mmc: sdhci-s3c: add platform_8bit_width() hook
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mmc / host / mmci.c
blob4b8dcd5b2a01c4f3d778368a246d105b6ed3adb3
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson AB.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/host.h>
22 #include <linux/mmc/card.h>
23 #include <linux/amba/bus.h>
24 #include <linux/clk.h>
25 #include <linux/scatterlist.h>
26 #include <linux/gpio.h>
27 #include <linux/amba/mmci.h>
28 #include <linux/regulator/consumer.h>
30 #include <asm/div64.h>
31 #include <asm/io.h>
32 #include <asm/sizes.h>
34 #include "mmci.h"
36 #define DRIVER_NAME "mmci-pl18x"
38 static unsigned int fmax = 515633;
40 /**
41 * struct variant_data - MMCI variant-specific quirks
42 * @clkreg: default value for MCICLOCK register
43 * @clkreg_enable: enable value for MMCICLOCK register
44 * @datalength_bits: number of bits in the MMCIDATALENGTH register
45 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
46 * is asserted (likewise for RX)
47 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
48 * is asserted (likewise for RX)
49 * @sdio: variant supports SDIO
50 * @st_clkdiv: true if using a ST-specific clock divider algorithm
52 struct variant_data {
53 unsigned int clkreg;
54 unsigned int clkreg_enable;
55 unsigned int datalength_bits;
56 unsigned int fifosize;
57 unsigned int fifohalfsize;
58 bool sdio;
59 bool st_clkdiv;
62 static struct variant_data variant_arm = {
63 .fifosize = 16 * 4,
64 .fifohalfsize = 8 * 4,
65 .datalength_bits = 16,
68 static struct variant_data variant_u300 = {
69 .fifosize = 16 * 4,
70 .fifohalfsize = 8 * 4,
71 .clkreg_enable = 1 << 13, /* HWFCEN */
72 .datalength_bits = 16,
73 .sdio = true,
76 static struct variant_data variant_ux500 = {
77 .fifosize = 30 * 4,
78 .fifohalfsize = 8 * 4,
79 .clkreg = MCI_CLK_ENABLE,
80 .clkreg_enable = 1 << 14, /* HWFCEN */
81 .datalength_bits = 24,
82 .sdio = true,
83 .st_clkdiv = true,
87 * This must be called with host->lock held
89 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
91 struct variant_data *variant = host->variant;
92 u32 clk = variant->clkreg;
94 if (desired) {
95 if (desired >= host->mclk) {
96 clk = MCI_CLK_BYPASS;
97 host->cclk = host->mclk;
98 } else if (variant->st_clkdiv) {
100 * DB8500 TRM says f = mclk / (clkdiv + 2)
101 * => clkdiv = (mclk / f) - 2
102 * Round the divider up so we don't exceed the max
103 * frequency
105 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
106 if (clk >= 256)
107 clk = 255;
108 host->cclk = host->mclk / (clk + 2);
109 } else {
111 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
112 * => clkdiv = mclk / (2 * f) - 1
114 clk = host->mclk / (2 * desired) - 1;
115 if (clk >= 256)
116 clk = 255;
117 host->cclk = host->mclk / (2 * (clk + 1));
120 clk |= variant->clkreg_enable;
121 clk |= MCI_CLK_ENABLE;
122 /* This hasn't proven to be worthwhile */
123 /* clk |= MCI_CLK_PWRSAVE; */
126 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
127 clk |= MCI_4BIT_BUS;
128 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
129 clk |= MCI_ST_8BIT_BUS;
131 writel(clk, host->base + MMCICLOCK);
134 static void
135 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
137 writel(0, host->base + MMCICOMMAND);
139 BUG_ON(host->data);
141 host->mrq = NULL;
142 host->cmd = NULL;
144 if (mrq->data)
145 mrq->data->bytes_xfered = host->data_xfered;
148 * Need to drop the host lock here; mmc_request_done may call
149 * back into the driver...
