ARM: pxa: PalmZ72: Add OV9640 camera support
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / arp.c
blob7927589813b54b5baa50ae29904c5b0e21f6a513
1 /* linux/net/ipv4/arp.c
3 * Copyright (C) 1994 by Florian La Roche
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
76 #include <linux/module.h>
77 #include <linux/types.h>
78 #include <linux/string.h>
79 #include <linux/kernel.h>
80 #include <linux/capability.h>
81 #include <linux/socket.h>
82 #include <linux/sockios.h>
83 #include <linux/errno.h>
84 #include <linux/in.h>
85 #include <linux/mm.h>
86 #include <linux/inet.h>
87 #include <linux/inetdevice.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/fddidevice.h>
91 #include <linux/if_arp.h>
92 #include <linux/trdevice.h>
93 #include <linux/skbuff.h>
94 #include <linux/proc_fs.h>
95 #include <linux/seq_file.h>
96 #include <linux/stat.h>
97 #include <linux/init.h>
98 #include <linux/net.h>
99 #include <linux/rcupdate.h>
100 #include <linux/jhash.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117 #include <net/atmclip.h>
118 struct neigh_table *clip_tbl_hook;
119 EXPORT_SYMBOL(clip_tbl_hook);
120 #endif
122 #include <asm/system.h>
123 #include <linux/uaccess.h>
125 #include <linux/netfilter_arp.h>
128 * Interface to generic neighbour cache.
130 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 rnd);
131 static int arp_constructor(struct neighbour *neigh);
132 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
133 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
134 static void parp_redo(struct sk_buff *skb);
136 static const struct neigh_ops arp_generic_ops = {
137 .family = AF_INET,
138 .solicit = arp_solicit,
139 .error_report = arp_error_report,
140 .output = neigh_resolve_output,
141 .connected_output = neigh_connected_output,
142 .hh_output = dev_queue_xmit,
143 .queue_xmit = dev_queue_xmit,
146 static const struct neigh_ops arp_hh_ops = {
147 .family = AF_INET,
148 .solicit = arp_solicit,
149 .error_report = arp_error_report,
150 .output = neigh_resolve_output,
151 .connected_output = neigh_resolve_output,
152 .hh_output = dev_queue_xmit,
153 .queue_xmit = dev_queue_xmit,
156 static const struct neigh_ops arp_direct_ops = {
157 .family = AF_INET,
158 .output = dev_queue_xmit,
159 .connected_output = dev_queue_xmit,
160 .hh_output = dev_queue_xmit,
161 .queue_xmit = dev_queue_xmit,
164 static const struct neigh_ops arp_broken_ops = {
165 .family = AF_INET,
166 .solicit = arp_solicit,
167 .error_report = arp_error_report,
168 .output = neigh_compat_output,
169 .connected_output = neigh_compat_output,
170 .hh_output = dev_queue_xmit,
171 .queue_xmit = dev_queue_xmit,
174 struct neigh_table arp_tbl = {
175 .family = AF_INET,
176 .entry_size = sizeof(struct neighbour) + 4,
177 .key_len = 4,
178 .hash = arp_hash,
179 .constructor = arp_constructor,
180 .proxy_redo = parp_redo,
181 .id = "arp_cache",
182 .parms = {
183 .tbl = &arp_tbl,
184 .base_reachable_time = 30 * HZ,
185 .retrans_time = 1 * HZ,
186 .gc_staletime = 60 * HZ,
187 .reachable_time = 30 * HZ,
188 .delay_probe_time = 5 * HZ,
189 .queue_len = 3,
190 .ucast_probes = 3,
191 .mcast_probes = 3,
192 .anycast_delay = 1 * HZ,
193 .proxy_delay = (8 * HZ) / 10,
194 .proxy_qlen = 64,
195 .locktime = 1 * HZ,
197 .gc_interval = 30 * HZ,
198 .gc_thresh1 = 128,
199 .gc_thresh2 = 512,
200 .gc_thresh3 = 1024,
202 EXPORT_SYMBOL(arp_tbl);
204 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
206 switch (dev->type) {
207 case ARPHRD_ETHER:
208 case ARPHRD_FDDI:
209 case ARPHRD_IEEE802:
210 ip_eth_mc_map(addr, haddr);
211 return 0;
212 case ARPHRD_IEEE802_TR:
213 ip_tr_mc_map(addr, haddr);
214 return 0;
215 case ARPHRD_INFINIBAND:
216 ip_ib_mc_map(addr, dev->broadcast, haddr);
217 return 0;
218 default:
219 if (dir) {
220 memcpy(haddr, dev->broadcast, dev->addr_len);
221 return 0;
224 return -EINVAL;
228 static u32 arp_hash(const void *pkey,
229 const struct net_device *dev,
230 __u32 hash_rnd)
232 return jhash_2words(*(u32 *)pkey, dev->ifindex, hash_rnd);
235 static int arp_constructor(struct neighbour *neigh)
237 __be32 addr = *(__be32 *)neigh->primary_key;
238 struct net_device *dev = neigh->dev;
239 struct in_device *in_dev;
240 struct neigh_parms *parms;
242 rcu_read_lock();
243 in_dev = __in_dev_get_rcu(dev);
244 if (in_dev == NULL) {
245 rcu_read_unlock();
246 return -EINVAL;
249 neigh->type = inet_addr_type(dev_net(dev), addr);
251 parms = in_dev->arp_parms;
252 __neigh_parms_put(neigh->parms);
253 neigh->parms = neigh_parms_clone(parms);
254 rcu_read_unlock();
256 if (!dev->header_ops) {
257 neigh->nud_state = NUD_NOARP;
258 neigh->ops = &arp_direct_ops;
259 neigh->output = neigh->ops->queue_xmit;
260 } else {
261 /* Good devices (checked by reading texts, but only Ethernet is
262 tested)
264 ARPHRD_ETHER: (ethernet, apfddi)
265 ARPHRD_FDDI: (fddi)
266 ARPHRD_IEEE802: (tr)
267 ARPHRD_METRICOM: (strip)
268 ARPHRD_ARCNET:
269 etc. etc. etc.
