, param)
343 * Handle the MaxSduSize parameter in the connect frames, this function
344 * will be called both when this parameter needs to be inserted into, and
345 * extracted from the connect frames
347 static int irttp_param_max_sdu_size(void *instance
, irda_param_t
*param
,
350 struct tsap_cb
*self
;
352 self
= (struct tsap_cb
*) instance
;
354 IRDA_ASSERT(self
!= NULL
, return -1;);
355 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
358 param
->pv
.i
= self
->tx_max_sdu_size
;
360 self
->tx_max_sdu_size
= param
->pv
.i
;
362 IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __FUNCTION__
, param
->pv
.i
);
367 /*************************** CLIENT CALLS ***************************/
368 /************************** LMP CALLBACKS **************************/
369 /* Everything is happily mixed up. Waiting for next clean up - Jean II */
372 * Initialization, that has to be done on new tsap
373 * instance allocation and on duplication
375 static void irttp_init_tsap(struct tsap_cb
*tsap
)
377 spin_lock_init(&tsap
->lock
);
378 init_timer(&tsap
->todo_timer
);
380 skb_queue_head_init(&tsap
->rx_queue
);
381 skb_queue_head_init(&tsap
->tx_queue
);
382 skb_queue_head_init(&tsap
->rx_fragments
);
386 * Function irttp_open_tsap (stsap, notify)
388 * Create TSAP connection endpoint,
390 struct tsap_cb
*irttp_open_tsap(__u8 stsap_sel
, int credit
, notify_t
*notify
)
392 struct tsap_cb
*self
;
393 struct lsap_cb
*lsap
;
396 IRDA_ASSERT(irttp
->magic
== TTP_MAGIC
, return NULL
;);
398 /* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
399 * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
401 if((stsap_sel
!= LSAP_ANY
) &&
402 ((stsap_sel
< 0x01) || (stsap_sel
>= 0x70))) {
403 IRDA_DEBUG(0, "%s(), invalid tsap!\n", __FUNCTION__
);
407 self
= kzalloc(sizeof(struct tsap_cb
), GFP_ATOMIC
);
409 IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __FUNCTION__
);
413 /* Initialize internal objects */
414 irttp_init_tsap(self
);
416 /* Initialise todo timer */
417 self
->todo_timer
.data
= (unsigned long) self
;
418 self
->todo_timer
.function
= &irttp_todo_expired
;
420 /* Initialize callbacks for IrLMP to use */
421 irda_notify_init(&ttp_notify
);
422 ttp_notify
.connect_confirm
= irttp_connect_confirm
;
423 ttp_notify
.connect_indication
= irttp_connect_indication
;
424 ttp_notify
.disconnect_indication
= irttp_disconnect_indication
;
425 ttp_notify
.data_indication
= irttp_data_indication
;
426 ttp_notify
.udata_indication
= irttp_udata_indication
;
427 ttp_notify
.flow_indication
= irttp_flow_indication
;
428 if(notify
->status_indication
!= NULL
)
429 ttp_notify
.status_indication
= irttp_status_indication
;
430 ttp_notify
.instance
= self
;
431 strncpy(ttp_notify
.name
, notify
->name
, NOTIFY_MAX_NAME
);
433 self
->magic
= TTP_TSAP_MAGIC
;
434 self
->connected
= FALSE
;
437 * Create LSAP at IrLMP layer
439 lsap
= irlmp_open_lsap(stsap_sel
, &ttp_notify
, 0);
441 IRDA_WARNING("%s: unable to allocate LSAP!!\n", __FUNCTION__
);
446 * If user specified LSAP_ANY as source TSAP selector, then IrLMP
447 * will replace it with whatever source selector which is free, so
448 * the stsap_sel we have might not be valid anymore
450 self
->stsap_sel
= lsap
->slsap_sel
;
451 IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __FUNCTION__
, self
->stsap_sel
);
453 self
->notify
= *notify
;
456 hashbin_insert(irttp
->tsaps
, (irda_queue_t
*) self
, (long) self
, NULL
);
458 if (credit
> TTP_RX_MAX_CREDIT
)
459 self
->initial_credit
= TTP_RX_MAX_CREDIT
;
461 self
->initial_credit
= credit
;
465 EXPORT_SYMBOL(irttp_open_tsap
);
468 * Function irttp_close (handle)
470 * Remove an instance of a TSAP. This function should only deal with the
471 * deallocation of the TSAP, and resetting of the TSAPs values;
474 static void __irttp_close_tsap(struct tsap_cb
*self
)
476 /* First make sure we're connected. */
477 IRDA_ASSERT(self
!= NULL
, return;);
478 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
480 irttp_flush_queues(self
);
482 del_timer(&self
->todo_timer
);
484 /* This one won't be cleaned up if we are disconnect_pend + close_pend
485 * and we receive a disconnect_indication */
486 if (self
->disconnect_skb
)
487 dev_kfree_skb(self
->disconnect_skb
);
489 self
->connected
= FALSE
;
490 self
->magic
= ~TTP_TSAP_MAGIC
;
496 * Function irttp_close (self)
498 * Remove TSAP from list of all TSAPs and then deallocate all resources
499 * associated with this TSAP
501 * Note : because we *free* the tsap structure, it is the responsibility
502 * of the caller to make sure we are called only once and to deal with
503 * possible race conditions. - Jean II
505 int irttp_close_tsap(struct tsap_cb
*self
)
507 struct tsap_cb
*tsap
;
509 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
511 IRDA_ASSERT(self
!= NULL
, return -1;);
512 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
514 /* Make sure tsap has been disconnected */
515 if (self
->connected
) {
516 /* Check if disconnect is not pending */
517 if (!test_bit(0, &self
->disconnect_pend
)) {
518 IRDA_WARNING("%s: TSAP still connected!\n",
520 irttp_disconnect_request(self