151 spin_unlock(&host->lock);
152 mmc_request_done(host->mmc, mrq);
153 spin_lock(&host->lock);
156 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
158 void __iomem *base = host->base;
160 if (host->singleirq) {
161 unsigned int mask0 = readl(base + MMCIMASK0);
163 mask0 &= ~MCI_IRQ1MASK;
164 mask0 |= mask;
166 writel(mask0, base + MMCIMASK0);
169 writel(mask, base + MMCIMASK1);
172 static void mmci_stop_data(struct mmci_host *host)
174 writel(0, host->base + MMCIDATACTRL);
175 mmci_set_mask1(host, 0);
176 host->data = NULL;
179 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
181 unsigned int flags = SG_MITER_ATOMIC;
183 if (data->flags & MMC_DATA_READ)
184 flags |= SG_MITER_TO_SG;
185 else
186 flags |= SG_MITER_FROM_SG;
188 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
191 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
193 struct variant_data *variant = host->variant;
194 unsigned int datactrl, timeout, irqmask;
195 unsigned long long clks;
196 void __iomem *base;
197 int blksz_bits;
199 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
200 data->blksz, data->blocks, data->flags);
202 host->data = data;
203 host->size = data->blksz * data->blocks;
204 host->data_xfered = 0;
206 mmci_init_sg(host, data);
208 clks = (unsigned long long)data->timeout_ns * host->cclk;
209 do_div(clks, 1000000000UL);
211 timeout = data->timeout_clks + (unsigned int)clks;
213 base = host->base;
214 writel(timeout, base + MMCIDATATIMER);
215 writel(host->size, base + MMCIDATALENGTH);
217 blksz_bits = ffs(data->blksz) - 1;
218 BUG_ON(1 << blksz_bits != data->blksz);
220 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
221 if (data->flags & MMC_DATA_READ) {
222 datactrl |= MCI_DPSM_DIRECTION;
223 irqmask = MCI_RXFIFOHALFFULLMASK;
226 * If we have less than a FIFOSIZE of bytes to transfer,
227 * trigger a PIO interrupt as soon as any data is available.
229 if (host->size < variant->fifosize)
230 irqmask |= MCI_RXDATAAVLBLMASK;
231 } else {
233 * We don't actually need to include "FIFO empty" here
234 * since its implicit in "FIFO half empty".
236 irqmask = MCI_TXFIFOHALFEMPTYMASK;
239 /* The ST Micro variants has a special bit to enable SDIO */
240 if (variant->sdio && host->mmc->card)
241 if (mmc_card_sdio(host->mmc->card))
242 datactrl |= MCI_ST_DPSM_SDIOEN;
244 writel(datactrl, base + MMCIDATACTRL);
245 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
246 mmci_set_mask1(host, irqmask);
249 static void
250 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
252 void __iomem *base = host->base;
254 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
255 cmd->opcode, cmd->arg, cmd->flags);
257 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
258 writel(0, base + MMCICOMMAND);
259 udelay(1);
262 c |= cmd->opcode | MCI_CPSM_ENABLE;
263 if (cmd->flags & MMC_RSP_PRESENT) {
264 if (cmd->flags & MMC_RSP_136)
265 c |= MCI_CPSM_LONGRSP;
266 c |= MCI_CPSM_RESPONSE;
268 if (/*interrupt*/0)
269 c |= MCI_CPSM_INTERRUPT;
271 host->cmd = cmd;
273 writel(cmd->arg, base + MMCIARGUMENT);
274 writel(c, base + MMCICOMMAND);
277 static void
278 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
279 unsigned int status)
281 /* First check for errors */
282 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
283 u32 remain, success;
285 /* Calculate how far we are into the transfer */
286 remain = readl(host->base + MMCIDATACNT) << 2;
287 success = data->blksz * data->blocks - remain;
289 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ (status %08x)\n", status);
290 if (status & MCI_DATACRCFAIL) {
291 /* Last block was not successful */
292 host->data_xfered = ((success / data->blksz) - 1 * data->blksz);
293 data->error = -EILSEQ;
294 } else if (status & MCI_DATATIMEOUT) {
295 host->data_xfered = success;
296 data->error = -ETIMEDOUT;
297 } else if (status & (MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
298 host->data_xfered = success;
299 data->error = -EIO;
303 * We hit an error condition. Ensure that any data
304 * partially written to a page is properly coherent.
