fix radeonfb regression with Xpress 200m 5955
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / crypto / padlock-aes.c
blob5f7e7181048931dfb23192d7af582d85a071aba6
1 /*
2 * Cryptographic API.
4 * Support for VIA PadLock hardware crypto engine.
6 * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
8 * Key expansion routine taken from crypto/aes_generic.c
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * ---------------------------------------------------------------------------
16 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
17 * All rights reserved.
19 * LICENSE TERMS
21 * The free distribution and use of this software in both source and binary
22 * form is allowed (with or without changes) provided that:
24 * 1. distributions of this source code include the above copyright
25 * notice, this list of conditions and the following disclaimer;
27 * 2. distributions in binary form include the above copyright
28 * notice, this list of conditions and the following disclaimer
29 * in the documentation and/or other associated materials;
31 * 3. the copyright holder's name is not used to endorse products
32 * built using this software without specific written permission.
34 * ALTERNATIVELY, provided that this notice is retained in full, this product
35 * may be distributed under the terms of the GNU General Public License (GPL),
36 * in which case the provisions of the GPL apply INSTEAD OF those given above.
38 * DISCLAIMER
40 * This software is provided 'as is' with no explicit or implied warranties
41 * in respect of its properties, including, but not limited to, correctness
42 * and/or fitness for purpose.
43 * ---------------------------------------------------------------------------
46 #include <crypto/algapi.h>
47 #include <linux/module.h>
48 #include <linux/init.h>
49 #include <linux/types.h>
50 #include <linux/errno.h>
51 #include <linux/interrupt.h>
52 #include <linux/kernel.h>
53 #include <asm/byteorder.h>
54 #include "padlock.h"
56 #define AES_MIN_KEY_SIZE 16 /* in uint8_t units */
57 #define AES_MAX_KEY_SIZE 32 /* ditto */
58 #define AES_BLOCK_SIZE 16 /* ditto */
59 #define AES_EXTENDED_KEY_SIZE 64 /* in uint32_t units */
60 #define AES_EXTENDED_KEY_SIZE_B (AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
62 /* Control word. */
63 struct cword {
64 unsigned int __attribute__ ((__packed__))
65 rounds:4,
66 algo:3,
67 keygen:1,
68 interm:1,
69 encdec:1,
70 ksize:2;
71 } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
73 /* Whenever making any changes to the following
74 * structure *make sure* you keep E, d_data
75 * and cword aligned on 16 Bytes boundaries!!! */
76 struct aes_ctx {
77 struct {
78 struct cword encrypt;
79 struct cword decrypt;
80 } cword;
81 u32 *D;
82 int key_length;
83 u32 E[AES_EXTENDED_KEY_SIZE]
84 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
85 u32 d_data[AES_EXTENDED_KEY_SIZE]
86 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
89 /* ====== Key management routines ====== */
91 static inline uint32_t
92 generic_rotr32 (const uint32_t x, const unsigned bits)
94 const unsigned n = bits % 32;
95 return (x >> n) | (x << (32 - n));
98 static inline uint32_t
99 generic_rotl32 (const uint32_t x, const unsigned bits)
101 const unsigned n = bits % 32;
102 return (x << n) | (x >> (32 - n));
105 #define rotl generic_rotl32
106 #define rotr generic_rotr32
109 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
111 static inline uint8_t
112 byte(const uint32_t x, const unsigned n)
114 return x >> (n << 3);
117 #define E_KEY ctx->E
118 #define D_KEY ctx->D
120 static uint8_t pow_tab[256];
121 static uint8_t log_tab[256];
122 static uint8_t sbx_tab[256];
123 static uint8_t isb_tab[256];
124 static uint32_t rco_tab[10];
125 static uint32_t ft_tab[4][256];
126 static uint32_t it_tab[4][256];
128 static uint32_t fl_tab[4][256];
129 static uint32_t il_tab[4][256];
131 static inline uint8_t
132 f_mult (uint8_t a, uint8_t b)
134 uint8_t aa = log_tab[a], cc = aa + log_tab[b];
136 return pow_tab[cc + (cc < aa ? 1 : 0)];
139 #define ff_mult(a,b) (a && b ? f_mult(a, b) : 0)
141 #define f_rn(bo, bi, n, k) \
142 bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
143 ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
144 ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
145 ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
147 #define i_rn(bo, bi, n, k) \
148 bo[n] = it_tab[0][byte(bi[n],0)] ^ \
149 it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
150 it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
151 it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
153 #define ls_box(x) \
154 ( fl_tab[0][byte(x, 0)] ^ \
155 fl_tab[1][byte(x, 1)] ^ \
156 fl_tab[2][byte(x, 2)] ^ \
157 fl_tab[3][byte(x, 3)] )
159 #define f_rl(bo, bi, n, k) \
160 bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
161 fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
162 fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
163 fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