, NULL
, P_NORMAL
);
522 self
->close_pend
= TRUE
;
523 irttp_start_todo_timer(self
, HZ
/10);
525 return 0; /* Will be back! */
528 tsap
= hashbin_remove(irttp
->tsaps
, (long) self
, NULL
);
530 IRDA_ASSERT(tsap
== self
, return -1;);
532 /* Close corresponding LSAP */
534 irlmp_close_lsap(self
->lsap
);
538 __irttp_close_tsap(self
);
542 EXPORT_SYMBOL(irttp_close_tsap
);
545 * Function irttp_udata_request (self, skb)
547 * Send unreliable data on this TSAP
550 int irttp_udata_request(struct tsap_cb
*self
, struct sk_buff
*skb
)
552 IRDA_ASSERT(self
!= NULL
, return -1;);
553 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
554 IRDA_ASSERT(skb
!= NULL
, return -1;);
556 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
558 /* Check that nothing bad happens */
559 if ((skb
->len
== 0) || (!self
->connected
)) {
560 IRDA_DEBUG(1, "%s(), No data, or not connected\n",
565 if (skb
->len
> self
->max_seg_size
) {
566 IRDA_DEBUG(1, "%s(), UData is too large for IrLAP!\n",
571 irlmp_udata_request(self
->lsap
, skb
);
572 self
->stats
.tx_packets
++;
580 EXPORT_SYMBOL(irttp_udata_request
);
584 * Function irttp_data_request (handle, skb)
586 * Queue frame for transmission. If SAR is enabled, fragement the frame
587 * and queue the fragments for transmission
589 int irttp_data_request(struct tsap_cb
*self
, struct sk_buff
*skb
)
594 IRDA_ASSERT(self
!= NULL
, return -1;);
595 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
596 IRDA_ASSERT(skb
!= NULL
, return -1;);
598 IRDA_DEBUG(2, "%s() : queue len = %d\n", __FUNCTION__
,
599 skb_queue_len(&self
->tx_queue
));
601 /* Check that nothing bad happens */
602 if ((skb
->len
== 0) || (!self
->connected
)) {
603 IRDA_WARNING("%s: No data, or not connected\n", __FUNCTION__
);
609 * Check if SAR is disabled, and the frame is larger than what fits
610 * inside an IrLAP frame
612 if ((self
->tx_max_sdu_size
== 0) && (skb
->len
> self
->max_seg_size
)) {
613 IRDA_ERROR("%s: SAR disabled, and data is too large for IrLAP!\n",
620 * Check if SAR is enabled, and the frame is larger than the
623 if ((self
->tx_max_sdu_size
!= 0) &&
624 (self
->tx_max_sdu_size
!= TTP_SAR_UNBOUND
) &&
625 (skb
->len
> self
->tx_max_sdu_size
))
627 IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
633 * Check if transmit queue is full
635 if (skb_queue_len(&self
->tx_queue
) >= TTP_TX_MAX_QUEUE
) {
637 * Give it a chance to empty itself
639 irttp_run_tx_queue(self
);
641 /* Drop packet. This error code should trigger the caller
642 * to resend the data in the client code - Jean II */
647 /* Queue frame, or queue frame segments */
648 if ((self
->tx_max_sdu_size
== 0) || (skb
->len
< self
->max_seg_size
)) {
650 IRDA_ASSERT(skb_headroom(skb
) >= TTP_HEADER
, return -1;);
651 frame
= skb_push(skb
, TTP_HEADER
);
652 frame
[0] = 0x00; /* Clear more bit */
654 skb_queue_tail(&self
->tx_queue
, skb
);
657 * Fragment the frame, this function will also queue the
658 * fragments, we don't care about the fact the transmit
659 * queue may be overfilled by all the segments for a little
662 irttp_fragment_skb(self
, skb
);
665 /* Check if we can accept more data from client */
666 if ((!self
->tx_sdu_busy
) &&
667 (skb_queue_len(&self
->tx_queue
) > TTP_TX_HIGH_THRESHOLD
)) {
668 /* Tx queue filling up, so stop client. */
669 if (self
->notify
.flow_indication
) {
670 self
->notify
.flow_indication(self
->notify
.instance
,
673 /* self->tx_sdu_busy is the state of the client.
674 * Update state after notifying client to avoid
675 * race condition with irttp_flow_indication().
676 * If the queue empty itself after our test but before
677 * we set the flag, we will fix ourselves below in
678 * irttp_run_tx_queue().
680 self
->tx_sdu_busy
= TRUE
;
683 /* Try to make some progress */
684 irttp_run_tx_queue(self
);
692 EXPORT_SYMBOL(irttp_data_request
);
695 * Function irttp_run_tx_queue (self)
697 * Transmit packets queued for transmission (if possible)
700 static void irttp_run_tx_queue(struct tsap_cb
*self
)
706 IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
708 self
->send_credit
, skb_queue_len(&self
->tx_queue
));
710 /* Get exclusive access to the tx queue, otherwise don't touch it */
711 if (irda_lock(&self
->tx_queue_lock
) == FALSE
)
714 /* Try to send out frames as long as we have credits
715 * and as long as LAP is not full. If LAP is full, it will
716 * poll us through irttp_flow_indication() - Jean II */
717 while ((self
->send_credit
> 0) &&
718 (!irlmp_lap_tx_queue_full(self
->lsap
)) &&
719 (skb
= skb_dequeue(&self
->tx_queue
)))
722 * Since we can transmit and receive frames concurrently,
723 * the code below is a critical region and we must assure that
724 * nobody messes with the credits while we update them.
726 spin_lock_irqsave(&self
->lock
, flags
);
728 n
= self
->avail_credit
;
729 self
->avail_credit
= 0;
731 /* Only room for 127 credits in frame */
733 self
->avail_credit
= n
-127;
736 self
->remote_credit
+= n
;
739 spin_unlock_irqrestore(&self
->lock
, flags
);
742 * More bit must be set by the data_request() or fragment()
745 skb
->data
[0] |= (n
& 0x7f);
747 /* Detach from socket.
