option: add Alcatel X200 to sendsetup blacklist
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / signal.c
blob7165af5f1b116fed3b5c5751d83e7e355e27ddab
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/signal.h>
34 #include <asm/param.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/siginfo.h>
38 #include "audit.h" /* audit_signal_info() */
41 * SLAB caches for signal bits.
44 static struct kmem_cache *sigqueue_cachep;
46 int print_fatal_signals __read_mostly;
48 static void __user *sig_handler(struct task_struct *t, int sig)
50 return t->sighand->action[sig - 1].sa.sa_handler;
53 static int sig_handler_ignored(void __user *handler, int sig)
55 /* Is it explicitly or implicitly ignored? */
56 return handler == SIG_IGN ||
57 (handler == SIG_DFL && sig_kernel_ignore(sig));
60 static int sig_task_ignored(struct task_struct *t, int sig,
61 int from_ancestor_ns)
63 void __user *handler;
65 handler = sig_handler(t, sig);
67 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 handler == SIG_DFL && !from_ancestor_ns)
69 return 1;
71 return sig_handler_ignored(handler, sig);
74 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
77 * Blocked signals are never ignored, since the
78 * signal handler may change by the time it is
79 * unblocked.
81 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 return 0;
84 if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 return 0;
88 * Tracers may want to know about even ignored signals.
90 return !tracehook_consider_ignored_signal(t, sig);
94 * Re-calculate pending state from the set of locally pending
95 * signals, globally pending signals, and blocked signals.
97 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
99 unsigned long ready;
100 long i;
102 switch (_NSIG_WORDS) {
103 default:
104 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 ready |= signal->sig[i] &~ blocked->sig[i];
106 break;
108 case 4: ready = signal->sig[3] &~ blocked->sig[3];
109 ready |= signal->sig[2] &~ blocked->sig[2];
110 ready |= signal->sig[1] &~ blocked->sig[1];
111 ready |= signal->sig[0] &~ blocked->sig[0];
112 break;
114 case 2: ready = signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
118 case 1: ready = signal->sig[0] &~ blocked->sig[0];
120 return ready != 0;
123 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
125 static int recalc_sigpending_tsk(struct task_struct *t)
127 if (t->signal->group_stop_count > 0 ||
128 PENDING(&t->pending, &t->blocked) ||
129 PENDING(&t->signal->shared_pending, &t->blocked)) {
130 set_tsk_thread_flag(t, TIF_SIGPENDING);
131 return 1;
134 * We must never clear the flag in another thread, or in current
135 * when it's possible the current syscall is returning -ERESTART*.
136 * So we don't clear it here, and only callers who know they should do.
138 return 0;
142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143 * This is superfluous when called on current, the wakeup is a harmless no-op.
145 void recalc_sigpending_and_wake(struct task_struct *t)
147 if (recalc_sigpending_tsk(t))
148 signal_wake_up(t, 0);
151 void recalc_sigpending(void)
153 if (unlikely(tracehook_force_sigpending()))
154 set_thread_flag(TIF_SIGPENDING);
155 else if (!recalc_sigpending_tsk(current) && !freezing(current))
156 clear_thread_flag(TIF_SIGPENDING);
160 /* Given the mask, find the first available signal that should be serviced. */
162 #define SYNCHRONOUS_MASK \
163 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
164 sigmask(SIGTRAP) | sigmask(SIGFPE))
166 int next_signal(struct sigpending *pending, sigset_t *mask)
168 unsigned long i, *s, *m, x;
169 int sig = 0;
171 s = pending->signal.sig;
172 m = mask->sig;
175 * Handle the first word specially: it contains the
176 * synchronous signals that need to be dequeued first.
178 x = *s &~ *m;
179 if (x) {
180 if (x & SYNCHRONOUS_MASK)
181 x &= SYNCHRONOUS_MASK;
182 sig = ffz(~x) + 1;
183 return sig;
186 switch (_NSIG_WORDS) {
187 default:
188 for (i = 1; i < _NSIG_WORDS; ++i) {
189 x = *++s &~ *++m;
190 if (!x)
191 continue;
192 sig = ffz(~x) + i*_NSIG_BPW + 1;
193 break;
195 break;
197 case 2:
198 x = s[1] &~ m[1];
199 if (!x)
200 break;
201 sig = ffz(~x) + _NSIG_BPW + 1;
202 break;
204 case 1:
205 /* Nothing to do */
206 break;
209 return sig;
212 static inline void print_dropped_signal(int sig)
214 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
216 if (!print_fatal_signals)
217 return;
219 if (!__ratelimit(&ratelimit_state))
220 return;
222 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
223 current->comm, current->pid, sig);
227 * allocate a new signal queue record
228 * - this may be called without locks if and only if t == current, otherwise an
229 * appropriate lock must be held to stop the target task from exiting
231 static struct sigqueue *
232 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
234 struct sigqueue *q = NULL;
235 struct user_struct *user;
238 * Protect access to @t credentials. This can go away when all
239 * callers hold rcu read lock.
241 rcu_read_lock();
242 user = get_uid(__task_cred(t)->user);
243 atomic_inc(&user->sigpending);
244 rcu_read_unlock();
246 if (override_rlimit ||
247 atomic_read(&user->sigpending) <=
248 task_rlimit(t, RLIMIT_SIGPENDING)) {
249 q = kmem_cache_alloc(sigqueue_cachep, flags);
250 } else {
251 print_dropped_signal(sig);
254 if (unlikely(q == NULL)) {
255 atomic_dec(&user->sigpending);
256 free_uid(user);
257 } else {
258 INIT_LIST_HEAD(&q->list);
259 q->flags = 0;
260 q->user = user;
263 return q;
266 static void __sigqueue_free(struct sigqueue *q)
268 if (q->flags & SIGQUEUE_PREALLOC)
269 return;
270 atomic_dec(&q->user->sigpending);
271 free_uid(q->user);
272 kmem_cache_free(sigqueue_cachep, q);
275 void flush_sigqueue(struct sigpending *queue)
277 struct sigqueue *q;
279 sigemptyset(&queue->signal);
280 while (!list_empty(&queue->list)) {
281 q = list_entry(queue->list.next, struct sigqueue , list);
282 list_del_init(&q->list);
283 __sigqueue_free(q);
288 * Flush all pending signals for a task.
290 void __flush_signals(struct task_struct *t)
292 clear_tsk_thread_flag(t, TIF_SIGPENDING);
293 flush_sigqueue(&t->pending);
294 flush_sigqueue(&t->signal->shared_pending);
297 void flush_signals(struct task_struct *t)
299 unsigned long flags;
301 spin_lock_irqsave(&t->sighand->siglock, flags);
302 __flush_signals(t);
303 spin_unlock_irqrestore(&t->sighand->siglock, flags);
306 static void __flush_itimer_signals(struct sigpending *pending)
308 sigset_t signal, retain;
309 struct sigqueue *q, *n;
311 signal = pending->signal;
312 sigemptyset(&retain);
314 list_for_each_entry_safe(q, n, &pending->list, list) {
315 int sig = q->info.si_signo;
317 if (likely(q->info.si_code != SI_TIMER)) {
318 sigaddset(&retain, sig);
319 } else {
320 sigdelset(&signal, sig);
321 list_del_init(&q->list);
322 __sigqueue_free(q);
326 sigorsets(&pending->signal, &signal, &retain);
329 void flush_itimer_signals(void)
331 struct task_struct *tsk = current;
332 unsigned long flags;
334 spin_lock_irqsave(&tsk->sighand->siglock, flags);
335 __flush_itimer_signals(&tsk->pending);
336 __flush_itimer_signals(&tsk->signal->shared_pending);
337 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
340 void ignore_signals(struct task_struct *t)
342 int i;
344 for (i = 0; i < _NSIG; ++i)
345 t->sighand->action[i].sa.sa_handler = SIG_IGN;
347 flush_signals(t);
351 * Flush all handlers for a task.
354 void
355 flush_signal_handlers(struct task_struct *t, int force_default)
357 int i;
358 struct k_sigaction *ka = &t->sighand->action[0];
359 for (i = _NSIG ; i != 0 ; i--) {
360 if (force_default || ka->sa.sa_handler != SIG_IGN)
361 ka->sa.sa_handler = SIG_DFL;
362 ka->sa.sa_flags = 0;
363 sigemptyset(&ka->sa.sa_mask);
364 ka++;
368 int unhandled_signal(struct task_struct *tsk, int sig)
370 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
371 if (is_global_init(tsk))
372 return 1;
373 if (handler != SIG_IGN && handler != SIG_DFL)
374 return 0;
375 return !tracehook_consider_fatal_signal(tsk, sig);
379 * Notify the system that a driver wants to block all signals for this
380 * process, and wants to be notified if any signals at all were to be
381 * sent/acted upon. If the notifier routine returns non-zero, then the
382 * signal will be acted upon after all. If the notifier routine returns 0,
383 * then then signal will be blocked. Only one block per process is
384 * allowed. priv is a pointer to private data that the notifier routine
385 * can use to determine if the signal should be blocked or not.
387 void
388 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
390 unsigned long flags;
392 spin_lock_irqsave(&current->sighand->siglock, flags);
393 current->notifier_mask = mask;
394 current->notifier_data = priv;
395 current->notifier = notifier;
396 spin_unlock_irqrestore(&current->sighand->siglock, flags);
399 /* Notify the system that blocking has ended. */
401 void
402 unblock_all_signals(void)
404 unsigned long flags;
406 spin_lock_irqsave(&current->sighand->siglock, flags);
407 current->notifier = NULL;
408 current->notifier_data = NULL;
409 recalc_sigpending();
410 spin_unlock_irqrestore(&current->sighand->siglock, flags);
413 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
415 struct sigqueue *q, *first = NULL;
418 * Collect the siginfo appropriate to this signal. Check if
419 * there is another siginfo for the same signal.
