USB: OHCI: fix another regression for NVIDIA controllers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / blk-settings.c
blob331763a2afbd047f323cc6f4faf841537ac9072b
1 /*
2 * Functions related to setting various queue properties from drivers
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
15 #include "blk.h"
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
20 unsigned long blk_max_pfn;
22 /**
23 * blk_queue_prep_rq - set a prepare_request function for queue
24 * @q: queue
25 * @pfn: prepare_request function
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
35 q->prep_rq_fn = pfn;
37 EXPORT_SYMBOL(blk_queue_prep_rq);
39 /**
40 * blk_queue_merge_bvec - set a merge_bvec function for queue
41 * @q: queue
42 * @mbfn: merge_bvec_fn
44 * Usually queues have static limitations on the max sectors or segments that
45 * we can put in a request. Stacking drivers may have some settings that
46 * are dynamic, and thus we have to query the queue whether it is ok to
47 * add a new bio_vec to a bio at a given offset or not. If the block device
48 * has such limitations, it needs to register a merge_bvec_fn to control
49 * the size of bio's sent to it. Note that a block device *must* allow a
50 * single page to be added to an empty bio. The block device driver may want
51 * to use the bio_split() function to deal with these bio's. By default
52 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
53 * honored.
55 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
57 q->merge_bvec_fn = mbfn;
59 EXPORT_SYMBOL(blk_queue_merge_bvec);
61 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
63 q->softirq_done_fn = fn;
65 EXPORT_SYMBOL(blk_queue_softirq_done);
67 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
69 q->rq_timeout = timeout;
71 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
73 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
75 q->rq_timed_out_fn = fn;
77 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
79 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
81 q->lld_busy_fn = fn;
83 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
85 /**
86 * blk_set_default_limits - reset limits to default values
87 * @lim: the queue_limits structure to reset
89 * Description:
90 * Returns a queue_limit struct to its default state. Can be used by
91 * stacking drivers like DM that stage table swaps and reuse an
92 * existing device queue.
94 void blk_set_default_limits(struct queue_limits *lim)
96 lim->max_segments = BLK_MAX_SEGMENTS;
97 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
98 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
99 lim->max_sectors = BLK_DEF_MAX_SECTORS;
100 lim->max_hw_sectors = INT_MAX;
101 lim->max_discard_sectors = 0;
102 lim->discard_granularity = 0;
103 lim->discard_alignment = 0;
104 lim->discard_misaligned = 0;
105 lim->discard_zeroes_data = -1;
106 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
107 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
108 lim->alignment_offset = 0;
109 lim->io_opt = 0;
110 lim->misaligned = 0;
111 lim->cluster = 1;
113 EXPORT_SYMBOL(blk_set_default_limits);
116 * blk_queue_make_request - define an alternate make_request function for a device
117 * @q: the request queue for the device to be affected
118 * @mfn: the alternate make_request function
120 * Description:
121 * The normal way for &struct bios to be passed to a device
122 * driver is for them to be collected into requests on a request
123 * queue, and then to allow the device driver to select requests
124 * off that queue when it is ready. This works well for many block
125 * devices. However some block devices (typically virtual devices
126 * such as md or lvm) do not benefit from the processing on the
127 * request queue, and are served best by having the requests passed
128 * directly to them. This can be achieved by providing a function
129 * to blk_queue_make_request().
131 * Caveat:
132 * The driver that does this *must* be able to deal appropriately
133 * with buffers in "highmemory". This can be accomplished by either calling
134 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
135 * blk_queue_bounce() to create a buffer in normal memory.
137 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
140 * set defaults
142 q->nr_requests = BLKDEV_MAX_RQ;
144 q->make_request_fn = mfn;
145 blk_queue_dma_alignment(q, 511);
146 blk_queue_congestion_threshold(q);
147 q->nr_batching = BLK_BATCH_REQ;
149 q->unplug_thresh = 4; /* hmm */
150 q->unplug_delay = msecs_to_jiffies(3); /* 3 milliseconds */
151 if (q->unplug_delay == 0)
152 q->unplug_delay = 1;
154 q->unplug_timer.function = blk_unplug_timeout;
155 q->unplug_timer.data = (unsigned long)q;
157 blk_set_default_limits(&q->limits);
158 blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
161 * If the caller didn't supply a lock, fall back to our embedded
162 * per-queue locks
164 if (!q->queue_lock)
165 q->queue_lock = &q->__queue_lock;
168 * by default assume old behaviour and bounce for any highmem page
170 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
172 EXPORT_SYMBOL(blk_queue_make_request);
175 * blk_queue_bounce_limit - set bounce buffer limit for queue
176 * @q: the request queue for the device
177 * @dma_mask: the maximum address the device can handle
179 * Description:
180 * Different hardware can have different requirements as to what pages
181 * it can do I/O directly to. A low level driver can call
182 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
183 * buffers for doing I/O to pages residing above @dma_mask.