748 * The current skb has a reference to the socket that sent
749 * it (skb->sk). When we pass it to IrLMP, the skb will be
750 * stored in in IrLAP (self->wx_list). When we are within
751 * IrLAP, we lose the notion of socket, so we should not
752 * have a reference to a socket. So, we drop it here.
754 * Why does it matter ?
755 * When the skb is freed (kfree_skb), if it is associated
756 * with a socket, it release buffer space on the socket
757 * (through sock_wfree() and sock_def_write_space()).
758 * If the socket no longer exist, we may crash. Hard.
759 * When we close a socket, we make sure that associated packets
760 * in IrTTP are freed. However, we have no way to cancel
761 * the packet that we have passed to IrLAP. So, if a packet
762 * remains in IrLAP (retry on the link or else) after we
763 * close the socket, we are dead !
765 if (skb
->sk
!= NULL
) {
766 /* IrSOCK application, IrOBEX, ... */
769 /* IrCOMM over IrTTP, IrLAN, ... */
771 /* Pass the skb to IrLMP - done */
772 irlmp_data_request(self
->lsap
, skb
);
773 self
->stats
.tx_packets
++;
776 /* Check if we can accept more frames from client.
777 * We don't want to wait until the todo timer to do that, and we
778 * can't use tasklets (grr...), so we are obliged to give control
779 * to client. That's ok, this test will be true not too often
780 * (max once per LAP window) and we are called from places
781 * where we can spend a bit of time doing stuff. - Jean II */
782 if ((self
->tx_sdu_busy
) &&
783 (skb_queue_len(&self
->tx_queue
) < TTP_TX_LOW_THRESHOLD
) &&
786 if (self
->notify
.flow_indication
)
787 self
->notify
.flow_indication(self
->notify
.instance
,
790 /* self->tx_sdu_busy is the state of the client.
791 * We don't really have a race here, but it's always safer
792 * to update our state after the client - Jean II */
793 self
->tx_sdu_busy
= FALSE
;
797 self
->tx_queue_lock
= 0;
801 * Function irttp_give_credit (self)
803 * Send a dataless flowdata TTP-PDU and give available credit to peer
806 static inline void irttp_give_credit(struct tsap_cb
*self
)
808 struct sk_buff
*tx_skb
= NULL
;
812 IRDA_ASSERT(self
!= NULL
, return;);
813 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
815 IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
817 self
->send_credit
, self
->avail_credit
, self
->remote_credit
);
819 /* Give credit to peer */
820 tx_skb
= alloc_skb(TTP_MAX_HEADER
, GFP_ATOMIC
);
824 /* Reserve space for LMP, and LAP header */
825 skb_reserve(tx_skb
, LMP_MAX_HEADER
);
828 * Since we can transmit and receive frames concurrently,
829 * the code below is a critical region and we must assure that
830 * nobody messes with the credits while we update them.
832 spin_lock_irqsave(&self
->lock
, flags
);
834 n
= self
->avail_credit
;
835 self
->avail_credit
= 0;
837 /* Only space for 127 credits in frame */
839 self
->avail_credit
= n
- 127;
842 self
->remote_credit
+= n
;
844 spin_unlock_irqrestore(&self
->lock
, flags
);
847 tx_skb
->data
[0] = (__u8
) (n
& 0x7f);
849 irlmp_data_request(self
->lsap
, tx_skb
);
850 self
->stats
.tx_packets
++;
854 * Function irttp_udata_indication (instance, sap, skb)
856 * Received some unit-data (unreliable)
859 static int irttp_udata_indication(void *instance
, void *sap
,
862 struct tsap_cb
*self
;
865 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
867 self
= (struct tsap_cb
*) instance
;
869 IRDA_ASSERT(self
!= NULL
, return -1;);
870 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
871 IRDA_ASSERT(skb
!= NULL
, return -1;);
873 self
->stats
.rx_packets
++;
875 /* Just pass data to layer above */
876 if (self
->notify
.udata_indication
) {
877 err
= self
->notify
.udata_indication(self
->notify
.instance
,
879 /* Same comment as in irttp_do_data_indication() */
883 /* Either no handler, or handler returns an error */
890 * Function irttp_data_indication (instance, sap, skb)
892 * Receive segment from IrLMP.
895 static int irttp_data_indication(void *instance
, void *sap
,
898 struct tsap_cb
*self
;
902 self
= (struct tsap_cb
*) instance
;
904 n
= skb
->data
[0] & 0x7f; /* Extract the credits */
906 self
->stats
.rx_packets
++;
908 /* Deal with inbound credit
909 * Since we can transmit and receive frames concurrently,
910 * the code below is a critical region and we must assure that
911 * nobody messes with the credits while we update them.
913 spin_lock_irqsave(&self
->lock
, flags
);
914 self
->send_credit
+= n
;
916 self
->remote_credit
--;
917 spin_unlock_irqrestore(&self
->lock
, flags
);
920 * Data or dataless packet? Dataless frames contains only the
925 * We don't remove the TTP header, since we must preserve the
926 * more bit, so the defragment routing knows what to do
928 skb_queue_tail(&self
->rx_queue
, skb
);
930 /* Dataless flowdata TTP-PDU */
935 /* Push data to the higher layer.
936 * We do it synchronously because running the todo timer for each
937 * receive packet would be too much overhead and latency.
938 * By passing control to the higher layer, we run the risk that
939 * it may take time or grab a lock. Most often, the higher layer
940 * will only put packet in a queue.
941 * Anyway, packets are only dripping through the IrDA, so we can
942 * have time before the next packet.
943 * Further, we are run from NET_BH, so the worse that can happen is
944 * us missing the optimal time to send back the PF bit in LAP.
946 irttp_run_rx_queue(self
);
948 /* We now give credits to peer in irttp_run_rx_queue().
