ext4: add EXT4_IOC_ALLOC_DA_BLKS ioctl
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
bloba6e004f8042cb778d33a430c590fdc511210d16e
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
44 #define MPAGE_DA_EXTENT_TAIL 0x01
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47 loff_t new_size)
49 return jbd2_journal_begin_ordered_truncate(
50 EXT4_SB(inode->i_sb)->s_journal,
51 &EXT4_I(inode)->jinode,
52 new_size);
55 static void ext4_invalidatepage(struct page *page, unsigned long offset);
58 * Test whether an inode is a fast symlink.
60 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 int ea_blocks = EXT4_I(inode)->i_file_acl ?
63 (inode->i_sb->s_blocksize >> 9) : 0;
65 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
69 * The ext4 forget function must perform a revoke if we are freeing data
70 * which has been journaled. Metadata (eg. indirect blocks) must be
71 * revoked in all cases.
73 * "bh" may be NULL: a metadata block may have been freed from memory
74 * but there may still be a record of it in the journal, and that record
75 * still needs to be revoked.
77 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
78 struct buffer_head *bh, ext4_fsblk_t blocknr)
80 int err;
82 might_sleep();
84 BUFFER_TRACE(bh, "enter");
86 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
87 "data mode %lx\n",
88 bh, is_metadata, inode->i_mode,
89 test_opt(inode->i_sb, DATA_FLAGS));
91 /* Never use the revoke function if we are doing full data
92 * journaling: there is no need to, and a V1 superblock won't
93 * support it. Otherwise, only skip the revoke on un-journaled
94 * data blocks. */
96 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
97 (!is_metadata && !ext4_should_journal_data(inode))) {
98 if (bh) {
99 BUFFER_TRACE(bh, "call jbd2_journal_forget");
100 return ext4_journal_forget(handle, bh);
102 return 0;
106 * data!=journal && (is_metadata || should_journal_data(inode))
108 BUFFER_TRACE(bh, "call ext4_journal_revoke");
109 err = ext4_journal_revoke(handle, blocknr, bh);
110 if (err)
111 ext4_abort(inode->i_sb, __func__,
112 "error %d when attempting revoke", err);
113 BUFFER_TRACE(bh, "exit");
114 return err;
118 * Work out how many blocks we need to proceed with the next chunk of a
119 * truncate transaction.
121 static unsigned long blocks_for_truncate(struct inode *inode)
123 ext4_lblk_t needed;
125 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
127 /* Give ourselves just enough room to cope with inodes in which
128 * i_blocks is corrupt: we've seen disk corruptions in the past
129 * which resulted in random data in an inode which looked enough
130 * like a regular file for ext4 to try to delete it. Things
131 * will go a bit crazy if that happens, but at least we should
132 * try not to panic the whole kernel. */
133 if (needed < 2)
134 needed = 2;
136 /* But we need to bound the transaction so we don't overflow the
137 * journal. */
138 if (needed > EXT4_MAX_TRANS_DATA)
139 needed = EXT4_MAX_TRANS_DATA;
141 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
145 * Truncate transactions can be complex and absolutely huge. So we need to
146 * be able to restart the transaction at a conventient checkpoint to make
147 * sure we don't overflow the journal.
149 * start_transaction gets us a new handle for a truncate transaction,
150 * and extend_transaction tries to extend the existing one a bit. If
151 * extend fails, we need to propagate the failure up and restart the
152 * transaction in the top-level truncate loop. --sct
154 static handle_t *start_transaction(struct inode *inode)
156 handle_t *result;
158 result = ext4_journal_start(inode, blocks_for_truncate(inode));
159 if (!IS_ERR(result))
160 return result;
162 ext4_std_error(inode->i_sb, PTR_ERR(result));
163 return result;
167 * Try to extend this transaction for the purposes of truncation.
169 * Returns 0 if we managed to create more room. If we can't create more
170 * room, and the transaction must be restarted we return 1.
172 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
174 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
175 return 0;
176 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
177 return 0;
178 return 1;
182 * Restart the transaction associated with *handle. This does a commit,
183 * so before we call here everything must be consistently dirtied against
184 * this transaction.
186 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
188 jbd_debug(2, "restarting handle %p\n", handle);
189 return ext4_journal_restart(handle, blocks_for_truncate(inode));
193 * Called at the last iput() if i_nlink is zero.
195 void ext4_delete_inode (struct inode * inode)
197 handle_t *handle;
198 int err;
200 if (ext4_should_order_data(inode))
201 ext4_begin_ordered_truncate(inode, 0);
202 truncate_inode_pages(&inode->i_data, 0);
204 if (is_bad_inode(inode))
205 goto no_delete;
207 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208 if (IS_ERR(handle)) {
209 ext4_std_error(inode->i_sb, PTR_ERR(handle));
211 * If we're going to skip the normal cleanup, we still need to
212 * make sure that the in-core orphan linked list is properly
213 * cleaned up.
215 ext4_orphan_del(NULL, inode);
216 goto no_delete;
219 if (IS_SYNC(inode))
220 handle->h_sync = 1;
221 inode->i_size = 0;
222 err = ext4_mark_inode_dirty(handle, inode);
223 if (err) {
224 ext4_warning(inode->i_sb, __func__,
225 "couldn't mark inode dirty (err %d)", err);
226 goto stop_handle;
228 if (inode->i_blocks)
229 ext4_truncate(inode);
232 * ext4_ext_truncate() doesn't reserve any slop when it
233 * restarts journal transactions; therefore there may not be
234 * enough credits left in the handle to remove the inode from
235 * the orphan list and set the dtime field.
237 if (handle->h_buffer_credits < 3) {
238 err = ext4_journal_extend(handle, 3);
239 if (err > 0)
240 err = ext4_journal_restart(handle, 3);
241 if (err != 0) {
242 ext4_warning(inode->i_sb, __func__,
243 "couldn't extend journal (err %d)", err);
244 stop_handle:
245 ext4_journal_stop(handle);
246 goto no_delete;
251 * Kill off the orphan record which ext4_truncate created.
252 * AKPM: I think this can be inside the above `if'.
253 * Note that ext4_orphan_del() has to be able to cope with the
254 * deletion of a non-existent orphan - this is because we don't
255 * know if ext4_truncate() actually created an orphan record.
256 * (Well, we could do this if we need to, but heck - it works)
258 ext4_orphan_del(handle, inode);
259 EXT4_I(inode)->i_dtime = get_seconds();
262 * One subtle ordering requirement: if anything has gone wrong
263 * (transaction abort, IO errors, whatever), then we can still
264 * do these next steps (the fs will already have been marked as
265 * having errors), but we can't free the inode if the mark_dirty
266 * fails.
268 if (ext4_mark_inode_dirty(handle, inode))
269 /* If that failed, just do the required in-core inode clear. */
270 clear_inode(inode);
271 else
272 ext4_free_inode(handle, inode);
273 ext4_journal_stop(handle);
274 return;
275 no_delete:
276 clear_inode(inode); /* We must guarantee clearing of inode... */
279 typedef struct {
280 __le32 *p;
281 __le32 key;
282 struct buffer_head *bh;
283 } Indirect;
285 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
287 p->key = *(p->p = v);
288 p->bh = bh;
292 * ext4_block_to_path - parse the block number into array of offsets
293 * @inode: inode in question (we are only interested in its superblock)
294 * @i_block: block number to be parsed
295 * @offsets: array to store the offsets in
296 * @boundary: set this non-zero if the referred-to block is likely to be
297 * followed (on disk) by an indirect block.
299 * To store the locations of file's data ext4 uses a data structure common
300 * for UNIX filesystems - tree of pointers anchored in the inode, with
301 * data blocks at leaves and indirect blocks in intermediate nodes.
302 * This function translates the block number into path in that tree -
303 * return value is the path length and @offsets[n] is the offset of
304 * pointer to (n+1)th node in the nth one. If @block is out of range
305 * (negative or too large) warning is printed and zero returned.
307 * Note: function doesn't find node addresses, so no IO is needed. All
308 * we need to know is the capacity of indirect blocks (taken from the
309 * inode->i_sb).
313 * Portability note: the last comparison (check that we fit into triple
314 * indirect block) is spelled differently, because otherwise on an
315 * architecture with 32-bit longs and 8Kb pages we might get into trouble
316 * if our filesystem had 8Kb blocks. We might use long long, but that would
317 * kill us on x86. Oh, well, at least the sign propagation does not matter -
318 * i_block would have to be negative in the very beginning, so we would not
319 * get there at all.
322 static int ext4_block_to_path(struct inode *inode,
323 ext4_lblk_t i_block,
324 ext4_lblk_t offsets[4], int *boundary)
326 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
327 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
328 const long direct_blocks = EXT4_NDIR_BLOCKS,
329 indirect_blocks = ptrs,
330 double_blocks = (1 << (ptrs_bits * 2));
331 int n = 0;
332 int final = 0;
334 if (i_block < 0) {
335 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
336 } else if (i_block < direct_blocks) {
337 offsets[n++] = i_block;
338 final = direct_blocks;
339 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
340 offsets[n++] = EXT4_IND_BLOCK;
341 offsets[n++] = i_block;
342 final = ptrs;
343 } else if ((i_block -= indirect_blocks) < double_blocks) {
344 offsets[n++] = EXT4_DIND_BLOCK;
345 offsets[n++] = i_block >> ptrs_bits;
346 offsets[n++] = i_block & (ptrs - 1);
347 final = ptrs;
348 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
349 offsets[n++] = EXT4_TIND_BLOCK;
350 offsets[n++] = i_block >> (ptrs_bits * 2);
351 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
352 offsets[n++] = i_block & (ptrs - 1);
353 final = ptrs;
354 } else {
355 ext4_warning(inode->i_sb, "ext4_block_to_path",
356 "block %lu > max in inode %lu",
357 i_block + direct_blocks +
358 indirect_blocks + double_blocks, inode->i_ino);
360 if (boundary)
361 *boundary = final - 1 - (i_block & (ptrs - 1));
362 return n;
366 * ext4_get_branch - read the chain of indirect blocks leading to data
367 * @inode: inode in question
368 * @depth: depth of the chain (1 - direct pointer, etc.)
369 * @offsets: offsets of pointers in inode/indirect blocks
370 * @chain: place to store the result
371 * @err: here we store the error value
373 * Function fills the array of triples <key, p, bh> and returns %NULL
374 * if everything went OK or the pointer to the last filled triple
375 * (incomplete one) otherwise. Upon the return chain[i].key contains
376 * the number of (i+1)-th block in the chain (as it is stored in memory,
377 * i.e. little-endian 32-bit), chain[i].p contains the address of that
378 * number (it points into struct inode for i==0 and into the bh->b_data
379 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380 * block for i>0 and NULL for i==0. In other words, it holds the block
381 * numbers of the chain, addresses they were taken from (and where we can
382 * verify that chain did not change) and buffer_heads hosting these
383 * numbers.
385 * Function stops when it stumbles upon zero pointer (absent block)
386 * (pointer to last triple returned, *@err == 0)
387 * or when it gets an IO error reading an indirect block
388 * (ditto, *@err == -EIO)
389 * or when it reads all @depth-1 indirect blocks successfully and finds
390 * the whole chain, all way to the data (returns %NULL, *err == 0).
392 * Need to be called with
393 * down_read(&EXT4_I(inode)->i_data_sem)
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396 ext4_lblk_t *offsets,
397 Indirect chain[4], int *err)
399 struct super_block *sb = inode->i_sb;
400 Indirect *p = chain;
401 struct buffer_head *bh;
403 *err = 0;
404 /* i_data is not going away, no lock needed */
405 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
406 if (!p->key)
407 goto no_block;
408 while (--depth) {
409 bh = sb_bread(sb, le32_to_cpu(p->key));
410 if (!bh)
411 goto failure;
412 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
413 /* Reader: end */
414 if (!p->key)
415 goto no_block;
417 return NULL;
419 failure:
420 *err = -EIO;
421 no_block:
422 return p;
426 * ext4_find_near - find a place for allocation with sufficient locality
427 * @inode: owner
428 * @ind: descriptor of indirect block.
430 * This function returns the preferred place for block allocation.
431 * It is used when heuristic for sequential allocation fails.
432 * Rules are:
433 * + if there is a block to the left of our position - allocate near it.
434 * + if pointer will live in indirect block - allocate near that block.
435 * + if pointer will live in inode - allocate in the same
436 * cylinder group.
438 * In the latter case we colour the starting block by the callers PID to
439 * prevent it from clashing with concurrent allocations for a different inode
440 * in the same block group. The PID is used here so that functionally related
441 * files will be close-by on-disk.
443 * Caller must make sure that @ind is valid and will stay that way.
445 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
447 struct ext4_inode_info *ei = EXT4_I(inode);
448 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
449 __le32 *p;
450 ext4_fsblk_t bg_start;
451 ext4_fsblk_t last_block;
452 ext4_grpblk_t colour;
454 /* Try to find previous block */
455 for (p = ind->p - 1; p >= start; p--) {
456 if (*p)
457 return le32_to_cpu(*p);
460 /* No such thing, so let's try location of indirect block */
461 if (ind->bh)
462 return ind->bh->b_blocknr;
465 * It is going to be referred to from the inode itself? OK, just put it
466 * into the same cylinder group then.
468 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
469 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
471 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
472 colour = (current->pid % 16) *
473 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
474 else
475 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
476 return bg_start + colour;
480 * ext4_find_goal - find a preferred place for allocation.
481 * @inode: owner
482 * @block: block we want
483 * @partial: pointer to the last triple within a chain
485 * Normally this function find the preferred place for block allocation,
486 * returns it.
488 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
489 Indirect *partial)
491 struct ext4_block_alloc_info *block_i;
493 block_i = EXT4_I(inode)->i_block_alloc_info;
496 * try the heuristic for sequential allocation,
497 * failing that at least try to get decent locality.
499 if (block_i && (block == block_i->last_alloc_logical_block + 1)
500 && (block_i->last_alloc_physical_block != 0)) {
501 return block_i->last_alloc_physical_block + 1;
504 return ext4_find_near(inode, partial);
508 * ext4_blks_to_allocate: Look up the block map and count the number
509 * of direct blocks need to be allocated for the given branch.
511 * @branch: chain of indirect blocks
512 * @k: number of blocks need for indirect blocks
513 * @blks: number of data blocks to be mapped.
514 * @blocks_to_boundary: the offset in the indirect block
516 * return the total number of blocks to be allocate, including the
517 * direct and indirect blocks.
519 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
520 int blocks_to_boundary)
522 unsigned long count = 0;
525 * Simple case, [t,d]Indirect block(s) has not allocated yet
526 * then it's clear blocks on that path have not allocated
528 if (k > 0) {
529 /* right now we don't handle cross boundary allocation */
530 if (blks < blocks_to_boundary + 1)
531 count += blks;
532 else
533 count += blocks_to_boundary + 1;
534 return count;
537 count++;
538 while (count < blks && count <= blocks_to_boundary &&
539 le32_to_cpu(*(branch[0].p + count)) == 0) {
540 count++;
542 return count;
546 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
547 * @indirect_blks: the number of blocks need to allocate for indirect
548 * blocks
550 * @new_blocks: on return it will store the new block numbers for
551 * the indirect blocks(if needed) and the first direct block,
552 * @blks: on return it will store the total number of allocated
553 * direct blocks
555 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
556 ext4_lblk_t iblock, ext4_fsblk_t goal,
557 int indirect_blks, int blks,
558 ext4_fsblk_t new_blocks[4], int *err)
560 int target, i;
561 unsigned long count = 0, blk_allocated = 0;
562 int index = 0;
563 ext4_fsblk_t current_block = 0;
564 int ret = 0;
567 * Here we try to allocate the requested multiple blocks at once,
568 * on a best-effort basis.
569 * To build a branch, we should allocate blocks for
570 * the indirect blocks(if not allocated yet), and at least
571 * the first direct block of this branch. That's the
572 * minimum number of blocks need to allocate(required)
574 /* first we try to allocate the indirect blocks */
575 target = indirect_blks;
576 while (target > 0) {
577 count = target;
578 /* allocating blocks for indirect blocks and direct blocks */
579 current_block = ext4_new_meta_blocks(handle, inode,
580 goal, &count, err);
581 if (*err)
582 goto failed_out;
584 target -= count;
585 /* allocate blocks for indirect blocks */
586 while (index < indirect_blks && count) {
587 new_blocks[index++] = current_block++;
588 count--;
590 if (count > 0) {
592 * save the new block number
593 * for the first direct block
595 new_blocks[index] = current_block;
596 printk(KERN_INFO "%s returned more blocks than "
597 "requested\n", __func__);
598 WARN_ON(1);
599 break;
603 target = blks - count ;
604 blk_allocated = count;
605 if (!target)
606 goto allocated;
607 /* Now allocate data blocks */
608 count = target;
609 /* allocating blocks for data blocks */
610 current_block = ext4_new_blocks(handle, inode, iblock,
611 goal, &count, err);
612 if (*err && (target == blks)) {
614 * if the allocation failed and we didn't allocate
615 * any blocks before
617 goto failed_out;
619 if (!*err) {
620 if (target == blks) {
622 * save the new block number
623 * for the first direct block
625 new_blocks[index] = current_block;
627 blk_allocated += count;
629 allocated:
630 /* total number of blocks allocated for direct blocks */
631 ret = blk_allocated;
632 *err = 0;
633 return ret;
634 failed_out:
635 for (i = 0; i <index; i++)
636 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
637 return ret;
641 * ext4_alloc_branch - allocate and set up a chain of blocks.
642 * @inode: owner
643 * @indirect_blks: number of allocated indirect blocks
644 * @blks: number of allocated direct blocks
645 * @offsets: offsets (in the blocks) to store the pointers to next.
646 * @branch: place to store the chain in.