185 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
187 unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
188 int dma = 0;
190 q->bounce_gfp = GFP_NOIO;
191 #if BITS_PER_LONG == 64
193 * Assume anything <= 4GB can be handled by IOMMU. Actually
194 * some IOMMUs can handle everything, but I don't know of a
195 * way to test this here.
197 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
198 dma = 1;
199 q->limits.bounce_pfn = max_low_pfn;
200 #else
201 if (b_pfn < blk_max_low_pfn)
202 dma = 1;
203 q->limits.bounce_pfn = b_pfn;
204 #endif
205 if (dma) {
206 init_emergency_isa_pool();
207 q->bounce_gfp = GFP_NOIO | GFP_DMA;
208 q->limits.bounce_pfn = b_pfn;
211 EXPORT_SYMBOL(blk_queue_bounce_limit);
214 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
215 * @q: the request queue for the device
216 * @max_hw_sectors: max hardware sectors in the usual 512b unit
218 * Description:
219 * Enables a low level driver to set a hard upper limit,
220 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
221 * the device driver based upon the combined capabilities of I/O
222 * controller and storage device.
224 * max_sectors is a soft limit imposed by the block layer for
225 * filesystem type requests. This value can be overridden on a
226 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
227 * The soft limit can not exceed max_hw_sectors.
229 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
231 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
232 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
233 printk(KERN_INFO "%s: set to minimum %d\n",
234 __func__, max_hw_sectors);
237 q->limits.max_hw_sectors = max_hw_sectors;
238 q->limits.max_sectors = min_t(unsigned int, max_hw_sectors,
239 BLK_DEF_MAX_SECTORS);
241 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
244 * blk_queue_max_discard_sectors - set max sectors for a single discard
245 * @q: the request queue for the device
246 * @max_discard_sectors: maximum number of sectors to discard
248 void blk_queue_max_discard_sectors(struct request_queue *q,
249 unsigned int max_discard_sectors)
251 q->limits.max_discard_sectors = max_discard_sectors;
253 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
256 * blk_queue_max_segments - set max hw segments for a request for this queue
257 * @q: the request queue for the device
258 * @max_segments: max number of segments
260 * Description:
261 * Enables a low level driver to set an upper limit on the number of
262 * hw data segments in a request.
264 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
266 if (!max_segments) {
267 max_segments = 1;
268 printk(KERN_INFO "%s: set to minimum %d\n",
269 __func__, max_segments);
272 q->limits.max_segments = max_segments;
274 EXPORT_SYMBOL(blk_queue_max_segments);
277 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
278 * @q: the request queue for the device
279 * @max_size: max size of segment in bytes
281 * Description:
282 * Enables a low level driver to set an upper limit on the size of a
283 * coalesced segment
285 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
287 if (max_size < PAGE_CACHE_SIZE) {
288 max_size = PAGE_CACHE_SIZE;
289 printk(KERN_INFO "%s: set to minimum %d\n",
290 __func__, max_size);
293 q->limits.max_segment_size = max_size;
295 EXPORT_SYMBOL(blk_queue_max_segment_size);
298 * blk_queue_logical_block_size - set logical block size for the queue
299 * @q: the request queue for the device
300 * @size: the logical block size, in bytes
302 * Description:
303 * This should be set to the lowest possible block size that the
304 * storage device can address. The default of 512 covers most
305 * hardware.
307 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
309 q->limits.logical_block_size = size;
311 if (q->limits.physical_block_size < size)
312 q->limits.physical_block_size = size;
314 if (q->limits.io_min < q->limits.physical_block_size)
315 q->limits.io_min = q->limits.physical_block_size;
317 EXPORT_SYMBOL(blk_queue_logical_block_size);
320 * blk_queue_physical_block_size - set physical block size for the queue
321 * @q: the request queue for the device
322 * @size: the physical block size, in bytes
324 * Description:
325 * This should be set to the lowest possible sector size that the
326 * hardware can operate on without reverting to read-modify-write
327 * operations.