421 list_for_each_entry(q, &list->list, list) {
422 if (q->info.si_signo == sig) {
423 if (first)
424 goto still_pending;
425 first = q;
429 sigdelset(&list->signal, sig);
431 if (first) {
432 still_pending:
433 list_del_init(&first->list);
434 copy_siginfo(info, &first->info);
435 __sigqueue_free(first);
436 } else {
438 * Ok, it wasn't in the queue. This must be
439 * a fast-pathed signal or we must have been
440 * out of queue space. So zero out the info.
442 info->si_signo = sig;
443 info->si_errno = 0;
444 info->si_code = SI_USER;
445 info->si_pid = 0;
446 info->si_uid = 0;
450 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
451 siginfo_t *info)
453 int sig = next_signal(pending, mask);
455 if (sig) {
456 if (current->notifier) {
457 if (sigismember(current->notifier_mask, sig)) {
458 if (!(current->notifier)(current->notifier_data)) {
459 clear_thread_flag(TIF_SIGPENDING);
460 return 0;
465 collect_signal(sig, pending, info);
468 return sig;
472 * Dequeue a signal and return the element to the caller, which is
473 * expected to free it.
475 * All callers have to hold the siglock.
477 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
479 int signr;
481 /* We only dequeue private signals from ourselves, we don't let
482 * signalfd steal them
484 signr = __dequeue_signal(&tsk->pending, mask, info);
485 if (!signr) {
486 signr = __dequeue_signal(&tsk->signal->shared_pending,
487 mask, info);
489 * itimer signal ?
491 * itimers are process shared and we restart periodic
492 * itimers in the signal delivery path to prevent DoS
493 * attacks in the high resolution timer case. This is
494 * compliant with the old way of self-restarting
495 * itimers, as the SIGALRM is a legacy signal and only
496 * queued once. Changing the restart behaviour to
497 * restart the timer in the signal dequeue path is
498 * reducing the timer noise on heavy loaded !highres
499 * systems too.
501 if (unlikely(signr == SIGALRM)) {
502 struct hrtimer *tmr = &tsk->signal->real_timer;
504 if (!hrtimer_is_queued(tmr) &&
505 tsk->signal->it_real_incr.tv64 != 0) {
506 hrtimer_forward(tmr, tmr->base->get_time(),
507 tsk->signal->it_real_incr);
508 hrtimer_restart(tmr);
513 recalc_sigpending();
514 if (!signr)
515 return 0;
517 if (unlikely(sig_kernel_stop(signr))) {
519 * Set a marker that we have dequeued a stop signal. Our
520 * caller might release the siglock and then the pending
521 * stop signal it is about to process is no longer in the
522 * pending bitmasks, but must still be cleared by a SIGCONT
523 * (and overruled by a SIGKILL). So those cases clear this
524 * shared flag after we've set it. Note that this flag may
525 * remain set after the signal we return is ignored or
526 * handled. That doesn't matter because its only purpose
527 * is to alert stop-signal processing code when another
528 * processor has come along and cleared the flag.
530 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
532 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
534 * Release the siglock to ensure proper locking order
535 * of timer locks outside of siglocks. Note, we leave
536 * irqs disabled here, since the posix-timers code is
537 * about to disable them again anyway.
539 spin_unlock(&tsk->sighand->siglock);
540 do_schedule_next_timer(info);
541 spin_lock(&tsk->sighand->siglock);
543 return signr;
547 * Tell a process that it has a new active signal..
549 * NOTE! we rely on the previous spin_lock to
550 * lock interrupts for us! We can only be called with
551 * "siglock" held, and the local interrupt must
552 * have been disabled when that got acquired!
554 * No need to set need_resched since signal event passing
555 * goes through ->blocked
557 void signal_wake_up(struct task_struct *t, int resume)
559 unsigned int mask;
561 set_tsk_thread_flag(t, TIF_SIGPENDING);
564 * For SIGKILL, we want to wake it up in the stopped/traced/killable
565 * case. We don't check t->state here because there is a race with it
566 * executing another processor and just now entering stopped state.
567 * By using wake_up_state, we ensure the process will wake up and
568 * handle its death signal.
570 mask = TASK_INTERRUPTIBLE;
571 if (resume)
572 mask |= TASK_WAKEKILL;
573 if (!wake_up_state(t, mask))
574 kick_process(t);
578 * Remove signals in mask from the pending set and queue.
579 * Returns 1 if any signals were found.
581 * All callers must be holding the siglock.
583 * This version takes a sigset mask and looks at all signals,
584 * not just those in the first mask word.
586 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
588 struct sigqueue *q, *n;
589 sigset_t m;
591 sigandsets(&m, mask, &s->signal);
592 if (sigisemptyset(&m))
593 return 0;
595 signandsets(&s->signal, &s->signal, mask);
596 list_for_each_entry_safe(q, n, &s->list, list) {
597 if (sigismember(mask, q->info.si_signo)) {
598 list_del_init(&q->list);
599 __sigqueue_free(q);
602 return 1;
605 * Remove signals in mask from the pending set and queue.
606 * Returns 1 if any signals were found.
608 * All callers must be holding the siglock.
610 static int rm_from_queue(unsigned long mask, struct sigpending *s)
612 struct sigqueue *q, *n;
614 if (!sigtestsetmask(&s->signal, mask))
615 return 0;
617 sigdelsetmask(&s->signal, mask);
618 list_for_each_entry_safe(q, n, &s->list, list) {
619 if (q->info.si_signo < SIGRTMIN &&
620 (mask & sigmask(q->info.si_signo))) {
621 list_del_init(&q->list);
622 __sigqueue_free(q);
625 return 1;
628 static inline int is_si_special(const struct siginfo *info)
630 return info <= SEND_SIG_FORCED;
633 static inline bool si_fromuser(const struct siginfo *info)
635 return info == SEND_SIG_NOINFO ||
636 (!is_si_special(info) && SI_FROMUSER(info));
640 * called with RCU read lock from check_kill_permission()
642 static int kill_ok_by_cred(struct task_struct *t)
644 const struct cred *cred = current_cred();
645 const struct cred *tcred = __task_cred(t);
647 if (cred->user->user_ns == tcred->user->user_ns &&
648 (cred->euid == tcred->suid ||
649 cred->euid == tcred->uid ||
650 cred->uid == tcred->suid ||
651 cred->uid == tcred->uid))
652 return 1;
654 if (ns_capable(tcred->user->user_ns, CAP_KILL))
655 return 1;
657 return 0;
661 * Bad permissions for sending the signal
662 * - the caller must hold the RCU read lock
664 static int check_kill_permission(int sig, struct siginfo *info,
665 struct task_struct *t)
667 struct pid *sid;
668 int error;
670 if (!valid_signal(sig))
671 return -EINVAL;
673 if (!si_fromuser(info))
674 return 0;
676 error = audit_signal_info(sig, t); /* Let audit system see the signal */
677 if (error)
678 return error;
680 if (!same_thread_group(current, t) &&
681 !kill_ok_by_cred(t)) {
682 switch (sig) {
683 case SIGCONT:
684 sid = task_session(t);
686 * We don't return the error if sid == NULL. The
687 * task was unhashed, the caller must notice this.
689 if (!sid || sid == task_session(current))
690 break;
691 default:
692 return -EPERM;
696 return security_task_kill(t, info, sig, 0);
700 * Handle magic process-wide effects of stop/continue signals. Unlike
701 * the signal actions, these happen immediately at signal-generation
702 * time regardless of blocking, ignoring, or handling. This does the
703 * actual continuing for SIGCONT, but not the actual stopping for stop
704 * signals. The process stop is done as a signal action for SIG_DFL.
706 * Returns true if the signal should be actually delivered, otherwise
707 * it should be dropped.
709 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
711 struct signal_struct *signal = p->signal;
712 struct task_struct *t;
714 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
716 * The process is in the middle of dying, nothing to do.
718 } else if (sig_kernel_stop(sig)) {
720 * This is a stop signal. Remove SIGCONT from all queues.
722 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
723 t = p;
724 do {
725 rm_from_queue(sigmask(SIGCONT), &t->pending);
726 } while_each_thread(p, t);
727 } else if (sig == SIGCONT) {
728 unsigned int why;
730 * Remove all stop signals from all queues,
731 * and wake all threads.
733 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
734 t = p;
735 do {
736 unsigned int state;
737 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
739 * If there is a handler for SIGCONT, we must make
740 * sure that no thread returns to user mode before
741 * we post the signal, in case it was the only
742 * thread eligible to run the signal handler--then
743 * it must not do anything between resuming and
744 * running the handler. With the TIF_SIGPENDING
745 * flag set, the thread will pause and acquire the
746 * siglock that we hold now and until we've queued
747 * the pending signal.
749 * Wake up the stopped thread _after_ setting
750 * TIF_SIGPENDING
752 state = __TASK_STOPPED;
753 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
754 set_tsk_thread_flag(t, TIF_SIGPENDING);
755 state |= TASK_INTERRUPTIBLE;
757 wake_up_state(t, state);
758 } while_each_thread(p, t);
761 * Notify the parent with CLD_CONTINUED if we were stopped.
763 * If we were in the middle of a group stop, we pretend it
764 * was already finished, and then continued. Since SIGCHLD
765 * doesn't queue we report only CLD_STOPPED, as if the next
766 * CLD_CONTINUED was dropped.