648 * This function allocates blocks, zeroes out all but the last one,
649 * links them into chain and (if we are synchronous) writes them to disk.
650 * In other words, it prepares a branch that can be spliced onto the
651 * inode. It stores the information about that chain in the branch[], in
652 * the same format as ext4_get_branch() would do. We are calling it after
653 * we had read the existing part of chain and partial points to the last
654 * triple of that (one with zero ->key). Upon the exit we have the same
655 * picture as after the successful ext4_get_block(), except that in one
656 * place chain is disconnected - *branch->p is still zero (we did not
657 * set the last link), but branch->key contains the number that should
658 * be placed into *branch->p to fill that gap.
660 * If allocation fails we free all blocks we've allocated (and forget
661 * their buffer_heads) and return the error value the from failed
662 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
663 * as described above and return 0.
665 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
666 ext4_lblk_t iblock, int indirect_blks,
667 int *blks, ext4_fsblk_t goal,
668 ext4_lblk_t *offsets, Indirect *branch)
670 int blocksize = inode->i_sb->s_blocksize;
671 int i, n = 0;
672 int err = 0;
673 struct buffer_head *bh;
674 int num;
675 ext4_fsblk_t new_blocks[4];
676 ext4_fsblk_t current_block;
678 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
679 *blks, new_blocks, &err);
680 if (err)
681 return err;
683 branch[0].key = cpu_to_le32(new_blocks[0]);
685 * metadata blocks and data blocks are allocated.
687 for (n = 1; n <= indirect_blks; n++) {
689 * Get buffer_head for parent block, zero it out
690 * and set the pointer to new one, then send
691 * parent to disk.
693 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
694 branch[n].bh = bh;
695 lock_buffer(bh);
696 BUFFER_TRACE(bh, "call get_create_access");
697 err = ext4_journal_get_create_access(handle, bh);
698 if (err) {
699 unlock_buffer(bh);
700 brelse(bh);
701 goto failed;
704 memset(bh->b_data, 0, blocksize);
705 branch[n].p = (__le32 *) bh->b_data + offsets[n];
706 branch[n].key = cpu_to_le32(new_blocks[n]);
707 *branch[n].p = branch[n].key;
708 if ( n == indirect_blks) {
709 current_block = new_blocks[n];
711 * End of chain, update the last new metablock of
712 * the chain to point to the new allocated
713 * data blocks numbers
715 for (i=1; i < num; i++)
716 *(branch[n].p + i) = cpu_to_le32(++current_block);
718 BUFFER_TRACE(bh, "marking uptodate");
719 set_buffer_uptodate(bh);
720 unlock_buffer(bh);
722 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
723 err = ext4_journal_dirty_metadata(handle, bh);
724 if (err)
725 goto failed;
727 *blks = num;
728 return err;
729 failed:
730 /* Allocation failed, free what we already allocated */
731 for (i = 1; i <= n ; i++) {
732 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
733 ext4_journal_forget(handle, branch[i].bh);
735 for (i = 0; i <indirect_blks; i++)
736 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
738 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
740 return err;
744 * ext4_splice_branch - splice the allocated branch onto inode.
745 * @inode: owner
746 * @block: (logical) number of block we are adding
747 * @chain: chain of indirect blocks (with a missing link - see
748 * ext4_alloc_branch)
749 * @where: location of missing link
750 * @num: number of indirect blocks we are adding
751 * @blks: number of direct blocks we are adding
753 * This function fills the missing link and does all housekeeping needed in
754 * inode (->i_blocks, etc.). In case of success we end up with the full
755 * chain to new block and return 0.
757 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
758 ext4_lblk_t block, Indirect *where, int num, int blks)
760 int i;
761 int err = 0;
762 struct ext4_block_alloc_info *block_i;
763 ext4_fsblk_t current_block;
765 block_i = EXT4_I(inode)->i_block_alloc_info;
767 * If we're splicing into a [td]indirect block (as opposed to the
768 * inode) then we need to get write access to the [td]indirect block
769 * before the splice.
771 if (where->bh) {
772 BUFFER_TRACE(where->bh, "get_write_access");
773 err = ext4_journal_get_write_access(handle, where->bh);
774 if (err)
775 goto err_out;
777 /* That's it */
779 *where->p = where->key;
782 * Update the host buffer_head or inode to point to more just allocated
783 * direct blocks blocks
785 if (num == 0 && blks > 1) {
786 current_block = le32_to_cpu(where->key) + 1;
787 for (i = 1; i < blks; i++)
788 *(where->p + i ) = cpu_to_le32(current_block++);
792 * update the most recently allocated logical & physical block
793 * in i_block_alloc_info, to assist find the proper goal block for next
794 * allocation
796 if (block_i) {
797 block_i->last_alloc_logical_block = block + blks - 1;
798 block_i->last_alloc_physical_block =
799 le32_to_cpu(where[num].key) + blks - 1;
802 /* We are done with atomic stuff, now do the rest of housekeeping */
804 inode->i_ctime = ext4_current_time(inode);
805 ext4_mark_inode_dirty(handle, inode);
807 /* had we spliced it onto indirect block? */
808 if (where->bh) {
810 * If we spliced it onto an indirect block, we haven't
811 * altered the inode. Note however that if it is being spliced
812 * onto an indirect block at the very end of the file (the
813 * file is growing) then we *will* alter the inode to reflect
814 * the new i_size. But that is not done here - it is done in
815 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
817 jbd_debug(5, "splicing indirect only\n");
818 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
819 err = ext4_journal_dirty_metadata(handle, where->bh);
820 if (err)
821 goto err_out;
822 } else {
824 * OK, we spliced it into the inode itself on a direct block.
825 * Inode was dirtied above.
827 jbd_debug(5, "splicing direct\n");
829 return err;
831 err_out:
832 for (i = 1; i <= num; i++) {
833 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
834 ext4_journal_forget(handle, where[i].bh);
835 ext4_free_blocks(handle, inode,
836 le32_to_cpu(where[i-1].key), 1, 0);
838 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
840 return err;
844 * Allocation strategy is simple: if we have to allocate something, we will
845 * have to go the whole way to leaf. So let's do it before attaching anything
846 * to tree, set linkage between the newborn blocks, write them if sync is
847 * required, recheck the path, free and repeat if check fails, otherwise
848 * set the last missing link (that will protect us from any truncate-generated
849 * removals - all blocks on the path are immune now) and possibly force the
850 * write on the parent block.
851 * That has a nice additional property: no special recovery from the failed
852 * allocations is needed - we simply release blocks and do not touch anything
853 * reachable from inode.
855 * `handle' can be NULL if create == 0.
857 * return > 0, # of blocks mapped or allocated.
858 * return = 0, if plain lookup failed.
859 * return < 0, error case.
862 * Need to be called with
863 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
864 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
866 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
867 ext4_lblk_t iblock, unsigned long maxblocks,
868 struct buffer_head *bh_result,
869 int create, int extend_disksize)
871 int err = -EIO;
872 ext4_lblk_t offsets[4];
873 Indirect chain[4];
874 Indirect *partial;
875 ext4_fsblk_t goal;
876 int indirect_blks;
877 int blocks_to_boundary = 0;
878 int depth;
879 struct ext4_inode_info *ei = EXT4_I(inode);
880 int count = 0;
881 ext4_fsblk_t first_block = 0;
882 loff_t disksize;
885 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
886 J_ASSERT(handle != NULL || create == 0);
887 depth = ext4_block_to_path(inode, iblock, offsets,
888 &blocks_to_boundary);
890 if (depth == 0)
891 goto out;
893 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
895 /* Simplest case - block found, no allocation needed */
896 if (!partial) {
897 first_block = le32_to_cpu(chain[depth - 1].key);
898 clear_buffer_new(bh_result);
899 count++;
900 /*map more blocks*/
901 while (count < maxblocks && count <= blocks_to_boundary) {
902 ext4_fsblk_t blk;
904 blk = le32_to_cpu(*(chain[depth-1].p + count));
906 if (blk == first_block + count)
907 count++;
908 else
909 break;
911 goto got_it;
914 /* Next simple case - plain lookup or failed read of indirect block */
915 if (!create || err == -EIO)
916 goto cleanup;
919 * Okay, we need to do block allocation. Lazily initialize the block
920 * allocation info here if necessary
922 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
923 ext4_init_block_alloc_info(inode);
925 goal = ext4_find_goal(inode, iblock, partial);
927 /* the number of blocks need to allocate for [d,t]indirect blocks */
928 indirect_blks = (chain + depth) - partial - 1;
931 * Next look up the indirect map to count the totoal number of
932 * direct blocks to allocate for this branch.
934 count = ext4_blks_to_allocate(partial, indirect_blks,
935 maxblocks, blocks_to_boundary);
937 * Block out ext4_truncate while we alter the tree
939 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
940 &count, goal,
941 offsets + (partial - chain), partial);
944 * The ext4_splice_branch call will free and forget any buffers
945 * on the new chain if there is a failure, but that risks using
946 * up transaction credits, especially for bitmaps where the
947 * credits cannot be returned. Can we handle this somehow? We
948 * may need to return -EAGAIN upwards in the worst case. --sct
950 if (!err)
951 err = ext4_splice_branch(handle, inode, iblock,
952 partial, indirect_blks, count);
954 * i_disksize growing is protected by i_data_sem. Don't forget to
955 * protect it if you're about to implement concurrent
956 * ext4_get_block() -bzzz
958 if (!err && extend_disksize) {
959 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
960 if (disksize > i_size_read(inode))
961 disksize = i_size_read(inode);
962 if (disksize > ei->i_disksize)
963 ei->i_disksize = disksize;
965 if (err)
966 goto cleanup;
968 set_buffer_new(bh_result);
969 got_it:
970 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
971 if (count > blocks_to_boundary)
972 set_buffer_boundary(bh_result);
973 err = count;
974 /* Clean up and exit */
975 partial = chain + depth - 1; /* the whole chain */
976 cleanup:
977 while (partial > chain) {
978 BUFFER_TRACE(partial->bh, "call brelse");
979 brelse(partial->bh);
980 partial--;
982 BUFFER_TRACE(bh_result, "returned");
983 out:
984 return err;
988 * Calculate the number of metadata blocks need to reserve
989 * to allocate @blocks for non extent file based file
991 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
993 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
994 int ind_blks, dind_blks, tind_blks;
996 /* number of new indirect blocks needed */
997 ind_blks = (blocks + icap - 1) / icap;
999 dind_blks = (ind_blks + icap - 1) / icap;
1001 tind_blks = 1;
1003 return ind_blks + dind_blks + tind_blks;
1007 * Calculate the number of metadata blocks need to reserve
1008 * to allocate given number of blocks
1010 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1012 if (!blocks)
1013 return 0;
1015 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1016 return ext4_ext_calc_metadata_amount(inode, blocks);
1018 return ext4_indirect_calc_metadata_amount(inode, blocks);
1021 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1023 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1024 int total, mdb, mdb_free;
1026 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1027 /* recalculate the number of metablocks still need to be reserved */
1028 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1029 mdb = ext4_calc_metadata_amount(inode, total);
1031 /* figure out how many metablocks to release */
1032 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1033 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1035 /* Account for allocated meta_blocks */
1036 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1038 /* update fs free blocks counter for truncate case */
1039 percpu_counter_add(&sbi->s_freeblocks_counter, mdb_free);
1041 /* update per-inode reservations */
1042 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1043 EXT4_I(inode)->i_reserved_data_blocks -= used;
1045 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1046 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1047 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1048 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1052 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1053 * and returns if the blocks are already mapped.
1055 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1056 * and store the allocated blocks in the result buffer head and mark it
1057 * mapped.
1059 * If file type is extents based, it will call ext4_ext_get_blocks(),
1060 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1061 * based files
1063 * On success, it returns the number of blocks being mapped or allocate.
1064 * if create==0 and the blocks are pre-allocated and uninitialized block,
1065 * the result buffer head is unmapped. If the create ==1, it will make sure
1066 * the buffer head is mapped.
1068 * It returns 0 if plain look up failed (blocks have not been allocated), in
1069 * that casem, buffer head is unmapped
1071 * It returns the error in case of allocation failure.
1073 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1074 unsigned long max_blocks, struct buffer_head *bh,
1075 int create, int extend_disksize, int flag)
1077 int retval;
1079 clear_buffer_mapped(bh);
1082 * Try to see if we can get the block without requesting
1083 * for new file system block.
1085 down_read((&EXT4_I(inode)->i_data_sem));
1086 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1087 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1088 bh, 0, 0);
1089 } else {
1090 retval = ext4_get_blocks_handle(handle,
1091 inode, block, max_blocks, bh, 0, 0);
1093 up_read((&EXT4_I(inode)->i_data_sem));
1095 /* If it is only a block(s) look up */
1096 if (!create)
1097 return retval;
1100 * Returns if the blocks have already allocated
1102 * Note that if blocks have been preallocated
1103 * ext4_ext_get_block() returns th create = 0
1104 * with buffer head unmapped.
1106 if (retval > 0 && buffer_mapped(bh))
1107 return retval;
1110 * New blocks allocate and/or writing to uninitialized extent
1111 * will possibly result in updating i_data, so we take
1112 * the write lock of i_data_sem, and call get_blocks()
1113 * with create == 1 flag.
1115 down_write((&EXT4_I(inode)->i_data_sem));
1118 * if the caller is from delayed allocation writeout path
1119 * we have already reserved fs blocks for allocation
1120 * let the underlying get_block() function know to
1121 * avoid double accounting
1123 if (flag)
1124 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1126 * We need to check for EXT4 here because migrate
1127 * could have changed the inode type in between
1129 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1130 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1131 bh, create, extend_disksize);
1132 } else {
1133 retval = ext4_get_blocks_handle(handle, inode, block,
1134 max_blocks, bh, create, extend_disksize);
1136 if (retval > 0 && buffer_new(bh)) {
1138 * We allocated new blocks which will result in
1139 * i_data's format changing. Force the migrate
1140 * to fail by clearing migrate flags
1142 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1143 ~EXT4_EXT_MIGRATE;
1147 if (flag) {
1148 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1150 * Update reserved blocks/metadata blocks
1151 * after successful block allocation
1152 * which were deferred till now
1154 if ((retval > 0) && buffer_delay(bh))
1155 ext4_da_update_reserve_space(inode, retval);
1158 up_write((&EXT4_I(inode)->i_data_sem));
1159 return retval;
1162 /* Maximum number of blocks we map for direct IO at once. */
1163 #define DIO_MAX_BLOCKS 4096
1165 static int ext4_get_block(struct inode *inode, sector_t iblock,
1166 struct buffer_head *bh_result, int create)
1168 handle_t *handle = ext4_journal_current_handle();
1169 int ret = 0, started = 0;
1170 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1171 int dio_credits;
1173 if (create && !handle) {
1174 /* Direct IO write... */
1175 if (max_blocks > DIO_MAX_BLOCKS)
1176 max_blocks = DIO_MAX_BLOCKS;
1177 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1178 handle = ext4_journal_start(inode, dio_credits);
1179 if (IS_ERR(handle)) {
1180 ret = PTR_ERR(handle);
1181 goto out;
1183 started = 1;
1186 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1187 max_blocks, bh_result, create, 0, 0);
1188 if (ret > 0) {
1189 bh_result->b_size = (ret << inode->i_blkbits);
1190 ret = 0;
1192 if (started)
1193 ext4_journal_stop(handle);
1194 out:
1195 return ret;
1199 * `handle' can be NULL if create is zero
1201 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1202 ext4_lblk_t block, int create, int *errp)
1204 struct buffer_head dummy;
1205 int fatal = 0, err;
1207 J_ASSERT(handle != NULL || create == 0);
1209 dummy.b_state = 0;
1210 dummy.b_blocknr = -1000;
1211 buffer_trace_init(&dummy.b_history);
1212 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1213 &dummy, create, 1, 0);
1215 * ext4_get_blocks_handle() returns number of blocks
1216 * mapped. 0 in case of a HOLE.
1218 if (err > 0) {
1219 if (err > 1)
1220 WARN_ON(1);
1221 err = 0;
1223 *errp = err;
1224 if (!err && buffer_mapped(&dummy)) {
1225 struct buffer_head *bh;
1226 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1227 if (!bh) {
1228 *errp = -EIO;
1229 goto err;
1231 if (buffer_new(&dummy)) {
1232 J_ASSERT(create != 0);
1233 J_ASSERT(handle != NULL);
1236 * Now that we do not always journal data, we should
1237 * keep in mind whether this should always journal the
1238 * new buffer as metadata. For now, regular file
1239 * writes use ext4_get_block instead, so it's not a
1240 * problem.
1242 lock_buffer(bh);
1243 BUFFER_TRACE(bh, "call get_create_access");
1244 fatal = ext4_journal_get_create_access(handle, bh);
1245 if (!fatal && !buffer_uptodate(bh)) {
1246 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1247 set_buffer_uptodate(bh);
1249 unlock_buffer(bh);
1250 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1251 err = ext4_journal_dirty_metadata(handle, bh);
1252 if (!fatal)
1253 fatal = err;
1254 } else {
1255 BUFFER_TRACE(bh, "not a new buffer");
1257 if (fatal) {
1258 *errp = fatal;
1259 brelse(bh);
1260 bh = NULL;
1262 return bh;
1264 err:
1265 return NULL;
1268 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1269 ext4_lblk_t block, int create, int *err)
1271 struct buffer_head * bh;
1273 bh = ext4_getblk(handle, inode, block, create, err);
1274 if (!bh)
1275 return bh;
1276 if (buffer_uptodate(bh))
1277 return bh;
1278 ll_rw_block(READ_META, 1, &bh);
1279 wait_on_buffer(bh);
1280 if (buffer_uptodate(bh))
1281 return bh;
1282 put_bh(bh);
1283 *err = -EIO;
1284 return NULL;
1287 static int walk_page_buffers( handle_t *handle,
1288 struct buffer_head *head,
1289 unsigned from,
1290 unsigned to,
1291 int *partial,
1292 int (*fn)( handle_t *handle,
1293 struct buffer_head *bh))
1295 struct buffer_head *bh;
1296 unsigned block_start, block_end;
1297 unsigned blocksize = head->b_size;
1298 int err, ret = 0;
1299 struct buffer_head *next;
1301 for ( bh = head, block_start = 0;
1302 ret == 0 && (bh != head || !block_start);
1303 block_start = block_end, bh = next)
1305 next = bh->b_this_page;
1306 block_end = block_start + blocksize;
1307 if (block_end <= from || block_start >= to) {
1308 if (partial && !buffer_uptodate(bh))
1309 *partial = 1;
1310 continue;
1312 err = (*fn)(handle, bh);
1313 if (!ret)
1314 ret = err;
1316 return ret;
1320 * To preserve ordering, it is essential that the hole instantiation and
1321 * the data write be encapsulated in a single transaction. We cannot
1322 * close off a transaction and start a new one between the ext4_get_block()
1323 * and the commit_write(). So doing the jbd2_journal_start at the start of
1324 * prepare_write() is the right place.