329 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
331 q->limits.physical_block_size = size;
333 if (q->limits.physical_block_size < q->limits.logical_block_size)
334 q->limits.physical_block_size = q->limits.logical_block_size;
336 if (q->limits.io_min < q->limits.physical_block_size)
337 q->limits.io_min = q->limits.physical_block_size;
339 EXPORT_SYMBOL(blk_queue_physical_block_size);
342 * blk_queue_alignment_offset - set physical block alignment offset
343 * @q: the request queue for the device
344 * @offset: alignment offset in bytes
346 * Description:
347 * Some devices are naturally misaligned to compensate for things like
348 * the legacy DOS partition table 63-sector offset. Low-level drivers
349 * should call this function for devices whose first sector is not
350 * naturally aligned.
352 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
354 q->limits.alignment_offset =
355 offset & (q->limits.physical_block_size - 1);
356 q->limits.misaligned = 0;
358 EXPORT_SYMBOL(blk_queue_alignment_offset);
361 * blk_limits_io_min - set minimum request size for a device
362 * @limits: the queue limits
363 * @min: smallest I/O size in bytes
365 * Description:
366 * Some devices have an internal block size bigger than the reported
367 * hardware sector size. This function can be used to signal the
368 * smallest I/O the device can perform without incurring a performance
369 * penalty.
371 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
373 limits->io_min = min;
375 if (limits->io_min < limits->logical_block_size)
376 limits->io_min = limits->logical_block_size;
378 if (limits->io_min < limits->physical_block_size)
379 limits->io_min = limits->physical_block_size;
381 EXPORT_SYMBOL(blk_limits_io_min);
384 * blk_queue_io_min - set minimum request size for the queue
385 * @q: the request queue for the device
386 * @min: smallest I/O size in bytes
388 * Description:
389 * Storage devices may report a granularity or preferred minimum I/O
390 * size which is the smallest request the device can perform without
391 * incurring a performance penalty. For disk drives this is often the
392 * physical block size. For RAID arrays it is often the stripe chunk
393 * size. A properly aligned multiple of minimum_io_size is the
394 * preferred request size for workloads where a high number of I/O
395 * operations is desired.
397 void blk_queue_io_min(struct request_queue *q, unsigned int min)
399 blk_limits_io_min(&q->limits, min);
401 EXPORT_SYMBOL(blk_queue_io_min);
404 * blk_limits_io_opt - set optimal request size for a device
405 * @limits: the queue limits
406 * @opt: smallest I/O size in bytes
408 * Description:
409 * Storage devices may report an optimal I/O size, which is the
410 * device's preferred unit for sustained I/O. This is rarely reported
411 * for disk drives. For RAID arrays it is usually the stripe width or
412 * the internal track size. A properly aligned multiple of
413 * optimal_io_size is the preferred request size for workloads where
414 * sustained throughput is desired.
416 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
418 limits->io_opt = opt;
420 EXPORT_SYMBOL(blk_limits_io_opt);
423 * blk_queue_io_opt - set optimal request size for the queue
424 * @q: the request queue for the device
425 * @opt: optimal request size in bytes
427 * Description:
428 * Storage devices may report an optimal I/O size, which is the
429 * device's preferred unit for sustained I/O. This is rarely reported
430 * for disk drives. For RAID arrays it is usually the stripe width or
431 * the internal track size. A properly aligned multiple of
432 * optimal_io_size is the preferred request size for workloads where
433 * sustained throughput is desired.
435 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
437 blk_limits_io_opt(&q->limits, opt);
439 EXPORT_SYMBOL(blk_queue_io_opt);
442 * Returns the minimum that is _not_ zero, unless both are zero.
444 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
447 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
448 * @t: the stacking driver (top)
449 * @b: the underlying device (bottom)
451 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
453 blk_stack_limits(&t->limits, &b->limits, 0);
455 EXPORT_SYMBOL(blk_queue_stack_limits);
458 * blk_stack_limits - adjust queue_limits for stacked devices
459 * @t: the stacking driver limits (top device)
460 * @b: the underlying queue limits (bottom, component device)
461 * @start: first data sector within component device
463 * Description:
464 * This function is used by stacking drivers like MD and DM to ensure
465 * that all component devices have compatible block sizes and
466 * alignments. The stacking driver must provide a queue_limits
467 * struct (top) and then iteratively call the stacking function for
468 * all component (bottom) devices. The stacking function will
469 * attempt to combine the values and ensure proper alignment.