768 why = 0;
769 if (signal->flags & SIGNAL_STOP_STOPPED)
770 why |= SIGNAL_CLD_CONTINUED;
771 else if (signal->group_stop_count)
772 why |= SIGNAL_CLD_STOPPED;
774 if (why) {
776 * The first thread which returns from do_signal_stop()
777 * will take ->siglock, notice SIGNAL_CLD_MASK, and
778 * notify its parent. See get_signal_to_deliver().
780 signal->flags = why | SIGNAL_STOP_CONTINUED;
781 signal->group_stop_count = 0;
782 signal->group_exit_code = 0;
783 } else {
785 * We are not stopped, but there could be a stop
786 * signal in the middle of being processed after
787 * being removed from the queue. Clear that too.
789 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
793 return !sig_ignored(p, sig, from_ancestor_ns);
797 * Test if P wants to take SIG. After we've checked all threads with this,
798 * it's equivalent to finding no threads not blocking SIG. Any threads not
799 * blocking SIG were ruled out because they are not running and already
800 * have pending signals. Such threads will dequeue from the shared queue
801 * as soon as they're available, so putting the signal on the shared queue
802 * will be equivalent to sending it to one such thread.
804 static inline int wants_signal(int sig, struct task_struct *p)
806 if (sigismember(&p->blocked, sig))
807 return 0;
808 if (p->flags & PF_EXITING)
809 return 0;
810 if (sig == SIGKILL)
811 return 1;
812 if (task_is_stopped_or_traced(p))
813 return 0;
814 return task_curr(p) || !signal_pending(p);
817 static void complete_signal(int sig, struct task_struct *p, int group)
819 struct signal_struct *signal = p->signal;
820 struct task_struct *t;
823 * Now find a thread we can wake up to take the signal off the queue.
825 * If the main thread wants the signal, it gets first crack.
826 * Probably the least surprising to the average bear.
828 if (wants_signal(sig, p))
829 t = p;
830 else if (!group || thread_group_empty(p))
832 * There is just one thread and it does not need to be woken.
833 * It will dequeue unblocked signals before it runs again.
835 return;
836 else {
838 * Otherwise try to find a suitable thread.
840 t = signal->curr_target;
841 while (!wants_signal(sig, t)) {
842 t = next_thread(t);
843 if (t == signal->curr_target)
845 * No thread needs to be woken.
846 * Any eligible threads will see
847 * the signal in the queue soon.
849 return;
851 signal->curr_target = t;
855 * Found a killable thread. If the signal will be fatal,
856 * then start taking the whole group down immediately.
858 if (sig_fatal(p, sig) &&
859 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
860 !sigismember(&t->real_blocked, sig) &&
861 (sig == SIGKILL ||
862 !tracehook_consider_fatal_signal(t, sig))) {
864 * This signal will be fatal to the whole group.
866 if (!sig_kernel_coredump(sig)) {
868 * Start a group exit and wake everybody up.
869 * This way we don't have other threads
870 * running and doing things after a slower
871 * thread has the fatal signal pending.
873 signal->flags = SIGNAL_GROUP_EXIT;
874 signal->group_exit_code = sig;
875 signal->group_stop_count = 0;
876 t = p;
877 do {
878 sigaddset(&t->pending.signal, SIGKILL);
879 signal_wake_up(t, 1);
880 } while_each_thread(p, t);
881 return;
886 * The signal is already in the shared-pending queue.
887 * Tell the chosen thread to wake up and dequeue it.
889 signal_wake_up(t, sig == SIGKILL);
890 return;
893 static inline int legacy_queue(struct sigpending *signals, int sig)
895 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
898 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
899 int group, int from_ancestor_ns)
901 struct sigpending *pending;
902 struct sigqueue *q;
903 int override_rlimit;
905 trace_signal_generate(sig, info, t);
907 assert_spin_locked(&t->sighand->siglock);
909 if (!prepare_signal(sig, t, from_ancestor_ns))
910 return 0;
912 pending = group ? &t->signal->shared_pending : &t->pending;
914 * Short-circuit ignored signals and support queuing
915 * exactly one non-rt signal, so that we can get more
916 * detailed information about the cause of the signal.
918 if (legacy_queue(pending, sig))
919 return 0;
921 * fast-pathed signals for kernel-internal things like SIGSTOP
922 * or SIGKILL.
924 if (info == SEND_SIG_FORCED)
925 goto out_set;
928 * Real-time signals must be queued if sent by sigqueue, or
929 * some other real-time mechanism. It is implementation
930 * defined whether kill() does so. We attempt to do so, on
931 * the principle of least surprise, but since kill is not
932 * allowed to fail with EAGAIN when low on memory we just
933 * make sure at least one signal gets delivered and don't
934 * pass on the info struct.
936 if (sig < SIGRTMIN)
937 override_rlimit = (is_si_special(info) || info->si_code >= 0);
938 else
939 override_rlimit = 0;
941 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
942 override_rlimit);
943 if (q) {
944 list_add_tail(&q->list, &pending->list);
945 switch ((unsigned long) info) {
946 case (unsigned long) SEND_SIG_NOINFO:
947 q->info.si_signo = sig;
948 q->info.si_errno = 0;
949 q->info.si_code = SI_USER;
950 q->info.si_pid = task_tgid_nr_ns(current,
951 task_active_pid_ns(t));
952 q->info.si_uid = current_uid();
953 break;
954 case (unsigned long) SEND_SIG_PRIV:
955 q->info.si_signo = sig;
956 q->info.si_errno = 0;
957 q->info.si_code = SI_KERNEL;
958 q->info.si_pid = 0;
959 q->info.si_uid = 0;
960 break;
961 default:
962 copy_siginfo(&q->info, info);
963 if (from_ancestor_ns)
964 q->info.si_pid = 0;
965 break;
967 } else if (!is_si_special(info)) {
968 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
970 * Queue overflow, abort. We may abort if the
971 * signal was rt and sent by user using something
972 * other than kill().
974 trace_signal_overflow_fail(sig, group, info);
975 return -EAGAIN;
976 } else {
978 * This is a silent loss of information. We still
979 * send the signal, but the *info bits are lost.
981 trace_signal_lose_info(sig, group, info);
985 out_set:
986 signalfd_notify(t, sig);
987 sigaddset(&pending->signal, sig);
988 complete_signal(sig, t, group);
989 return 0;
992 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
993 int group)
995 int from_ancestor_ns = 0;
997 #ifdef CONFIG_PID_NS
998 from_ancestor_ns = si_fromuser(info) &&
999 !task_pid_nr_ns(current, task_active_pid_ns(t));
1000 #endif
1002 return __send_signal(sig, info, t, group, from_ancestor_ns);
1005 static void print_fatal_signal(struct pt_regs *regs, int signr)
1007 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1008 current->comm, task_pid_nr(current), signr);
1010 #if defined(__i386__) && !defined(__arch_um__)
1011 printk("code at %08lx: ", regs->ip);
1013 int i;
1014 for (i = 0; i < 16; i++) {
1015 unsigned char insn;
1017 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1018 break;
1019 printk("%02x ", insn);
1022 #endif
1023 printk("\n");
1024 preempt_disable();
1025 show_regs(regs);
1026 preempt_enable();
1029 static int __init setup_print_fatal_signals(char *str)
1031 get_option (&str, &print_fatal_signals);
1033 return 1;
1036 __setup("print-fatal-signals=", setup_print_fatal_signals);
1039 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1041 return send_signal(sig, info, p, 1);
1044 static int
1045 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1047 return send_signal(sig, info, t, 0);
1050 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1051 bool group)
1053 unsigned long flags;
1054 int ret = -ESRCH;
1056 if (lock_task_sighand(p, &flags)) {
1057 ret = send_signal(sig, info, p, group);
1058 unlock_task_sighand(p, &flags);
1061 return ret;
1065 * Force a signal that the process can't ignore: if necessary
1066 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1068 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1069 * since we do not want to have a signal handler that was blocked
1070 * be invoked when user space had explicitly blocked it.
1072 * We don't want to have recursive SIGSEGV's etc, for example,
1073 * that is why we also clear SIGNAL_UNKILLABLE.
1076 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1078 unsigned long int flags;
1079 int ret, blocked, ignored;
1080 struct k_sigaction *action;
1082 spin_lock_irqsave(&t->sighand->siglock, flags);
1083 action = &t->sighand->action[sig-1];
1084 ignored = action->sa.sa_handler == SIG_IGN;
1085 blocked = sigismember(&t->blocked, sig);
1086 if (blocked || ignored) {
1087 action->sa.sa_handler = SIG_DFL;
1088 if (blocked) {
1089 sigdelset(&t->blocked, sig);
1090 recalc_sigpending_and_wake(t);
1093 if (action->sa.sa_handler == SIG_DFL)
1094 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1095 ret = specific_send_sig_info(sig, info, t);
1096 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1098 return ret;
1102 * Nuke all other threads in the group.