165 #define i_rl(bo, bi, n, k) \
166 bo[n] = il_tab[0][byte(bi[n],0)] ^ \
167 il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
168 il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
169 il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
171 static void
172 gen_tabs (void)
174 uint32_t i, t;
175 uint8_t p, q;
177 /* log and power tables for GF(2**8) finite field with
178 0x011b as modular polynomial - the simplest prmitive
179 root is 0x03, used here to generate the tables */
181 for (i = 0, p = 1; i < 256; ++i) {
182 pow_tab[i] = (uint8_t) p;
183 log_tab[p] = (uint8_t) i;
185 p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
188 log_tab[1] = 0;
190 for (i = 0, p = 1; i < 10; ++i) {
191 rco_tab[i] = p;
193 p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
196 for (i = 0; i < 256; ++i) {
197 p = (i ? pow_tab[255 - log_tab[i]] : 0);
198 q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
199 p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
200 sbx_tab[i] = p;
201 isb_tab[p] = (uint8_t) i;
204 for (i = 0; i < 256; ++i) {
205 p = sbx_tab[i];
207 t = p;
208 fl_tab[0][i] = t;
209 fl_tab[1][i] = rotl (t, 8);
210 fl_tab[2][i] = rotl (t, 16);
211 fl_tab[3][i] = rotl (t, 24);
213 t = ((uint32_t) ff_mult (2, p)) |
214 ((uint32_t) p << 8) |
215 ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
217 ft_tab[0][i] = t;
218 ft_tab[1][i] = rotl (t, 8);
219 ft_tab[2][i] = rotl (t, 16);
220 ft_tab[3][i] = rotl (t, 24);
222 p = isb_tab[i];
224 t = p;
225 il_tab[0][i] = t;
226 il_tab[1][i] = rotl (t, 8);
227 il_tab[2][i] = rotl (t, 16);
228 il_tab[3][i] = rotl (t, 24);
230 t = ((uint32_t) ff_mult (14, p)) |
231 ((uint32_t) ff_mult (9, p) << 8) |
232 ((uint32_t) ff_mult (13, p) << 16) |
233 ((uint32_t) ff_mult (11, p) << 24);
235 it_tab[0][i] = t;
236 it_tab[1][i] = rotl (t, 8);
237 it_tab[2][i] = rotl (t, 16);
238 it_tab[3][i] = rotl (t, 24);
242 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
244 #define imix_col(y,x) \
245 u = star_x(x); \
246 v = star_x(u); \
247 w = star_x(v); \
248 t = w ^ (x); \
249 (y) = u ^ v ^ w; \
250 (y) ^= rotr(u ^ t, 8) ^ \
251 rotr(v ^ t, 16) ^ \
252 rotr(t,24)
254 /* initialise the key schedule from the user supplied key */
256 #define loop4(i) \
257 { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
258 t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
259 t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
260 t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
261 t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
264 #define loop6(i) \
265 { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
266 t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
267 t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
268 t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
269 t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
270 t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
271 t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
274 #define loop8(i) \
275 { t = rotr(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
276 t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
277 t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
278 t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
279 t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
280 t = E_KEY[8 * i + 4] ^ ls_box(t); \
281 E_KEY[8 * i + 12] = t; \
282 t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
283 t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
284 t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
287 /* Tells whether the ACE is capable to generate
288 the extended key for a given key_len. */
289 static inline int
290 aes_hw_extkey_available(uint8_t key_len)
292 /* TODO: We should check the actual CPU model/stepping
293 as it's possible that the capability will be
294 added in the next CPU revisions. */
295 if (key_len == 16)
296 return 1;
297 return 0;
300 static inline struct aes_ctx *aes_ctx_common(void *ctx)
302 unsigned long addr = (unsigned long)ctx;
303 unsigned long align = PADLOCK_ALIGNMENT;
305 if (align <= crypto_tfm_ctx_alignment())
306 align = 1;
307 return (struct aes_ctx *)ALIGN(addr, align);
310 static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
312 return aes_ctx_common(crypto_tfm_ctx(tfm));
315 static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
317 return aes_ctx_common(crypto_blkcipher_ctx(tfm));
320 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
321 unsigned int key_len)
323 struct aes_ctx *ctx = aes_ctx(tfm);
324 const __le32 *key = (const __le32 *)in_key;
325 u32 *flags = &tfm->crt_flags;
326 uint32_t i, t, u, v, w;
327 uint32_t P[AES_EXTENDED_KEY_SIZE];
328 uint32_t rounds;
330 if (key_len % 8) {
331 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
332 return -EINVAL;
335 ctx->key_length = key_len;
338 * If the hardware is capable of generating the extended key
339 * itself we must supply the plain key for both encryption
340 * and decryption.