471 * Returns 0 if the top and bottom queue_limits are compatible. The
472 * top device's block sizes and alignment offsets may be adjusted to
473 * ensure alignment with the bottom device. If no compatible sizes
474 * and alignments exist, -1 is returned and the resulting top
475 * queue_limits will have the misaligned flag set to indicate that
476 * the alignment_offset is undefined.
478 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
479 sector_t start)
481 unsigned int top, bottom, alignment, ret = 0;
483 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
484 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
485 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
487 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
488 b->seg_boundary_mask);
490 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
492 t->max_segment_size = min_not_zero(t->max_segment_size,
493 b->max_segment_size);
495 t->misaligned |= b->misaligned;
497 alignment = queue_limit_alignment_offset(b, start);
499 /* Bottom device has different alignment. Check that it is
500 * compatible with the current top alignment.
502 if (t->alignment_offset != alignment) {
504 top = max(t->physical_block_size, t->io_min)
505 + t->alignment_offset;
506 bottom = max(b->physical_block_size, b->io_min) + alignment;
508 /* Verify that top and bottom intervals line up */
509 if (max(top, bottom) & (min(top, bottom) - 1)) {
510 t->misaligned = 1;
511 ret = -1;
515 t->logical_block_size = max(t->logical_block_size,
516 b->logical_block_size);
518 t->physical_block_size = max(t->physical_block_size,
519 b->physical_block_size);
521 t->io_min = max(t->io_min, b->io_min);
522 t->io_opt = lcm(t->io_opt, b->io_opt);
524 t->cluster &= b->cluster;
525 t->discard_zeroes_data &= b->discard_zeroes_data;
527 /* Physical block size a multiple of the logical block size? */
528 if (t->physical_block_size & (t->logical_block_size - 1)) {
529 t->physical_block_size = t->logical_block_size;
530 t->misaligned = 1;
531 ret = -1;
534 /* Minimum I/O a multiple of the physical block size? */
535 if (t->io_min & (t->physical_block_size - 1)) {
536 t->io_min = t->physical_block_size;
537 t->misaligned = 1;
538 ret = -1;
541 /* Optimal I/O a multiple of the physical block size? */
542 if (t->io_opt & (t->physical_block_size - 1)) {
543 t->io_opt = 0;
544 t->misaligned = 1;
545 ret = -1;
548 /* Find lowest common alignment_offset */
549 t->alignment_offset = lcm(t->alignment_offset, alignment)
550 & (max(t->physical_block_size, t->io_min) - 1);
552 /* Verify that new alignment_offset is on a logical block boundary */
553 if (t->alignment_offset & (t->logical_block_size - 1)) {
554 t->misaligned = 1;
555 ret = -1;
558 /* Discard alignment and granularity */
559 if (b->discard_granularity) {
560 alignment = queue_limit_discard_alignment(b, start);
562 if (t->discard_granularity != 0 &&
563 t->discard_alignment != alignment) {
564 top = t->discard_granularity + t->discard_alignment;
565 bottom = b->discard_granularity + alignment;
567 /* Verify that top and bottom intervals line up */
568 if (max(top, bottom) & (min(top, bottom) - 1))
569 t->discard_misaligned = 1;
572 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
573 b->max_discard_sectors);
574 t->discard_granularity = max(t->discard_granularity,
575 b->discard_granularity);
576 t->discard_alignment = lcm(t->discard_alignment, alignment) &
577 (t->discard_granularity - 1);
580 return ret;
582 EXPORT_SYMBOL(blk_stack_limits);
585 * bdev_stack_limits - adjust queue limits for stacked drivers
586 * @t: the stacking driver limits (top device)
587 * @bdev: the component block_device (bottom)
588 * @start: first data sector within component device
590 * Description:
591 * Merges queue limits for a top device and a block_device. Returns
592 * 0 if alignment didn't change. Returns -1 if adding the bottom
593 * device caused misalignment.
595 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
596 sector_t start)
598 struct request_queue *bq = bdev_get_queue(bdev);
600 start += get_start_sect(bdev);
602 return blk_stack_limits(t, &bq->limits, start);
604 EXPORT_SYMBOL(bdev_stack_limits);
607 * disk_stack_limits - adjust queue limits for stacked drivers
608 * @disk: MD/DM gendisk (top)
609 * @bdev: the underlying block device (bottom)
610 * @offset: offset to beginning of data within component device
612 * Description:
613 * Merges the limits for a top level gendisk and a bottom level
614 * block_device.