1104 int zap_other_threads(struct task_struct *p)
1106 struct task_struct *t = p;
1107 int count = 0;
1109 p->signal->group_stop_count = 0;
1111 while_each_thread(p, t) {
1112 count++;
1114 /* Don't bother with already dead threads */
1115 if (t->exit_state)
1116 continue;
1117 sigaddset(&t->pending.signal, SIGKILL);
1118 signal_wake_up(t, 1);
1121 return count;
1124 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1125 unsigned long *flags)
1127 struct sighand_struct *sighand;
1129 rcu_read_lock();
1130 for (;;) {
1131 sighand = rcu_dereference(tsk->sighand);
1132 if (unlikely(sighand == NULL))
1133 break;
1135 spin_lock_irqsave(&sighand->siglock, *flags);
1136 if (likely(sighand == tsk->sighand))
1137 break;
1138 spin_unlock_irqrestore(&sighand->siglock, *flags);
1140 rcu_read_unlock();
1142 return sighand;
1146 * send signal info to all the members of a group
1148 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1150 int ret;
1152 rcu_read_lock();
1153 ret = check_kill_permission(sig, info, p);
1154 rcu_read_unlock();
1156 if (!ret && sig)
1157 ret = do_send_sig_info(sig, info, p, true);
1159 return ret;
1163 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1164 * control characters do (^C, ^Z etc)
1165 * - the caller must hold at least a readlock on tasklist_lock
1167 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1169 struct task_struct *p = NULL;
1170 int retval, success;
1172 success = 0;
1173 retval = -ESRCH;
1174 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1175 int err = group_send_sig_info(sig, info, p);
1176 success |= !err;
1177 retval = err;
1178 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1179 return success ? 0 : retval;
1182 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1184 int error = -ESRCH;
1185 struct task_struct *p;
1187 rcu_read_lock();
1188 retry:
1189 p = pid_task(pid, PIDTYPE_PID);
1190 if (p) {
1191 error = group_send_sig_info(sig, info, p);
1192 if (unlikely(error == -ESRCH))
1194 * The task was unhashed in between, try again.
1195 * If it is dead, pid_task() will return NULL,
1196 * if we race with de_thread() it will find the
1197 * new leader.
1199 goto retry;
1201 rcu_read_unlock();
1203 return error;
1206 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1208 int error;
1209 rcu_read_lock();
1210 error = kill_pid_info(sig, info, find_vpid(pid));
1211 rcu_read_unlock();
1212 return error;
1215 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1216 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1217 uid_t uid, uid_t euid, u32 secid)
1219 int ret = -EINVAL;
1220 struct task_struct *p;
1221 const struct cred *pcred;
1222 unsigned long flags;
1224 if (!valid_signal(sig))
1225 return ret;
1227 rcu_read_lock();
1228 p = pid_task(pid, PIDTYPE_PID);
1229 if (!p) {
1230 ret = -ESRCH;
1231 goto out_unlock;
1233 pcred = __task_cred(p);
1234 if (si_fromuser(info) &&
1235 euid != pcred->suid && euid != pcred->uid &&
1236 uid != pcred->suid && uid != pcred->uid) {
1237 ret = -EPERM;
1238 goto out_unlock;
1240 ret = security_task_kill(p, info, sig, secid);
1241 if (ret)
1242 goto out_unlock;
1244 if (sig) {
1245 if (lock_task_sighand(p, &flags)) {
1246 ret = __send_signal(sig, info, p, 1, 0);
1247 unlock_task_sighand(p, &flags);
1248 } else
1249 ret = -ESRCH;
1251 out_unlock:
1252 rcu_read_unlock();
1253 return ret;
1255 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1258 * kill_something_info() interprets pid in interesting ways just like kill(2).
1260 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1261 * is probably wrong. Should make it like BSD or SYSV.
1264 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1266 int ret;
1268 if (pid > 0) {
1269 rcu_read_lock();
1270 ret = kill_pid_info(sig, info, find_vpid(pid));
1271 rcu_read_unlock();
1272 return ret;
1275 read_lock(&tasklist_lock);
1276 if (pid != -1) {
1277 ret = __kill_pgrp_info(sig, info,
1278 pid ? find_vpid(-pid) : task_pgrp(current));
1279 } else {
1280 int retval = 0, count = 0;
1281 struct task_struct * p;
1283 for_each_process(p) {
1284 if (task_pid_vnr(p) > 1 &&
1285 !same_thread_group(p, current)) {
1286 int err = group_send_sig_info(sig, info, p);
1287 ++count;
1288 if (err != -EPERM)
1289 retval = err;
1292 ret = count ? retval : -ESRCH;
1294 read_unlock(&tasklist_lock);
1296 return ret;
1300 * These are for backward compatibility with the rest of the kernel source.
1303 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1306 * Make sure legacy kernel users don't send in bad values
1307 * (normal paths check this in check_kill_permission).
1309 if (!valid_signal(sig))
1310 return -EINVAL;
1312 return do_send_sig_info(sig, info, p, false);
1315 #define __si_special(priv) \
1316 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1319 send_sig(int sig, struct task_struct *p, int priv)
1321 return send_sig_info(sig, __si_special(priv), p);
1324 void
1325 force_sig(int sig, struct task_struct *p)
1327 force_sig_info(sig, SEND_SIG_PRIV, p);
1331 * When things go south during signal handling, we
1332 * will force a SIGSEGV. And if the signal that caused
1333 * the problem was already a SIGSEGV, we'll want to
1334 * make sure we don't even try to deliver the signal..
1337 force_sigsegv(int sig, struct task_struct *p)
1339 if (sig == SIGSEGV) {
1340 unsigned long flags;
1341 spin_lock_irqsave(&p->sighand->siglock, flags);
1342 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1343 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1345 force_sig(SIGSEGV, p);
1346 return 0;
1349 int kill_pgrp(struct pid *pid, int sig, int priv)
1351 int ret;
1353 read_lock(&tasklist_lock);
1354 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1355 read_unlock(&tasklist_lock);
1357 return ret;
1359 EXPORT_SYMBOL(kill_pgrp);
1361 int kill_pid(struct pid *pid, int sig, int priv)
1363 return kill_pid_info(sig, __si_special(priv), pid);
1365 EXPORT_SYMBOL(kill_pid);
1368 * These functions support sending signals using preallocated sigqueue
1369 * structures. This is needed "because realtime applications cannot
1370 * afford to lose notifications of asynchronous events, like timer
1371 * expirations or I/O completions". In the case of POSIX Timers
1372 * we allocate the sigqueue structure from the timer_create. If this
1373 * allocation fails we are able to report the failure to the application
1374 * with an EAGAIN error.
1376 struct sigqueue *sigqueue_alloc(void)
1378 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1380 if (q)
1381 q->flags |= SIGQUEUE_PREALLOC;
1383 return q;
1386 void sigqueue_free(struct sigqueue *q)
1388 unsigned long flags;
1389 spinlock_t *lock = &current->sighand->siglock;
1391 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1393 * We must hold ->siglock while testing q->list
1394 * to serialize with collect_signal() or with
1395 * __exit_signal()->flush_sigqueue().
1397 spin_lock_irqsave(lock, flags);
1398 q->flags &= ~SIGQUEUE_PREALLOC;
1400 * If it is queued it will be freed when dequeued,
1401 * like the "regular" sigqueue.
1403 if (!list_empty(&q->list))
1404 q = NULL;
1405 spin_unlock_irqrestore(lock, flags);
1407 if (q)
1408 __sigqueue_free(q);
1411 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1413 int sig = q->info.si_signo;
1414 struct sigpending *pending;
1415 unsigned long flags;
1416 int ret;
1418 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1420 ret = -1;
1421 if (!likely(lock_task_sighand(t, &flags)))
1422 goto ret;
1424 ret = 1; /* the signal is ignored */
1425 if (!prepare_signal(sig, t, 0))
1426 goto out;
1428 ret = 0;
1429 if (unlikely(!list_empty(&q->list))) {
1431 * If an SI_TIMER entry is already queue just increment
1432 * the overrun count.
1434 BUG_ON(q->info.si_code != SI_TIMER);
1435 q->info.si_overrun++;
1436 goto out;
1438 q->info.si_overrun = 0;
1440 signalfd_notify(t, sig);
1441 pending = group ? &t->signal->shared_pending : &t->pending;
1442 list_add_tail(&q->list, &pending->list);
1443 sigaddset(&pending->signal, sig);
1444 complete_signal(sig, t, group);
1445 out:
1446 unlock_task_sighand(t, &flags);
1447 ret:
1448 return ret;
1452 * Let a parent know about the death of a child.
1453 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1455 * Returns -1 if our parent ignored us and so we've switched to
1456 * self-reaping, or else @sig.
1458 int do_notify_parent(struct task_struct *tsk, int sig)
1460 struct siginfo info;
1461 unsigned long flags;
1462 struct sighand_struct *psig;
1463 int ret = sig;
1465 BUG_ON(sig == -1);
1467 /* do_notify_parent_cldstop should have been called instead. */
1468 BUG_ON(task_is_stopped_or_traced(tsk));
1470 BUG_ON(!task_ptrace(tsk) &&
1471 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1473 info.si_signo = sig;
1474 info.si_errno = 0;
1476 * we are under tasklist_lock here so our parent is tied to
1477 * us and cannot exit and release its namespace.
1479 * the only it can is to switch its nsproxy with sys_unshare,
1480 * bu uncharing pid namespaces is not allowed, so we'll always
1481 * see relevant namespace
1483 * write_lock() currently calls preempt_disable() which is the
1484 * same as rcu_read_lock(), but according to Oleg, this is not
1485 * correct to rely on this
1487 rcu_read_lock();
1488 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1489 info.si_uid = __task_cred(tsk)->uid;
1490 rcu_read_unlock();
1492 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1493 tsk->signal->utime));
1494 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1495 tsk->signal->stime));
1497 info.si_status = tsk->exit_code & 0x7f;
1498 if (tsk->exit_code & 0x80)
1499 info.si_code = CLD_DUMPED;
1500 else if (tsk->exit_code & 0x7f)
1501 info.si_code = CLD_KILLED;
1502 else {
1503 info.si_code = CLD_EXITED;
1504 info.si_status = tsk->exit_code >> 8;
1507 psig = tsk->parent->sighand;
1508 spin_lock_irqsave(&psig->siglock, flags);
1509 if (!task_ptrace(tsk) && sig == SIGCHLD &&
1510 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1511 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1513 * We are exiting and our parent doesn't care. POSIX.1
1514 * defines special semantics for setting SIGCHLD to SIG_IGN
1515 * or setting the SA_NOCLDWAIT flag: we should be reaped
1516 * automatically and not left for our parent's wait4 call.