949 * We need to send credit *NOW*, otherwise we are going
950 * to miss the next Tx window. The todo timer may take
951 * a while before it's run... - Jean II */
954 * If the peer device has given us some credits and we didn't have
955 * anyone from before, then we need to shedule the tx queue.
956 * We need to do that because our Tx have stopped (so we may not
957 * get any LAP flow indication) and the user may be stopped as
960 if (self
->send_credit
== n
) {
961 /* Restart pushing stuff to LAP */
962 irttp_run_tx_queue(self
);
963 /* Note : we don't want to schedule the todo timer
964 * because it has horrible latency. No tasklets
965 * because the tasklet API is broken. - Jean II */
972 * Function irttp_status_indication (self, reason)
974 * Status_indication, just pass to the higher layer...
977 static void irttp_status_indication(void *instance
,
978 LINK_STATUS link
, LOCK_STATUS lock
)
980 struct tsap_cb
*self
;
982 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
984 self
= (struct tsap_cb
*) instance
;
986 IRDA_ASSERT(self
!= NULL
, return;);
987 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
989 /* Check if client has already closed the TSAP and gone away */
990 if (self
->close_pend
)
994 * Inform service user if he has requested it
996 if (self
->notify
.status_indication
!= NULL
)
997 self
->notify
.status_indication(self
->notify
.instance
,
1000 IRDA_DEBUG(2, "%s(), no handler\n", __FUNCTION__
);
1004 * Function irttp_flow_indication (self, reason)
1006 * Flow_indication : IrLAP tells us to send more data.
1009 static void irttp_flow_indication(void *instance
, void *sap
, LOCAL_FLOW flow
)
1011 struct tsap_cb
*self
;
1013 self
= (struct tsap_cb
*) instance
;
1015 IRDA_ASSERT(self
!= NULL
, return;);
1016 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1018 IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__
, self
);
1020 /* We are "polled" directly from LAP, and the LAP want to fill
1021 * its Tx window. We want to do our best to send it data, so that
1022 * we maximise the window. On the other hand, we want to limit the
1023 * amount of work here so that LAP doesn't hang forever waiting
1024 * for packets. - Jean II */
1026 /* Try to send some packets. Currently, LAP calls us every time
1027 * there is one free slot, so we will send only one packet.
1028 * This allow the scheduler to do its round robin - Jean II */
1029 irttp_run_tx_queue(self
);
1031 /* Note regarding the interraction with higher layer.
1032 * irttp_run_tx_queue() may call the client when its queue
1033 * start to empty, via notify.flow_indication(). Initially.
1034 * I wanted this to happen in a tasklet, to avoid client
1035 * grabbing the CPU, but we can't use tasklets safely. And timer
1036 * is definitely too slow.
1037 * This will happen only once per LAP window, and usually at
1038 * the third packet (unless window is smaller). LAP is still
1039 * doing mtt and sending first packet so it's sort of OK
1040 * to do that. Jean II */
1042 /* If we need to send disconnect. try to do it now */
1043 if(self
->disconnect_pend
)
1044 irttp_start_todo_timer(self
, 0);
1048 * Function irttp_flow_request (self, command)
1050 * This function could be used by the upper layers to tell IrTTP to stop
1051 * delivering frames if the receive queues are starting to get full, or
1052 * to tell IrTTP to start delivering frames again.
1054 void irttp_flow_request(struct tsap_cb
*self
, LOCAL_FLOW flow
)
1056 IRDA_DEBUG(1, "%s()\n", __FUNCTION__
);
1058 IRDA_ASSERT(self
!= NULL
, return;);
1059 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1063 IRDA_DEBUG(1, "%s(), flow stop\n", __FUNCTION__
);
1064 self
->rx_sdu_busy
= TRUE
;
1067 IRDA_DEBUG(1, "%s(), flow start\n", __FUNCTION__
);
1068 self
->rx_sdu_busy
= FALSE
;
1070 /* Client say he can accept more data, try to free our
1071 * queues ASAP - Jean II */
1072 irttp_run_rx_queue(self
);
1076 IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __FUNCTION__
);
1079 EXPORT_SYMBOL(irttp_flow_request
);
1082 * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
1084 * Try to connect to remote destination TSAP selector
1087 int irttp_connect_request(struct tsap_cb
*self
, __u8 dtsap_sel
,
1088 __u32 saddr
, __u32 daddr
,
1089 struct qos_info
*qos
, __u32 max_sdu_size
,
1090 struct sk_buff
*userdata
)
1092 struct sk_buff
*tx_skb
;
1096 IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __FUNCTION__
, max_sdu_size
);
1098 IRDA_ASSERT(self
!= NULL
, return -EBADR
;);
1099 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -EBADR
;);
1101 if (self
->connected
) {
1103 dev_kfree_skb(userdata
);
1107 /* Any userdata supplied? */
1108 if (userdata
== NULL
) {
1109 tx_skb
= alloc_skb(TTP_MAX_HEADER
+ TTP_SAR_HEADER
,
1114 /* Reserve space for MUX_CONTROL and LAP header */
1115 skb_reserve(tx_skb
, TTP_MAX_HEADER
+ TTP_SAR_HEADER
);
1119 * Check that the client has reserved enough space for
1122 IRDA_ASSERT(skb_headroom(userdata
) >= TTP_MAX_HEADER
,
1123 { dev_kfree_skb(userdata
); return -1; } );
1126 /* Initialize connection parameters */
1127 self
->connected
= FALSE
;
1128 self
->avail_credit
= 0;
1129 self
->rx_max_sdu_size
= max_sdu_size
;
1130 self
->rx_sdu_size
= 0;
1131 self
->rx_sdu_busy
= FALSE
;
1132 self
->dtsap_sel
= dtsap_sel
;
1134 n
= self
->initial_credit
;
1136 self
->remote_credit
= 0;
1137 self
->send_credit
= 0;
1140 * Give away max 127 credits for now
1143 self
->avail_credit
=n
-127;
1147 self
->remote_credit
= n
;
1150 if (max_sdu_size
> 0) {
1151 IRDA_ASSERT(skb_headroom(tx_skb
) >= (TTP_MAX_HEADER
+ TTP_SAR_HEADER
),
1152 { dev_kfree_skb(tx_skb
); return -1; } );
1154 /* Insert SAR parameters */
1155 frame
= skb_push(tx_skb
, TTP_HEADER
+TTP_SAR_HEADER
);
1157 frame
[0] = TTP_PARAMETERS
| n
;
1158 frame
[1] = 0x04; /* Length */
1159 frame
[2] = 0x01; /* MaxSduSize */
1160 frame
[3] = 0x02; /* Value length */
1162 put_unaligned(cpu_to_be16((__u16
) max_sdu_size
),
1163 (__be16
*)(frame
+4));
1165 /* Insert plain TTP header */
1166 frame
= skb_push(tx_skb
, TTP_HEADER
);
1168 /* Insert initial credit in frame */
1169 frame
[0] = n
& 0x7f;
1172 /* Connect with IrLMP. No QoS parameters for now */
1173 return irlmp_connect_request(self
->lsap
, dtsap_sel
, saddr
, daddr
, qos
,
1176 EXPORT_SYMBOL(irttp_connect_request
);
1179 * Function irttp_connect_confirm (handle, qos, skb)
1181 * Sevice user confirms TSAP connection with peer.