342 ctx->D = ctx->E;
344 E_KEY[0] = le32_to_cpu(key[0]);
345 E_KEY[1] = le32_to_cpu(key[1]);
346 E_KEY[2] = le32_to_cpu(key[2]);
347 E_KEY[3] = le32_to_cpu(key[3]);
349 /* Prepare control words. */
350 memset(&ctx->cword, 0, sizeof(ctx->cword));
352 ctx->cword.decrypt.encdec = 1;
353 ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
354 ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
355 ctx->cword.encrypt.ksize = (key_len - 16) / 8;
356 ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
358 /* Don't generate extended keys if the hardware can do it. */
359 if (aes_hw_extkey_available(key_len))
360 return 0;
362 ctx->D = ctx->d_data;
363 ctx->cword.encrypt.keygen = 1;
364 ctx->cword.decrypt.keygen = 1;
366 switch (key_len) {
367 case 16:
368 t = E_KEY[3];
369 for (i = 0; i < 10; ++i)
370 loop4 (i);
371 break;
373 case 24:
374 E_KEY[4] = le32_to_cpu(key[4]);
375 t = E_KEY[5] = le32_to_cpu(key[5]);
376 for (i = 0; i < 8; ++i)
377 loop6 (i);
378 break;
380 case 32:
381 E_KEY[4] = le32_to_cpu(key[4]);
382 E_KEY[5] = le32_to_cpu(key[5]);
383 E_KEY[6] = le32_to_cpu(key[6]);
384 t = E_KEY[7] = le32_to_cpu(key[7]);
385 for (i = 0; i < 7; ++i)
386 loop8 (i);
387 break;
390 D_KEY[0] = E_KEY[0];
391 D_KEY[1] = E_KEY[1];
392 D_KEY[2] = E_KEY[2];
393 D_KEY[3] = E_KEY[3];
395 for (i = 4; i < key_len + 24; ++i) {
396 imix_col (D_KEY[i], E_KEY[i]);
399 /* PadLock needs a different format of the decryption key. */
400 rounds = 10 + (key_len - 16) / 4;
402 for (i = 0; i < rounds; i++) {
403 P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
404 P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
405 P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
406 P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
409 P[0] = E_KEY[(rounds * 4) + 0];
410 P[1] = E_KEY[(rounds * 4) + 1];
411 P[2] = E_KEY[(rounds * 4) + 2];
412 P[3] = E_KEY[(rounds * 4) + 3];
414 memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
416 return 0;
419 /* ====== Encryption/decryption routines ====== */
421 /* These are the real call to PadLock. */
422 static inline void padlock_xcrypt(const u8 *input, u8 *output, void *key,
423 void *control_word)
425 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
426 : "+S"(input), "+D"(output)
427 : "d"(control_word), "b"(key), "c"(1));
430 static void aes_crypt_copy(const u8 *in, u8 *out, u32 *key, struct cword *cword)
432 u8 buf[AES_BLOCK_SIZE * 2 + PADLOCK_ALIGNMENT - 1];
433 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
435 memcpy(tmp, in, AES_BLOCK_SIZE);
436 padlock_xcrypt(tmp, out, key, cword);
439 static inline void aes_crypt(const u8 *in, u8 *out, u32 *key,
440 struct cword *cword)
442 asm volatile ("pushfl; popfl");
444 /* padlock_xcrypt requires at least two blocks of data. */
445 if (unlikely(!(((unsigned long)in ^ (PAGE_SIZE - AES_BLOCK_SIZE)) &
446 (PAGE_SIZE - 1)))) {
447 aes_crypt_copy(in, out, key, cword);
448 return;
451 padlock_xcrypt(in, out, key, cword);
454 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
455 void *control_word, u32 count)
457 if (count == 1) {
458 aes_crypt(input, output, key, control_word);
459 return;
462 asm volatile ("pushfl; popfl"); /* enforce key reload. */
463 asm volatile ("test $1, %%cl;"
464 "je 1f;"
465 "lea -1(%%ecx), %%eax;"
466 "mov $1, %%ecx;"