1517 * Rather than having the parent do it as a magic kind of
1518 * signal handler, we just set this to tell do_exit that we
1519 * can be cleaned up without becoming a zombie. Note that
1520 * we still call __wake_up_parent in this case, because a
1521 * blocked sys_wait4 might now return -ECHILD.
1523 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1524 * is implementation-defined: we do (if you don't want
1525 * it, just use SIG_IGN instead).
1527 ret = tsk->exit_signal = -1;
1528 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1529 sig = -1;
1531 if (valid_signal(sig) && sig > 0)
1532 __group_send_sig_info(sig, &info, tsk->parent);
1533 __wake_up_parent(tsk, tsk->parent);
1534 spin_unlock_irqrestore(&psig->siglock, flags);
1536 return ret;
1539 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1541 struct siginfo info;
1542 unsigned long flags;
1543 struct task_struct *parent;
1544 struct sighand_struct *sighand;
1546 if (task_ptrace(tsk))
1547 parent = tsk->parent;
1548 else {
1549 tsk = tsk->group_leader;
1550 parent = tsk->real_parent;
1553 info.si_signo = SIGCHLD;
1554 info.si_errno = 0;
1556 * see comment in do_notify_parent() about the following 4 lines
1558 rcu_read_lock();
1559 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1560 info.si_uid = __task_cred(tsk)->uid;
1561 rcu_read_unlock();
1563 info.si_utime = cputime_to_clock_t(tsk->utime);
1564 info.si_stime = cputime_to_clock_t(tsk->stime);
1566 info.si_code = why;
1567 switch (why) {
1568 case CLD_CONTINUED:
1569 info.si_status = SIGCONT;
1570 break;
1571 case CLD_STOPPED:
1572 info.si_status = tsk->signal->group_exit_code & 0x7f;
1573 break;
1574 case CLD_TRAPPED:
1575 info.si_status = tsk->exit_code & 0x7f;
1576 break;
1577 default:
1578 BUG();
1581 sighand = parent->sighand;
1582 spin_lock_irqsave(&sighand->siglock, flags);
1583 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1584 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1585 __group_send_sig_info(SIGCHLD, &info, parent);
1587 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1589 __wake_up_parent(tsk, parent);
1590 spin_unlock_irqrestore(&sighand->siglock, flags);
1593 static inline int may_ptrace_stop(void)
1595 if (!likely(task_ptrace(current)))
1596 return 0;
1598 * Are we in the middle of do_coredump?
1599 * If so and our tracer is also part of the coredump stopping
1600 * is a deadlock situation, and pointless because our tracer
1601 * is dead so don't allow us to stop.
1602 * If SIGKILL was already sent before the caller unlocked
1603 * ->siglock we must see ->core_state != NULL. Otherwise it
1604 * is safe to enter schedule().
1606 if (unlikely(current->mm->core_state) &&
1607 unlikely(current->mm == current->parent->mm))
1608 return 0;
1610 return 1;
1614 * Return non-zero if there is a SIGKILL that should be waking us up.
1615 * Called with the siglock held.
1617 static int sigkill_pending(struct task_struct *tsk)
1619 return sigismember(&tsk->pending.signal, SIGKILL) ||
1620 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1624 * This must be called with current->sighand->siglock held.
1626 * This should be the path for all ptrace stops.
1627 * We always set current->last_siginfo while stopped here.
1628 * That makes it a way to test a stopped process for
1629 * being ptrace-stopped vs being job-control-stopped.
1631 * If we actually decide not to stop at all because the tracer
1632 * is gone, we keep current->exit_code unless clear_code.
1634 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1635 __releases(&current->sighand->siglock)
1636 __acquires(&current->sighand->siglock)
1638 if (arch_ptrace_stop_needed(exit_code, info)) {
1640 * The arch code has something special to do before a
1641 * ptrace stop. This is allowed to block, e.g. for faults
1642 * on user stack pages. We can't keep the siglock while
1643 * calling arch_ptrace_stop, so we must release it now.
1644 * To preserve proper semantics, we must do this before
1645 * any signal bookkeeping like checking group_stop_count.
1646 * Meanwhile, a SIGKILL could come in before we retake the
1647 * siglock. That must prevent us from sleeping in TASK_TRACED.
1648 * So after regaining the lock, we must check for SIGKILL.
1650 spin_unlock_irq(&current->sighand->siglock);
1651 arch_ptrace_stop(exit_code, info);
1652 spin_lock_irq(&current->sighand->siglock);
1653 if (sigkill_pending(current))
1654 return;
1658 * If there is a group stop in progress,
1659 * we must participate in the bookkeeping.
1661 if (current->signal->group_stop_count > 0)
1662 --current->signal->group_stop_count;
1664 current->last_siginfo = info;
1665 current->exit_code = exit_code;
1667 /* Let the debugger run. */
1668 __set_current_state(TASK_TRACED);
1669 spin_unlock_irq(&current->sighand->siglock);
1670 read_lock(&tasklist_lock);
1671 if (may_ptrace_stop()) {
1672 do_notify_parent_cldstop(current, CLD_TRAPPED);
1674 * Don't want to allow preemption here, because
1675 * sys_ptrace() needs this task to be inactive.
1677 * XXX: implement read_unlock_no_resched().
1679 preempt_disable();
1680 read_unlock(&tasklist_lock);
1681 preempt_enable_no_resched();
1682 schedule();
1683 } else {
1685 * By the time we got the lock, our tracer went away.
1686 * Don't drop the lock yet, another tracer may come.
1688 __set_current_state(TASK_RUNNING);
1689 if (clear_code)
1690 current->exit_code = 0;
1691 read_unlock(&tasklist_lock);
1695 * While in TASK_TRACED, we were considered "frozen enough".
1696 * Now that we woke up, it's crucial if we're supposed to be
1697 * frozen that we freeze now before running anything substantial.
1699 try_to_freeze();
1702 * We are back. Now reacquire the siglock before touching
1703 * last_siginfo, so that we are sure to have synchronized with
1704 * any signal-sending on another CPU that wants to examine it.
1706 spin_lock_irq(&current->sighand->siglock);
1707 current->last_siginfo = NULL;
1710 * Queued signals ignored us while we were stopped for tracing.
1711 * So check for any that we should take before resuming user mode.
1712 * This sets TIF_SIGPENDING, but never clears it.
1714 recalc_sigpending_tsk(current);
1717 void ptrace_notify(int exit_code)
1719 siginfo_t info;
1721 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1723 memset(&info, 0, sizeof info);
1724 info.si_signo = SIGTRAP;
1725 info.si_code = exit_code;
1726 info.si_pid = task_pid_vnr(current);
1727 info.si_uid = current_uid();
1729 /* Let the debugger run. */
1730 spin_lock_irq(&current->sighand->siglock);
1731 ptrace_stop(exit_code, 1, &info);
1732 spin_unlock_irq(&current->sighand->siglock);
1736 * This performs the stopping for SIGSTOP and other stop signals.
1737 * We have to stop all threads in the thread group.
1738 * Returns non-zero if we've actually stopped and released the siglock.
1739 * Returns zero if we didn't stop and still hold the siglock.
1741 static int do_signal_stop(int signr)
1743 struct signal_struct *sig = current->signal;
1744 int notify;
1746 if (!sig->group_stop_count) {
1747 struct task_struct *t;
1749 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1750 unlikely(signal_group_exit(sig)))
1751 return 0;
1753 * There is no group stop already in progress.
1754 * We must initiate one now.
1756 sig->group_exit_code = signr;
1758 sig->group_stop_count = 1;
1759 for (t = next_thread(current); t != current; t = next_thread(t))
1761 * Setting state to TASK_STOPPED for a group
1762 * stop is always done with the siglock held,
1763 * so this check has no races.
1765 if (!(t->flags & PF_EXITING) &&
1766 !task_is_stopped_or_traced(t)) {
1767 sig->group_stop_count++;
1768 signal_wake_up(t, 0);
1772 * If there are no other threads in the group, or if there is
1773 * a group stop in progress and we are the last to stop, report
1774 * to the parent. When ptraced, every thread reports itself.
1776 notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0;
1777 notify = tracehook_notify_jctl(notify, CLD_STOPPED);
1779 * tracehook_notify_jctl() can drop and reacquire siglock, so
1780 * we keep ->group_stop_count != 0 before the call. If SIGCONT
1781 * or SIGKILL comes in between ->group_stop_count == 0.
1783 if (sig->group_stop_count) {
1784 if (!--sig->group_stop_count)
1785 sig->flags = SIGNAL_STOP_STOPPED;
1786 current->exit_code = sig->group_exit_code;
1787 __set_current_state(TASK_STOPPED);
1789 spin_unlock_irq(&current->sighand->siglock);
1791 if (notify) {
1792 read_lock(&tasklist_lock);
1793 do_notify_parent_cldstop(current, notify);
1794 read_unlock(&tasklist_lock);
1797 /* Now we don't run again until woken by SIGCONT or SIGKILL */
1798 do {
1799 schedule();
1800 } while (try_to_freeze());
1802 tracehook_finish_jctl();
1803 current->exit_code = 0;
1805 return 1;
1808 static int ptrace_signal(int signr, siginfo_t *info,
1809 struct pt_regs *regs, void *cookie)
1811 if (!task_ptrace(current))
1812 return signr;
1814 ptrace_signal_deliver(regs, cookie);
1816 /* Let the debugger run. */
1817 ptrace_stop(signr, 0, info);
1819 /* We're back. Did the debugger cancel the sig? */
1820 signr = current->exit_code;
1821 if (signr == 0)
1822 return signr;
1824 current->exit_code = 0;
1827 * Update the siginfo structure if the signal has
1828 * changed. If the debugger wanted something
1829 * specific in the siginfo structure then it should
1830 * have updated *info via PTRACE_SETSIGINFO.