616 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
617 sector_t offset)
619 struct request_queue *t = disk->queue;
621 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
622 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
624 disk_name(disk, 0, top);
625 bdevname(bdev, bottom);
627 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
628 top, bottom);
631 EXPORT_SYMBOL(disk_stack_limits);
634 * blk_queue_dma_pad - set pad mask
635 * @q: the request queue for the device
636 * @mask: pad mask
638 * Set dma pad mask.
640 * Appending pad buffer to a request modifies the last entry of a
641 * scatter list such that it includes the pad buffer.
643 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
645 q->dma_pad_mask = mask;
647 EXPORT_SYMBOL(blk_queue_dma_pad);
650 * blk_queue_update_dma_pad - update pad mask
651 * @q: the request queue for the device
652 * @mask: pad mask
654 * Update dma pad mask.
656 * Appending pad buffer to a request modifies the last entry of a
657 * scatter list such that it includes the pad buffer.
659 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
661 if (mask > q->dma_pad_mask)
662 q->dma_pad_mask = mask;
664 EXPORT_SYMBOL(blk_queue_update_dma_pad);
667 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
668 * @q: the request queue for the device
669 * @dma_drain_needed: fn which returns non-zero if drain is necessary
670 * @buf: physically contiguous buffer
671 * @size: size of the buffer in bytes
673 * Some devices have excess DMA problems and can't simply discard (or
674 * zero fill) the unwanted piece of the transfer. They have to have a
675 * real area of memory to transfer it into. The use case for this is
676 * ATAPI devices in DMA mode. If the packet command causes a transfer
677 * bigger than the transfer size some HBAs will lock up if there
678 * aren't DMA elements to contain the excess transfer. What this API
679 * does is adjust the queue so that the buf is always appended
680 * silently to the scatterlist.
682 * Note: This routine adjusts max_hw_segments to make room for appending
683 * the drain buffer. If you call blk_queue_max_segments() after calling
684 * this routine, you must set the limit to one fewer than your device
685 * can support otherwise there won't be room for the drain buffer.
687 int blk_queue_dma_drain(struct request_queue *q,
688 dma_drain_needed_fn *dma_drain_needed,
689 void *buf, unsigned int size)
691 if (queue_max_segments(q) < 2)
692 return -EINVAL;
693 /* make room for appending the drain */
694 blk_queue_max_segments(q, queue_max_segments(q) - 1);
695 q->dma_drain_needed = dma_drain_needed;
696 q->dma_drain_buffer = buf;
697 q->dma_drain_size = size;
699 return 0;
701 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
704 * blk_queue_segment_boundary - set boundary rules for segment merging
705 * @q: the request queue for the device
706 * @mask: the memory boundary mask
708 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
710 if (mask < PAGE_CACHE_SIZE - 1) {
711 mask = PAGE_CACHE_SIZE - 1;
712 printk(KERN_INFO "%s: set to minimum %lx\n",
713 __func__, mask);
716 q->limits.seg_boundary_mask = mask;
718 EXPORT_SYMBOL(blk_queue_segment_boundary);
721 * blk_queue_dma_alignment - set dma length and memory alignment
722 * @q: the request queue for the device
723 * @mask: alignment mask
725 * description:
726 * set required memory and length alignment for direct dma transactions.
727 * this is used when building direct io requests for the queue.
730 void blk_queue_dma_alignment(struct request_queue *q, int mask)
732 q->dma_alignment = mask;
734 EXPORT_SYMBOL(blk_queue_dma_alignment);
737 * blk_queue_update_dma_alignment - update dma length and memory alignment
738 * @q: the request queue for the device
739 * @mask: alignment mask
741 * description:
742 * update required memory and length alignment for direct dma transactions.
743 * If the requested alignment is larger than the current alignment, then
744 * the current queue alignment is updated to the new value, otherwise it
745 * is left alone. The design of this is to allow multiple objects
746 * (driver, device, transport etc) to set their respective
747 * alignments without having them interfere.
750 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
752 BUG_ON(mask > PAGE_SIZE);
754 if (mask > q->dma_alignment)
755 q->dma_alignment = mask;
757 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
759 static int __init blk_settings_init(void)
761 blk_max_low_pfn = max_low_pfn - 1;
762 blk_max_pfn = max_pfn - 1;
763 return 0;
765 subsys_initcall(blk_settings_init);