467 ".byte 0xf3,0x0f,0xa7,0xc8;" /* rep xcryptecb */
468 "mov %%eax, %%ecx;"
469 "1:"
470 ".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
471 : "+S"(input), "+D"(output)
472 : "d"(control_word), "b"(key), "c"(count)
473 : "ax");
476 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
477 u8 *iv, void *control_word, u32 count)
479 /* Enforce key reload. */
480 asm volatile ("pushfl; popfl");
481 /* rep xcryptcbc */
482 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
483 : "+S" (input), "+D" (output), "+a" (iv)
484 : "d" (control_word), "b" (key), "c" (count));
485 return iv;
488 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
490 struct aes_ctx *ctx = aes_ctx(tfm);
491 aes_crypt(in, out, ctx->E, &ctx->cword.encrypt);
494 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
496 struct aes_ctx *ctx = aes_ctx(tfm);
497 aes_crypt(in, out, ctx->D, &ctx->cword.decrypt);
500 static struct crypto_alg aes_alg = {
501 .cra_name = "aes",
502 .cra_driver_name = "aes-padlock",
503 .cra_priority = PADLOCK_CRA_PRIORITY,
504 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
505 .cra_blocksize = AES_BLOCK_SIZE,
506 .cra_ctxsize = sizeof(struct aes_ctx),
507 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
508 .cra_module = THIS_MODULE,
509 .cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
510 .cra_u = {
511 .cipher = {
512 .cia_min_keysize = AES_MIN_KEY_SIZE,
513 .cia_max_keysize = AES_MAX_KEY_SIZE,
514 .cia_setkey = aes_set_key,
515 .cia_encrypt = aes_encrypt,
516 .cia_decrypt = aes_decrypt,
521 static int ecb_aes_encrypt(struct blkcipher_desc *desc,
522 struct scatterlist *dst, struct scatterlist *src,
523 unsigned int nbytes)
525 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
526 struct blkcipher_walk walk;
527 int err;
529 blkcipher_walk_init(&walk, dst, src, nbytes);
530 err = blkcipher_walk_virt(desc, &walk);
532 while ((nbytes = walk.nbytes)) {
533 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
534 ctx->E, &ctx->cword.encrypt,
535 nbytes / AES_BLOCK_SIZE);
536 nbytes &= AES_BLOCK_SIZE - 1;
537 err = blkcipher_walk_done(desc, &walk, nbytes);
540 return err;
543 static int ecb_aes_decrypt(struct blkcipher_desc *desc,
544 struct scatterlist *dst, struct scatterlist *src,
545 unsigned int nbytes)
547 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
548 struct blkcipher_walk walk;
549 int err;
551 blkcipher_walk_init(&walk, dst, src, nbytes);
552 err = blkcipher_walk_virt(desc, &walk);
554 while ((nbytes = walk.nbytes)) {
555 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
556 ctx->D, &ctx->cword.decrypt,
557 nbytes / AES_BLOCK_SIZE);
558 nbytes &= AES_BLOCK_SIZE - 1;
559 err = blkcipher_walk_done(desc, &walk, nbytes);
562 return err;
565 static struct crypto_alg ecb_aes_alg = {
566 .cra_name = "ecb(aes)",
567 .cra_driver_name = "ecb-aes-padlock",
568 .cra_priority = PADLOCK_COMPOSITE_PRIORITY,
569 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
570 .cra_blocksize = AES_BLOCK_SIZE,
571 .cra_ctxsize = sizeof(struct aes_ctx),
572 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
573 .cra_type = &crypto_blkcipher_type,
574 .cra_module = THIS_MODULE,
575 .cra_list = LIST_HEAD_INIT(ecb_aes_alg.cra_list),
576 .cra_u = {
577 .blkcipher = {
578 .min_keysize = AES_MIN_KEY_SIZE,