1184 static void irttp_connect_confirm(void *instance
, void *sap
,
1185 struct qos_info
*qos
, __u32 max_seg_size
,
1186 __u8 max_header_size
, struct sk_buff
*skb
)
1188 struct tsap_cb
*self
;
1194 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
1196 self
= (struct tsap_cb
*) instance
;
1198 IRDA_ASSERT(self
!= NULL
, return;);
1199 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1200 IRDA_ASSERT(skb
!= NULL
, return;);
1202 self
->max_seg_size
= max_seg_size
- TTP_HEADER
;
1203 self
->max_header_size
= max_header_size
+ TTP_HEADER
;
1206 * Check if we have got some QoS parameters back! This should be the
1207 * negotiated QoS for the link.
1210 IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
1211 qos
->baud_rate
.bits
);
1212 IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
1213 qos
->baud_rate
.value
);
1216 n
= skb
->data
[0] & 0x7f;
1218 IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __FUNCTION__
, n
);
1220 self
->send_credit
= n
;
1221 self
->tx_max_sdu_size
= 0;
1222 self
->connected
= TRUE
;
1224 parameters
= skb
->data
[0] & 0x80;
1226 IRDA_ASSERT(skb
->len
>= TTP_HEADER
, return;);
1227 skb_pull(skb
, TTP_HEADER
);
1230 plen
= skb
->data
[0];
1232 ret
= irda_param_extract_all(self
, skb
->data
+1,
1233 IRDA_MIN(skb
->len
-1, plen
),
1236 /* Any errors in the parameter list? */
1238 IRDA_WARNING("%s: error extracting parameters\n",
1242 /* Do not accept this connection attempt */
1245 /* Remove parameters */
1246 skb_pull(skb
, IRDA_MIN(skb
->len
, plen
+1));
1249 IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__
,
1250 self
->send_credit
, self
->avail_credit
, self
->remote_credit
);
1252 IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __FUNCTION__
,
1253 self
->tx_max_sdu_size
);
1255 if (self
->notify
.connect_confirm
) {
1256 self
->notify
.connect_confirm(self
->notify
.instance
, self
, qos
,
1257 self
->tx_max_sdu_size
,
1258 self
->max_header_size
, skb
);
1264 * Function irttp_connect_indication (handle, skb)
1266 * Some other device is connecting to this TSAP
1269 void irttp_connect_indication(void *instance
, void *sap
, struct qos_info
*qos
,
1270 __u32 max_seg_size
, __u8 max_header_size
,
1271 struct sk_buff
*skb
)
1273 struct tsap_cb
*self
;
1274 struct lsap_cb
*lsap
;
1280 self
= (struct tsap_cb
*) instance
;
1282 IRDA_ASSERT(self
!= NULL
, return;);
1283 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1284 IRDA_ASSERT(skb
!= NULL
, return;);
1286 lsap
= (struct lsap_cb
*) sap
;
1288 self
->max_seg_size
= max_seg_size
- TTP_HEADER
;
1289 self
->max_header_size
= max_header_size
+TTP_HEADER
;
1291 IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __FUNCTION__
, self
->stsap_sel
);
1293 /* Need to update dtsap_sel if its equal to LSAP_ANY */
1294 self
->dtsap_sel
= lsap
->dlsap_sel
;
1296 n
= skb
->data
[0] & 0x7f;
1298 self
->send_credit
= n
;
1299 self
->tx_max_sdu_size
= 0;
1301 parameters
= skb
->data
[0] & 0x80;
1303 IRDA_ASSERT(skb
->len
>= TTP_HEADER
, return;);
1304 skb_pull(skb
, TTP_HEADER
);
1307 plen
= skb
->data
[0];
1309 ret
= irda_param_extract_all(self
, skb
->data
+1,
1310 IRDA_MIN(skb
->len
-1, plen
),
1313 /* Any errors in the parameter list? */
1315 IRDA_WARNING("%s: error extracting parameters\n",
1319 /* Do not accept this connection attempt */
1323 /* Remove parameters */
1324 skb_pull(skb
, IRDA_MIN(skb
->len
, plen
+1));
1327 if (self
->notify
.connect_indication
) {
1328 self
->notify
.connect_indication(self
->notify
.instance
, self
,
1329 qos
, self
->tx_max_sdu_size
,
1330 self
->max_header_size
, skb
);
1336 * Function irttp_connect_response (handle, userdata)
1338 * Service user is accepting the connection, just pass it down to
1342 int irttp_connect_response(struct tsap_cb
*self
, __u32 max_sdu_size
,
1343 struct sk_buff
*userdata
)
1345 struct sk_buff
*tx_skb
;
1350 IRDA_ASSERT(self
!= NULL
, return -1;);
1351 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