271 ARPHRD_IPDDP will also work, if author repairs it.
272 I did not it, because this driver does not work even
273 in old paradigm.
276 #if 1
277 /* So... these "amateur" devices are hopeless.
278 The only thing, that I can say now:
279 It is very sad that we need to keep ugly obsolete
280 code to make them happy.
282 They should be moved to more reasonable state, now
283 they use rebuild_header INSTEAD OF hard_start_xmit!!!
284 Besides that, they are sort of out of date
285 (a lot of redundant clones/copies, useless in 2.1),
286 I wonder why people believe that they work.
288 switch (dev->type) {
289 default:
290 break;
291 case ARPHRD_ROSE:
292 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
293 case ARPHRD_AX25:
294 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
295 case ARPHRD_NETROM:
296 #endif
297 neigh->ops = &arp_broken_ops;
298 neigh->output = neigh->ops->output;
299 return 0;
300 #else
301 break;
302 #endif
304 #endif
305 if (neigh->type == RTN_MULTICAST) {
306 neigh->nud_state = NUD_NOARP;
307 arp_mc_map(addr, neigh->ha, dev, 1);
308 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
309 neigh->nud_state = NUD_NOARP;
310 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
311 } else if (neigh->type == RTN_BROADCAST ||
312 (dev->flags & IFF_POINTOPOINT)) {
313 neigh->nud_state = NUD_NOARP;
314 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
317 if (dev->header_ops->cache)
318 neigh->ops = &arp_hh_ops;
319 else
320 neigh->ops = &arp_generic_ops;
322 if (neigh->nud_state & NUD_VALID)
323 neigh->output = neigh->ops->connected_output;
324 else
325 neigh->output = neigh->ops->output;
327 return 0;
330 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
332 dst_link_failure(skb);
333 kfree_skb(skb);
336 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
338 __be32 saddr = 0;
339 u8 *dst_ha = NULL;
340 struct net_device *dev = neigh->dev;
341 __be32 target = *(__be32 *)neigh->primary_key;
342 int probes = atomic_read(&neigh->probes);
343 struct in_device *in_dev;
345 rcu_read_lock();
346 in_dev = __in_dev_get_rcu(dev);
347 if (!in_dev) {
348 rcu_read_unlock();
349 return;
351 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
352 default:
353 case 0: /* By default announce any local IP */
354 if (skb && inet_addr_type(dev_net(dev),
355 ip_hdr(skb)->saddr) == RTN_LOCAL)
356 saddr = ip_hdr(skb)->saddr;
357 break;
358 case 1: /* Restrict announcements of saddr in same subnet */
359 if (!skb)
360 break;
361 saddr = ip_hdr(skb)->saddr;
362 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
363 /* saddr should be known to target */
364 if (inet_addr_onlink(in_dev, target, saddr))
365 break;
367 saddr = 0;
368 break;
369 case 2: /* Avoid secondary IPs, get a primary/preferred one */
370 break;
372 rcu_read_unlock();
374 if (!saddr)
375 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
377 probes -= neigh->parms->ucast_probes;
378 if (probes < 0) {
379 if (!(neigh->nud_state & NUD_VALID))
380 printk(KERN_DEBUG
381 "trying to ucast probe in NUD_INVALID\n");
382 dst_ha = neigh->ha;
383 read_lock_bh(&neigh->lock);
384 } else {
385 probes -= neigh->parms->app_probes;
386 if (probes < 0) {
387 #ifdef CONFIG_ARPD
388 neigh_app_ns(neigh);
389 #endif
390 return;
394 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
395 dst_ha, dev->dev_addr, NULL);
396 if (dst_ha)
397 read_unlock_bh(&neigh->lock);
400 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
402 int scope;
404 switch (IN_DEV_ARP_IGNORE(in_dev)) {
405 case 0: /* Reply, the tip is already validated */
406 return 0;
407 case 1: /* Reply only if tip is configured on the incoming interface */
408 sip = 0;
409 scope = RT_SCOPE_HOST;
410 break;
411 case 2: /*
412 * Reply only if tip is configured on the incoming interface
413 * and is in same subnet as sip
415 scope = RT_SCOPE_HOST;
416 break;
417 case 3: /* Do not reply for scope host addresses */