1326 * Also, this function can nest inside ext4_writepage() ->
1327 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1328 * has generated enough buffer credits to do the whole page. So we won't
1329 * block on the journal in that case, which is good, because the caller may
1330 * be PF_MEMALLOC.
1332 * By accident, ext4 can be reentered when a transaction is open via
1333 * quota file writes. If we were to commit the transaction while thus
1334 * reentered, there can be a deadlock - we would be holding a quota
1335 * lock, and the commit would never complete if another thread had a
1336 * transaction open and was blocking on the quota lock - a ranking
1337 * violation.
1339 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1340 * will _not_ run commit under these circumstances because handle->h_ref
1341 * is elevated. We'll still have enough credits for the tiny quotafile
1342 * write.
1344 static int do_journal_get_write_access(handle_t *handle,
1345 struct buffer_head *bh)
1347 if (!buffer_mapped(bh) || buffer_freed(bh))
1348 return 0;
1349 return ext4_journal_get_write_access(handle, bh);
1352 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1353 loff_t pos, unsigned len, unsigned flags,
1354 struct page **pagep, void **fsdata)
1356 struct inode *inode = mapping->host;
1357 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1358 handle_t *handle;
1359 int retries = 0;
1360 struct page *page;
1361 pgoff_t index;
1362 unsigned from, to;
1364 index = pos >> PAGE_CACHE_SHIFT;
1365 from = pos & (PAGE_CACHE_SIZE - 1);
1366 to = from + len;
1368 retry:
1369 handle = ext4_journal_start(inode, needed_blocks);
1370 if (IS_ERR(handle)) {
1371 ret = PTR_ERR(handle);
1372 goto out;
1375 /* We cannot recurse into the filesystem as the transaction is already
1376 * started */
1377 flags |= AOP_FLAG_NOFS;
1379 page = grab_cache_page_write_begin(mapping, index, flags);
1380 if (!page) {
1381 ext4_journal_stop(handle);
1382 ret = -ENOMEM;
1383 goto out;
1385 *pagep = page;
1387 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1388 ext4_get_block);
1390 if (!ret && ext4_should_journal_data(inode)) {
1391 ret = walk_page_buffers(handle, page_buffers(page),
1392 from, to, NULL, do_journal_get_write_access);
1395 if (ret) {
1396 unlock_page(page);
1397 ext4_journal_stop(handle);
1398 page_cache_release(page);
1401 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1402 goto retry;
1403 out:
1404 return ret;
1407 /* For write_end() in data=journal mode */
1408 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1410 if (!buffer_mapped(bh) || buffer_freed(bh))
1411 return 0;
1412 set_buffer_uptodate(bh);
1413 return ext4_journal_dirty_metadata(handle, bh);
1417 * We need to pick up the new inode size which generic_commit_write gave us
1418 * `file' can be NULL - eg, when called from page_symlink().
1420 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1421 * buffers are managed internally.
1423 static int ext4_ordered_write_end(struct file *file,
1424 struct address_space *mapping,
1425 loff_t pos, unsigned len, unsigned copied,
1426 struct page *page, void *fsdata)
1428 handle_t *handle = ext4_journal_current_handle();
1429 struct inode *inode = mapping->host;
1430 int ret = 0, ret2;
1432 ret = ext4_jbd2_file_inode(handle, inode);
1434 if (ret == 0) {
1436 * generic_write_end() will run mark_inode_dirty() if i_size
1437 * changes. So let's piggyback the i_disksize mark_inode_dirty
1438 * into that.
1440 loff_t new_i_size;
1442 new_i_size = pos + copied;
1443 if (new_i_size > EXT4_I(inode)->i_disksize)
1444 EXT4_I(inode)->i_disksize = new_i_size;
1445 ret2 = generic_write_end(file, mapping, pos, len, copied,
1446 page, fsdata);
1447 copied = ret2;
1448 if (ret2 < 0)
1449 ret = ret2;
1451 ret2 = ext4_journal_stop(handle);
1452 if (!ret)
1453 ret = ret2;
1455 return ret ? ret : copied;
1458 static int ext4_writeback_write_end(struct file *file,
1459 struct address_space *mapping,
1460 loff_t pos, unsigned len, unsigned copied,
1461 struct page *page, void *fsdata)
1463 handle_t *handle = ext4_journal_current_handle();
1464 struct inode *inode = mapping->host;
1465 int ret = 0, ret2;
1466 loff_t new_i_size;
1468 new_i_size = pos + copied;
1469 if (new_i_size > EXT4_I(inode)->i_disksize)
1470 EXT4_I(inode)->i_disksize = new_i_size;
1472 ret2 = generic_write_end(file, mapping, pos, len, copied,
1473 page, fsdata);
1474 copied = ret2;
1475 if (ret2 < 0)
1476 ret = ret2;
1478 ret2 = ext4_journal_stop(handle);
1479 if (!ret)
1480 ret = ret2;
1482 return ret ? ret : copied;
1485 static int ext4_journalled_write_end(struct file *file,
1486 struct address_space *mapping,
1487 loff_t pos, unsigned len, unsigned copied,
1488 struct page *page, void *fsdata)
1490 handle_t *handle = ext4_journal_current_handle();
1491 struct inode *inode = mapping->host;
1492 int ret = 0, ret2;
1493 int partial = 0;
1494 unsigned from, to;
1496 from = pos & (PAGE_CACHE_SIZE - 1);
1497 to = from + len;
1499 if (copied < len) {
1500 if (!PageUptodate(page))
1501 copied = 0;
1502 page_zero_new_buffers(page, from+copied, to);
1505 ret = walk_page_buffers(handle, page_buffers(page), from,
1506 to, &partial, write_end_fn);
1507 if (!partial)
1508 SetPageUptodate(page);
1509 if (pos+copied > inode->i_size)
1510 i_size_write(inode, pos+copied);
1511 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1512 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1513 EXT4_I(inode)->i_disksize = inode->i_size;
1514 ret2 = ext4_mark_inode_dirty(handle, inode);
1515 if (!ret)
1516 ret = ret2;
1519 unlock_page(page);
1520 ret2 = ext4_journal_stop(handle);
1521 if (!ret)
1522 ret = ret2;
1523 page_cache_release(page);
1525 return ret ? ret : copied;
1528 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1530 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1531 unsigned long md_needed, mdblocks, total = 0;
1534 * recalculate the amount of metadata blocks to reserve
1535 * in order to allocate nrblocks
1536 * worse case is one extent per block
1538 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1539 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1540 mdblocks = ext4_calc_metadata_amount(inode, total);
1541 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1543 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1544 total = md_needed + nrblocks;
1546 if (ext4_has_free_blocks(sbi, total) < total) {
1547 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1548 return -ENOSPC;
1550 /* reduce fs free blocks counter */
1551 percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1553 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1554 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1556 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1557 return 0; /* success */
1560 static void ext4_da_release_space(struct inode *inode, int to_free)
1562 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1563 int total, mdb, mdb_free, release;
1565 if (!to_free)
1566 return; /* Nothing to release, exit */
1568 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1570 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1572 * if there is no reserved blocks, but we try to free some
1573 * then the counter is messed up somewhere.
1574 * but since this function is called from invalidate
1575 * page, it's harmless to return without any action
1577 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1578 "blocks for inode %lu, but there is no reserved "
1579 "data blocks\n", to_free, inode->i_ino);
1580 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1581 return;
1584 /* recalculate the number of metablocks still need to be reserved */
1585 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1586 mdb = ext4_calc_metadata_amount(inode, total);
1588 /* figure out how many metablocks to release */
1589 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1590 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1592 release = to_free + mdb_free;
1594 /* update fs free blocks counter for truncate case */
1595 percpu_counter_add(&sbi->s_freeblocks_counter, release);
1597 /* update per-inode reservations */
1598 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1599 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1601 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1602 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1603 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1606 static void ext4_da_page_release_reservation(struct page *page,
1607 unsigned long offset)
1609 int to_release = 0;
1610 struct buffer_head *head, *bh;
1611 unsigned int curr_off = 0;
1613 head = page_buffers(page);
1614 bh = head;
1615 do {
1616 unsigned int next_off = curr_off + bh->b_size;
1618 if ((offset <= curr_off) && (buffer_delay(bh))) {
1619 to_release++;
1620 clear_buffer_delay(bh);
1622 curr_off = next_off;
1623 } while ((bh = bh->b_this_page) != head);
1624 ext4_da_release_space(page->mapping->host, to_release);
1628 * Delayed allocation stuff
1631 struct mpage_da_data {
1632 struct inode *inode;
1633 struct buffer_head lbh; /* extent of blocks */
1634 unsigned long first_page, next_page; /* extent of pages */
1635 get_block_t *get_block;
1636 struct writeback_control *wbc;
1637 int io_done;
1638 long pages_written;
1642 * mpage_da_submit_io - walks through extent of pages and try to write
1643 * them with writepage() call back
1645 * @mpd->inode: inode
1646 * @mpd->first_page: first page of the extent
1647 * @mpd->next_page: page after the last page of the extent
1648 * @mpd->get_block: the filesystem's block mapper function
1650 * By the time mpage_da_submit_io() is called we expect all blocks
1651 * to be allocated. this may be wrong if allocation failed.
1653 * As pages are already locked by write_cache_pages(), we can't use it
1655 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1657 long pages_skipped;
1658 struct pagevec pvec;
1659 unsigned long index, end;
1660 int ret = 0, err, nr_pages, i;
1661 struct inode *inode = mpd->inode;
1662 struct address_space *mapping = inode->i_mapping;
1664 BUG_ON(mpd->next_page <= mpd->first_page);
1666 * We need to start from the first_page to the next_page - 1
1667 * to make sure we also write the mapped dirty buffer_heads.
1668 * If we look at mpd->lbh.b_blocknr we would only be looking
1669 * at the currently mapped buffer_heads.
1671 index = mpd->first_page;
1672 end = mpd->next_page - 1;
1674 pagevec_init(&pvec, 0);
1675 while (index <= end) {
1676 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1677 if (nr_pages == 0)
1678 break;
1679 for (i = 0; i < nr_pages; i++) {
1680 struct page *page = pvec.pages[i];
1682 index = page->index;
1683 if (index > end)
1684 break;
1685 index++;
1687 BUG_ON(!PageLocked(page));
1688 BUG_ON(PageWriteback(page));
1690 pages_skipped = mpd->wbc->pages_skipped;
1691 err = mapping->a_ops->writepage(page, mpd->wbc);
1692 if (!err)
1693 mpd->pages_written++;
1695 * In error case, we have to continue because
1696 * remaining pages are still locked
1697 * XXX: unlock and re-dirty them?
1699 if (ret == 0)
1700 ret = err;
1702 pagevec_release(&pvec);
1704 return ret;
1708 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1710 * @mpd->inode - inode to walk through
1711 * @exbh->b_blocknr - first block on a disk
1712 * @exbh->b_size - amount of space in bytes
1713 * @logical - first logical block to start assignment with
1715 * the function goes through all passed space and put actual disk
1716 * block numbers into buffer heads, dropping BH_Delay
1718 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1719 struct buffer_head *exbh)
1721 struct inode *inode = mpd->inode;
1722 struct address_space *mapping = inode->i_mapping;
1723 int blocks = exbh->b_size >> inode->i_blkbits;
1724 sector_t pblock = exbh->b_blocknr, cur_logical;
1725 struct buffer_head *head, *bh;
1726 pgoff_t index, end;
1727 struct pagevec pvec;
1728 int nr_pages, i;
1730 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1731 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1732 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1734 pagevec_init(&pvec, 0);
1736 while (index <= end) {
1737 /* XXX: optimize tail */
1738 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1739 if (nr_pages == 0)
1740 break;
1741 for (i = 0; i < nr_pages; i++) {
1742 struct page *page = pvec.pages[i];
1744 index = page->index;
1745 if (index > end)
1746 break;
1747 index++;
1749 BUG_ON(!PageLocked(page));
1750 BUG_ON(PageWriteback(page));
1751 BUG_ON(!page_has_buffers(page));
1753 bh = page_buffers(page);
1754 head = bh;
1756 /* skip blocks out of the range */
1757 do {
1758 if (cur_logical >= logical)
1759 break;
1760 cur_logical++;
1761 } while ((bh = bh->b_this_page) != head);
1763 do {
1764 if (cur_logical >= logical + blocks)
1765 break;
1766 if (buffer_delay(bh)) {
1767 bh->b_blocknr = pblock;
1768 clear_buffer_delay(bh);
1769 bh->b_bdev = inode->i_sb->s_bdev;
1770 } else if (buffer_unwritten(bh)) {
1771 bh->b_blocknr = pblock;
1772 clear_buffer_unwritten(bh);
1773 set_buffer_mapped(bh);
1774 set_buffer_new(bh);
1775 bh->b_bdev = inode->i_sb->s_bdev;
1776 } else if (buffer_mapped(bh))
1777 BUG_ON(bh->b_blocknr != pblock);
1779 cur_logical++;
1780 pblock++;
1781 } while ((bh = bh->b_this_page) != head);
1783 pagevec_release(&pvec);
1789 * __unmap_underlying_blocks - just a helper function to unmap
1790 * set of blocks described by @bh
1792 static inline void __unmap_underlying_blocks(struct inode *inode,
1793 struct buffer_head *bh)
1795 struct block_device *bdev = inode->i_sb->s_bdev;
1796 int blocks, i;
1798 blocks = bh->b_size >> inode->i_blkbits;
1799 for (i = 0; i < blocks; i++)
1800 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1804 * mpage_da_map_blocks - go through given space
1806 * @mpd->lbh - bh describing space
1807 * @mpd->get_block - the filesystem's block mapper function
1809 * The function skips space we know is already mapped to disk blocks.
1812 static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1814 int err = 0;
1815 struct buffer_head *lbh = &mpd->lbh;
1816 sector_t next = lbh->b_blocknr;
1817 struct buffer_head new;
1820 * We consider only non-mapped and non-allocated blocks
1822 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1823 return;
1825 new.b_state = lbh->b_state;
1826 new.b_blocknr = 0;
1827 new.b_size = lbh->b_size;
1830 * If we didn't accumulate anything
1831 * to write simply return
1833 if (!new.b_size)
1834 return;
1835 err = mpd->get_block(mpd->inode, next, &new, 1);
1836 if (err)
1837 return;
1838 BUG_ON(new.b_size == 0);
1840 if (buffer_new(&new))
1841 __unmap_underlying_blocks(mpd->inode, &new);
1844 * If blocks are delayed marked, we need to
1845 * put actual blocknr and drop delayed bit
1847 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1848 mpage_put_bnr_to_bhs(mpd, next, &new);
1850 return;
1853 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1854 (1 << BH_Delay) | (1 << BH_Unwritten))
1857 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1859 * @mpd->lbh - extent of blocks
1860 * @logical - logical number of the block in the file
1861 * @bh - bh of the block (used to access block's state)
1863 * the function is used to collect contig. blocks in same state
1865 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1866 sector_t logical, struct buffer_head *bh)
1868 sector_t next;
1869 size_t b_size = bh->b_size;
1870 struct buffer_head *lbh = &mpd->lbh;
1871 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1873 /* check if thereserved journal credits might overflow */
1874 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1875 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1877 * With non-extent format we are limited by the journal
1878 * credit available. Total credit needed to insert
1879 * nrblocks contiguous blocks is dependent on the
1880 * nrblocks. So limit nrblocks.
1882 goto flush_it;
1883 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1884 EXT4_MAX_TRANS_DATA) {
1886 * Adding the new buffer_head would make it cross the
1887 * allowed limit for which we have journal credit
1888 * reserved. So limit the new bh->b_size
1890 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1891 mpd->inode->i_blkbits;
1892 /* we will do mpage_da_submit_io in the next loop */
1896 * First block in the extent
1898 if (lbh->b_size == 0) {
1899 lbh->b_blocknr = logical;
1900 lbh->b_size = b_size;
1901 lbh->b_state = bh->b_state & BH_FLAGS;
1902 return;
1905 next = lbh->b_blocknr + nrblocks;
1907 * Can we merge the block to our big extent?
1909 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1910 lbh->b_size += b_size;
1911 return;
1914 flush_it:
1916 * We couldn't merge the block to our extent, so we
1917 * need to flush current extent and start new one
1919 mpage_da_map_blocks(mpd);
1920 mpage_da_submit_io(mpd);
1921 mpd->io_done = 1;
1922 return;
1926 * __mpage_da_writepage - finds extent of pages and blocks
1928 * @page: page to consider
1929 * @wbc: not used, we just follow rules
1930 * @data: context
1932 * The function finds extents of pages and scan them for all blocks.