1832 if (signr != info->si_signo) {
1833 info->si_signo = signr;
1834 info->si_errno = 0;
1835 info->si_code = SI_USER;
1836 info->si_pid = task_pid_vnr(current->parent);
1837 info->si_uid = task_uid(current->parent);
1840 /* If the (new) signal is now blocked, requeue it. */
1841 if (sigismember(&current->blocked, signr)) {
1842 specific_send_sig_info(signr, info, current);
1843 signr = 0;
1846 return signr;
1849 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1850 struct pt_regs *regs, void *cookie)
1852 struct sighand_struct *sighand = current->sighand;
1853 struct signal_struct *signal = current->signal;
1854 int signr;
1856 relock:
1858 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1859 * While in TASK_STOPPED, we were considered "frozen enough".
1860 * Now that we woke up, it's crucial if we're supposed to be
1861 * frozen that we freeze now before running anything substantial.
1863 try_to_freeze();
1865 spin_lock_irq(&sighand->siglock);
1867 * Every stopped thread goes here after wakeup. Check to see if
1868 * we should notify the parent, prepare_signal(SIGCONT) encodes
1869 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1871 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1872 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1873 ? CLD_CONTINUED : CLD_STOPPED;
1874 signal->flags &= ~SIGNAL_CLD_MASK;
1876 why = tracehook_notify_jctl(why, CLD_CONTINUED);
1877 spin_unlock_irq(&sighand->siglock);
1879 if (why) {
1880 read_lock(&tasklist_lock);
1881 do_notify_parent_cldstop(current->group_leader, why);
1882 read_unlock(&tasklist_lock);
1884 goto relock;
1887 for (;;) {
1888 struct k_sigaction *ka;
1890 * Tracing can induce an artificial signal and choose sigaction.
1891 * The return value in @signr determines the default action,
1892 * but @info->si_signo is the signal number we will report.
1894 signr = tracehook_get_signal(current, regs, info, return_ka);
1895 if (unlikely(signr < 0))
1896 goto relock;
1897 if (unlikely(signr != 0))
1898 ka = return_ka;
1899 else {
1900 if (unlikely(signal->group_stop_count > 0) &&
1901 do_signal_stop(0))
1902 goto relock;
1904 signr = dequeue_signal(current, &current->blocked,
1905 info);
1907 if (!signr)
1908 break; /* will return 0 */
1910 if (signr != SIGKILL) {
1911 signr = ptrace_signal(signr, info,
1912 regs, cookie);
1913 if (!signr)
1914 continue;
1917 ka = &sighand->action[signr-1];
1920 /* Trace actually delivered signals. */
1921 trace_signal_deliver(signr, info, ka);
1923 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1924 continue;
1925 if (ka->sa.sa_handler != SIG_DFL) {
1926 /* Run the handler. */
1927 *return_ka = *ka;
1929 if (ka->sa.sa_flags & SA_ONESHOT)
1930 ka->sa.sa_handler = SIG_DFL;
1932 break; /* will return non-zero "signr" value */
1936 * Now we are doing the default action for this signal.
1938 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1939 continue;
1942 * Global init gets no signals it doesn't want.
1943 * Container-init gets no signals it doesn't want from same
1944 * container.
1946 * Note that if global/container-init sees a sig_kernel_only()
1947 * signal here, the signal must have been generated internally
1948 * or must have come from an ancestor namespace. In either
1949 * case, the signal cannot be dropped.
1951 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1952 !sig_kernel_only(signr))
1953 continue;
1955 if (sig_kernel_stop(signr)) {
1957 * The default action is to stop all threads in
1958 * the thread group. The job control signals
1959 * do nothing in an orphaned pgrp, but SIGSTOP
1960 * always works. Note that siglock needs to be
1961 * dropped during the call to is_orphaned_pgrp()
1962 * because of lock ordering with tasklist_lock.
1963 * This allows an intervening SIGCONT to be posted.
1964 * We need to check for that and bail out if necessary.
1966 if (signr != SIGSTOP) {
1967 spin_unlock_irq(&sighand->siglock);
1969 /* signals can be posted during this window */
1971 if (is_current_pgrp_orphaned())
1972 goto relock;
1974 spin_lock_irq(&sighand->siglock);
1977 if (likely(do_signal_stop(info->si_signo))) {
1978 /* It released the siglock. */
1979 goto relock;
1983 * We didn't actually stop, due to a race
1984 * with SIGCONT or something like that.
1986 continue;
1989 spin_unlock_irq(&sighand->siglock);
1992 * Anything else is fatal, maybe with a core dump.
1994 current->flags |= PF_SIGNALED;
1996 if (sig_kernel_coredump(signr)) {
1997 if (print_fatal_signals)
1998 print_fatal_signal(regs, info->si_signo);
2000 * If it was able to dump core, this kills all
2001 * other threads in the group and synchronizes with
2002 * their demise. If we lost the race with another
2003 * thread getting here, it set group_exit_code
2004 * first and our do_group_exit call below will use
2005 * that value and ignore the one we pass it.
2007 do_coredump(info->si_signo, info->si_signo, regs);
2011 * Death signals, no core dump.
2013 do_group_exit(info->si_signo);
2014 /* NOTREACHED */
2016 spin_unlock_irq(&sighand->siglock);
2017 return signr;
2020 void exit_signals(struct task_struct *tsk)
2022 int group_stop = 0;
2023 struct task_struct *t;
2025 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2026 tsk->flags |= PF_EXITING;
2027 return;
2030 spin_lock_irq(&tsk->sighand->siglock);
2032 * From now this task is not visible for group-wide signals,
2033 * see wants_signal(), do_signal_stop().
2035 tsk->flags |= PF_EXITING;
2036 if (!signal_pending(tsk))
2037 goto out;
2040 * It could be that __group_complete_signal() choose us to
2041 * notify about group-wide signal. Another thread should be
2042 * woken now to take the signal since we will not.
2044 for (t = tsk; (t = next_thread(t)) != tsk; )
2045 if (!signal_pending(t) && !(t->flags & PF_EXITING))
2046 recalc_sigpending_and_wake(t);
2048 if (unlikely(tsk->signal->group_stop_count) &&
2049 !--tsk->signal->group_stop_count) {
2050 tsk->signal->flags = SIGNAL_STOP_STOPPED;
2051 group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED);
2053 out:
2054 spin_unlock_irq(&tsk->sighand->siglock);
2056 if (unlikely(group_stop)) {
2057 read_lock(&tasklist_lock);
2058 do_notify_parent_cldstop(tsk, group_stop);
2059 read_unlock(&tasklist_lock);
2063 EXPORT_SYMBOL(recalc_sigpending);
2064 EXPORT_SYMBOL_GPL(dequeue_signal);
2065 EXPORT_SYMBOL(flush_signals);
2066 EXPORT_SYMBOL(force_sig);
2067 EXPORT_SYMBOL(send_sig);
2068 EXPORT_SYMBOL(send_sig_info);
2069 EXPORT_SYMBOL(sigprocmask);
2070 EXPORT_SYMBOL(block_all_signals);
2071 EXPORT_SYMBOL(unblock_all_signals);
2075 * System call entry points.
2079 * sys_restart_syscall - restart a system call
2081 SYSCALL_DEFINE0(restart_syscall)
2083 struct restart_block *restart = &current_thread_info()->restart_block;
2084 return restart->fn(restart);
2087 long do_no_restart_syscall(struct restart_block *param)
2089 return -EINTR;
2093 * We don't need to get the kernel lock - this is all local to this
2094 * particular thread.. (and that's good, because this is _heavily_
2095 * used by various programs)
2099 * This is also useful for kernel threads that want to temporarily
2100 * (or permanently) block certain signals.
2102 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2103 * interface happily blocks "unblockable" signals like SIGKILL
2104 * and friends.
2106 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2108 int error;
2110 spin_lock_irq(&current->sighand->siglock);
2111 if (oldset)
2112 *oldset = current->blocked;
2114 error = 0;
2115 switch (how) {
2116 case SIG_BLOCK:
2117 sigorsets(&current->blocked, &current->blocked, set);
2118 break;
2119 case SIG_UNBLOCK:
2120 signandsets(&current->blocked, &current->blocked, set);
2121 break;
2122 case SIG_SETMASK:
2123 current->blocked = *set;
2124 break;
2125 default:
2126 error = -EINVAL;
2128 recalc_sigpending();
2129 spin_unlock_irq(&current->sighand->siglock);
2131 return error;
2135 * sys_rt_sigprocmask - change the list of currently blocked signals
2136 * @how: whether to add, remove, or set signals
2137 * @set: stores pending signals
2138 * @oset: previous value of signal mask if non-null
2139 * @sigsetsize: size of sigset_t type
2141 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2142 sigset_t __user *, oset, size_t, sigsetsize)
2144 int error = -EINVAL;
2145 sigset_t old_set, new_set;
2147 /* XXX: Don't preclude handling different sized sigset_t's. */
2148 if (sigsetsize != sizeof(sigset_t))
2149 goto out;
2151 if (set) {
2152 error = -EFAULT;
2153 if (copy_from_user(&new_set, set, sizeof(*set)))
2154 goto out;
2155 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2157 error = sigprocmask(how, &new_set, &old_set);
2158 if (error)
2159 goto out;
2160 if (oset)
2161 goto set_old;
2162 } else if (oset) {
2163 spin_lock_irq(&current->sighand->siglock);
2164 old_set = current->blocked;
2165 spin_unlock_irq(&current->sighand->siglock);
2167 set_old:
2168 error = -EFAULT;
2169 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2170 goto out;
2172 error = 0;
2173 out:
2174 return error;
2177 long do_sigpending(void __user *set, unsigned long sigsetsize)
2179 long error = -EINVAL;
2180 sigset_t pending;
2182 if (sigsetsize > sizeof(sigset_t))
2183 goto out;
2185 spin_lock_irq(&current->sighand->siglock);
2186 sigorsets(&pending, &current->pending.signal,
2187 &current->signal->shared_pending.signal);
2188 spin_unlock_irq(&current->sighand->siglock);
2190 /* Outside the lock because only this thread touches it. */
2191 sigandsets(&pending, &current->blocked, &pending);
2193 error = -EFAULT;
2194 if (!copy_to_user(set, &pending, sigsetsize))
2195 error = 0;
2197 out:
2198 return error;
2202 * sys_rt_sigpending - examine a pending signal that has been raised
2203 * while blocked
2204 * @set: stores pending signals
2205 * @sigsetsize: size of sigset_t type or larger
2207 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2209 return do_sigpending(set, sigsetsize);
2212 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2214 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2216 int err;
2218 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2219 return -EFAULT;
2220 if (from->si_code < 0)
2221 return __copy_to_user(to, from, sizeof(siginfo_t))
2222 ? -EFAULT : 0;
2224 * If you change siginfo_t structure, please be sure
2225 * this code is fixed accordingly.