418 sip = 0;
419 scope = RT_SCOPE_LINK;
420 break;
421 case 4: /* Reserved */
422 case 5:
423 case 6:
424 case 7:
425 return 0;
426 case 8: /* Do not reply */
427 return 1;
428 default:
429 return 0;
431 return !inet_confirm_addr(in_dev, sip, tip, scope);
434 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
436 struct flowi fl = { .fl4_dst = sip,
437 .fl4_src = tip };
438 struct rtable *rt;
439 int flag = 0;
440 /*unsigned long now; */
441 struct net *net = dev_net(dev);
443 if (ip_route_output_key(net, &rt, &fl) < 0)
444 return 1;
445 if (rt->dst.dev != dev) {
446 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
447 flag = 1;
449 ip_rt_put(rt);
450 return flag;
453 /* OBSOLETE FUNCTIONS */
456 * Find an arp mapping in the cache. If not found, post a request.
458 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
459 * even if it exists. It is supposed that skb->dev was mangled
460 * by a virtual device (eql, shaper). Nobody but broken devices
461 * is allowed to use this function, it is scheduled to be removed. --ANK
464 static int arp_set_predefined(int addr_hint, unsigned char *haddr,
465 __be32 paddr, struct net_device *dev)
467 switch (addr_hint) {
468 case RTN_LOCAL:
469 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
470 memcpy(haddr, dev->dev_addr, dev->addr_len);
471 return 1;
472 case RTN_MULTICAST:
473 arp_mc_map(paddr, haddr, dev, 1);
474 return 1;
475 case RTN_BROADCAST:
476 memcpy(haddr, dev->broadcast, dev->addr_len);
477 return 1;
479 return 0;
483 int arp_find(unsigned char *haddr, struct sk_buff *skb)
485 struct net_device *dev = skb->dev;
486 __be32 paddr;
487 struct neighbour *n;
489 if (!skb_dst(skb)) {
490 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
491 kfree_skb(skb);
492 return 1;
495 paddr = skb_rtable(skb)->rt_gateway;
497 if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
498 paddr, dev))
499 return 0;
501 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
503 if (n) {
504 n->used = jiffies;
505 if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
506 neigh_ha_snapshot(haddr, n, dev);
507 neigh_release(n);
508 return 0;
510 neigh_release(n);
511 } else
512 kfree_skb(skb);
513 return 1;
515 EXPORT_SYMBOL(arp_find);
517 /* END OF OBSOLETE FUNCTIONS */
519 int arp_bind_neighbour(struct dst_entry *dst)
521 struct net_device *dev = dst->dev;
522 struct neighbour *n = dst->neighbour;
524 if (dev == NULL)
525 return -EINVAL;
526 if (n == NULL) {
527 __be32 nexthop = ((struct rtable *)dst)->rt_gateway;
528 if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
529 nexthop = 0;
530 n = __neigh_lookup_errno(
531 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
532 dev->type == ARPHRD_ATM ?
533 clip_tbl_hook :
534 #endif
535 &arp_tbl, &nexthop, dev);
536 if (IS_ERR(n))
537 return PTR_ERR(n);
538 dst->neighbour = n;
540 return 0;
544 * Check if we can use proxy ARP for this path
546 static inline int arp_fwd_proxy(struct in_device *in_dev,
547 struct net_device *dev, struct rtable *rt)
549 struct in_device *out_dev;
550 int imi, omi = -1;
552 if (rt->dst.dev == dev)
553 return 0;
555 if (!IN_DEV_PROXY_ARP(in_dev))
556 return 0;
557 imi = IN_DEV_MEDIUM_ID(in_dev);
558 if (imi == 0)
559 return 1;
560 if (imi == -1)
561 return 0;
563 /* place to check for proxy_arp for routes */
565 out_dev = __in_dev_get_rcu(rt->dst.dev);
566 if (out_dev)
567 omi = IN_DEV_MEDIUM_ID(out_dev);
569 return omi != imi && omi != -1;
573 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
575 * RFC3069 supports proxy arp replies back to the same interface. This
576 * is done to support (ethernet) switch features, like RFC 3069, where
577 * the individual ports are not allowed to communicate with each
578 * other, BUT they are allowed to talk to the upstream router. As
579 * described in RFC 3069, it is possible to allow these hosts to
580 * communicate through the upstream router, by proxy_arp'ing.