1934 static int __mpage_da_writepage(struct page *page,
1935 struct writeback_control *wbc, void *data)
1937 struct mpage_da_data *mpd = data;
1938 struct inode *inode = mpd->inode;
1939 struct buffer_head *bh, *head, fake;
1940 sector_t logical;
1942 if (mpd->io_done) {
1944 * Rest of the page in the page_vec
1945 * redirty then and skip then. We will
1946 * try to to write them again after
1947 * starting a new transaction
1949 redirty_page_for_writepage(wbc, page);
1950 unlock_page(page);
1951 return MPAGE_DA_EXTENT_TAIL;
1954 * Can we merge this page to current extent?
1956 if (mpd->next_page != page->index) {
1958 * Nope, we can't. So, we map non-allocated blocks
1959 * and start IO on them using writepage()
1961 if (mpd->next_page != mpd->first_page) {
1962 mpage_da_map_blocks(mpd);
1963 mpage_da_submit_io(mpd);
1965 * skip rest of the page in the page_vec
1967 mpd->io_done = 1;
1968 redirty_page_for_writepage(wbc, page);
1969 unlock_page(page);
1970 return MPAGE_DA_EXTENT_TAIL;
1974 * Start next extent of pages ...
1976 mpd->first_page = page->index;
1979 * ... and blocks
1981 mpd->lbh.b_size = 0;
1982 mpd->lbh.b_state = 0;
1983 mpd->lbh.b_blocknr = 0;
1986 mpd->next_page = page->index + 1;
1987 logical = (sector_t) page->index <<
1988 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1990 if (!page_has_buffers(page)) {
1992 * There is no attached buffer heads yet (mmap?)
1993 * we treat the page asfull of dirty blocks
1995 bh = &fake;
1996 bh->b_size = PAGE_CACHE_SIZE;
1997 bh->b_state = 0;
1998 set_buffer_dirty(bh);
1999 set_buffer_uptodate(bh);
2000 mpage_add_bh_to_extent(mpd, logical, bh);
2001 if (mpd->io_done)
2002 return MPAGE_DA_EXTENT_TAIL;
2003 } else {
2005 * Page with regular buffer heads, just add all dirty ones
2007 head = page_buffers(page);
2008 bh = head;
2009 do {
2010 BUG_ON(buffer_locked(bh));
2012 * We need to try to allocate
2013 * unmapped blocks in the same page.
2014 * Otherwise we won't make progress
2015 * with the page in ext4_da_writepage
2017 if (buffer_dirty(bh) &&
2018 (!buffer_mapped(bh) || buffer_delay(bh))) {
2019 mpage_add_bh_to_extent(mpd, logical, bh);
2020 if (mpd->io_done)
2021 return MPAGE_DA_EXTENT_TAIL;
2022 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2024 * mapped dirty buffer. We need to update
2025 * the b_state because we look at
2026 * b_state in mpage_da_map_blocks. We don't
2027 * update b_size because if we find an
2028 * unmapped buffer_head later we need to
2029 * use the b_state flag of that buffer_head.
2031 if (mpd->lbh.b_size == 0)
2032 mpd->lbh.b_state =
2033 bh->b_state & BH_FLAGS;
2035 logical++;
2036 } while ((bh = bh->b_this_page) != head);
2039 return 0;
2043 * mpage_da_writepages - walk the list of dirty pages of the given
2044 * address space, allocates non-allocated blocks, maps newly-allocated
2045 * blocks to existing bhs and issue IO them
2047 * @mapping: address space structure to write
2048 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2049 * @get_block: the filesystem's block mapper function.
2051 * This is a library function, which implements the writepages()
2052 * address_space_operation.
2054 static int mpage_da_writepages(struct address_space *mapping,
2055 struct writeback_control *wbc,
2056 get_block_t get_block)
2058 struct mpage_da_data mpd;
2059 long to_write;
2060 int ret;
2062 if (!get_block)
2063 return generic_writepages(mapping, wbc);
2065 mpd.wbc = wbc;
2066 mpd.inode = mapping->host;
2067 mpd.lbh.b_size = 0;
2068 mpd.lbh.b_state = 0;
2069 mpd.lbh.b_blocknr = 0;
2070 mpd.first_page = 0;
2071 mpd.next_page = 0;
2072 mpd.get_block = get_block;
2073 mpd.io_done = 0;
2074 mpd.pages_written = 0;
2076 to_write = wbc->nr_to_write;
2078 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2081 * Handle last extent of pages
2083 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2084 mpage_da_map_blocks(&mpd);
2085 mpage_da_submit_io(&mpd);
2088 wbc->nr_to_write = to_write - mpd.pages_written;
2089 return ret;
2093 * this is a special callback for ->write_begin() only
2094 * it's intention is to return mapped block or reserve space
2096 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2097 struct buffer_head *bh_result, int create)
2099 int ret = 0;
2101 BUG_ON(create == 0);
2102 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2105 * first, we need to know whether the block is allocated already
2106 * preallocated blocks are unmapped but should treated
2107 * the same as allocated blocks.
2109 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2110 if ((ret == 0) && !buffer_delay(bh_result)) {
2111 /* the block isn't (pre)allocated yet, let's reserve space */
2113 * XXX: __block_prepare_write() unmaps passed block,
2114 * is it OK?
2116 ret = ext4_da_reserve_space(inode, 1);
2117 if (ret)
2118 /* not enough space to reserve */
2119 return ret;
2121 map_bh(bh_result, inode->i_sb, 0);
2122 set_buffer_new(bh_result);
2123 set_buffer_delay(bh_result);
2124 } else if (ret > 0) {
2125 bh_result->b_size = (ret << inode->i_blkbits);
2126 ret = 0;
2129 return ret;
2131 #define EXT4_DELALLOC_RSVED 1
2132 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2133 struct buffer_head *bh_result, int create)
2135 int ret;
2136 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2137 loff_t disksize = EXT4_I(inode)->i_disksize;
2138 handle_t *handle = NULL;
2140 handle = ext4_journal_current_handle();
2141 if (!handle) {
2142 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2143 bh_result, 0, 0, 0);
2144 BUG_ON(!ret);
2145 } else {
2146 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2147 bh_result, create, 0, EXT4_DELALLOC_RSVED);
2150 if (ret > 0) {
2151 bh_result->b_size = (ret << inode->i_blkbits);
2154 * Update on-disk size along with block allocation
2155 * we don't use 'extend_disksize' as size may change
2156 * within already allocated block -bzzz
2158 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2159 if (disksize > i_size_read(inode))
2160 disksize = i_size_read(inode);
2161 if (disksize > EXT4_I(inode)->i_disksize) {
2163 * XXX: replace with spinlock if seen contended -bzzz
2165 down_write(&EXT4_I(inode)->i_data_sem);
2166 if (disksize > EXT4_I(inode)->i_disksize)
2167 EXT4_I(inode)->i_disksize = disksize;
2168 up_write(&EXT4_I(inode)->i_data_sem);
2170 if (EXT4_I(inode)->i_disksize == disksize) {
2171 ret = ext4_mark_inode_dirty(handle, inode);
2172 return ret;
2175 ret = 0;
2177 return ret;
2180 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2183 * unmapped buffer is possible for holes.
2184 * delay buffer is possible with delayed allocation
2186 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2189 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2190 struct buffer_head *bh_result, int create)
2192 int ret = 0;
2193 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2196 * we don't want to do block allocation in writepage
2197 * so call get_block_wrap with create = 0
2199 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2200 bh_result, 0, 0, 0);
2201 if (ret > 0) {
2202 bh_result->b_size = (ret << inode->i_blkbits);
2203 ret = 0;
2205 return ret;
2209 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2210 * get called via journal_submit_inode_data_buffers (no journal handle)
2211 * get called via shrink_page_list via pdflush (no journal handle)
2212 * or grab_page_cache when doing write_begin (have journal handle)
2214 static int ext4_da_writepage(struct page *page,
2215 struct writeback_control *wbc)
2217 int ret = 0;
2218 loff_t size;
2219 unsigned long len;
2220 struct buffer_head *page_bufs;
2221 struct inode *inode = page->mapping->host;
2223 size = i_size_read(inode);
2224 if (page->index == size >> PAGE_CACHE_SHIFT)
2225 len = size & ~PAGE_CACHE_MASK;
2226 else
2227 len = PAGE_CACHE_SIZE;
2229 if (page_has_buffers(page)) {
2230 page_bufs = page_buffers(page);
2231 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2232 ext4_bh_unmapped_or_delay)) {
2234 * We don't want to do block allocation
2235 * So redirty the page and return
2236 * We may reach here when we do a journal commit
2237 * via journal_submit_inode_data_buffers.
2238 * If we don't have mapping block we just ignore
2239 * them. We can also reach here via shrink_page_list
2241 redirty_page_for_writepage(wbc, page);
2242 unlock_page(page);
2243 return 0;
2245 } else {
2247 * The test for page_has_buffers() is subtle:
2248 * We know the page is dirty but it lost buffers. That means
2249 * that at some moment in time after write_begin()/write_end()
2250 * has been called all buffers have been clean and thus they
2251 * must have been written at least once. So they are all
2252 * mapped and we can happily proceed with mapping them
2253 * and writing the page.
2255 * Try to initialize the buffer_heads and check whether
2256 * all are mapped and non delay. We don't want to
2257 * do block allocation here.
2259 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2260 ext4_normal_get_block_write);
2261 if (!ret) {
2262 page_bufs = page_buffers(page);
2263 /* check whether all are mapped and non delay */
2264 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2265 ext4_bh_unmapped_or_delay)) {
2266 redirty_page_for_writepage(wbc, page);
2267 unlock_page(page);
2268 return 0;
2270 } else {
2272 * We can't do block allocation here
2273 * so just redity the page and unlock
2274 * and return
2276 redirty_page_for_writepage(wbc, page);
2277 unlock_page(page);
2278 return 0;
2280 /* now mark the buffer_heads as dirty and uptodate */
2281 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2284 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2285 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2286 else
2287 ret = block_write_full_page(page,
2288 ext4_normal_get_block_write,
2289 wbc);
2291 return ret;
2295 * This is called via ext4_da_writepages() to
2296 * calulate the total number of credits to reserve to fit
2297 * a single extent allocation into a single transaction,
2298 * ext4_da_writpeages() will loop calling this before
2299 * the block allocation.
2302 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2304 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2307 * With non-extent format the journal credit needed to
2308 * insert nrblocks contiguous block is dependent on
2309 * number of contiguous block. So we will limit
2310 * number of contiguous block to a sane value
2312 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2313 (max_blocks > EXT4_MAX_TRANS_DATA))
2314 max_blocks = EXT4_MAX_TRANS_DATA;
2316 return ext4_chunk_trans_blocks(inode, max_blocks);
2319 static int ext4_da_writepages(struct address_space *mapping,
2320 struct writeback_control *wbc)
2322 handle_t *handle = NULL;
2323 loff_t range_start = 0;
2324 struct inode *inode = mapping->host;
2325 int needed_blocks, ret = 0, nr_to_writebump = 0;
2326 long to_write, pages_skipped = 0;
2327 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2330 * No pages to write? This is mainly a kludge to avoid starting
2331 * a transaction for special inodes like journal inode on last iput()
2332 * because that could violate lock ordering on umount
2334 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2335 return 0;
2338 * If the filesystem has aborted, it is read-only, so return
2339 * right away instead of dumping stack traces later on that
2340 * will obscure the real source of the problem. We test
2341 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2342 * the latter could be true if the filesystem is mounted
2343 * read-only, and in that case, ext4_da_writepages should
2344 * *never* be called, so if that ever happens, we would want
2345 * the stack trace.
2347 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2348 return -EROFS;
2351 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2352 * This make sure small files blocks are allocated in
2353 * single attempt. This ensure that small files
2354 * get less fragmented.
2356 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2357 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2358 wbc->nr_to_write = sbi->s_mb_stream_request;
2361 if (!wbc->range_cyclic)
2363 * If range_cyclic is not set force range_cont
2364 * and save the old writeback_index
2366 wbc->range_cont = 1;
2368 range_start = wbc->range_start;
2369 pages_skipped = wbc->pages_skipped;
2371 restart_loop:
2372 to_write = wbc->nr_to_write;
2373 while (!ret && to_write > 0) {
2376 * we insert one extent at a time. So we need
2377 * credit needed for single extent allocation.
2378 * journalled mode is currently not supported
2379 * by delalloc
2381 BUG_ON(ext4_should_journal_data(inode));
2382 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2384 /* start a new transaction*/
2385 handle = ext4_journal_start(inode, needed_blocks);
2386 if (IS_ERR(handle)) {
2387 ret = PTR_ERR(handle);
2388 printk(KERN_CRIT "%s: jbd2_start: "
2389 "%ld pages, ino %lu; err %d\n", __func__,
2390 wbc->nr_to_write, inode->i_ino, ret);
2391 dump_stack();
2392 goto out_writepages;
2394 if (ext4_should_order_data(inode)) {
2396 * With ordered mode we need to add
2397 * the inode to the journal handl
2398 * when we do block allocation.
2400 ret = ext4_jbd2_file_inode(handle, inode);
2401 if (ret) {
2402 ext4_journal_stop(handle);
2403 goto out_writepages;
2407 to_write -= wbc->nr_to_write;
2408 ret = mpage_da_writepages(mapping, wbc,
2409 ext4_da_get_block_write);
2410 ext4_journal_stop(handle);
2411 if (ret == MPAGE_DA_EXTENT_TAIL) {
2413 * got one extent now try with
2414 * rest of the pages
2416 to_write += wbc->nr_to_write;
2417 ret = 0;
2418 } else if (wbc->nr_to_write) {
2420 * There is no more writeout needed
2421 * or we requested for a noblocking writeout
2422 * and we found the device congested
2424 to_write += wbc->nr_to_write;
2425 break;
2427 wbc->nr_to_write = to_write;
2430 if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2431 /* We skipped pages in this loop */
2432 wbc->range_start = range_start;
2433 wbc->nr_to_write = to_write +
2434 wbc->pages_skipped - pages_skipped;
2435 wbc->pages_skipped = pages_skipped;
2436 goto restart_loop;
2439 out_writepages:
2440 wbc->nr_to_write = to_write - nr_to_writebump;
2441 wbc->range_start = range_start;
2442 return ret;
2445 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2446 loff_t pos, unsigned len, unsigned flags,
2447 struct page **pagep, void **fsdata)
2449 int ret, retries = 0;
2450 struct page *page;
2451 pgoff_t index;
2452 unsigned from, to;
2453 struct inode *inode = mapping->host;
2454 handle_t *handle;
2456 index = pos >> PAGE_CACHE_SHIFT;
2457 from = pos & (PAGE_CACHE_SIZE - 1);
2458 to = from + len;
2460 retry:
2462 * With delayed allocation, we don't log the i_disksize update
2463 * if there is delayed block allocation. But we still need
2464 * to journalling the i_disksize update if writes to the end
2465 * of file which has an already mapped buffer.
2467 handle = ext4_journal_start(inode, 1);
2468 if (IS_ERR(handle)) {
2469 ret = PTR_ERR(handle);
2470 goto out;
2472 /* We cannot recurse into the filesystem as the transaction is already
2473 * started */
2474 flags |= AOP_FLAG_NOFS;
2476 page = grab_cache_page_write_begin(mapping, index, flags);
2477 if (!page) {
2478 ext4_journal_stop(handle);
2479 ret = -ENOMEM;
2480 goto out;
2482 *pagep = page;
2484 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2485 ext4_da_get_block_prep);
2486 if (ret < 0) {
2487 unlock_page(page);
2488 ext4_journal_stop(handle);
2489 page_cache_release(page);
2492 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2493 goto retry;
2494 out:
2495 return ret;
2499 * Check if we should update i_disksize
2500 * when write to the end of file but not require block allocation
2502 static int ext4_da_should_update_i_disksize(struct page *page,
2503 unsigned long offset)
2505 struct buffer_head *bh;
2506 struct inode *inode = page->mapping->host;
2507 unsigned int idx;
2508 int i;
2510 bh = page_buffers(page);
2511 idx = offset >> inode->i_blkbits;
2513 for (i=0; i < idx; i++)
2514 bh = bh->b_this_page;
2516 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2517 return 0;
2518 return 1;
2521 static int ext4_da_write_end(struct file *file,
2522 struct address_space *mapping,
2523 loff_t pos, unsigned len, unsigned copied,
2524 struct page *page, void *fsdata)
2526 struct inode *inode = mapping->host;
2527 int ret = 0, ret2;
2528 handle_t *handle = ext4_journal_current_handle();
2529 loff_t new_i_size;
2530 unsigned long start, end;
2532 start = pos & (PAGE_CACHE_SIZE - 1);
2533 end = start + copied -1;
2536 * generic_write_end() will run mark_inode_dirty() if i_size
2537 * changes. So let's piggyback the i_disksize mark_inode_dirty
2538 * into that.
2541 new_i_size = pos + copied;
2542 if (new_i_size > EXT4_I(inode)->i_disksize) {
2543 if (ext4_da_should_update_i_disksize(page, end)) {
2544 down_write(&EXT4_I(inode)->i_data_sem);
2545 if (new_i_size > EXT4_I(inode)->i_disksize) {
2547 * Updating i_disksize when extending file
2548 * without needing block allocation
2550 if (ext4_should_order_data(inode))
2551 ret = ext4_jbd2_file_inode(handle,
2552 inode);
2554 EXT4_I(inode)->i_disksize = new_i_size;
2556 up_write(&EXT4_I(inode)->i_data_sem);
2559 ret2 = generic_write_end(file, mapping, pos, len, copied,
2560 page, fsdata);
2561 copied = ret2;
2562 if (ret2 < 0)
2563 ret = ret2;
2564 ret2 = ext4_journal_stop(handle);
2565 if (!ret)
2566 ret = ret2;
2568 return ret ? ret : copied;
2571 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2574 * Drop reserved blocks
2576 BUG_ON(!PageLocked(page));
2577 if (!page_has_buffers(page))
2578 goto out;
2580 ext4_da_page_release_reservation(page, offset);
2582 out:
2583 ext4_invalidatepage(page, offset);
2585 return;
2589 * Force all delayed allocation blocks to be allocated for a given inode.