306 if (data->flags & MMC_DATA_READ) {
307 struct sg_mapping_iter *sg_miter = &host->sg_miter;
308 unsigned long flags;
310 local_irq_save(flags);
311 if (sg_miter_next(sg_miter)) {
312 flush_dcache_page(sg_miter->page);
313 sg_miter_stop(sg_miter);
315 local_irq_restore(flags);
319 if (status & MCI_DATABLOCKEND)
320 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
322 if (status & MCI_DATAEND) {
323 mmci_stop_data(host);
325 if (!data->error)
326 /* The error clause is handled above, success! */
327 host->data_xfered += data->blksz * data->blocks;
329 if (!data->stop) {
330 mmci_request_end(host, data->mrq);
331 } else {
332 mmci_start_command(host, data->stop, 0);
337 static void
338 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
339 unsigned int status)
341 void __iomem *base = host->base;
343 host->cmd = NULL;
345 if (status & MCI_CMDTIMEOUT) {
346 cmd->error = -ETIMEDOUT;
347 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
348 cmd->error = -EILSEQ;
349 } else {
350 cmd->resp[0] = readl(base + MMCIRESPONSE0);
351 cmd->resp[1] = readl(base + MMCIRESPONSE1);
352 cmd->resp[2] = readl(base + MMCIRESPONSE2);
353 cmd->resp[3] = readl(base + MMCIRESPONSE3);
356 if (!cmd->data || cmd->error) {
357 if (host->data)
358 mmci_stop_data(host);
359 mmci_request_end(host, cmd->mrq);
360 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
361 mmci_start_data(host, cmd->data);
365 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
367 void __iomem *base = host->base;
368 char *ptr = buffer;
369 u32 status;
370 int host_remain = host->size;
372 do {
373 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
375 if (count > remain)
376 count = remain;
378 if (count <= 0)
379 break;
381 readsl(base + MMCIFIFO, ptr, count >> 2);
383 ptr += count;
384 remain -= count;
385 host_remain -= count;
387 if (remain == 0)
388 break;
390 status = readl(base + MMCISTATUS);
391 } while (status & MCI_RXDATAAVLBL);
393 return ptr - buffer;
396 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
398 struct variant_data *variant = host->variant;
399 void __iomem *base = host->base;
400 char *ptr = buffer;
402 do {
403 unsigned int count, maxcnt;
405 maxcnt = status & MCI_TXFIFOEMPTY ?
406 variant->fifosize : variant->fifohalfsize;
407 count = min(remain, maxcnt);
410 * The ST Micro variant for SDIO transfer sizes
411 * less then 8 bytes should have clock H/W flow
412 * control disabled.
414 if (variant->sdio &&
415 mmc_card_sdio(host->mmc->card)) {
416 if (count < 8)
417 writel(readl(host->base + MMCICLOCK) &
418 ~variant->clkreg_enable,
419 host->base + MMCICLOCK);
420 else
421 writel(readl(host->base + MMCICLOCK) |
422 variant->clkreg_enable,
423 host->base + MMCICLOCK);
427 * SDIO especially may want to send something that is
428 * not divisible by 4 (as opposed to card sectors
429 * etc), and the FIFO only accept full 32-bit writes.
430 * So compensate by adding +3 on the count, a single
431 * byte become a 32bit write, 7 bytes will be two
432 * 32bit writes etc.
434 writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
436 ptr += count;
437 remain -= count;
439 if (remain == 0)
440 break;
442 status = readl(base + MMCISTATUS);
443 } while (status & MCI_TXFIFOHALFEMPTY);
445 return ptr - buffer;
449 * PIO data transfer IRQ handler.