582 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
584 * This technology is known by different names:
585 * In RFC 3069 it is called VLAN Aggregation.
586 * Cisco and Allied Telesyn call it Private VLAN.
587 * Hewlett-Packard call it Source-Port filtering or port-isolation.
588 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
591 static inline int arp_fwd_pvlan(struct in_device *in_dev,
592 struct net_device *dev, struct rtable *rt,
593 __be32 sip, __be32 tip)
595 /* Private VLAN is only concerned about the same ethernet segment */
596 if (rt->dst.dev != dev)
597 return 0;
599 /* Don't reply on self probes (often done by windowz boxes)*/
600 if (sip == tip)
601 return 0;
603 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
604 return 1;
605 else
606 return 0;
610 * Interface to link layer: send routine and receive handler.
614 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
615 * message.
617 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
618 struct net_device *dev, __be32 src_ip,
619 const unsigned char *dest_hw,
620 const unsigned char *src_hw,
621 const unsigned char *target_hw)
623 struct sk_buff *skb;
624 struct arphdr *arp;
625 unsigned char *arp_ptr;
628 * Allocate a buffer
631 skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
632 if (skb == NULL)
633 return NULL;
635 skb_reserve(skb, LL_RESERVED_SPACE(dev));
636 skb_reset_network_header(skb);
637 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
638 skb->dev = dev;
639 skb->protocol = htons(ETH_P_ARP);
640 if (src_hw == NULL)
641 src_hw = dev->dev_addr;
642 if (dest_hw == NULL)
643 dest_hw = dev->broadcast;
646 * Fill the device header for the ARP frame
648 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
649 goto out;
652 * Fill out the arp protocol part.
654 * The arp hardware type should match the device type, except for FDDI,
655 * which (according to RFC 1390) should always equal 1 (Ethernet).
658 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
659 * DIX code for the protocol. Make these device structure fields.
661 switch (dev->type) {
662 default:
663 arp->ar_hrd = htons(dev->type);
664 arp->ar_pro = htons(ETH_P_IP);
665 break;
667 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
668 case ARPHRD_AX25:
669 arp->ar_hrd = htons(ARPHRD_AX25);
670 arp->ar_pro = htons(AX25_P_IP);
671 break;
673 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
674 case ARPHRD_NETROM:
675 arp->ar_hrd = htons(ARPHRD_NETROM);
676 arp->ar_pro = htons(AX25_P_IP);
677 break;
678 #endif
679 #endif
681 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
682 case ARPHRD_FDDI:
683 arp->ar_hrd = htons(ARPHRD_ETHER);
684 arp->ar_pro = htons(ETH_P_IP);
685 break;
686 #endif
687 #if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
688 case ARPHRD_IEEE802_TR:
689 arp->ar_hrd = htons(ARPHRD_IEEE802);
690 arp->ar_pro = htons(ETH_P_IP);
691 break;
692 #endif
695 arp->ar_hln = dev->addr_len;
696 arp->ar_pln = 4;
697 arp->ar_op = htons(type);
699 arp_ptr = (unsigned char *)(arp + 1);
701 memcpy(arp_ptr, src_hw, dev->addr_len);
702 arp_ptr += dev->addr_len;
703 memcpy(arp_ptr, &src_ip, 4);
704 arp_ptr += 4;
705 if (target_hw != NULL)
706 memcpy(arp_ptr, target_hw, dev->addr_len);
707 else
708 memset(arp_ptr, 0, dev->addr_len);
709 arp_ptr += dev->addr_len;
710 memcpy(arp_ptr, &dest_ip, 4);
712 return skb;
714 out:
715 kfree_skb(skb);
716 return NULL;
718 EXPORT_SYMBOL(arp_create);
721 * Send an arp packet.
723 void arp_xmit(struct sk_buff *skb)
725 /* Send it off, maybe filter it using firewalling first. */
726 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
728 EXPORT_SYMBOL(arp_xmit);
731 * Create and send an arp packet.
733 void arp_send(int type, int ptype, __be32 dest_ip,
734 struct net_device *dev, __be32 src_ip,
735 const unsigned char *dest_hw, const unsigned char *src_hw,
736 const unsigned char *target_hw)
738 struct sk_buff *skb;
741 * No arp on this interface.
744 if (dev->flags&IFF_NOARP)
745 return;
747 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
748 dest_hw, src_hw, target_hw);
749 if (skb == NULL)
750 return;
752 arp_xmit(skb);
754 EXPORT_SYMBOL(arp_send);
757 * Process an arp request.