2591 int ext4_alloc_da_blocks(struct inode *inode)
2593 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2594 !EXT4_I(inode)->i_reserved_meta_blocks)
2595 return 0;
2598 * We do something simple for now. The filemap_flush() will
2599 * also start triggering a write of the data blocks, which is
2600 * not strictly speaking necessary (and for users of
2601 * laptop_mode, not even desirable). However, to do otherwise
2602 * would require replicating code paths in:
2604 * ext4_da_writepages() ->
2605 * write_cache_pages() ---> (via passed in callback function)
2606 * __mpage_da_writepage() -->
2607 * mpage_add_bh_to_extent()
2608 * mpage_da_map_blocks()
2610 * The problem is that write_cache_pages(), located in
2611 * mm/page-writeback.c, marks pages clean in preparation for
2612 * doing I/O, which is not desirable if we're not planning on
2613 * doing I/O at all.
2615 * We could call write_cache_pages(), and then redirty all of
2616 * the pages by calling redirty_page_for_writeback() but that
2617 * would be ugly in the extreme. So instead we would need to
2618 * replicate parts of the code in the above functions,
2619 * simplifying them becuase we wouldn't actually intend to
2620 * write out the pages, but rather only collect contiguous
2621 * logical block extents, call the multi-block allocator, and
2622 * then update the buffer heads with the block allocations.
2624 * For now, though, we'll cheat by calling filemap_flush(),
2625 * which will map the blocks, and start the I/O, but not
2626 * actually wait for the I/O to complete.
2628 return filemap_flush(inode->i_mapping);
2632 * bmap() is special. It gets used by applications such as lilo and by
2633 * the swapper to find the on-disk block of a specific piece of data.
2635 * Naturally, this is dangerous if the block concerned is still in the
2636 * journal. If somebody makes a swapfile on an ext4 data-journaling
2637 * filesystem and enables swap, then they may get a nasty shock when the
2638 * data getting swapped to that swapfile suddenly gets overwritten by
2639 * the original zero's written out previously to the journal and
2640 * awaiting writeback in the kernel's buffer cache.
2642 * So, if we see any bmap calls here on a modified, data-journaled file,
2643 * take extra steps to flush any blocks which might be in the cache.
2645 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2647 struct inode *inode = mapping->host;
2648 journal_t *journal;
2649 int err;
2651 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2652 test_opt(inode->i_sb, DELALLOC)) {
2654 * With delalloc we want to sync the file
2655 * so that we can make sure we allocate
2656 * blocks for file
2658 filemap_write_and_wait(mapping);
2661 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2663 * This is a REALLY heavyweight approach, but the use of
2664 * bmap on dirty files is expected to be extremely rare:
2665 * only if we run lilo or swapon on a freshly made file
2666 * do we expect this to happen.
2668 * (bmap requires CAP_SYS_RAWIO so this does not
2669 * represent an unprivileged user DOS attack --- we'd be
2670 * in trouble if mortal users could trigger this path at
2671 * will.)
2673 * NB. EXT4_STATE_JDATA is not set on files other than
2674 * regular files. If somebody wants to bmap a directory
2675 * or symlink and gets confused because the buffer
2676 * hasn't yet been flushed to disk, they deserve
2677 * everything they get.
2680 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2681 journal = EXT4_JOURNAL(inode);
2682 jbd2_journal_lock_updates(journal);
2683 err = jbd2_journal_flush(journal);
2684 jbd2_journal_unlock_updates(journal);
2686 if (err)
2687 return 0;
2690 return generic_block_bmap(mapping,block,ext4_get_block);
2693 static int bget_one(handle_t *handle, struct buffer_head *bh)
2695 get_bh(bh);
2696 return 0;
2699 static int bput_one(handle_t *handle, struct buffer_head *bh)
2701 put_bh(bh);
2702 return 0;
2706 * Note that we don't need to start a transaction unless we're journaling data
2707 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2708 * need to file the inode to the transaction's list in ordered mode because if
2709 * we are writing back data added by write(), the inode is already there and if
2710 * we are writing back data modified via mmap(), noone guarantees in which
2711 * transaction the data will hit the disk. In case we are journaling data, we
2712 * cannot start transaction directly because transaction start ranks above page
2713 * lock so we have to do some magic.
2715 * In all journaling modes block_write_full_page() will start the I/O.
2717 * Problem:
2719 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2720 * ext4_writepage()
2722 * Similar for:
2724 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2726 * Same applies to ext4_get_block(). We will deadlock on various things like
2727 * lock_journal and i_data_sem
2729 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2730 * allocations fail.
2732 * 16May01: If we're reentered then journal_current_handle() will be
2733 * non-zero. We simply *return*.
2735 * 1 July 2001: @@@ FIXME:
2736 * In journalled data mode, a data buffer may be metadata against the
2737 * current transaction. But the same file is part of a shared mapping
2738 * and someone does a writepage() on it.
2740 * We will move the buffer onto the async_data list, but *after* it has
2741 * been dirtied. So there's a small window where we have dirty data on
2742 * BJ_Metadata.
2744 * Note that this only applies to the last partial page in the file. The
2745 * bit which block_write_full_page() uses prepare/commit for. (That's
2746 * broken code anyway: it's wrong for msync()).
2748 * It's a rare case: affects the final partial page, for journalled data
2749 * where the file is subject to bith write() and writepage() in the same
2750 * transction. To fix it we'll need a custom block_write_full_page().
2751 * We'll probably need that anyway for journalling writepage() output.
2753 * We don't honour synchronous mounts for writepage(). That would be
2754 * disastrous. Any write() or metadata operation will sync the fs for
2755 * us.
2758 static int __ext4_normal_writepage(struct page *page,
2759 struct writeback_control *wbc)
2761 struct inode *inode = page->mapping->host;
2763 if (test_opt(inode->i_sb, NOBH))
2764 return nobh_writepage(page,
2765 ext4_normal_get_block_write, wbc);
2766 else
2767 return block_write_full_page(page,
2768 ext4_normal_get_block_write,
2769 wbc);
2772 static int ext4_normal_writepage(struct page *page,
2773 struct writeback_control *wbc)
2775 struct inode *inode = page->mapping->host;
2776 loff_t size = i_size_read(inode);
2777 loff_t len;
2779 J_ASSERT(PageLocked(page));
2780 if (page->index == size >> PAGE_CACHE_SHIFT)
2781 len = size & ~PAGE_CACHE_MASK;
2782 else
2783 len = PAGE_CACHE_SIZE;
2785 if (page_has_buffers(page)) {
2786 /* if page has buffers it should all be mapped
2787 * and allocated. If there are not buffers attached
2788 * to the page we know the page is dirty but it lost
2789 * buffers. That means that at some moment in time
2790 * after write_begin() / write_end() has been called
2791 * all buffers have been clean and thus they must have been
2792 * written at least once. So they are all mapped and we can
2793 * happily proceed with mapping them and writing the page.
2795 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2796 ext4_bh_unmapped_or_delay));
2799 if (!ext4_journal_current_handle())
2800 return __ext4_normal_writepage(page, wbc);
2802 redirty_page_for_writepage(wbc, page);
2803 unlock_page(page);
2804 return 0;
2807 static int __ext4_journalled_writepage(struct page *page,
2808 struct writeback_control *wbc)
2810 struct address_space *mapping = page->mapping;
2811 struct inode *inode = mapping->host;
2812 struct buffer_head *page_bufs;
2813 handle_t *handle = NULL;
2814 int ret = 0;
2815 int err;
2817 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2818 ext4_normal_get_block_write);
2819 if (ret != 0)
2820 goto out_unlock;
2822 page_bufs = page_buffers(page);
2823 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2824 bget_one);
2825 /* As soon as we unlock the page, it can go away, but we have
2826 * references to buffers so we are safe */
2827 unlock_page(page);
2829 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2830 if (IS_ERR(handle)) {
2831 ret = PTR_ERR(handle);
2832 goto out;
2835 ret = walk_page_buffers(handle, page_bufs, 0,
2836 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2838 err = walk_page_buffers(handle, page_bufs, 0,
2839 PAGE_CACHE_SIZE, NULL, write_end_fn);
2840 if (ret == 0)
2841 ret = err;
2842 err = ext4_journal_stop(handle);
2843 if (!ret)
2844 ret = err;
2846 walk_page_buffers(handle, page_bufs, 0,
2847 PAGE_CACHE_SIZE, NULL, bput_one);
2848 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2849 goto out;
2851 out_unlock:
2852 unlock_page(page);
2853 out:
2854 return ret;
2857 static int ext4_journalled_writepage(struct page *page,
2858 struct writeback_control *wbc)
2860 struct inode *inode = page->mapping->host;
2861 loff_t size = i_size_read(inode);
2862 loff_t len;
2864 J_ASSERT(PageLocked(page));
2865 if (page->index == size >> PAGE_CACHE_SHIFT)
2866 len = size & ~PAGE_CACHE_MASK;
2867 else
2868 len = PAGE_CACHE_SIZE;
2870 if (page_has_buffers(page)) {
2871 /* if page has buffers it should all be mapped
2872 * and allocated. If there are not buffers attached
2873 * to the page we know the page is dirty but it lost
2874 * buffers. That means that at some moment in time
2875 * after write_begin() / write_end() has been called
2876 * all buffers have been clean and thus they must have been
2877 * written at least once. So they are all mapped and we can
2878 * happily proceed with mapping them and writing the page.
2880 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2881 ext4_bh_unmapped_or_delay));
2884 if (ext4_journal_current_handle())
2885 goto no_write;
2887 if (PageChecked(page)) {
2889 * It's mmapped pagecache. Add buffers and journal it. There
2890 * doesn't seem much point in redirtying the page here.
2892 ClearPageChecked(page);
2893 return __ext4_journalled_writepage(page, wbc);
2894 } else {
2896 * It may be a page full of checkpoint-mode buffers. We don't
2897 * really know unless we go poke around in the buffer_heads.
2898 * But block_write_full_page will do the right thing.
2900 return block_write_full_page(page,
2901 ext4_normal_get_block_write,
2902 wbc);
2904 no_write:
2905 redirty_page_for_writepage(wbc, page);
2906 unlock_page(page);
2907 return 0;
2910 static int ext4_readpage(struct file *file, struct page *page)
2912 return mpage_readpage(page, ext4_get_block);
2915 static int
2916 ext4_readpages(struct file *file, struct address_space *mapping,
2917 struct list_head *pages, unsigned nr_pages)
2919 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2922 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2924 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2927 * If it's a full truncate we just forget about the pending dirtying
2929 if (offset == 0)
2930 ClearPageChecked(page);
2932 jbd2_journal_invalidatepage(journal, page, offset);
2935 static int ext4_releasepage(struct page *page, gfp_t wait)
2937 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2939 WARN_ON(PageChecked(page));
2940 if (!page_has_buffers(page))
2941 return 0;
2942 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2946 * If the O_DIRECT write will extend the file then add this inode to the
2947 * orphan list. So recovery will truncate it back to the original size
2948 * if the machine crashes during the write.
2950 * If the O_DIRECT write is intantiating holes inside i_size and the machine
2951 * crashes then stale disk data _may_ be exposed inside the file. But current
2952 * VFS code falls back into buffered path in that case so we are safe.
2954 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2955 const struct iovec *iov, loff_t offset,
2956 unsigned long nr_segs)
2958 struct file *file = iocb->ki_filp;
2959 struct inode *inode = file->f_mapping->host;
2960 struct ext4_inode_info *ei = EXT4_I(inode);
2961 handle_t *handle;
2962 ssize_t ret;
2963 int orphan = 0;
2964 size_t count = iov_length(iov, nr_segs);
2966 if (rw == WRITE) {
2967 loff_t final_size = offset + count;
2969 if (final_size > inode->i_size) {
2970 /* Credits for sb + inode write */
2971 handle = ext4_journal_start(inode, 2);
2972 if (IS_ERR(handle)) {
2973 ret = PTR_ERR(handle);
2974 goto out;
2976 ret = ext4_orphan_add(handle, inode);
2977 if (ret) {
2978 ext4_journal_stop(handle);
2979 goto out;
2981 orphan = 1;
2982 ei->i_disksize = inode->i_size;
2983 ext4_journal_stop(handle);
2987 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2988 offset, nr_segs,
2989 ext4_get_block, NULL);
2991 if (orphan) {
2992 int err;
2994 /* Credits for sb + inode write */
2995 handle = ext4_journal_start(inode, 2);
2996 if (IS_ERR(handle)) {
2997 /* This is really bad luck. We've written the data
2998 * but cannot extend i_size. Bail out and pretend
2999 * the write failed... */
3000 ret = PTR_ERR(handle);
3001 goto out;
3003 if (inode->i_nlink)
3004 ext4_orphan_del(handle, inode);
3005 if (ret > 0) {
3006 loff_t end = offset + ret;
3007 if (end > inode->i_size) {
3008 ei->i_disksize = end;
3009 i_size_write(inode, end);
3011 * We're going to return a positive `ret'
3012 * here due to non-zero-length I/O, so there's
3013 * no way of reporting error returns from
3014 * ext4_mark_inode_dirty() to userspace. So
3015 * ignore it.
3017 ext4_mark_inode_dirty(handle, inode);
3020 err = ext4_journal_stop(handle);
3021 if (ret == 0)
3022 ret = err;
3024 out:
3025 return ret;
3029 * Pages can be marked dirty completely asynchronously from ext4's journalling
3030 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3031 * much here because ->set_page_dirty is called under VFS locks. The page is
3032 * not necessarily locked.
3034 * We cannot just dirty the page and leave attached buffers clean, because the
3035 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3036 * or jbddirty because all the journalling code will explode.
3038 * So what we do is to mark the page "pending dirty" and next time writepage
3039 * is called, propagate that into the buffers appropriately.
3041 static int ext4_journalled_set_page_dirty(struct page *page)
3043 SetPageChecked(page);
3044 return __set_page_dirty_nobuffers(page);
3047 static const struct address_space_operations ext4_ordered_aops = {
3048 .readpage = ext4_readpage,
3049 .readpages = ext4_readpages,
3050 .writepage = ext4_normal_writepage,
3051 .sync_page = block_sync_page,
3052 .write_begin = ext4_write_begin,
3053 .write_end = ext4_ordered_write_end,
3054 .bmap = ext4_bmap,
3055 .invalidatepage = ext4_invalidatepage,
3056 .releasepage = ext4_releasepage,
3057 .direct_IO = ext4_direct_IO,
3058 .migratepage = buffer_migrate_page,
3059 .is_partially_uptodate = block_is_partially_uptodate,
3062 static const struct address_space_operations ext4_writeback_aops = {
3063 .readpage = ext4_readpage,
3064 .readpages = ext4_readpages,
3065 .writepage = ext4_normal_writepage,
3066 .sync_page = block_sync_page,
3067 .write_begin = ext4_write_begin,
3068 .write_end = ext4_writeback_write_end,
3069 .bmap = ext4_bmap,
3070 .invalidatepage = ext4_invalidatepage,
3071 .releasepage = ext4_releasepage,
3072 .direct_IO = ext4_direct_IO,
3073 .migratepage = buffer_migrate_page,
3074 .is_partially_uptodate = block_is_partially_uptodate,
3077 static const struct address_space_operations ext4_journalled_aops = {
3078 .readpage = ext4_readpage,
3079 .readpages = ext4_readpages,
3080 .writepage = ext4_journalled_writepage,
3081 .sync_page = block_sync_page,
3082 .write_begin = ext4_write_begin,
3083 .write_end = ext4_journalled_write_end,
3084 .set_page_dirty = ext4_journalled_set_page_dirty,
3085 .bmap = ext4_bmap,
3086 .invalidatepage = ext4_invalidatepage,
3087 .releasepage = ext4_releasepage,
3088 .is_partially_uptodate = block_is_partially_uptodate,
3091 static const struct address_space_operations ext4_da_aops = {
3092 .readpage = ext4_readpage,
3093 .readpages = ext4_readpages,
3094 .writepage = ext4_da_writepage,
3095 .writepages = ext4_da_writepages,
3096 .sync_page = block_sync_page,
3097 .write_begin = ext4_da_write_begin,
3098 .write_end = ext4_da_write_end,
3099 .bmap = ext4_bmap,
3100 .invalidatepage = ext4_da_invalidatepage,
3101 .releasepage = ext4_releasepage,
3102 .direct_IO = ext4_direct_IO,
3103 .migratepage = buffer_migrate_page,
3104 .is_partially_uptodate = block_is_partially_uptodate,
3107 void ext4_set_aops(struct inode *inode)
3109 if (ext4_should_order_data(inode) &&
3110 test_opt(inode->i_sb, DELALLOC))
3111 inode->i_mapping->a_ops = &ext4_da_aops;
3112 else if (ext4_should_order_data(inode))
3113 inode->i_mapping->a_ops = &ext4_ordered_aops;
3114 else if (ext4_should_writeback_data(inode) &&
3115 test_opt(inode->i_sb, DELALLOC))
3116 inode->i_mapping->a_ops = &ext4_da_aops;
3117 else if (ext4_should_writeback_data(inode))
3118 inode->i_mapping->a_ops = &ext4_writeback_aops;
3119 else
3120 inode->i_mapping->a_ops = &ext4_journalled_aops;
3124 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3125 * up to the end of the block which corresponds to `from'.
3126 * This required during truncate. We need to physically zero the tail end
3127 * of that block so it doesn't yield old data if the file is later grown.