451 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
453 struct mmci_host *host = dev_id;
454 struct sg_mapping_iter *sg_miter = &host->sg_miter;
455 struct variant_data *variant = host->variant;
456 void __iomem *base = host->base;
457 unsigned long flags;
458 u32 status;
460 status = readl(base + MMCISTATUS);
462 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
464 local_irq_save(flags);
466 do {
467 unsigned int remain, len;
468 char *buffer;
471 * For write, we only need to test the half-empty flag
472 * here - if the FIFO is completely empty, then by
473 * definition it is more than half empty.
475 * For read, check for data available.
477 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
478 break;
480 if (!sg_miter_next(sg_miter))
481 break;
483 buffer = sg_miter->addr;
484 remain = sg_miter->length;
486 len = 0;
487 if (status & MCI_RXACTIVE)
488 len = mmci_pio_read(host, buffer, remain);
489 if (status & MCI_TXACTIVE)
490 len = mmci_pio_write(host, buffer, remain, status);
492 sg_miter->consumed = len;
494 host->size -= len;
495 remain -= len;
497 if (remain)
498 break;
500 if (status & MCI_RXACTIVE)
501 flush_dcache_page(sg_miter->page);
503 status = readl(base + MMCISTATUS);
504 } while (1);
506 sg_miter_stop(sg_miter);
508 local_irq_restore(flags);
511 * If we're nearing the end of the read, switch to
512 * "any data available" mode.
514 if (status & MCI_RXACTIVE && host->size < variant->fifosize)
515 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
518 * If we run out of data, disable the data IRQs; this
519 * prevents a race where the FIFO becomes empty before
520 * the chip itself has disabled the data path, and
521 * stops us racing with our data end IRQ.
523 if (host->size == 0) {
524 mmci_set_mask1(host, 0);
525 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
528 return IRQ_HANDLED;
532 * Handle completion of command and data transfers.
534 static irqreturn_t mmci_irq(int irq, void *dev_id)
536 struct mmci_host *host = dev_id;
537 u32 status;
538 int ret = 0;
540 spin_lock(&host->lock);
542 do {
543 struct mmc_command *cmd;
544 struct mmc_data *data;
546 status = readl(host->base + MMCISTATUS);
548 if (host->singleirq) {
549 if (status & readl(host->base + MMCIMASK1))
550 mmci_pio_irq(irq, dev_id);
552 status &= ~MCI_IRQ1MASK;
555 status &= readl(host->base + MMCIMASK0);
556 writel(status, host->base + MMCICLEAR);
558 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
560 data = host->data;
561 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
562 MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
563 mmci_data_irq(host, data, status);
565 cmd = host->cmd;
566 if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
567 mmci_cmd_irq(host, cmd, status);
569 ret = 1;
570 } while (status);
572 spin_unlock(&host->lock);
574 return IRQ_RETVAL(ret);
577 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
579 struct mmci_host *host = mmc_priv(mmc);
580 unsigned long flags;
582 WARN_ON(host->mrq != NULL);
584 if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
585 dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
586 mrq->data->blksz);
587 mrq->cmd->error = -EINVAL;
588 mmc_request_done(mmc, mrq);
589 return;
592 spin_lock_irqsave(&host->lock, flags);
594 host->mrq = mrq;
596 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
597 mmci_start_data(host, mrq->data);
599 mmci_start_command(host, mrq->cmd, 0);
601 spin_unlock_irqrestore(&host->lock, flags);
604 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
606 struct mmci_host *host = mmc_priv(mmc);
607 u32 pwr = 0;
608 unsigned long flags;
609 int ret;
611 switch (ios->power_mode) {
612 case MMC_POWER_OFF:
613 if (host->vcc)
614 ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
615 break;
616 case MMC_POWER_UP:
617 if (host->vcc) {
618 ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
619 if (ret) {
620 dev_err(mmc_dev(mmc), "unable to set OCR\n");
622 * The .set_ios() function in the mmc_host_ops
623 * struct return void, and failing to set the
624 * power should be rare so we print an error
625 * and return here.