760 static int arp_process(struct sk_buff *skb)
762 struct net_device *dev = skb->dev;
763 struct in_device *in_dev = __in_dev_get_rcu(dev);
764 struct arphdr *arp;
765 unsigned char *arp_ptr;
766 struct rtable *rt;
767 unsigned char *sha;
768 __be32 sip, tip;
769 u16 dev_type = dev->type;
770 int addr_type;
771 struct neighbour *n;
772 struct net *net = dev_net(dev);
774 /* arp_rcv below verifies the ARP header and verifies the device
775 * is ARP'able.
778 if (in_dev == NULL)
779 goto out;
781 arp = arp_hdr(skb);
783 switch (dev_type) {
784 default:
785 if (arp->ar_pro != htons(ETH_P_IP) ||
786 htons(dev_type) != arp->ar_hrd)
787 goto out;
788 break;
789 case ARPHRD_ETHER:
790 case ARPHRD_IEEE802_TR:
791 case ARPHRD_FDDI:
792 case ARPHRD_IEEE802:
794 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
795 * devices, according to RFC 2625) devices will accept ARP
796 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
797 * This is the case also of FDDI, where the RFC 1390 says that
798 * FDDI devices should accept ARP hardware of (1) Ethernet,
799 * however, to be more robust, we'll accept both 1 (Ethernet)
800 * or 6 (IEEE 802.2)
802 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
803 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
804 arp->ar_pro != htons(ETH_P_IP))
805 goto out;
806 break;
807 case ARPHRD_AX25:
808 if (arp->ar_pro != htons(AX25_P_IP) ||
809 arp->ar_hrd != htons(ARPHRD_AX25))
810 goto out;
811 break;
812 case ARPHRD_NETROM:
813 if (arp->ar_pro != htons(AX25_P_IP) ||
814 arp->ar_hrd != htons(ARPHRD_NETROM))
815 goto out;
816 break;
819 /* Understand only these message types */
821 if (arp->ar_op != htons(ARPOP_REPLY) &&
822 arp->ar_op != htons(ARPOP_REQUEST))
823 goto out;
826 * Extract fields
828 arp_ptr = (unsigned char *)(arp + 1);
829 sha = arp_ptr;
830 arp_ptr += dev->addr_len;
831 memcpy(&sip, arp_ptr, 4);
832 arp_ptr += 4;
833 arp_ptr += dev->addr_len;
834 memcpy(&tip, arp_ptr, 4);
836 * Check for bad requests for 127.x.x.x and requests for multicast
837 * addresses. If this is one such, delete it.
839 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
840 goto out;
843 * Special case: We must set Frame Relay source Q.922 address
845 if (dev_type == ARPHRD_DLCI)
846 sha = dev->broadcast;
849 * Process entry. The idea here is we want to send a reply if it is a
850 * request for us or if it is a request for someone else that we hold
851 * a proxy for. We want to add an entry to our cache if it is a reply
852 * to us or if it is a request for our address.
853 * (The assumption for this last is that if someone is requesting our
854 * address, they are probably intending to talk to us, so it saves time
855 * if we cache their address. Their address is also probably not in
856 * our cache, since ours is not in their cache.)
858 * Putting this another way, we only care about replies if they are to
859 * us, in which case we add them to the cache. For requests, we care
860 * about those for us and those for our proxies. We reply to both,
861 * and in the case of requests for us we add the requester to the arp
862 * cache.
865 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
866 if (sip == 0) {
867 if (arp->ar_op == htons(ARPOP_REQUEST) &&
868 inet_addr_type(net, tip) == RTN_LOCAL &&
869 !arp_ignore(in_dev, sip, tip))
870 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
871 dev->dev_addr, sha);
872 goto out;
875 if (arp->ar_op == htons(ARPOP_REQUEST) &&
876 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
878 rt = skb_rtable(skb);
879 addr_type = rt->rt_type;
881 if (addr_type == RTN_LOCAL) {
882 int dont_send;
884 dont_send = arp_ignore(in_dev, sip, tip);
885 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
886 dont_send = arp_filter(sip, tip, dev);
887 if (!dont_send) {
888 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
889 if (n) {
890 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
891 dev, tip, sha, dev->dev_addr,
892 sha);
893 neigh_release(n);
896 goto out;
897 } else if (IN_DEV_FORWARD(in_dev)) {
898 if (addr_type == RTN_UNICAST &&
899 (arp_fwd_proxy(in_dev, dev, rt) ||
900 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
901 pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
902 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
903 if (n)
904 neigh_release(n);
906 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
907 skb->pkt_type == PACKET_HOST ||
908 in_dev->arp_parms->proxy_delay == 0) {
909 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
910 dev, tip, sha, dev->dev_addr,
911 sha);
912 } else {
913 pneigh_enqueue(&arp_tbl,
914 in_dev->arp_parms, skb);
915 return 0;
917 goto out;
922 /* Update our ARP tables */
924 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
926 if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
927 /* Unsolicited ARP is not accepted by default.