2226 * Please remember to update the signalfd_copyinfo() function
2227 * inside fs/signalfd.c too, in case siginfo_t changes.
2228 * It should never copy any pad contained in the structure
2229 * to avoid security leaks, but must copy the generic
2230 * 3 ints plus the relevant union member.
2232 err = __put_user(from->si_signo, &to->si_signo);
2233 err |= __put_user(from->si_errno, &to->si_errno);
2234 err |= __put_user((short)from->si_code, &to->si_code);
2235 switch (from->si_code & __SI_MASK) {
2236 case __SI_KILL:
2237 err |= __put_user(from->si_pid, &to->si_pid);
2238 err |= __put_user(from->si_uid, &to->si_uid);
2239 break;
2240 case __SI_TIMER:
2241 err |= __put_user(from->si_tid, &to->si_tid);
2242 err |= __put_user(from->si_overrun, &to->si_overrun);
2243 err |= __put_user(from->si_ptr, &to->si_ptr);
2244 break;
2245 case __SI_POLL:
2246 err |= __put_user(from->si_band, &to->si_band);
2247 err |= __put_user(from->si_fd, &to->si_fd);
2248 break;
2249 case __SI_FAULT:
2250 err |= __put_user(from->si_addr, &to->si_addr);
2251 #ifdef __ARCH_SI_TRAPNO
2252 err |= __put_user(from->si_trapno, &to->si_trapno);
2253 #endif
2254 #ifdef BUS_MCEERR_AO
2256 * Other callers might not initialize the si_lsb field,
2257 * so check explicitly for the right codes here.
2259 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2260 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2261 #endif
2262 break;
2263 case __SI_CHLD:
2264 err |= __put_user(from->si_pid, &to->si_pid);
2265 err |= __put_user(from->si_uid, &to->si_uid);
2266 err |= __put_user(from->si_status, &to->si_status);
2267 err |= __put_user(from->si_utime, &to->si_utime);
2268 err |= __put_user(from->si_stime, &to->si_stime);
2269 break;
2270 case __SI_RT: /* This is not generated by the kernel as of now. */
2271 case __SI_MESGQ: /* But this is */
2272 err |= __put_user(from->si_pid, &to->si_pid);
2273 err |= __put_user(from->si_uid, &to->si_uid);
2274 err |= __put_user(from->si_ptr, &to->si_ptr);
2275 break;
2276 default: /* this is just in case for now ... */
2277 err |= __put_user(from->si_pid, &to->si_pid);
2278 err |= __put_user(from->si_uid, &to->si_uid);
2279 break;
2281 return err;
2284 #endif
2287 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2288 * in @uthese
2289 * @uthese: queued signals to wait for
2290 * @uinfo: if non-null, the signal's siginfo is returned here
2291 * @uts: upper bound on process time suspension
2292 * @sigsetsize: size of sigset_t type
2294 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2295 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2296 size_t, sigsetsize)
2298 int ret, sig;
2299 sigset_t these;
2300 struct timespec ts;
2301 siginfo_t info;
2302 long timeout = 0;
2304 /* XXX: Don't preclude handling different sized sigset_t's. */
2305 if (sigsetsize != sizeof(sigset_t))
2306 return -EINVAL;
2308 if (copy_from_user(&these, uthese, sizeof(these)))
2309 return -EFAULT;
2312 * Invert the set of allowed signals to get those we
2313 * want to block.
2315 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2316 signotset(&these);
2318 if (uts) {
2319 if (copy_from_user(&ts, uts, sizeof(ts)))
2320 return -EFAULT;
2321 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2322 || ts.tv_sec < 0)
2323 return -EINVAL;
2326 spin_lock_irq(&current->sighand->siglock);
2327 sig = dequeue_signal(current, &these, &info);
2328 if (!sig) {
2329 timeout = MAX_SCHEDULE_TIMEOUT;
2330 if (uts)
2331 timeout = (timespec_to_jiffies(&ts)
2332 + (ts.tv_sec || ts.tv_nsec));
2334 if (timeout) {
2336 * None ready -- temporarily unblock those we're
2337 * interested while we are sleeping in so that we'll
2338 * be awakened when they arrive.
2340 current->real_blocked = current->blocked;
2341 sigandsets(&current->blocked, &current->blocked, &these);
2342 recalc_sigpending();
2343 spin_unlock_irq(&current->sighand->siglock);
2345 timeout = schedule_timeout_interruptible(timeout);
2347 spin_lock_irq(&current->sighand->siglock);
2348 sig = dequeue_signal(current, &these, &info);
2349 current->blocked = current->real_blocked;
2350 siginitset(&current->real_blocked, 0);
2351 recalc_sigpending();
2354 spin_unlock_irq(&current->sighand->siglock);
2356 if (sig) {
2357 ret = sig;
2358 if (uinfo) {
2359 if (copy_siginfo_to_user(uinfo, &info))
2360 ret = -EFAULT;
2362 } else {
2363 ret = -EAGAIN;
2364 if (timeout)
2365 ret = -EINTR;
2368 return ret;
2372 * sys_kill - send a signal to a process
2373 * @pid: the PID of the process
2374 * @sig: signal to be sent
2376 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2378 struct siginfo info;
2380 info.si_signo = sig;
2381 info.si_errno = 0;
2382 info.si_code = SI_USER;
2383 info.si_pid = task_tgid_vnr(current);
2384 info.si_uid = current_uid();
2386 return kill_something_info(sig, &info, pid);
2389 static int
2390 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2392 struct task_struct *p;
2393 int error = -ESRCH;
2395 rcu_read_lock();
2396 p = find_task_by_vpid(pid);
2397 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2398 error = check_kill_permission(sig, info, p);
2400 * The null signal is a permissions and process existence
2401 * probe. No signal is actually delivered.
2403 if (!error && sig) {
2404 error = do_send_sig_info(sig, info, p, false);
2406 * If lock_task_sighand() failed we pretend the task
2407 * dies after receiving the signal. The window is tiny,
2408 * and the signal is private anyway.
2410 if (unlikely(error == -ESRCH))
2411 error = 0;
2414 rcu_read_unlock();
2416 return error;
2419 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2421 struct siginfo info;
2423 info.si_signo = sig;
2424 info.si_errno = 0;
2425 info.si_code = SI_TKILL;
2426 info.si_pid = task_tgid_vnr(current);
2427 info.si_uid = current_uid();
2429 return do_send_specific(tgid, pid, sig, &info);
2433 * sys_tgkill - send signal to one specific thread
2434 * @tgid: the thread group ID of the thread
2435 * @pid: the PID of the thread
2436 * @sig: signal to be sent
2438 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2439 * exists but it's not belonging to the target process anymore. This
2440 * method solves the problem of threads exiting and PIDs getting reused.
2442 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2444 /* This is only valid for single tasks */
2445 if (pid <= 0 || tgid <= 0)
2446 return -EINVAL;
2448 return do_tkill(tgid, pid, sig);
2452 * sys_tkill - send signal to one specific task
2453 * @pid: the PID of the task
2454 * @sig: signal to be sent
2456 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2458 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2460 /* This is only valid for single tasks */
2461 if (pid <= 0)
2462 return -EINVAL;
2464 return do_tkill(0, pid, sig);
2468 * sys_rt_sigqueueinfo - send signal information to a signal
2469 * @pid: the PID of the thread
2470 * @sig: signal to be sent
2471 * @uinfo: signal info to be sent
2473 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2474 siginfo_t __user *, uinfo)
2476 siginfo_t info;
2478 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2479 return -EFAULT;
2481 /* Not even root can pretend to send signals from the kernel.
2482 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2484 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2485 /* We used to allow any < 0 si_code */
2486 WARN_ON_ONCE(info.si_code < 0);
2487 return -EPERM;
2489 info.si_signo = sig;
2491 /* POSIX.1b doesn't mention process groups. */
2492 return kill_proc_info(sig, &info, pid);
2495 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2497 /* This is only valid for single tasks */
2498 if (pid <= 0 || tgid <= 0)
2499 return -EINVAL;
2501 /* Not even root can pretend to send signals from the kernel.