627 return;
630 if (host->plat->vdd_handler)
631 pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
632 ios->power_mode);
633 /* The ST version does not have this, fall through to POWER_ON */
634 if (host->hw_designer != AMBA_VENDOR_ST) {
635 pwr |= MCI_PWR_UP;
636 break;
638 case MMC_POWER_ON:
639 pwr |= MCI_PWR_ON;
640 break;
643 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
644 if (host->hw_designer != AMBA_VENDOR_ST)
645 pwr |= MCI_ROD;
646 else {
648 * The ST Micro variant use the ROD bit for something
649 * else and only has OD (Open Drain).
651 pwr |= MCI_OD;
655 spin_lock_irqsave(&host->lock, flags);
657 mmci_set_clkreg(host, ios->clock);
659 if (host->pwr != pwr) {
660 host->pwr = pwr;
661 writel(pwr, host->base + MMCIPOWER);
664 spin_unlock_irqrestore(&host->lock, flags);
667 static int mmci_get_ro(struct mmc_host *mmc)
669 struct mmci_host *host = mmc_priv(mmc);
671 if (host->gpio_wp == -ENOSYS)
672 return -ENOSYS;
674 return gpio_get_value_cansleep(host->gpio_wp);
677 static int mmci_get_cd(struct mmc_host *mmc)
679 struct mmci_host *host = mmc_priv(mmc);
680 struct mmci_platform_data *plat = host->plat;
681 unsigned int status;
683 if (host->gpio_cd == -ENOSYS) {
684 if (!plat->status)
685 return 1; /* Assume always present */
687 status = plat->status(mmc_dev(host->mmc));
688 } else
689 status = !!gpio_get_value_cansleep(host->gpio_cd)
690 ^ plat->cd_invert;
693 * Use positive logic throughout - status is zero for no card,
694 * non-zero for card inserted.
696 return status;
699 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
701 struct mmci_host *host = dev_id;
703 mmc_detect_change(host->mmc, msecs_to_jiffies(500));
705 return IRQ_HANDLED;
708 static const struct mmc_host_ops mmci_ops = {
709 .request = mmci_request,
710 .set_ios = mmci_set_ios,
711 .get_ro = mmci_get_ro,
712 .get_cd = mmci_get_cd,
715 static int __devinit mmci_probe(struct amba_device *dev, struct amba_id *id)
717 struct mmci_platform_data *plat = dev->dev.platform_data;
718 struct variant_data *variant = id->data;
719 struct mmci_host *host;
720 struct mmc_host *mmc;
721 int ret;
723 /* must have platform data */
724 if (!plat) {
725 ret = -EINVAL;
726 goto out;
729 ret = amba_request_regions(dev, DRIVER_NAME);
730 if (ret)
731 goto out;
733 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
734 if (!mmc) {
735 ret = -ENOMEM;
736 goto rel_regions;
739 host = mmc_priv(mmc);
740 host->mmc = mmc;
742 host->gpio_wp = -ENOSYS;
743 host->gpio_cd = -ENOSYS;
744 host->gpio_cd_irq = -1;
746 host->hw_designer = amba_manf(dev);
747 host->hw_revision = amba_rev(dev);
748 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
749 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
751 host->clk = clk_get(&dev->dev, NULL);
752 if (IS_ERR(host->clk)) {
753 ret = PTR_ERR(host->clk);
754 host->clk = NULL;
755 goto host_free;
758 ret = clk_enable(host->clk);
759 if (ret)
760 goto clk_free;
762 host->plat = plat;
763 host->variant = variant;
764 host->mclk = clk_get_rate(host->clk);
766 * According to the spec, mclk is max 100 MHz,
767 * so we try to adjust the clock down to this,
768 * (if possible).
770 if (host->mclk > 100000000) {
771 ret = clk_set_rate(host->clk, 100000000);
772 if (ret < 0)
773 goto clk_disable;
774 host->mclk = clk_get_rate(host->clk);
775 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
776 host->mclk);
778 host->base = ioremap(dev->res.start, resource_size(&dev->res));
779 if (!host->base) {
780 ret = -ENOMEM;
781 goto clk_disable;
784 mmc->ops = &mmci_ops;
785 mmc->f_min = (host->mclk + 511) / 512;
787 * If the platform data supplies a maximum operating
788 * frequency, this takes precedence. Else, we fall back
789 * to using the module parameter, which has a (low)
790 * default value in case it is not specified. Either
791 * value must not exceed the clock rate into the block,
792 * of course.