579 .max_keysize = AES_MAX_KEY_SIZE,
580 .setkey = aes_set_key,
581 .encrypt = ecb_aes_encrypt,
582 .decrypt = ecb_aes_decrypt,
587 static int cbc_aes_encrypt(struct blkcipher_desc *desc,
588 struct scatterlist *dst, struct scatterlist *src,
589 unsigned int nbytes)
591 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
592 struct blkcipher_walk walk;
593 int err;
595 blkcipher_walk_init(&walk, dst, src, nbytes);
596 err = blkcipher_walk_virt(desc, &walk);
598 while ((nbytes = walk.nbytes)) {
599 u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
600 walk.dst.virt.addr, ctx->E,
601 walk.iv, &ctx->cword.encrypt,
602 nbytes / AES_BLOCK_SIZE);
603 memcpy(walk.iv, iv, AES_BLOCK_SIZE);
604 nbytes &= AES_BLOCK_SIZE - 1;
605 err = blkcipher_walk_done(desc, &walk, nbytes);
608 return err;
611 static int cbc_aes_decrypt(struct blkcipher_desc *desc,
612 struct scatterlist *dst, struct scatterlist *src,
613 unsigned int nbytes)
615 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
616 struct blkcipher_walk walk;
617 int err;
619 blkcipher_walk_init(&walk, dst, src, nbytes);
620 err = blkcipher_walk_virt(desc, &walk);
622 while ((nbytes = walk.nbytes)) {
623 padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
624 ctx->D, walk.iv, &ctx->cword.decrypt,
625 nbytes / AES_BLOCK_SIZE);
626 nbytes &= AES_BLOCK_SIZE - 1;
627 err = blkcipher_walk_done(desc, &walk, nbytes);
630 return err;
633 static struct crypto_alg cbc_aes_alg = {
634 .cra_name = "cbc(aes)",
635 .cra_driver_name = "cbc-aes-padlock",
636 .cra_priority = PADLOCK_COMPOSITE_PRIORITY,
637 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
638 .cra_blocksize = AES_BLOCK_SIZE,
639 .cra_ctxsize = sizeof(struct aes_ctx),
640 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
641 .cra_type = &crypto_blkcipher_type,
642 .cra_module = THIS_MODULE,
643 .cra_list = LIST_HEAD_INIT(cbc_aes_alg.cra_list),
644 .cra_u = {
645 .blkcipher = {
646 .min_keysize = AES_MIN_KEY_SIZE,
647 .max_keysize = AES_MAX_KEY_SIZE,
648 .ivsize = AES_BLOCK_SIZE,
649 .setkey = aes_set_key,
650 .encrypt = cbc_aes_encrypt,
651 .decrypt = cbc_aes_decrypt,
656 static int __init padlock_init(void)
658 int ret;
660 if (!cpu_has_xcrypt) {
661 printk(KERN_ERR PFX "VIA PadLock not detected.\n");
662 return -ENODEV;
665 if (!cpu_has_xcrypt_enabled) {
666 printk(KERN_ERR PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
667 return -ENODEV;
670 gen_tabs();
671 if ((ret = crypto_register_alg(&aes_alg)))
672 goto aes_err;
674 if ((ret = crypto_register_alg(&ecb_aes_alg)))
675 goto ecb_aes_err;
677 if ((ret = crypto_register_alg(&cbc_aes_alg)))
678 goto cbc_aes_err;
680 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
682 out:
683 return ret;
685 cbc_aes_err:
686 crypto_unregister_alg(&ecb_aes_alg);
687 ecb_aes_err:
688 crypto_unregister_alg(&aes_alg);
689 aes_err:
690 printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
691 goto out;
694 static void __exit padlock_fini(void)
696 crypto_unregister_alg(&cbc_aes_alg);
697 crypto_unregister_alg(&ecb_aes_alg);
698 crypto_unregister_alg(&aes_alg);
701 module_init(padlock_init);
702 module_exit(padlock_fini);
704 MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
705 MODULE_LICENSE("GPL");
706 MODULE_AUTHOR("Michal Ludvig");
708 MODULE_ALIAS("aes");