928 It is possible, that this option should be enabled for some
929 devices (strip is candidate)
931 if (n == NULL &&
932 (arp->ar_op == htons(ARPOP_REPLY) ||
933 (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
934 inet_addr_type(net, sip) == RTN_UNICAST)
935 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
938 if (n) {
939 int state = NUD_REACHABLE;
940 int override;
942 /* If several different ARP replies follows back-to-back,
943 use the FIRST one. It is possible, if several proxy
944 agents are active. Taking the first reply prevents
945 arp trashing and chooses the fastest router.
947 override = time_after(jiffies, n->updated + n->parms->locktime);
949 /* Broadcast replies and request packets
950 do not assert neighbour reachability.
952 if (arp->ar_op != htons(ARPOP_REPLY) ||
953 skb->pkt_type != PACKET_HOST)
954 state = NUD_STALE;
955 neigh_update(n, sha, state,
956 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
957 neigh_release(n);
960 out:
961 consume_skb(skb);
962 return 0;
965 static void parp_redo(struct sk_buff *skb)
967 arp_process(skb);
972 * Receive an arp request from the device layer.
975 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
976 struct packet_type *pt, struct net_device *orig_dev)
978 struct arphdr *arp;
980 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
981 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
982 goto freeskb;
984 arp = arp_hdr(skb);
985 if (arp->ar_hln != dev->addr_len ||
986 dev->flags & IFF_NOARP ||
987 skb->pkt_type == PACKET_OTHERHOST ||
988 skb->pkt_type == PACKET_LOOPBACK ||
989 arp->ar_pln != 4)
990 goto freeskb;
992 skb = skb_share_check(skb, GFP_ATOMIC);
993 if (skb == NULL)
994 goto out_of_mem;
996 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
998 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
1000 freeskb:
1001 kfree_skb(skb);
1002 out_of_mem:
1003 return 0;
1007 * User level interface (ioctl)
1011 * Set (create) an ARP cache entry.
1014 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
1016 if (dev == NULL) {
1017 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1018 return 0;
1020 if (__in_dev_get_rtnl(dev)) {
1021 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1022 return 0;
1024 return -ENXIO;
1027 static int arp_req_set_public(struct net *net, struct arpreq *r,
1028 struct net_device *dev)
1030 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1031 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1033 if (mask && mask != htonl(0xFFFFFFFF))
1034 return -EINVAL;
1035 if (!dev && (r->arp_flags & ATF_COM)) {
1036 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1037 r->arp_ha.sa_data);
1038 if (!dev)
1039 return -ENODEV;
1041 if (mask) {
1042 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1043 return -ENOBUFS;
1044 return 0;
1047 return arp_req_set_proxy(net, dev, 1);
1050 static int arp_req_set(struct net *net, struct arpreq *r,
1051 struct net_device *dev)
1053 __be32 ip;
1054 struct neighbour *neigh;
1055 int err;
1057 if (r->arp_flags & ATF_PUBL)
1058 return arp_req_set_public(net, r, dev);
1060 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1061 if (r->arp_flags & ATF_PERM)
1062 r->arp_flags |= ATF_COM;
1063 if (dev == NULL) {
1064 struct flowi fl = { .fl4_dst = ip,
1065 .fl4_tos = RTO_ONLINK };
1066 struct rtable *rt;
1067 err = ip_route_output_key(net, &rt, &fl);
1068 if (err != 0)
1069 return err;
1070 dev = rt->dst.dev;
1071 ip_rt_put(rt);
1072 if (!dev)
1073 return -EINVAL;
1075 switch (dev->type) {
1076 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1077 case ARPHRD_FDDI:
1079 * According to RFC 1390, FDDI devices should accept ARP
1080 * hardware types of 1 (Ethernet). However, to be more
1081 * robust, we'll accept hardware types of either 1 (Ethernet)
1082 * or 6 (IEEE 802.2).
1084 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1085 r->arp_ha.sa_family != ARPHRD_ETHER &&
1086 r->arp_ha.sa_family != ARPHRD_IEEE802)
1087 return -EINVAL;
1088 break;
1089 #endif
1090 default:
1091 if (r->arp_ha.sa_family != dev->type)
1092 return -EINVAL;
1093 break;
1096 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1097 err = PTR_ERR(neigh);
1098 if (!IS_ERR(neigh)) {
1099 unsigned state = NUD_STALE;
1100 if (r->arp_flags & ATF_PERM)
1101 state = NUD_PERMANENT;
1102 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1103 r->arp_ha.sa_data : NULL, state,
1104 NEIGH_UPDATE_F_OVERRIDE |
1105 NEIGH_UPDATE_F_ADMIN);
1106 neigh_release(neigh);
1108 return err;
1111 static unsigned arp_state_to_flags(struct neighbour *neigh)
1113 if (neigh->nud_state&NUD_PERMANENT)
1114 return ATF_PERM | ATF_COM;
1115 else if (neigh->nud_state&NUD_VALID)
1116 return ATF_COM;
1117 else
1118 return 0;
1122 * Get an ARP cache entry.