794 if (plat->f_max)
795 mmc->f_max = min(host->mclk, plat->f_max);
796 else
797 mmc->f_max = min(host->mclk, fmax);
798 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
800 #ifdef CONFIG_REGULATOR
801 /* If we're using the regulator framework, try to fetch a regulator */
802 host->vcc = regulator_get(&dev->dev, "vmmc");
803 if (IS_ERR(host->vcc))
804 host->vcc = NULL;
805 else {
806 int mask = mmc_regulator_get_ocrmask(host->vcc);
808 if (mask < 0)
809 dev_err(&dev->dev, "error getting OCR mask (%d)\n",
810 mask);
811 else {
812 host->mmc->ocr_avail = (u32) mask;
813 if (plat->ocr_mask)
814 dev_warn(&dev->dev,
815 "Provided ocr_mask/setpower will not be used "
816 "(using regulator instead)\n");
819 #endif
820 /* Fall back to platform data if no regulator is found */
821 if (host->vcc == NULL)
822 mmc->ocr_avail = plat->ocr_mask;
823 mmc->caps = plat->capabilities;
826 * We can do SGIO
828 mmc->max_segs = NR_SG;
831 * Since only a certain number of bits are valid in the data length
832 * register, we must ensure that we don't exceed 2^num-1 bytes in a
833 * single request.
835 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
838 * Set the maximum segment size. Since we aren't doing DMA
839 * (yet) we are only limited by the data length register.
841 mmc->max_seg_size = mmc->max_req_size;
844 * Block size can be up to 2048 bytes, but must be a power of two.
846 mmc->max_blk_size = 2048;
849 * No limit on the number of blocks transferred.
851 mmc->max_blk_count = mmc->max_req_size;
853 spin_lock_init(&host->lock);
855 writel(0, host->base + MMCIMASK0);
856 writel(0, host->base + MMCIMASK1);
857 writel(0xfff, host->base + MMCICLEAR);
859 if (gpio_is_valid(plat->gpio_cd)) {
860 ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
861 if (ret == 0)
862 ret = gpio_direction_input(plat->gpio_cd);
863 if (ret == 0)
864 host->gpio_cd = plat->gpio_cd;
865 else if (ret != -ENOSYS)
866 goto err_gpio_cd;
868 ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
869 mmci_cd_irq, 0,
870 DRIVER_NAME " (cd)", host);
871 if (ret >= 0)
872 host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
874 if (gpio_is_valid(plat->gpio_wp)) {
875 ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
876 if (ret == 0)
877 ret = gpio_direction_input(plat->gpio_wp);
878 if (ret == 0)
879 host->gpio_wp = plat->gpio_wp;
880 else if (ret != -ENOSYS)
881 goto err_gpio_wp;
884 if ((host->plat->status || host->gpio_cd != -ENOSYS)
885 && host->gpio_cd_irq < 0)
886 mmc->caps |= MMC_CAP_NEEDS_POLL;
888 ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
889 if (ret)
890 goto unmap;
892 if (dev->irq[1] == NO_IRQ)
893 host->singleirq = true;
894 else {
895 ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
896 DRIVER_NAME " (pio)", host);
897 if (ret)
898 goto irq0_free;
901 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
903 amba_set_drvdata(dev, mmc);
905 dev_info(&dev->dev, "%s: PL%03x rev%u at 0x%08llx irq %d,%d\n",
906 mmc_hostname(mmc), amba_part(dev), amba_rev(dev),
907 (unsigned long long)dev->res.start, dev->irq[0], dev->irq[1]);
909 mmc_add_host(mmc);
911 return 0;
913 irq0_free:
914 free_irq(dev->irq[0], host);