3129 int ext4_block_truncate_page(handle_t *handle,
3130 struct address_space *mapping, loff_t from)
3132 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3133 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3134 unsigned blocksize, length, pos;
3135 ext4_lblk_t iblock;
3136 struct inode *inode = mapping->host;
3137 struct buffer_head *bh;
3138 struct page *page;
3139 int err = 0;
3141 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3142 if (!page)
3143 return -EINVAL;
3145 blocksize = inode->i_sb->s_blocksize;
3146 length = blocksize - (offset & (blocksize - 1));
3147 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3150 * For "nobh" option, we can only work if we don't need to
3151 * read-in the page - otherwise we create buffers to do the IO.
3153 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3154 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3155 zero_user(page, offset, length);
3156 set_page_dirty(page);
3157 goto unlock;
3160 if (!page_has_buffers(page))
3161 create_empty_buffers(page, blocksize, 0);
3163 /* Find the buffer that contains "offset" */
3164 bh = page_buffers(page);
3165 pos = blocksize;
3166 while (offset >= pos) {
3167 bh = bh->b_this_page;
3168 iblock++;
3169 pos += blocksize;
3172 err = 0;
3173 if (buffer_freed(bh)) {
3174 BUFFER_TRACE(bh, "freed: skip");
3175 goto unlock;
3178 if (!buffer_mapped(bh)) {
3179 BUFFER_TRACE(bh, "unmapped");
3180 ext4_get_block(inode, iblock, bh, 0);
3181 /* unmapped? It's a hole - nothing to do */
3182 if (!buffer_mapped(bh)) {
3183 BUFFER_TRACE(bh, "still unmapped");
3184 goto unlock;
3188 /* Ok, it's mapped. Make sure it's up-to-date */
3189 if (PageUptodate(page))
3190 set_buffer_uptodate(bh);
3192 if (!buffer_uptodate(bh)) {
3193 err = -EIO;
3194 ll_rw_block(READ, 1, &bh);
3195 wait_on_buffer(bh);
3196 /* Uhhuh. Read error. Complain and punt. */
3197 if (!buffer_uptodate(bh))
3198 goto unlock;
3201 if (ext4_should_journal_data(inode)) {
3202 BUFFER_TRACE(bh, "get write access");
3203 err = ext4_journal_get_write_access(handle, bh);
3204 if (err)
3205 goto unlock;
3208 zero_user(page, offset, length);
3210 BUFFER_TRACE(bh, "zeroed end of block");
3212 err = 0;
3213 if (ext4_should_journal_data(inode)) {
3214 err = ext4_journal_dirty_metadata(handle, bh);
3215 } else {
3216 if (ext4_should_order_data(inode))
3217 err = ext4_jbd2_file_inode(handle, inode);
3218 mark_buffer_dirty(bh);
3221 unlock:
3222 unlock_page(page);
3223 page_cache_release(page);
3224 return err;
3228 * Probably it should be a library function... search for first non-zero word
3229 * or memcmp with zero_page, whatever is better for particular architecture.
3230 * Linus?
3232 static inline int all_zeroes(__le32 *p, __le32 *q)
3234 while (p < q)
3235 if (*p++)
3236 return 0;
3237 return 1;
3241 * ext4_find_shared - find the indirect blocks for partial truncation.
3242 * @inode: inode in question
3243 * @depth: depth of the affected branch
3244 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3245 * @chain: place to store the pointers to partial indirect blocks
3246 * @top: place to the (detached) top of branch
3248 * This is a helper function used by ext4_truncate().
3250 * When we do truncate() we may have to clean the ends of several
3251 * indirect blocks but leave the blocks themselves alive. Block is
3252 * partially truncated if some data below the new i_size is refered
3253 * from it (and it is on the path to the first completely truncated
3254 * data block, indeed). We have to free the top of that path along
3255 * with everything to the right of the path. Since no allocation
3256 * past the truncation point is possible until ext4_truncate()
3257 * finishes, we may safely do the latter, but top of branch may
3258 * require special attention - pageout below the truncation point
3259 * might try to populate it.
3261 * We atomically detach the top of branch from the tree, store the
3262 * block number of its root in *@top, pointers to buffer_heads of
3263 * partially truncated blocks - in @chain[].bh and pointers to
3264 * their last elements that should not be removed - in
3265 * @chain[].p. Return value is the pointer to last filled element
3266 * of @chain.
3268 * The work left to caller to do the actual freeing of subtrees:
3269 * a) free the subtree starting from *@top
3270 * b) free the subtrees whose roots are stored in
3271 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3272 * c) free the subtrees growing from the inode past the @chain[0].
3273 * (no partially truncated stuff there). */
3275 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3276 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3278 Indirect *partial, *p;
3279 int k, err;
3281 *top = 0;
3282 /* Make k index the deepest non-null offest + 1 */
3283 for (k = depth; k > 1 && !offsets[k-1]; k--)
3285 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3286 /* Writer: pointers */
3287 if (!partial)
3288 partial = chain + k-1;
3290 * If the branch acquired continuation since we've looked at it -
3291 * fine, it should all survive and (new) top doesn't belong to us.
3293 if (!partial->key && *partial->p)
3294 /* Writer: end */
3295 goto no_top;
3296 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
3299 * OK, we've found the last block that must survive. The rest of our
3300 * branch should be detached before unlocking. However, if that rest
3301 * of branch is all ours and does not grow immediately from the inode
3302 * it's easier to cheat and just decrement partial->p.
3304 if (p == chain + k - 1 && p > chain) {
3305 p->p--;
3306 } else {
3307 *top = *p->p;
3308 /* Nope, don't do this in ext4. Must leave the tree intact */
3309 #if 0
3310 *p->p = 0;
3311 #endif
3313 /* Writer: end */
3315 while(partial > p) {
3316 brelse(partial->bh);
3317 partial--;
3319 no_top:
3320 return partial;
3324 * Zero a number of block pointers in either an inode or an indirect block.
3325 * If we restart the transaction we must again get write access to the
3326 * indirect block for further modification.
3328 * We release `count' blocks on disk, but (last - first) may be greater
3329 * than `count' because there can be holes in there.
3331 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3332 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3333 unsigned long count, __le32 *first, __le32 *last)
3335 __le32 *p;
3336 if (try_to_extend_transaction(handle, inode)) {
3337 if (bh) {
3338 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3339 ext4_journal_dirty_metadata(handle, bh);
3341 ext4_mark_inode_dirty(handle, inode);
3342 ext4_journal_test_restart(handle, inode);
3343 if (bh) {
3344 BUFFER_TRACE(bh, "retaking write access");
3345 ext4_journal_get_write_access(handle, bh);
3350 * Any buffers which are on the journal will be in memory. We find
3351 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3352 * on them. We've already detached each block from the file, so
3353 * bforget() in jbd2_journal_forget() should be safe.
3355 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3357 for (p = first; p < last; p++) {
3358 u32 nr = le32_to_cpu(*p);
3359 if (nr) {
3360 struct buffer_head *tbh;
3362 *p = 0;
3363 tbh = sb_find_get_block(inode->i_sb, nr);
3364 ext4_forget(handle, 0, inode, tbh, nr);
3368 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3372 * ext4_free_data - free a list of data blocks
3373 * @handle: handle for this transaction
3374 * @inode: inode we are dealing with
3375 * @this_bh: indirect buffer_head which contains *@first and *@last
3376 * @first: array of block numbers
3377 * @last: points immediately past the end of array
3379 * We are freeing all blocks refered from that array (numbers are stored as
3380 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3382 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3383 * blocks are contiguous then releasing them at one time will only affect one
3384 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3385 * actually use a lot of journal space.
3387 * @this_bh will be %NULL if @first and @last point into the inode's direct
3388 * block pointers.
3390 static void ext4_free_data(handle_t *handle, struct inode *inode,
3391 struct buffer_head *this_bh,
3392 __le32 *first, __le32 *last)
3394 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3395 unsigned long count = 0; /* Number of blocks in the run */
3396 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3397 corresponding to
3398 block_to_free */
3399 ext4_fsblk_t nr; /* Current block # */
3400 __le32 *p; /* Pointer into inode/ind
3401 for current block */
3402 int err;
3404 if (this_bh) { /* For indirect block */
3405 BUFFER_TRACE(this_bh, "get_write_access");
3406 err = ext4_journal_get_write_access(handle, this_bh);
3407 /* Important: if we can't update the indirect pointers
3408 * to the blocks, we can't free them. */
3409 if (err)
3410 return;
3413 for (p = first; p < last; p++) {
3414 nr = le32_to_cpu(*p);
3415 if (nr) {
3416 /* accumulate blocks to free if they're contiguous */
3417 if (count == 0) {
3418 block_to_free = nr;
3419 block_to_free_p = p;
3420 count = 1;
3421 } else if (nr == block_to_free + count) {
3422 count++;
3423 } else {
3424 ext4_clear_blocks(handle, inode, this_bh,
3425 block_to_free,
3426 count, block_to_free_p, p);
3427 block_to_free = nr;
3428 block_to_free_p = p;
3429 count = 1;
3434 if (count > 0)
3435 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3436 count, block_to_free_p, p);
3438 if (this_bh) {
3439 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3442 * The buffer head should have an attached journal head at this
3443 * point. However, if the data is corrupted and an indirect
3444 * block pointed to itself, it would have been detached when
3445 * the block was cleared. Check for this instead of OOPSing.
3447 if (bh2jh(this_bh))
3448 ext4_journal_dirty_metadata(handle, this_bh);
3449 else
3450 ext4_error(inode->i_sb, __func__,
3451 "circular indirect block detected, "
3452 "inode=%lu, block=%llu",
3453 inode->i_ino,
3454 (unsigned long long) this_bh->b_blocknr);
3459 * ext4_free_branches - free an array of branches
3460 * @handle: JBD handle for this transaction
3461 * @inode: inode we are dealing with
3462 * @parent_bh: the buffer_head which contains *@first and *@last
3463 * @first: array of block numbers
3464 * @last: pointer immediately past the end of array
3465 * @depth: depth of the branches to free
3467 * We are freeing all blocks refered from these branches (numbers are
3468 * stored as little-endian 32-bit) and updating @inode->i_blocks
3469 * appropriately.
3471 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3472 struct buffer_head *parent_bh,
3473 __le32 *first, __le32 *last, int depth)
3475 ext4_fsblk_t nr;
3476 __le32 *p;
3478 if (is_handle_aborted(handle))
3479 return;
3481 if (depth--) {
3482 struct buffer_head *bh;
3483 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3484 p = last;
3485 while (--p >= first) {
3486 nr = le32_to_cpu(*p);
3487 if (!nr)
3488 continue; /* A hole */
3490 /* Go read the buffer for the next level down */
3491 bh = sb_bread(inode->i_sb, nr);
3494 * A read failure? Report error and clear slot
3495 * (should be rare).
3497 if (!bh) {
3498 ext4_error(inode->i_sb, "ext4_free_branches",
3499 "Read failure, inode=%lu, block=%llu",
3500 inode->i_ino, nr);
3501 continue;
3504 /* This zaps the entire block. Bottom up. */
3505 BUFFER_TRACE(bh, "free child branches");
3506 ext4_free_branches(handle, inode, bh,
3507 (__le32*)bh->b_data,
3508 (__le32*)bh->b_data + addr_per_block,
3509 depth);
3512 * We've probably journalled the indirect block several
3513 * times during the truncate. But it's no longer
3514 * needed and we now drop it from the transaction via
3515 * jbd2_journal_revoke().
3517 * That's easy if it's exclusively part of this
3518 * transaction. But if it's part of the committing
3519 * transaction then jbd2_journal_forget() will simply
3520 * brelse() it. That means that if the underlying
3521 * block is reallocated in ext4_get_block(),
3522 * unmap_underlying_metadata() will find this block
3523 * and will try to get rid of it. damn, damn.
3525 * If this block has already been committed to the
3526 * journal, a revoke record will be written. And
3527 * revoke records must be emitted *before* clearing
3528 * this block's bit in the bitmaps.
3530 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3533 * Everything below this this pointer has been
3534 * released. Now let this top-of-subtree go.
3536 * We want the freeing of this indirect block to be
3537 * atomic in the journal with the updating of the
3538 * bitmap block which owns it. So make some room in
3539 * the journal.
3541 * We zero the parent pointer *after* freeing its
3542 * pointee in the bitmaps, so if extend_transaction()
3543 * for some reason fails to put the bitmap changes and
3544 * the release into the same transaction, recovery
3545 * will merely complain about releasing a free block,
3546 * rather than leaking blocks.
3548 if (is_handle_aborted(handle))
3549 return;
3550 if (try_to_extend_transaction(handle, inode)) {
3551 ext4_mark_inode_dirty(handle, inode);
3552 ext4_journal_test_restart(handle, inode);
3555 ext4_free_blocks(handle, inode, nr, 1, 1);
3557 if (parent_bh) {
3559 * The block which we have just freed is
3560 * pointed to by an indirect block: journal it
3562 BUFFER_TRACE(parent_bh, "get_write_access");
3563 if (!ext4_journal_get_write_access(handle,
3564 parent_bh)){
3565 *p = 0;
3566 BUFFER_TRACE(parent_bh,
3567 "call ext4_journal_dirty_metadata");
3568 ext4_journal_dirty_metadata(handle,
3569 parent_bh);
3573 } else {
3574 /* We have reached the bottom of the tree. */
3575 BUFFER_TRACE(parent_bh, "free data blocks");
3576 ext4_free_data(handle, inode, parent_bh, first, last);
3580 int ext4_can_truncate(struct inode *inode)
3582 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3583 return 0;
3584 if (S_ISREG(inode->i_mode))
3585 return 1;
3586 if (S_ISDIR(inode->i_mode))
3587 return 1;
3588 if (S_ISLNK(inode->i_mode))
3589 return !ext4_inode_is_fast_symlink(inode);
3590 return 0;
3594 * ext4_truncate()
3596 * We block out ext4_get_block() block instantiations across the entire
3597 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3598 * simultaneously on behalf of the same inode.
3600 * As we work through the truncate and commmit bits of it to the journal there
3601 * is one core, guiding principle: the file's tree must always be consistent on
3602 * disk. We must be able to restart the truncate after a crash.
3604 * The file's tree may be transiently inconsistent in memory (although it
3605 * probably isn't), but whenever we close off and commit a journal transaction,
3606 * the contents of (the filesystem + the journal) must be consistent and
3607 * restartable. It's pretty simple, really: bottom up, right to left (although
3608 * left-to-right works OK too).
3610 * Note that at recovery time, journal replay occurs *before* the restart of
3611 * truncate against the orphan inode list.
3613 * The committed inode has the new, desired i_size (which is the same as
3614 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3615 * that this inode's truncate did not complete and it will again call
3616 * ext4_truncate() to have another go. So there will be instantiated blocks
3617 * to the right of the truncation point in a crashed ext4 filesystem. But
3618 * that's fine - as long as they are linked from the inode, the post-crash
3619 * ext4_truncate() run will find them and release them.
3621 void ext4_truncate(struct inode *inode)
3623 handle_t *handle;
3624 struct ext4_inode_info *ei = EXT4_I(inode);
3625 __le32 *i_data = ei->i_data;
3626 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3627 struct address_space *mapping = inode->i_mapping;
3628 ext4_lblk_t offsets[4];
3629 Indirect chain[4];
3630 Indirect *partial;
3631 __le32 nr = 0;
3632 int n;
3633 ext4_lblk_t last_block;
3634 unsigned blocksize = inode->i_sb->s_blocksize;
3636 if (!ext4_can_truncate(inode))
3637 return;
3639 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3640 ext4_ext_truncate(inode);
3641 return;
3644 handle = start_transaction(inode);
3645 if (IS_ERR(handle))
3646 return; /* AKPM: return what? */
3648 last_block = (inode->i_size + blocksize-1)
3649 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3651 if (inode->i_size & (blocksize - 1))
3652 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3653 goto out_stop;
3655 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3656 if (n == 0)
3657 goto out_stop; /* error */
3660 * OK. This truncate is going to happen. We add the inode to the
3661 * orphan list, so that if this truncate spans multiple transactions,
3662 * and we crash, we will resume the truncate when the filesystem
3663 * recovers. It also marks the inode dirty, to catch the new size.
3665 * Implication: the file must always be in a sane, consistent
3666 * truncatable state while each transaction commits.
3668 if (ext4_orphan_add(handle, inode))
3669 goto out_stop;
3672 * From here we block out all ext4_get_block() callers who want to
3673 * modify the block allocation tree.
3675 down_write(&ei->i_data_sem);
3677 ext4_discard_reservation(inode);
3680 * The orphan list entry will now protect us from any crash which
3681 * occurs before the truncate completes, so it is now safe to propagate
3682 * the new, shorter inode size (held for now in i_size) into the
3683 * on-disk inode. We do this via i_disksize, which is the value which
3684 * ext4 *really* writes onto the disk inode.
3686 ei->i_disksize = inode->i_size;
3688 if (n == 1) { /* direct blocks */
3689 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3690 i_data + EXT4_NDIR_BLOCKS);
3691 goto do_indirects;
3694 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3695 /* Kill the top of shared branch (not detached) */
3696 if (nr) {
3697 if (partial == chain) {
3698 /* Shared branch grows from the inode */
3699 ext4_free_branches(handle, inode, NULL,
3700 &nr, &nr+1, (chain+n-1) - partial);
3701 *partial->p = 0;
3703 * We mark the inode dirty prior to restart,
3704 * and prior to stop. No need for it here.