1125 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1127 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1128 struct neighbour *neigh;
1129 int err = -ENXIO;
1131 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1132 if (neigh) {
1133 read_lock_bh(&neigh->lock);
1134 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1135 r->arp_flags = arp_state_to_flags(neigh);
1136 read_unlock_bh(&neigh->lock);
1137 r->arp_ha.sa_family = dev->type;
1138 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1139 neigh_release(neigh);
1140 err = 0;
1142 return err;
1145 int arp_invalidate(struct net_device *dev, __be32 ip)
1147 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1148 int err = -ENXIO;
1150 if (neigh) {
1151 if (neigh->nud_state & ~NUD_NOARP)
1152 err = neigh_update(neigh, NULL, NUD_FAILED,
1153 NEIGH_UPDATE_F_OVERRIDE|
1154 NEIGH_UPDATE_F_ADMIN);
1155 neigh_release(neigh);
1158 return err;
1160 EXPORT_SYMBOL(arp_invalidate);
1162 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1163 struct net_device *dev)
1165 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1166 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1168 if (mask == htonl(0xFFFFFFFF))
1169 return pneigh_delete(&arp_tbl, net, &ip, dev);
1171 if (mask)
1172 return -EINVAL;
1174 return arp_req_set_proxy(net, dev, 0);
1177 static int arp_req_delete(struct net *net, struct arpreq *r,
1178 struct net_device *dev)
1180 int err;
1181 __be32 ip;
1183 if (r->arp_flags & ATF_PUBL)
1184 return arp_req_delete_public(net, r, dev);
1186 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1187 if (dev == NULL) {
1188 struct flowi fl = { .fl4_dst = ip,
1189 .fl4_tos = RTO_ONLINK };
1190 struct rtable *rt;
1191 err = ip_route_output_key(net, &rt, &fl);
1192 if (err != 0)
1193 return err;
1194 dev = rt->dst.dev;
1195 ip_rt_put(rt);
1196 if (!dev)
1197 return -EINVAL;
1199 return arp_invalidate(dev, ip);
1203 * Handle an ARP layer I/O control request.
1206 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1208 int err;
1209 struct arpreq r;
1210 struct net_device *dev = NULL;
1212 switch (cmd) {
1213 case SIOCDARP:
1214 case SIOCSARP:
1215 if (!capable(CAP_NET_ADMIN))
1216 return -EPERM;
1217 case SIOCGARP:
1218 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1219 if (err)
1220 return -EFAULT;
1221 break;
1222 default:
1223 return -EINVAL;
1226 if (r.arp_pa.sa_family != AF_INET)
1227 return -EPFNOSUPPORT;
1229 if (!(r.arp_flags & ATF_PUBL) &&
1230 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1231 return -EINVAL;
1232 if (!(r.arp_flags & ATF_NETMASK))
1233 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1234 htonl(0xFFFFFFFFUL);
1235 rtnl_lock();
1236 if (r.arp_dev[0]) {
1237 err = -ENODEV;
1238 dev = __dev_get_by_name(net, r.arp_dev);
1239 if (dev == NULL)
1240 goto out;
1242 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1243 if (!r.arp_ha.sa_family)
1244 r.arp_ha.sa_family = dev->type;
1245 err = -EINVAL;
1246 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1247 goto out;
1248 } else if (cmd == SIOCGARP) {
1249 err = -ENODEV;
1250 goto out;
1253 switch (cmd) {
1254 case SIOCDARP:
1255 err = arp_req_delete(net, &r, dev);
1256 break;
1257 case SIOCSARP:
1258 err = arp_req_set(net, &r, dev);
1259 break;
1260 case SIOCGARP:
1261 err = arp_req_get(&r, dev);
1262 break;
1264 out:
1265 rtnl_unlock();
1266 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1267 err = -EFAULT;
1268 return err;
1271 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1272 void *ptr)
1274 struct net_device *dev = ptr;
1276 switch (event) {
1277 case NETDEV_CHANGEADDR:
1278 neigh_changeaddr(&arp_tbl, dev);
1279 rt_cache_flush(dev_net(dev), 0);
1280 break;
1281 default:
1282 break;
1285 return NOTIFY_DONE;
1288 static struct notifier_block arp_netdev_notifier = {
1289 .notifier_call = arp_netdev_event,
1292 /* Note, that it is not on notifier chain.