1353 IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __FUNCTION__
,
1356 /* Any userdata supplied? */
1357 if (userdata
== NULL
) {
1358 tx_skb
= alloc_skb(TTP_MAX_HEADER
+ TTP_SAR_HEADER
,
1363 /* Reserve space for MUX_CONTROL and LAP header */
1364 skb_reserve(tx_skb
, TTP_MAX_HEADER
+ TTP_SAR_HEADER
);
1368 * Check that the client has reserved enough space for
1371 IRDA_ASSERT(skb_headroom(userdata
) >= TTP_MAX_HEADER
,
1372 { dev_kfree_skb(userdata
); return -1; } );
1375 self
->avail_credit
= 0;
1376 self
->remote_credit
= 0;
1377 self
->rx_max_sdu_size
= max_sdu_size
;
1378 self
->rx_sdu_size
= 0;
1379 self
->rx_sdu_busy
= FALSE
;
1381 n
= self
->initial_credit
;
1383 /* Frame has only space for max 127 credits (7 bits) */
1385 self
->avail_credit
= n
- 127;
1389 self
->remote_credit
= n
;
1390 self
->connected
= TRUE
;
1393 if (max_sdu_size
> 0) {
1394 IRDA_ASSERT(skb_headroom(tx_skb
) >= (TTP_MAX_HEADER
+ TTP_SAR_HEADER
),
1395 { dev_kfree_skb(tx_skb
); return -1; } );
1397 /* Insert TTP header with SAR parameters */
1398 frame
= skb_push(tx_skb
, TTP_HEADER
+TTP_SAR_HEADER
);
1400 frame
[0] = TTP_PARAMETERS
| n
;
1401 frame
[1] = 0x04; /* Length */
1403 /* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */
1404 /* TTP_SAR_HEADER, ¶m_info) */
1406 frame
[2] = 0x01; /* MaxSduSize */
1407 frame
[3] = 0x02; /* Value length */
1409 put_unaligned(cpu_to_be16((__u16
) max_sdu_size
),
1410 (__be16
*)(frame
+4));
1412 /* Insert TTP header */
1413 frame
= skb_push(tx_skb
, TTP_HEADER
);
1415 frame
[0] = n
& 0x7f;
1418 ret
= irlmp_connect_response(self
->lsap
, tx_skb
);
1422 EXPORT_SYMBOL(irttp_connect_response
);
1425 * Function irttp_dup (self, instance)
1427 * Duplicate TSAP, can be used by servers to confirm a connection on a
1428 * new TSAP so it can keep listening on the old one.
1430 struct tsap_cb
*irttp_dup(struct tsap_cb
*orig
, void *instance
)
1432 struct tsap_cb
*new;
1433 unsigned long flags
;
1435 IRDA_DEBUG(1, "%s()\n", __FUNCTION__
);
1437 /* Protect our access to the old tsap instance */
1438 spin_lock_irqsave(&irttp
->tsaps
->hb_spinlock
, flags
);
1440 /* Find the old instance */
1441 if (!hashbin_find(irttp
->tsaps
, (long) orig
, NULL
)) {
1442 IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __FUNCTION__
);
1443 spin_unlock_irqrestore(&irttp
->tsaps
->hb_spinlock
, flags
);
1447 /* Allocate a new instance */
1448 new = kmalloc(sizeof(struct tsap_cb
), GFP_ATOMIC
);
1450 IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __FUNCTION__
);
1451 spin_unlock_irqrestore(&irttp
->tsaps
->hb_spinlock
, flags
);
1455 memcpy(new, orig
, sizeof(struct tsap_cb
));
1457 /* We don't need the old instance any more */
1458 spin_unlock_irqrestore(&irttp
->tsaps
->hb_spinlock
, flags
);
1460 /* Try to dup the LSAP (may fail if we were too slow) */
1461 new->lsap
= irlmp_dup(orig
->lsap
, new);
1463 IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__
);
1468 /* Not everything should be copied */
1469 new->notify
.instance
= instance
;
1471 /* Initialize internal objects */
1472 irttp_init_tsap(new);
1474 /* This is locked */
1475 hashbin_insert(irttp
->tsaps
, (irda_queue_t
*) new, (long) new, NULL
);
1479 EXPORT_SYMBOL(irttp_dup
);
1482 * Function irttp_disconnect_request (self)
1484 * Close this connection please! If priority is high, the queued data
1485 * segments, if any, will be deallocated first
1488 int irttp_disconnect_request(struct tsap_cb
*self
, struct sk_buff
*userdata
,
1493 IRDA_ASSERT(self
!= NULL
, return -1;);
1494 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
1496 /* Already disconnected? */
1497 if (!self
->connected
) {
1498 IRDA_DEBUG(4, "%s(), already disconnected!\n", __FUNCTION__
);
1500 dev_kfree_skb(userdata
);
1504 /* Disconnect already pending ?
1505 * We need to use an atomic operation to prevent reentry. This
1506 * function may be called from various context, like user, timer
1507 * for following a disconnect_indication() (i.e. net_bh).