3706 } else {
3707 /* Shared branch grows from an indirect block */
3708 BUFFER_TRACE(partial->bh, "get_write_access");
3709 ext4_free_branches(handle, inode, partial->bh,
3710 partial->p,
3711 partial->p+1, (chain+n-1) - partial);
3714 /* Clear the ends of indirect blocks on the shared branch */
3715 while (partial > chain) {
3716 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3717 (__le32*)partial->bh->b_data+addr_per_block,
3718 (chain+n-1) - partial);
3719 BUFFER_TRACE(partial->bh, "call brelse");
3720 brelse (partial->bh);
3721 partial--;
3723 do_indirects:
3724 /* Kill the remaining (whole) subtrees */
3725 switch (offsets[0]) {
3726 default:
3727 nr = i_data[EXT4_IND_BLOCK];
3728 if (nr) {
3729 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3730 i_data[EXT4_IND_BLOCK] = 0;
3732 case EXT4_IND_BLOCK:
3733 nr = i_data[EXT4_DIND_BLOCK];
3734 if (nr) {
3735 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3736 i_data[EXT4_DIND_BLOCK] = 0;
3738 case EXT4_DIND_BLOCK:
3739 nr = i_data[EXT4_TIND_BLOCK];
3740 if (nr) {
3741 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3742 i_data[EXT4_TIND_BLOCK] = 0;
3744 case EXT4_TIND_BLOCK:
3748 up_write(&ei->i_data_sem);
3749 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3750 ext4_mark_inode_dirty(handle, inode);
3753 * In a multi-transaction truncate, we only make the final transaction
3754 * synchronous
3756 if (IS_SYNC(inode))
3757 handle->h_sync = 1;
3758 out_stop:
3760 * If this was a simple ftruncate(), and the file will remain alive
3761 * then we need to clear up the orphan record which we created above.
3762 * However, if this was a real unlink then we were called by
3763 * ext4_delete_inode(), and we allow that function to clean up the
3764 * orphan info for us.
3766 if (inode->i_nlink)
3767 ext4_orphan_del(handle, inode);
3769 ext4_journal_stop(handle);
3772 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3773 unsigned long ino, struct ext4_iloc *iloc)
3775 ext4_group_t block_group;
3776 unsigned long offset;
3777 ext4_fsblk_t block;
3778 struct ext4_group_desc *gdp;
3780 if (!ext4_valid_inum(sb, ino)) {
3782 * This error is already checked for in namei.c unless we are
3783 * looking at an NFS filehandle, in which case no error
3784 * report is needed
3786 return 0;
3789 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3790 gdp = ext4_get_group_desc(sb, block_group, NULL);
3791 if (!gdp)
3792 return 0;
3795 * Figure out the offset within the block group inode table
3797 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3798 EXT4_INODE_SIZE(sb);
3799 block = ext4_inode_table(sb, gdp) +
3800 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3802 iloc->block_group = block_group;
3803 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3804 return block;
3808 * ext4_get_inode_loc returns with an extra refcount against the inode's
3809 * underlying buffer_head on success. If 'in_mem' is true, we have all
3810 * data in memory that is needed to recreate the on-disk version of this
3811 * inode.
3813 static int __ext4_get_inode_loc(struct inode *inode,
3814 struct ext4_iloc *iloc, int in_mem)
3816 ext4_fsblk_t block;
3817 struct buffer_head *bh;
3819 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3820 if (!block)
3821 return -EIO;
3823 bh = sb_getblk(inode->i_sb, block);
3824 if (!bh) {
3825 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3826 "unable to read inode block - "
3827 "inode=%lu, block=%llu",
3828 inode->i_ino, block);
3829 return -EIO;
3831 if (!buffer_uptodate(bh)) {
3832 lock_buffer(bh);
3835 * If the buffer has the write error flag, we have failed
3836 * to write out another inode in the same block. In this
3837 * case, we don't have to read the block because we may
3838 * read the old inode data successfully.
3840 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3841 set_buffer_uptodate(bh);
3843 if (buffer_uptodate(bh)) {
3844 /* someone brought it uptodate while we waited */
3845 unlock_buffer(bh);
3846 goto has_buffer;
3850 * If we have all information of the inode in memory and this
3851 * is the only valid inode in the block, we need not read the
3852 * block.
3854 if (in_mem) {
3855 struct buffer_head *bitmap_bh;
3856 struct ext4_group_desc *desc;
3857 int inodes_per_buffer;
3858 int inode_offset, i;
3859 ext4_group_t block_group;
3860 int start;
3862 block_group = (inode->i_ino - 1) /
3863 EXT4_INODES_PER_GROUP(inode->i_sb);
3864 inodes_per_buffer = bh->b_size /
3865 EXT4_INODE_SIZE(inode->i_sb);
3866 inode_offset = ((inode->i_ino - 1) %
3867 EXT4_INODES_PER_GROUP(inode->i_sb));
3868 start = inode_offset & ~(inodes_per_buffer - 1);
3870 /* Is the inode bitmap in cache? */
3871 desc = ext4_get_group_desc(inode->i_sb,
3872 block_group, NULL);
3873 if (!desc)
3874 goto make_io;
3876 bitmap_bh = sb_getblk(inode->i_sb,
3877 ext4_inode_bitmap(inode->i_sb, desc));
3878 if (!bitmap_bh)
3879 goto make_io;
3882 * If the inode bitmap isn't in cache then the
3883 * optimisation may end up performing two reads instead
3884 * of one, so skip it.
3886 if (!buffer_uptodate(bitmap_bh)) {
3887 brelse(bitmap_bh);
3888 goto make_io;
3890 for (i = start; i < start + inodes_per_buffer; i++) {
3891 if (i == inode_offset)
3892 continue;
3893 if (ext4_test_bit(i, bitmap_bh->b_data))
3894 break;
3896 brelse(bitmap_bh);
3897 if (i == start + inodes_per_buffer) {
3898 /* all other inodes are free, so skip I/O */
3899 memset(bh->b_data, 0, bh->b_size);
3900 set_buffer_uptodate(bh);
3901 unlock_buffer(bh);
3902 goto has_buffer;
3906 make_io:
3908 * There are other valid inodes in the buffer, this inode
3909 * has in-inode xattrs, or we don't have this inode in memory.
3910 * Read the block from disk.
3912 get_bh(bh);
3913 bh->b_end_io = end_buffer_read_sync;
3914 submit_bh(READ_META, bh);
3915 wait_on_buffer(bh);
3916 if (!buffer_uptodate(bh)) {
3917 ext4_error(inode->i_sb, "ext4_get_inode_loc",
3918 "unable to read inode block - "
3919 "inode=%lu, block=%llu",
3920 inode->i_ino, block);
3921 brelse(bh);
3922 return -EIO;
3925 has_buffer:
3926 iloc->bh = bh;
3927 return 0;
3930 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3932 /* We have all inode data except xattrs in memory here. */
3933 return __ext4_get_inode_loc(inode, iloc,
3934 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3937 void ext4_set_inode_flags(struct inode *inode)
3939 unsigned int flags = EXT4_I(inode)->i_flags;
3941 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3942 if (flags & EXT4_SYNC_FL)
3943 inode->i_flags |= S_SYNC;
3944 if (flags & EXT4_APPEND_FL)
3945 inode->i_flags |= S_APPEND;
3946 if (flags & EXT4_IMMUTABLE_FL)
3947 inode->i_flags |= S_IMMUTABLE;
3948 if (flags & EXT4_NOATIME_FL)
3949 inode->i_flags |= S_NOATIME;
3950 if (flags & EXT4_DIRSYNC_FL)
3951 inode->i_flags |= S_DIRSYNC;
3954 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3955 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3957 unsigned int flags = ei->vfs_inode.i_flags;
3959 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3960 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3961 if (flags & S_SYNC)
3962 ei->i_flags |= EXT4_SYNC_FL;
3963 if (flags & S_APPEND)
3964 ei->i_flags |= EXT4_APPEND_FL;
3965 if (flags & S_IMMUTABLE)
3966 ei->i_flags |= EXT4_IMMUTABLE_FL;
3967 if (flags & S_NOATIME)
3968 ei->i_flags |= EXT4_NOATIME_FL;
3969 if (flags & S_DIRSYNC)
3970 ei->i_flags |= EXT4_DIRSYNC_FL;
3972 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3973 struct ext4_inode_info *ei)
3975 blkcnt_t i_blocks ;
3976 struct inode *inode = &(ei->vfs_inode);
3977 struct super_block *sb = inode->i_sb;
3979 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3980 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3981 /* we are using combined 48 bit field */
3982 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3983 le32_to_cpu(raw_inode->i_blocks_lo);
3984 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3985 /* i_blocks represent file system block size */
3986 return i_blocks << (inode->i_blkbits - 9);
3987 } else {
3988 return i_blocks;
3990 } else {
3991 return le32_to_cpu(raw_inode->i_blocks_lo);
3995 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3997 struct ext4_iloc iloc;
3998 struct ext4_inode *raw_inode;
3999 struct ext4_inode_info *ei;
4000 struct buffer_head *bh;
4001 struct inode *inode;
4002 long ret;
4003 int block;
4005 inode = iget_locked(sb, ino);
4006 if (!inode)
4007 return ERR_PTR(-ENOMEM);
4008 if (!(inode->i_state & I_NEW))
4009 return inode;
4011 ei = EXT4_I(inode);
4012 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
4013 ei->i_acl = EXT4_ACL_NOT_CACHED;
4014 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4015 #endif
4016 ei->i_block_alloc_info = NULL;
4018 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4019 if (ret < 0)
4020 goto bad_inode;
4021 bh = iloc.bh;
4022 raw_inode = ext4_raw_inode(&iloc);
4023 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4024 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4025 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4026 if(!(test_opt (inode->i_sb, NO_UID32))) {
4027 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4028 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4030 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4032 ei->i_state = 0;
4033 ei->i_dir_start_lookup = 0;
4034 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4035 /* We now have enough fields to check if the inode was active or not.
4036 * This is needed because nfsd might try to access dead inodes
4037 * the test is that same one that e2fsck uses
4038 * NeilBrown 1999oct15
4040 if (inode->i_nlink == 0) {
4041 if (inode->i_mode == 0 ||
4042 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4043 /* this inode is deleted */
4044 brelse (bh);
4045 ret = -ESTALE;
4046 goto bad_inode;
4048 /* The only unlinked inodes we let through here have
4049 * valid i_mode and are being read by the orphan
4050 * recovery code: that's fine, we're about to complete
4051 * the process of deleting those. */
4053 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4054 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4055 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4056 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4057 cpu_to_le32(EXT4_OS_HURD)) {
4058 ei->i_file_acl |=
4059 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4061 inode->i_size = ext4_isize(raw_inode);
4062 ei->i_disksize = inode->i_size;
4063 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4064 ei->i_block_group = iloc.block_group;
4066 * NOTE! The in-memory inode i_data array is in little-endian order
4067 * even on big-endian machines: we do NOT byteswap the block numbers!
4069 for (block = 0; block < EXT4_N_BLOCKS; block++)
4070 ei->i_data[block] = raw_inode->i_block[block];
4071 INIT_LIST_HEAD(&ei->i_orphan);
4073 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4074 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4075 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4076 EXT4_INODE_SIZE(inode->i_sb)) {
4077 brelse (bh);
4078 ret = -EIO;
4079 goto bad_inode;
4081 if (ei->i_extra_isize == 0) {
4082 /* The extra space is currently unused. Use it. */
4083 ei->i_extra_isize = sizeof(struct ext4_inode) -
4084 EXT4_GOOD_OLD_INODE_SIZE;
4085 } else {
4086 __le32 *magic = (void *)raw_inode +
4087 EXT4_GOOD_OLD_INODE_SIZE +
4088 ei->i_extra_isize;
4089 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4090 ei->i_state |= EXT4_STATE_XATTR;
4092 } else
4093 ei->i_extra_isize = 0;
4095 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4096 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4097 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4098 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4100 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4101 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4102 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4103 inode->i_version |=
4104 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4107 if (S_ISREG(inode->i_mode)) {
4108 inode->i_op = &ext4_file_inode_operations;
4109 inode->i_fop = &ext4_file_operations;
4110 ext4_set_aops(inode);
4111 } else if (S_ISDIR(inode->i_mode)) {
4112 inode->i_op = &ext4_dir_inode_operations;
4113 inode->i_fop = &ext4_dir_operations;
4114 } else if (S_ISLNK(inode->i_mode)) {
4115 if (ext4_inode_is_fast_symlink(inode))
4116 inode->i_op = &ext4_fast_symlink_inode_operations;
4117 else {
4118 inode->i_op = &ext4_symlink_inode_operations;
4119 ext4_set_aops(inode);
4121 } else {
4122 inode->i_op = &ext4_special_inode_operations;
4123 if (raw_inode->i_block[0])
4124 init_special_inode(inode, inode->i_mode,
4125 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4126 else
4127 init_special_inode(inode, inode->i_mode,
4128 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4130 brelse (iloc.bh);
4131 ext4_set_inode_flags(inode);
4132 unlock_new_inode(inode);
4133 return inode;
4135 bad_inode:
4136 iget_failed(inode);
4137 return ERR_PTR(ret);
4140 static int ext4_inode_blocks_set(handle_t *handle,
4141 struct ext4_inode *raw_inode,
4142 struct ext4_inode_info *ei)
4144 struct inode *inode = &(ei->vfs_inode);
4145 u64 i_blocks = inode->i_blocks;
4146 struct super_block *sb = inode->i_sb;
4147 int err = 0;
4149 if (i_blocks <= ~0U) {
4151 * i_blocks can be represnted in a 32 bit variable
4152 * as multiple of 512 bytes
4154 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4155 raw_inode->i_blocks_high = 0;
4156 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4157 } else if (i_blocks <= 0xffffffffffffULL) {
4159 * i_blocks can be represented in a 48 bit variable
4160 * as multiple of 512 bytes
4162 err = ext4_update_rocompat_feature(handle, sb,
4163 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4164 if (err)
4165 goto err_out;
4166 /* i_block is stored in the split 48 bit fields */
4167 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4168 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4169 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4170 } else {
4172 * i_blocks should be represented in a 48 bit variable
4173 * as multiple of file system block size
4175 err = ext4_update_rocompat_feature(handle, sb,
4176 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4177 if (err)
4178 goto err_out;
4179 ei->i_flags |= EXT4_HUGE_FILE_FL;
4180 /* i_block is stored in file system block size */
4181 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4182 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4183 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4185 err_out:
4186 return err;
4190 * Post the struct inode info into an on-disk inode location in the
4191 * buffer-cache. This gobbles the caller's reference to the
4192 * buffer_head in the inode location struct.
4194 * The caller must have write access to iloc->bh.
4196 static int ext4_do_update_inode(handle_t *handle,
4197 struct inode *inode,
4198 struct ext4_iloc *iloc)
4200 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4201 struct ext4_inode_info *ei = EXT4_I(inode);
4202 struct buffer_head *bh = iloc->bh;
4203 int err = 0, rc, block;
4205 /* For fields not not tracking in the in-memory inode,
4206 * initialise them to zero for new inodes. */
4207 if (ei->i_state & EXT4_STATE_NEW)
4208 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4210 ext4_get_inode_flags(ei);
4211 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4212 if(!(test_opt(inode->i_sb, NO_UID32))) {
4213 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4214 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4216 * Fix up interoperability with old kernels. Otherwise, old inodes get
4217 * re-used with the upper 16 bits of the uid/gid intact
4219 if(!ei->i_dtime) {
4220 raw_inode->i_uid_high =
4221 cpu_to_le16(high_16_bits(inode->i_uid));
4222 raw_inode->i_gid_high =
4223 cpu_to_le16(high_16_bits(inode->i_gid));
4224 } else {
4225 raw_inode->i_uid_high = 0;
4226 raw_inode->i_gid_high = 0;
4228 } else {
4229 raw_inode->i_uid_low =
4230 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4231 raw_inode->i_gid_low =
4232 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4233 raw_inode->i_uid_high = 0;
4234 raw_inode->i_gid_high = 0;
4236 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4238 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4239 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4240 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4241 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4243 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4244 goto out_brelse;
4245 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4246 /* clear the migrate flag in the raw_inode */
4247 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4248 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4249 cpu_to_le32(EXT4_OS_HURD))
4250 raw_inode->i_file_acl_high =
4251 cpu_to_le16(ei->i_file_acl >> 32);
4252 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4253 ext4_isize_set(raw_inode, ei->i_disksize);
4254 if (ei->i_disksize > 0x7fffffffULL) {
4255 struct super_block *sb = inode->i_sb;
4256 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4257 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4258 EXT4_SB(sb)->s_es->s_rev_level ==
4259 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4260 /* If this is the first large file
4261 * created, add a flag to the superblock.
4263 err = ext4_journal_get_write_access(handle,
4264 EXT4_SB(sb)->s_sbh);
4265 if (err)
4266 goto out_brelse;
4267 ext4_update_dynamic_rev(sb);
4268 EXT4_SET_RO_COMPAT_FEATURE(sb,
4269 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4270 sb->s_dirt = 1;
4271 handle->h_sync = 1;
4272 err = ext4_journal_dirty_metadata(handle,
4273 EXT4_SB(sb)->s_sbh);
4276 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4277 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4278 if (old_valid_dev(inode->i_rdev)) {
4279 raw_inode->i_block[0] =
4280 cpu_to_le32(old_encode_dev(inode->i_rdev));
4281 raw_inode->i_block[1] = 0;
4282 } else {
4283 raw_inode->i_block[0] = 0;
4284 raw_inode->i_block[1] =
4285 cpu_to_le32(new_encode_dev(inode->i_rdev));
4286 raw_inode->i_block[2] = 0;
4288 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4289 raw_inode->i_block[block] = ei->i_data[block];
4291 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4292 if (ei->i_extra_isize) {
4293 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4294 raw_inode->i_version_hi =
4295 cpu_to_le32(inode->i_version >> 32);
4296 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4300 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4301 rc = ext4_journal_dirty_metadata(handle, bh);
4302 if (!err)
4303 err = rc;
4304 ei->i_state &= ~EXT4_STATE_NEW;
4306 out_brelse:
4307 brelse (bh);
4308 ext4_std_error(inode->i_sb, err);
4309 return err;
4313 * ext4_write_inode()
4315 * We are called from a few places:
4317 * - Within generic_file_write() for O_SYNC files.