1293 It is necessary, that this routine was called after route cache will be
1294 flushed.
1296 void arp_ifdown(struct net_device *dev)
1298 neigh_ifdown(&arp_tbl, dev);
1303 * Called once on startup.
1306 static struct packet_type arp_packet_type __read_mostly = {
1307 .type = cpu_to_be16(ETH_P_ARP),
1308 .func = arp_rcv,
1311 static int arp_proc_init(void);
1313 void __init arp_init(void)
1315 neigh_table_init(&arp_tbl);
1317 dev_add_pack(&arp_packet_type);
1318 arp_proc_init();
1319 #ifdef CONFIG_SYSCTL
1320 neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1321 #endif
1322 register_netdevice_notifier(&arp_netdev_notifier);
1325 #ifdef CONFIG_PROC_FS
1326 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1328 /* ------------------------------------------------------------------------ */
1330 * ax25 -> ASCII conversion
1332 static char *ax2asc2(ax25_address *a, char *buf)
1334 char c, *s;
1335 int n;
1337 for (n = 0, s = buf; n < 6; n++) {
1338 c = (a->ax25_call[n] >> 1) & 0x7F;
1340 if (c != ' ')
1341 *s++ = c;
1344 *s++ = '-';
1345 n = (a->ax25_call[6] >> 1) & 0x0F;
1346 if (n > 9) {
1347 *s++ = '1';
1348 n -= 10;
1351 *s++ = n + '0';
1352 *s++ = '\0';
1354 if (*buf == '\0' || *buf == '-')
1355 return "*";
1357 return buf;
1359 #endif /* CONFIG_AX25 */
1361 #define HBUFFERLEN 30
1363 static void arp_format_neigh_entry(struct seq_file *seq,
1364 struct neighbour *n)
1366 char hbuffer[HBUFFERLEN];
1367 int k, j;
1368 char tbuf[16];
1369 struct net_device *dev = n->dev;
1370 int hatype = dev->type;
1372 read_lock(&n->lock);
1373 /* Convert hardware address to XX:XX:XX:XX ... form. */
1374 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1375 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1376 ax2asc2((ax25_address *)n->ha, hbuffer);
1377 else {
1378 #endif
1379 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1380 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1381 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1382 hbuffer[k++] = ':';
1384 if (k != 0)
1385 --k;
1386 hbuffer[k] = 0;
1387 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1389 #endif
1390 sprintf(tbuf, "%pI4", n->primary_key);
1391 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1392 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1393 read_unlock(&n->lock);
1396 static void arp_format_pneigh_entry(struct seq_file *seq,
1397 struct pneigh_entry *n)
1399 struct net_device *dev = n->dev;
1400 int hatype = dev ? dev->type : 0;
1401 char tbuf[16];
1403 sprintf(tbuf, "%pI4", n->key);
1404 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1405 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1406 dev ? dev->name : "*");
1409 static int arp_seq_show(struct seq_file *seq, void *v)
1411 if (v == SEQ_START_TOKEN) {
1412 seq_puts(seq, "IP address HW type Flags "
1413 "HW address Mask Device\n");
1414 } else {
1415 struct neigh_seq_state *state = seq->private;
1417 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1418 arp_format_pneigh_entry(seq, v);
1419 else
1420 arp_format_neigh_entry(seq, v);
1423 return 0;
1426 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1428 /* Don't want to confuse "arp -a" w/ magic entries,
1429 * so we tell the generic iterator to skip NUD_NOARP.
1431 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1434 /* ------------------------------------------------------------------------ */
1436 static const struct seq_operations arp_seq_ops = {
1437 .start = arp_seq_start,
1438 .next = neigh_seq_next,
1439 .stop = neigh_seq_stop,
1440 .show = arp_seq_show,
1443 static int arp_seq_open(struct inode *inode, struct file *file)
1445 return seq_open_net(inode, file, &arp_seq_ops,
1446 sizeof(struct neigh_seq_state));
1449 static const struct file_operations arp_seq_fops = {
1450 .owner = THIS_MODULE,
1451 .open = arp_seq_open,
1452 .read = seq_read,
1453 .llseek = seq_lseek,
1454 .release = seq_release_net,
1458 static int __net_init arp_net_init(struct net *net)
1460 if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1461 return -ENOMEM;
1462 return 0;
1465 static void __net_exit arp_net_exit(struct net *net)
1467 proc_net_remove(net, "arp");
1470 static struct pernet_operations arp_net_ops = {
1471 .init = arp_net_init,
1472 .exit = arp_net_exit,
1475 static int __init arp_proc_init(void)
1477 return register_pernet_subsys(&arp_net_ops);
1480 #else /* CONFIG_PROC_FS */
1482 static int __init arp_proc_init(void)
1484 return 0;
1487 #endif /* CONFIG_PROC_FS */