1509 if(test_and_set_bit(0, &self
->disconnect_pend
)) {
1510 IRDA_DEBUG(0, "%s(), disconnect already pending\n",
1513 dev_kfree_skb(userdata
);
1515 /* Try to make some progress */
1516 irttp_run_tx_queue(self
);
1521 * Check if there is still data segments in the transmit queue
1523 if (!skb_queue_empty(&self
->tx_queue
)) {
1524 if (priority
== P_HIGH
) {
1526 * No need to send the queued data, if we are
1527 * disconnecting right now since the data will
1528 * not have any usable connection to be sent on
1530 IRDA_DEBUG(1, "%s(): High priority!!()\n", __FUNCTION__
);
1531 irttp_flush_queues(self
);
1532 } else if (priority
== P_NORMAL
) {
1534 * Must delay disconnect until after all data segments
1535 * have been sent and the tx_queue is empty
1537 /* We'll reuse this one later for the disconnect */
1538 self
->disconnect_skb
= userdata
; /* May be NULL */
1540 irttp_run_tx_queue(self
);
1542 irttp_start_todo_timer(self
, HZ
/10);
1546 /* Note : we don't need to check if self->rx_queue is full and the
1547 * state of self->rx_sdu_busy because the disconnect response will
1548 * be sent at the LMP level (so even if the peer has its Tx queue
1549 * full of data). - Jean II */
1551 IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __FUNCTION__
);
1552 self
->connected
= FALSE
;
1555 struct sk_buff
*tx_skb
;
1556 tx_skb
= alloc_skb(LMP_MAX_HEADER
, GFP_ATOMIC
);
1561 * Reserve space for MUX and LAP header
1563 skb_reserve(tx_skb
, LMP_MAX_HEADER
);
1567 ret
= irlmp_disconnect_request(self
->lsap
, userdata
);
1569 /* The disconnect is no longer pending */
1570 clear_bit(0, &self
->disconnect_pend
); /* FALSE */
1574 EXPORT_SYMBOL(irttp_disconnect_request
);
1577 * Function irttp_disconnect_indication (self, reason)
1579 * Disconnect indication, TSAP disconnected by peer?
1582 void irttp_disconnect_indication(void *instance
, void *sap
, LM_REASON reason
,
1583 struct sk_buff
*skb
)
1585 struct tsap_cb
*self
;
1587 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
1589 self
= (struct tsap_cb
*) instance
;
1591 IRDA_ASSERT(self
!= NULL
, return;);
1592 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1594 /* Prevent higher layer to send more data */
1595 self
->connected
= FALSE
;
1597 /* Check if client has already tried to close the TSAP */
1598 if (self
->close_pend
) {
1599 /* In this case, the higher layer is probably gone. Don't
1600 * bother it and clean up the remains - Jean II */
1603 irttp_close_tsap(self
);
1607 /* If we are here, we assume that is the higher layer is still
1608 * waiting for the disconnect notification and able to process it,
1609 * even if he tried to disconnect. Otherwise, it would have already
1610 * attempted to close the tsap and self->close_pend would be TRUE.
1613 /* No need to notify the client if has already tried to disconnect */
1614 if(self
->notify
.disconnect_indication
)
1615 self
->notify
.disconnect_indication(self
->notify
.instance
, self
,
1623 * Function irttp_do_data_indication (self, skb)
1625 * Try to deliver reassembled skb to layer above, and requeue it if that
1626 * for some reason should fail. We mark rx sdu as busy to apply back
1627 * pressure is necessary.
1629 static void irttp_do_data_indication(struct tsap_cb
*self
, struct sk_buff
*skb
)
1633 /* Check if client has already closed the TSAP and gone away */
1634 if (self
->close_pend
) {
1639 err
= self
->notify
.data_indication(self
->notify
.instance
, self
, skb
);
1641 /* Usually the layer above will notify that it's input queue is
1642 * starting to get filled by using the flow request, but this may
1643 * be difficult, so it can instead just refuse to eat it and just
1644 * give an error back
1647 IRDA_DEBUG(0, "%s() requeueing skb!\n", __FUNCTION__
);
1649 /* Make sure we take a break */
1650 self
->rx_sdu_busy
= TRUE
;
1652 /* Need to push the header in again */
1653 skb_push(skb
, TTP_HEADER
);
1654 skb
->data
[0] = 0x00; /* Make sure MORE bit is cleared */
1656 /* Put skb back on queue */
1657 skb_queue_head(&self
->rx_queue
, skb
);
1662 * Function irttp_run_rx_queue (self)
1664 * Check if we have any frames to be transmitted, or if we have any
1665 * available credit to give away.
1667 void irttp_run_rx_queue(struct tsap_cb
*self
)
1669 struct sk_buff
*skb
;
1672 IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__
,
1673 self
->send_credit
, self
->avail_credit
, self
->remote_credit
);
1675 /* Get exclusive access to the rx queue, otherwise don't touch it */
1676 if (irda_lock(&self
->rx_queue_lock
) == FALSE
)
1680 * Reassemble all frames in receive queue and deliver them
1682 while (!self
->rx_sdu_busy
&& (skb
= skb_dequeue(&self
->rx_queue
))) {
1683 /* This bit will tell us if it's the last fragment or not */
1684 more
= skb
->data
[0] & 0x80;
1686 /* Remove TTP header */
1687 skb_pull(skb
, TTP_HEADER
);
1689 /* Add the length of the remaining data */
1690 self
->rx_sdu_size
+= skb
->len
;
1693 * If SAR is disabled, or user has requested no reassembly
1694 * of received fragments then we just deliver them
1695 * immediately. This can be requested by clients that
1696 * implements byte streams without any message boundaries
1698 if (self
->rx_max_sdu_size
== TTP_SAR_DISABLE
) {
1699 irttp_do_data_indication(self
, skb
);
1700 self
->rx_sdu_size
= 0;
1705 /* Check if this is a fragment, and not the last fragment */
1708 * Queue the fragment if we still are within the
1709 * limits of the maximum size of the rx_sdu
1711 if (self
->rx_sdu_size
<= self
->rx_max_sdu_size
) {
1712 IRDA_DEBUG(4, "%s(), queueing frag\n",
1714 skb_queue_tail(&self
->rx_fragments
, skb
);
1716 /* Free the part of the SDU that is too big */
1722 * This is the last fragment, so time to reassemble!