915 unmap:
916 if (host->gpio_wp != -ENOSYS)
917 gpio_free(host->gpio_wp);
918 err_gpio_wp:
919 if (host->gpio_cd_irq >= 0)
920 free_irq(host->gpio_cd_irq, host);
921 if (host->gpio_cd != -ENOSYS)
922 gpio_free(host->gpio_cd);
923 err_gpio_cd:
924 iounmap(host->base);
925 clk_disable:
926 clk_disable(host->clk);
927 clk_free:
928 clk_put(host->clk);
929 host_free:
930 mmc_free_host(mmc);
931 rel_regions:
932 amba_release_regions(dev);
933 out:
934 return ret;
937 static int __devexit mmci_remove(struct amba_device *dev)
939 struct mmc_host *mmc = amba_get_drvdata(dev);
941 amba_set_drvdata(dev, NULL);
943 if (mmc) {
944 struct mmci_host *host = mmc_priv(mmc);
946 mmc_remove_host(mmc);
948 writel(0, host->base + MMCIMASK0);
949 writel(0, host->base + MMCIMASK1);
951 writel(0, host->base + MMCICOMMAND);
952 writel(0, host->base + MMCIDATACTRL);
954 free_irq(dev->irq[0], host);
955 if (!host->singleirq)
956 free_irq(dev->irq[1], host);
958 if (host->gpio_wp != -ENOSYS)
959 gpio_free(host->gpio_wp);
960 if (host->gpio_cd_irq >= 0)
961 free_irq(host->gpio_cd_irq, host);
962 if (host->gpio_cd != -ENOSYS)
963 gpio_free(host->gpio_cd);
965 iounmap(host->base);
966 clk_disable(host->clk);
967 clk_put(host->clk);
969 if (host->vcc)
970 mmc_regulator_set_ocr(mmc, host->vcc, 0);
971 regulator_put(host->vcc);
973 mmc_free_host(mmc);
975 amba_release_regions(dev);
978 return 0;
981 #ifdef CONFIG_PM
982 static int mmci_suspend(struct amba_device *dev, pm_message_t state)
984 struct mmc_host *mmc = amba_get_drvdata(dev);
985 int ret = 0;
987 if (mmc) {
988 struct mmci_host *host = mmc_priv(mmc);
990 ret = mmc_suspend_host(mmc);
991 if (ret == 0)
992 writel(0, host->base + MMCIMASK0);
995 return ret;
998 static int mmci_resume(struct amba_device *dev)
1000 struct mmc_host *mmc = amba_get_drvdata(dev);
1001 int ret = 0;
1003 if (mmc) {
1004 struct mmci_host *host = mmc_priv(mmc);
1006 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1008 ret = mmc_resume_host(mmc);
1011 return ret;
1013 #else
1014 #define mmci_suspend NULL
1015 #define mmci_resume NULL
1016 #endif
1018 static struct amba_id mmci_ids[] = {
1020 .id = 0x00041180,
1021 .mask = 0x000fffff,
1022 .data = &variant_arm,
1025 .id = 0x00041181,
1026 .mask = 0x000fffff,
1027 .data = &variant_arm,
1029 /* ST Micro variants */
1031 .id = 0x00180180,
1032 .mask = 0x00ffffff,
1033 .data = &variant_u300,
1036 .id = 0x00280180,
1037 .mask = 0x00ffffff,
1038 .data = &variant_u300,
1041 .id = 0x00480180,
1042 .mask = 0x00ffffff,
1043 .data = &variant_ux500,
1045 { 0, 0 },
1048 static struct amba_driver mmci_driver = {
1049 .drv = {
1050 .name = DRIVER_NAME,
1052 .probe = mmci_probe,
1053 .remove = __devexit_p(mmci_remove),
1054 .suspend = mmci_suspend,
1055 .resume = mmci_resume,
1056 .id_table = mmci_ids,
1059 static int __init mmci_init(void)
1061 return amba_driver_register(&mmci_driver);
1064 static void __exit mmci_exit(void)
1066 amba_driver_unregister(&mmci_driver);
1069 module_init(mmci_init);
1070 module_exit(mmci_exit);
1071 module_param(fmax, uint, 0444);
1073 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1074 MODULE_LICENSE("GPL");