4318 * Here, there will be no transaction running. We wait for any running
4319 * trasnaction to commit.
4321 * - Within sys_sync(), kupdate and such.
4322 * We wait on commit, if tol to.
4324 * - Within prune_icache() (PF_MEMALLOC == true)
4325 * Here we simply return. We can't afford to block kswapd on the
4326 * journal commit.
4328 * In all cases it is actually safe for us to return without doing anything,
4329 * because the inode has been copied into a raw inode buffer in
4330 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4331 * knfsd.
4333 * Note that we are absolutely dependent upon all inode dirtiers doing the
4334 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4335 * which we are interested.
4337 * It would be a bug for them to not do this. The code:
4339 * mark_inode_dirty(inode)
4340 * stuff();
4341 * inode->i_size = expr;
4343 * is in error because a kswapd-driven write_inode() could occur while
4344 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4345 * will no longer be on the superblock's dirty inode list.
4347 int ext4_write_inode(struct inode *inode, int wait)
4349 if (current->flags & PF_MEMALLOC)
4350 return 0;
4352 if (ext4_journal_current_handle()) {
4353 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4354 dump_stack();
4355 return -EIO;
4358 if (!wait)
4359 return 0;
4361 return ext4_force_commit(inode->i_sb);
4365 * ext4_setattr()
4367 * Called from notify_change.
4369 * We want to trap VFS attempts to truncate the file as soon as
4370 * possible. In particular, we want to make sure that when the VFS
4371 * shrinks i_size, we put the inode on the orphan list and modify
4372 * i_disksize immediately, so that during the subsequent flushing of
4373 * dirty pages and freeing of disk blocks, we can guarantee that any
4374 * commit will leave the blocks being flushed in an unused state on
4375 * disk. (On recovery, the inode will get truncated and the blocks will
4376 * be freed, so we have a strong guarantee that no future commit will
4377 * leave these blocks visible to the user.)
4379 * Another thing we have to assure is that if we are in ordered mode
4380 * and inode is still attached to the committing transaction, we must
4381 * we start writeout of all the dirty pages which are being truncated.
4382 * This way we are sure that all the data written in the previous
4383 * transaction are already on disk (truncate waits for pages under
4384 * writeback).
4386 * Called with inode->i_mutex down.
4388 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4390 struct inode *inode = dentry->d_inode;
4391 int error, rc = 0;
4392 const unsigned int ia_valid = attr->ia_valid;
4394 error = inode_change_ok(inode, attr);
4395 if (error)
4396 return error;
4398 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4399 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4400 handle_t *handle;
4402 /* (user+group)*(old+new) structure, inode write (sb,
4403 * inode block, ? - but truncate inode update has it) */
4404 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4405 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4406 if (IS_ERR(handle)) {
4407 error = PTR_ERR(handle);
4408 goto err_out;
4410 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4411 if (error) {
4412 ext4_journal_stop(handle);
4413 return error;
4415 /* Update corresponding info in inode so that everything is in
4416 * one transaction */
4417 if (attr->ia_valid & ATTR_UID)
4418 inode->i_uid = attr->ia_uid;
4419 if (attr->ia_valid & ATTR_GID)
4420 inode->i_gid = attr->ia_gid;
4421 error = ext4_mark_inode_dirty(handle, inode);
4422 ext4_journal_stop(handle);
4425 if (attr->ia_valid & ATTR_SIZE) {
4426 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4427 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4429 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4430 error = -EFBIG;
4431 goto err_out;
4436 if (S_ISREG(inode->i_mode) &&
4437 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4438 handle_t *handle;
4440 handle = ext4_journal_start(inode, 3);
4441 if (IS_ERR(handle)) {
4442 error = PTR_ERR(handle);
4443 goto err_out;
4446 error = ext4_orphan_add(handle, inode);
4447 EXT4_I(inode)->i_disksize = attr->ia_size;
4448 rc = ext4_mark_inode_dirty(handle, inode);
4449 if (!error)
4450 error = rc;
4451 ext4_journal_stop(handle);
4453 if (ext4_should_order_data(inode)) {
4454 error = ext4_begin_ordered_truncate(inode,
4455 attr->ia_size);
4456 if (error) {
4457 /* Do as much error cleanup as possible */
4458 handle = ext4_journal_start(inode, 3);
4459 if (IS_ERR(handle)) {
4460 ext4_orphan_del(NULL, inode);
4461 goto err_out;
4463 ext4_orphan_del(handle, inode);
4464 ext4_journal_stop(handle);
4465 goto err_out;
4470 rc = inode_setattr(inode, attr);
4472 /* If inode_setattr's call to ext4_truncate failed to get a
4473 * transaction handle at all, we need to clean up the in-core
4474 * orphan list manually. */
4475 if (inode->i_nlink)
4476 ext4_orphan_del(NULL, inode);
4478 if (!rc && (ia_valid & ATTR_MODE))
4479 rc = ext4_acl_chmod(inode);
4481 err_out:
4482 ext4_std_error(inode->i_sb, error);
4483 if (!error)
4484 error = rc;
4485 return error;
4488 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4489 struct kstat *stat)
4491 struct inode *inode;
4492 unsigned long delalloc_blocks;
4494 inode = dentry->d_inode;
4495 generic_fillattr(inode, stat);
4498 * We can't update i_blocks if the block allocation is delayed
4499 * otherwise in the case of system crash before the real block
4500 * allocation is done, we will have i_blocks inconsistent with
4501 * on-disk file blocks.
4502 * We always keep i_blocks updated together with real
4503 * allocation. But to not confuse with user, stat
4504 * will return the blocks that include the delayed allocation
4505 * blocks for this file.
4507 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4508 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4509 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4511 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4512 return 0;
4515 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4516 int chunk)
4518 int indirects;
4520 /* if nrblocks are contiguous */
4521 if (chunk) {
4523 * With N contiguous data blocks, it need at most
4524 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4525 * 2 dindirect blocks
4526 * 1 tindirect block
4528 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4529 return indirects + 3;
4532 * if nrblocks are not contiguous, worse case, each block touch
4533 * a indirect block, and each indirect block touch a double indirect
4534 * block, plus a triple indirect block
4536 indirects = nrblocks * 2 + 1;
4537 return indirects;
4540 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4542 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4543 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4544 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4548 * Account for index blocks, block groups bitmaps and block group
4549 * descriptor blocks if modify datablocks and index blocks
4550 * worse case, the indexs blocks spread over different block groups
4552 * If datablocks are discontiguous, they are possible to spread over
4553 * different block groups too. If they are contiugous, with flexbg,
4554 * they could still across block group boundary.
4556 * Also account for superblock, inode, quota and xattr blocks
4558 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4560 int groups, gdpblocks;
4561 int idxblocks;
4562 int ret = 0;
4565 * How many index blocks need to touch to modify nrblocks?
4566 * The "Chunk" flag indicating whether the nrblocks is
4567 * physically contiguous on disk
4569 * For Direct IO and fallocate, they calls get_block to allocate
4570 * one single extent at a time, so they could set the "Chunk" flag
4572 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4574 ret = idxblocks;
4577 * Now let's see how many group bitmaps and group descriptors need
4578 * to account
4580 groups = idxblocks;
4581 if (chunk)
4582 groups += 1;
4583 else
4584 groups += nrblocks;
4586 gdpblocks = groups;
4587 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4588 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4589 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4590 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4592 /* bitmaps and block group descriptor blocks */
4593 ret += groups + gdpblocks;
4595 /* Blocks for super block, inode, quota and xattr blocks */
4596 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4598 return ret;
4602 * Calulate the total number of credits to reserve to fit
4603 * the modification of a single pages into a single transaction,
4604 * which may include multiple chunks of block allocations.
4606 * This could be called via ext4_write_begin()
4608 * We need to consider the worse case, when
4609 * one new block per extent.
4611 int ext4_writepage_trans_blocks(struct inode *inode)
4613 int bpp = ext4_journal_blocks_per_page(inode);
4614 int ret;
4616 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4618 /* Account for data blocks for journalled mode */
4619 if (ext4_should_journal_data(inode))
4620 ret += bpp;
4621 return ret;
4625 * Calculate the journal credits for a chunk of data modification.
4627 * This is called from DIO, fallocate or whoever calling
4628 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4630 * journal buffers for data blocks are not included here, as DIO
4631 * and fallocate do no need to journal data buffers.
4633 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4635 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4639 * The caller must have previously called ext4_reserve_inode_write().
4640 * Give this, we know that the caller already has write access to iloc->bh.
4642 int ext4_mark_iloc_dirty(handle_t *handle,
4643 struct inode *inode, struct ext4_iloc *iloc)
4645 int err = 0;
4647 if (test_opt(inode->i_sb, I_VERSION))
4648 inode_inc_iversion(inode);
4650 /* the do_update_inode consumes one bh->b_count */
4651 get_bh(iloc->bh);
4653 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4654 err = ext4_do_update_inode(handle, inode, iloc);
4655 put_bh(iloc->bh);
4656 return err;
4660 * On success, We end up with an outstanding reference count against
4661 * iloc->bh. This _must_ be cleaned up later.
4665 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4666 struct ext4_iloc *iloc)
4668 int err = 0;
4669 if (handle) {
4670 err = ext4_get_inode_loc(inode, iloc);
4671 if (!err) {
4672 BUFFER_TRACE(iloc->bh, "get_write_access");
4673 err = ext4_journal_get_write_access(handle, iloc->bh);
4674 if (err) {
4675 brelse(iloc->bh);
4676 iloc->bh = NULL;
4680 ext4_std_error(inode->i_sb, err);
4681 return err;
4685 * Expand an inode by new_extra_isize bytes.
4686 * Returns 0 on success or negative error number on failure.
4688 static int ext4_expand_extra_isize(struct inode *inode,
4689 unsigned int new_extra_isize,
4690 struct ext4_iloc iloc,
4691 handle_t *handle)
4693 struct ext4_inode *raw_inode;
4694 struct ext4_xattr_ibody_header *header;
4695 struct ext4_xattr_entry *entry;
4697 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4698 return 0;
4700 raw_inode = ext4_raw_inode(&iloc);
4702 header = IHDR(inode, raw_inode);
4703 entry = IFIRST(header);
4705 /* No extended attributes present */
4706 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4707 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4708 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4709 new_extra_isize);
4710 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4711 return 0;
4714 /* try to expand with EAs present */
4715 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4716 raw_inode, handle);
4720 * What we do here is to mark the in-core inode as clean with respect to inode
4721 * dirtiness (it may still be data-dirty).
4722 * This means that the in-core inode may be reaped by prune_icache
4723 * without having to perform any I/O. This is a very good thing,
4724 * because *any* task may call prune_icache - even ones which
4725 * have a transaction open against a different journal.
4727 * Is this cheating? Not really. Sure, we haven't written the
4728 * inode out, but prune_icache isn't a user-visible syncing function.
4729 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4730 * we start and wait on commits.
4732 * Is this efficient/effective? Well, we're being nice to the system
4733 * by cleaning up our inodes proactively so they can be reaped
4734 * without I/O. But we are potentially leaving up to five seconds'
4735 * worth of inodes floating about which prune_icache wants us to
4736 * write out. One way to fix that would be to get prune_icache()
4737 * to do a write_super() to free up some memory. It has the desired
4738 * effect.
4740 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4742 struct ext4_iloc iloc;
4743 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4744 static unsigned int mnt_count;
4745 int err, ret;
4747 might_sleep();
4748 err = ext4_reserve_inode_write(handle, inode, &iloc);
4749 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4750 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4752 * We need extra buffer credits since we may write into EA block
4753 * with this same handle. If journal_extend fails, then it will
4754 * only result in a minor loss of functionality for that inode.
4755 * If this is felt to be critical, then e2fsck should be run to
4756 * force a large enough s_min_extra_isize.
4758 if ((jbd2_journal_extend(handle,
4759 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4760 ret = ext4_expand_extra_isize(inode,
4761 sbi->s_want_extra_isize,
4762 iloc, handle);
4763 if (ret) {
4764 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4765 if (mnt_count !=
4766 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4767 ext4_warning(inode->i_sb, __func__,
4768 "Unable to expand inode %lu. Delete"
4769 " some EAs or run e2fsck.",
4770 inode->i_ino);
4771 mnt_count =
4772 le16_to_cpu(sbi->s_es->s_mnt_count);
4777 if (!err)
4778 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4779 return err;
4783 * ext4_dirty_inode() is called from __mark_inode_dirty()
4785 * We're really interested in the case where a file is being extended.
4786 * i_size has been changed by generic_commit_write() and we thus need
4787 * to include the updated inode in the current transaction.
4789 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4790 * are allocated to the file.
4792 * If the inode is marked synchronous, we don't honour that here - doing
4793 * so would cause a commit on atime updates, which we don't bother doing.
4794 * We handle synchronous inodes at the highest possible level.
4796 void ext4_dirty_inode(struct inode *inode)
4798 handle_t *current_handle = ext4_journal_current_handle();
4799 handle_t *handle;
4801 handle = ext4_journal_start(inode, 2);
4802 if (IS_ERR(handle))
4803 goto out;
4804 if (current_handle &&
4805 current_handle->h_transaction != handle->h_transaction) {
4806 /* This task has a transaction open against a different fs */
4807 printk(KERN_EMERG "%s: transactions do not match!\n",
4808 __func__);
4809 } else {
4810 jbd_debug(5, "marking dirty. outer handle=%p\n",
4811 current_handle);
4812 ext4_mark_inode_dirty(handle, inode);
4814 ext4_journal_stop(handle);
4815 out:
4816 return;
4819 #if 0
4821 * Bind an inode's backing buffer_head into this transaction, to prevent
4822 * it from being flushed to disk early. Unlike
4823 * ext4_reserve_inode_write, this leaves behind no bh reference and
4824 * returns no iloc structure, so the caller needs to repeat the iloc
4825 * lookup to mark the inode dirty later.
4827 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4829 struct ext4_iloc iloc;
4831 int err = 0;
4832 if (handle) {
4833 err = ext4_get_inode_loc(inode, &iloc);
4834 if (!err) {
4835 BUFFER_TRACE(iloc.bh, "get_write_access");
4836 err = jbd2_journal_get_write_access(handle, iloc.bh);
4837 if (!err)
4838 err = ext4_journal_dirty_metadata(handle,
4839 iloc.bh);
4840 brelse(iloc.bh);
4843 ext4_std_error(inode->i_sb, err);
4844 return err;
4846 #endif
4848 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4850 journal_t *journal;
4851 handle_t *handle;
4852 int err;
4855 * We have to be very careful here: changing a data block's
4856 * journaling status dynamically is dangerous. If we write a
4857 * data block to the journal, change the status and then delete
4858 * that block, we risk forgetting to revoke the old log record
4859 * from the journal and so a subsequent replay can corrupt data.
4860 * So, first we make sure that the journal is empty and that
4861 * nobody is changing anything.
4864 journal = EXT4_JOURNAL(inode);
4865 if (is_journal_aborted(journal))
4866 return -EROFS;
4868 jbd2_journal_lock_updates(journal);
4869 jbd2_journal_flush(journal);
4872 * OK, there are no updates running now, and all cached data is
4873 * synced to disk. We are now in a completely consistent state
4874 * which doesn't have anything in the journal, and we know that
4875 * no filesystem updates are running, so it is safe to modify
4876 * the inode's in-core data-journaling state flag now.
4879 if (val)
4880 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4881 else
4882 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4883 ext4_set_aops(inode);
4885 jbd2_journal_unlock_updates(journal);
4887 /* Finally we can mark the inode as dirty. */
4889 handle = ext4_journal_start(inode, 1);
4890 if (IS_ERR(handle))
4891 return PTR_ERR(handle);
4893 err = ext4_mark_inode_dirty(handle, inode);
4894 handle->h_sync = 1;
4895 ext4_journal_stop(handle);
4896 ext4_std_error(inode->i_sb, err);
4898 return err;
4901 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4903 return !buffer_mapped(bh);
4906 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4908 struct page *page = vmf->page;
4909 loff_t size;
4910 unsigned long len;
4911 int ret = -EINVAL;
4912 struct file *file = vma->vm_file;
4913 struct inode *inode = file->f_path.dentry->d_inode;
4914 struct address_space *mapping = inode->i_mapping;
4917 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4918 * get i_mutex because we are already holding mmap_sem.
4920 down_read(&inode->i_alloc_sem);
4921 size = i_size_read(inode);
4922 if (page->mapping != mapping || size <= page_offset(page)
4923 || !PageUptodate(page)) {
4924 /* page got truncated from under us? */
4925 goto out_unlock;
4927 ret = 0;
4928 if (PageMappedToDisk(page))
4929 goto out_unlock;
4931 if (page->index == size >> PAGE_CACHE_SHIFT)
4932 len = size & ~PAGE_CACHE_MASK;
4933 else
4934 len = PAGE_CACHE_SIZE;
4936 if (page_has_buffers(page)) {
4937 /* return if we have all the buffers mapped */
4938 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4939 ext4_bh_unmapped))
4940 goto out_unlock;
4943 * OK, we need to fill the hole... Do write_begin write_end
4944 * to do block allocation/reservation.We are not holding
4945 * inode.i__mutex here. That allow * parallel write_begin,
4946 * write_end call. lock_page prevent this from happening
4947 * on the same page though
4949 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4950 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4951 if (ret < 0)
4952 goto out_unlock;
4953 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4954 len, len, page, NULL);
4955 if (ret < 0)
4956 goto out_unlock;
4957 ret = 0;
4958 out_unlock:
4959 if (ret)
4960 ret = VM_FAULT_SIGBUS;
4961 up_read(&inode->i_alloc_sem);
4962 return ret;