1724 if ((self
->rx_sdu_size
<= self
->rx_max_sdu_size
) ||
1725 (self
->rx_max_sdu_size
== TTP_SAR_UNBOUND
))
1728 * A little optimizing. Only queue the fragment if
1729 * there are other fragments. Since if this is the
1730 * last and only fragment, there is no need to
1733 if (!skb_queue_empty(&self
->rx_fragments
)) {
1734 skb_queue_tail(&self
->rx_fragments
,
1737 skb
= irttp_reassemble_skb(self
);
1740 /* Now we can deliver the reassembled skb */
1741 irttp_do_data_indication(self
, skb
);
1743 IRDA_DEBUG(1, "%s(), Truncated frame\n", __FUNCTION__
);
1745 /* Free the part of the SDU that is too big */
1748 /* Deliver only the valid but truncated part of SDU */
1749 skb
= irttp_reassemble_skb(self
);
1751 irttp_do_data_indication(self
, skb
);
1753 self
->rx_sdu_size
= 0;
1757 * It's not trivial to keep track of how many credits are available
1758 * by incrementing at each packet, because delivery may fail
1759 * (irttp_do_data_indication() may requeue the frame) and because
1760 * we need to take care of fragmentation.
1761 * We want the other side to send up to initial_credit packets.
1762 * We have some frames in our queues, and we have already allowed it
1763 * to send remote_credit.
1764 * No need to spinlock, write is atomic and self correcting...
1767 self
->avail_credit
= (self
->initial_credit
-
1768 (self
->remote_credit
+
1769 skb_queue_len(&self
->rx_queue
) +
1770 skb_queue_len(&self
->rx_fragments
)));
1772 /* Do we have too much credits to send to peer ? */
1773 if ((self
->remote_credit
<= TTP_RX_MIN_CREDIT
) &&
1774 (self
->avail_credit
> 0)) {
1775 /* Send explicit credit frame */
1776 irttp_give_credit(self
);
1777 /* Note : do *NOT* check if tx_queue is non-empty, that
1778 * will produce deadlocks. I repeat : send a credit frame
1779 * even if we have something to send in our Tx queue.
1780 * If we have credits, it means that our Tx queue is blocked.
1782 * Let's suppose the peer can't keep up with our Tx. He will
1783 * flow control us by not sending us any credits, and we
1784 * will stop Tx and start accumulating credits here.
1785 * Up to the point where the peer will stop its Tx queue,
1786 * for lack of credits.
1787 * Let's assume the peer application is single threaded.
1788 * It will block on Tx and never consume any Rx buffer.
1789 * Deadlock. Guaranteed. - Jean II
1794 self
->rx_queue_lock
= 0;
1797 #ifdef CONFIG_PROC_FS
1798 struct irttp_iter_state
{
1802 static void *irttp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1804 struct irttp_iter_state
*iter
= seq
->private;
1805 struct tsap_cb
*self
;
1807 /* Protect our access to the tsap list */
1808 spin_lock_irq(&irttp
->tsaps
->hb_spinlock
);
1811 for (self
= (struct tsap_cb
*) hashbin_get_first(irttp
->tsaps
);
1813 self
= (struct tsap_cb
*) hashbin_get_next(irttp
->tsaps
)) {
1814 if (iter
->id
== *pos
)
1822 static void *irttp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1824 struct irttp_iter_state
*iter
= seq
->private;
1828 return (void *) hashbin_get_next(irttp
->tsaps
);
1831 static void irttp_seq_stop(struct seq_file
*seq
, void *v
)
1833 spin_unlock_irq(&irttp
->tsaps
->hb_spinlock
);
1836 static int irttp_seq_show(struct seq_file
*seq
, void *v
)
1838 const struct irttp_iter_state
*iter
= seq
->private;
1839 const struct tsap_cb
*self
= v
;
1841 seq_printf(seq
, "TSAP %d, ", iter
->id
);
1842 seq_printf(seq
, "stsap_sel: %02x, ",
1844 seq_printf(seq
, "dtsap_sel: %02x\n",
1846 seq_printf(seq
, " connected: %s, ",
1847 self
->connected
? "TRUE":"FALSE");
1848 seq_printf(seq
, "avail credit: %d, ",
1849 self
->avail_credit
);
1850 seq_printf(seq
, "remote credit: %d, ",
1851 self
->remote_credit
);
1852 seq_printf(seq
, "send credit: %d\n",
1854 seq_printf(seq
, " tx packets: %ld, ",
1855 self
->stats
.tx_packets
);
1856 seq_printf(seq
, "rx packets: %ld, ",
1857 self
->stats
.rx_packets
);
1858 seq_printf(seq
, "tx_queue len: %d ",
1859 skb_queue_len(&self
->tx_queue
));
1860 seq_printf(seq
, "rx_queue len: %d\n",
1861 skb_queue_len(&self
->rx_queue
));
1862 seq_printf(seq
, " tx_sdu_busy: %s, ",
1863 self
->tx_sdu_busy
? "TRUE":"FALSE");
1864 seq_printf(seq
, "rx_sdu_busy: %s\n",
1865 self
->rx_sdu_busy
? "TRUE":"FALSE");
1866 seq_printf(seq
, " max_seg_size: %d, ",
1867 self
->max_seg_size
);
1868 seq_printf(seq
, "tx_max_sdu_size: %d, ",
1869 self
->tx_max_sdu_size
);
1870 seq_printf(seq
, "rx_max_sdu_size: %d\n",
1871 self
->rx_max_sdu_size
);
1873 seq_printf(seq
, " Used by (%s)\n\n",
1878 static const struct seq_operations irttp_seq_ops
= {
1879 .start
= irttp_seq_start
,
1880 .next
= irttp_seq_next
,
1881 .stop
= irttp_seq_stop
,
1882 .show
= irttp_seq_show
,
1885 static int irttp_seq_open(struct inode
*inode
, struct file
*file
)
1887 return seq_open_private(file
, &irttp_seq_ops
,
1888 sizeof(struct irttp_iter_state
));
1891 const struct file_operations irttp_seq_fops
= {
1892 .owner
= THIS_MODULE
,
1893 .open
= irttp_seq_open
,
1895 .llseek
= seq_lseek
,
1896 .release
= seq_release_private
,
1899 #endif /* PROC_FS */