2502 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2504 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2505 /* We used to allow any < 0 si_code */
2506 WARN_ON_ONCE(info->si_code < 0);
2507 return -EPERM;
2509 info->si_signo = sig;
2511 return do_send_specific(tgid, pid, sig, info);
2514 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2515 siginfo_t __user *, uinfo)
2517 siginfo_t info;
2519 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2520 return -EFAULT;
2522 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2525 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2527 struct task_struct *t = current;
2528 struct k_sigaction *k;
2529 sigset_t mask;
2531 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2532 return -EINVAL;
2534 k = &t->sighand->action[sig-1];
2536 spin_lock_irq(&current->sighand->siglock);
2537 if (oact)
2538 *oact = *k;
2540 if (act) {
2541 sigdelsetmask(&act->sa.sa_mask,
2542 sigmask(SIGKILL) | sigmask(SIGSTOP));
2543 *k = *act;
2545 * POSIX 3.3.1.3:
2546 * "Setting a signal action to SIG_IGN for a signal that is
2547 * pending shall cause the pending signal to be discarded,
2548 * whether or not it is blocked."
2550 * "Setting a signal action to SIG_DFL for a signal that is
2551 * pending and whose default action is to ignore the signal
2552 * (for example, SIGCHLD), shall cause the pending signal to
2553 * be discarded, whether or not it is blocked"
2555 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2556 sigemptyset(&mask);
2557 sigaddset(&mask, sig);
2558 rm_from_queue_full(&mask, &t->signal->shared_pending);
2559 do {
2560 rm_from_queue_full(&mask, &t->pending);
2561 t = next_thread(t);
2562 } while (t != current);
2566 spin_unlock_irq(&current->sighand->siglock);
2567 return 0;
2570 int
2571 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2573 stack_t oss;
2574 int error;
2576 oss.ss_sp = (void __user *) current->sas_ss_sp;
2577 oss.ss_size = current->sas_ss_size;
2578 oss.ss_flags = sas_ss_flags(sp);
2580 if (uss) {
2581 void __user *ss_sp;
2582 size_t ss_size;
2583 int ss_flags;
2585 error = -EFAULT;
2586 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2587 goto out;
2588 error = __get_user(ss_sp, &uss->ss_sp) |
2589 __get_user(ss_flags, &uss->ss_flags) |
2590 __get_user(ss_size, &uss->ss_size);
2591 if (error)
2592 goto out;
2594 error = -EPERM;
2595 if (on_sig_stack(sp))
2596 goto out;
2598 error = -EINVAL;
2600 * Note - this code used to test ss_flags incorrectly:
2601 * old code may have been written using ss_flags==0
2602 * to mean ss_flags==SS_ONSTACK (as this was the only
2603 * way that worked) - this fix preserves that older
2604 * mechanism.
2606 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2607 goto out;
2609 if (ss_flags == SS_DISABLE) {
2610 ss_size = 0;
2611 ss_sp = NULL;
2612 } else {
2613 error = -ENOMEM;
2614 if (ss_size < MINSIGSTKSZ)
2615 goto out;
2618 current->sas_ss_sp = (unsigned long) ss_sp;
2619 current->sas_ss_size = ss_size;
2622 error = 0;
2623 if (uoss) {
2624 error = -EFAULT;
2625 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2626 goto out;
2627 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2628 __put_user(oss.ss_size, &uoss->ss_size) |
2629 __put_user(oss.ss_flags, &uoss->ss_flags);
2632 out:
2633 return error;
2636 #ifdef __ARCH_WANT_SYS_SIGPENDING
2639 * sys_sigpending - examine pending signals
2640 * @set: where mask of pending signal is returned
2642 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2644 return do_sigpending(set, sizeof(*set));
2647 #endif
2649 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2651 * sys_sigprocmask - examine and change blocked signals
2652 * @how: whether to add, remove, or set signals
2653 * @set: signals to add or remove (if non-null)
2654 * @oset: previous value of signal mask if non-null
2656 * Some platforms have their own version with special arguments;
2657 * others support only sys_rt_sigprocmask.
2660 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2661 old_sigset_t __user *, oset)
2663 int error;
2664 old_sigset_t old_set, new_set;
2666 if (set) {
2667 error = -EFAULT;
2668 if (copy_from_user(&new_set, set, sizeof(*set)))
2669 goto out;
2670 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2672 spin_lock_irq(&current->sighand->siglock);
2673 old_set = current->blocked.sig[0];
2675 error = 0;
2676 switch (how) {
2677 default:
2678 error = -EINVAL;
2679 break;
2680 case SIG_BLOCK:
2681 sigaddsetmask(&current->blocked, new_set);
2682 break;
2683 case SIG_UNBLOCK:
2684 sigdelsetmask(&current->blocked, new_set);
2685 break;
2686 case SIG_SETMASK:
2687 current->blocked.sig[0] = new_set;
2688 break;
2691 recalc_sigpending();
2692 spin_unlock_irq(&current->sighand->siglock);
2693 if (error)
2694 goto out;
2695 if (oset)
2696 goto set_old;
2697 } else if (oset) {
2698 old_set = current->blocked.sig[0];
2699 set_old:
2700 error = -EFAULT;
2701 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2702 goto out;
2704 error = 0;
2705 out:
2706 return error;
2708 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2710 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2712 * sys_rt_sigaction - alter an action taken by a process
2713 * @sig: signal to be sent
2714 * @act: new sigaction
2715 * @oact: used to save the previous sigaction
2716 * @sigsetsize: size of sigset_t type
2718 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2719 const struct sigaction __user *, act,
2720 struct sigaction __user *, oact,
2721 size_t, sigsetsize)
2723 struct k_sigaction new_sa, old_sa;
2724 int ret = -EINVAL;
2726 /* XXX: Don't preclude handling different sized sigset_t's. */
2727 if (sigsetsize != sizeof(sigset_t))
2728 goto out;
2730 if (act) {
2731 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2732 return -EFAULT;
2735 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2737 if (!ret && oact) {
2738 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2739 return -EFAULT;
2741 out:
2742 return ret;
2744 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2746 #ifdef __ARCH_WANT_SYS_SGETMASK
2749 * For backwards compatibility. Functionality superseded by sigprocmask.
2751 SYSCALL_DEFINE0(sgetmask)
2753 /* SMP safe */
2754 return current->blocked.sig[0];
2757 SYSCALL_DEFINE1(ssetmask, int, newmask)
2759 int old;
2761 spin_lock_irq(&current->sighand->siglock);
2762 old = current->blocked.sig[0];
2764 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2765 sigmask(SIGSTOP)));
2766 recalc_sigpending();
2767 spin_unlock_irq(&current->sighand->siglock);
2769 return old;
2771 #endif /* __ARCH_WANT_SGETMASK */
2773 #ifdef __ARCH_WANT_SYS_SIGNAL
2775 * For backwards compatibility. Functionality superseded by sigaction.
2777 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2779 struct k_sigaction new_sa, old_sa;
2780 int ret;
2782 new_sa.sa.sa_handler = handler;
2783 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2784 sigemptyset(&new_sa.sa.sa_mask);
2786 ret = do_sigaction(sig, &new_sa, &old_sa);
2788 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2790 #endif /* __ARCH_WANT_SYS_SIGNAL */
2792 #ifdef __ARCH_WANT_SYS_PAUSE
2794 SYSCALL_DEFINE0(pause)
2796 current->state = TASK_INTERRUPTIBLE;
2797 schedule();
2798 return -ERESTARTNOHAND;
2801 #endif
2803 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2805 * sys_rt_sigsuspend - replace the signal mask for a value with the
2806 * @unewset value until a signal is received
2807 * @unewset: new signal mask value
2808 * @sigsetsize: size of sigset_t type
2810 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2812 sigset_t newset;
2814 /* XXX: Don't preclude handling different sized sigset_t's. */
2815 if (sigsetsize != sizeof(sigset_t))
2816 return -EINVAL;
2818 if (copy_from_user(&newset, unewset, sizeof(newset)))
2819 return -EFAULT;
2820 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2822 spin_lock_irq(&current->sighand->siglock);
2823 current->saved_sigmask = current->blocked;
2824 current->blocked = newset;
2825 recalc_sigpending();
2826 spin_unlock_irq(&current->sighand->siglock);
2828 current->state = TASK_INTERRUPTIBLE;
2829 schedule();
2830 set_restore_sigmask();
2831 return -ERESTARTNOHAND;
2833 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2835 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2837 return NULL;
2840 void __init signals_init(void)
2842 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2845 #ifdef CONFIG_KGDB_KDB
2846 #include <linux/kdb.h>
2848 * kdb_send_sig_info - Allows kdb to send signals without exposing
2849 * signal internals. This function checks if the required locks are
2850 * available before calling the main signal code, to avoid kdb
2851 * deadlocks.
2853 void
2854 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
2856 static struct task_struct *kdb_prev_t;
2857 int sig, new_t;
2858 if (!spin_trylock(&t->sighand->siglock)) {
2859 kdb_printf("Can't do kill command now.\n"
2860 "The sigmask lock is held somewhere else in "
2861 "kernel, try again later\n");
2862 return;
2864 spin_unlock(&t->sighand->siglock);
2865 new_t = kdb_prev_t != t;
2866 kdb_prev_t = t;
2867 if (t->state != TASK_RUNNING && new_t) {
2868 kdb_printf("Process is not RUNNING, sending a signal from "
2869 "kdb risks deadlock\n"
2870 "on the run queue locks. "
2871 "The signal has _not_ been sent.\n"
2872 "Reissue the kill command if you want to risk "
2873 "the deadlock.\n");
2874 return;
2876 sig = info->si_signo;
2877 if (send_sig_info(sig, info, t))
2878 kdb_printf("Fail to deliver Signal %d to process %d.\n",
2879 sig, t->pid);
2880 else
2881 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
2883 #endif /* CONFIG_KGDB_KDB */