4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104 * Helpers for converting nanosecond timing to jiffy resolution
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112 * These are the 'tuning knobs' of the scheduler:
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
117 #define DEF_TIMESLICE (100 * HZ / 1000)
120 * single value that denotes runtime == period, ie unlimited time.
122 #define RUNTIME_INF ((u64)~0ULL)
124 static inline int rt_policy(int policy
)
126 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
131 static inline int task_has_rt_policy(struct task_struct
*p
)
133 return rt_policy(p
->policy
);
137 * This is the priority-queue data structure of the RT scheduling class:
139 struct rt_prio_array
{
140 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
141 struct list_head queue
[MAX_RT_PRIO
];
144 struct rt_bandwidth
{
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock
;
149 struct hrtimer rt_period_timer
;
152 static struct rt_bandwidth def_rt_bandwidth
;
154 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
156 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
158 struct rt_bandwidth
*rt_b
=
159 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
165 now
= hrtimer_cb_get_time(timer
);
166 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
171 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
174 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
178 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
180 rt_b
->rt_period
= ns_to_ktime(period
);
181 rt_b
->rt_runtime
= runtime
;
183 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
185 hrtimer_init(&rt_b
->rt_period_timer
,
186 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
187 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
190 static inline int rt_bandwidth_enabled(void)
192 return sysctl_sched_rt_runtime
>= 0;
195 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
199 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
202 if (hrtimer_active(&rt_b
->rt_period_timer
))
205 raw_spin_lock(&rt_b
->rt_runtime_lock
);
210 if (hrtimer_active(&rt_b
->rt_period_timer
))
213 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
214 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
216 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
217 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
218 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
219 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
220 HRTIMER_MODE_ABS_PINNED
, 0);
222 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
228 hrtimer_cancel(&rt_b
->rt_period_timer
);
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
236 static DEFINE_MUTEX(sched_domains_mutex
);
238 #ifdef CONFIG_CGROUP_SCHED
240 #include <linux/cgroup.h>
244 static LIST_HEAD(task_groups
);
246 /* task group related information */
248 struct cgroup_subsys_state css
;
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity
**se
;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq
**cfs_rq
;
255 unsigned long shares
;
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity
**rt_se
;
260 struct rt_rq
**rt_rq
;
262 struct rt_bandwidth rt_bandwidth
;
266 struct list_head list
;
268 struct task_group
*parent
;
269 struct list_head siblings
;
270 struct list_head children
;
273 #define root_task_group init_task_group
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
278 static DEFINE_SPINLOCK(task_group_lock
);
280 #ifdef CONFIG_FAIR_GROUP_SCHED
283 static int root_task_group_empty(void)
285 return list_empty(&root_task_group
.children
);
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
300 #define MAX_SHARES (1UL << 18)
302 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
308 struct task_group init_task_group
;
310 #endif /* CONFIG_CGROUP_SCHED */
312 /* CFS-related fields in a runqueue */
314 struct load_weight load
;
315 unsigned long nr_running
;
320 struct rb_root tasks_timeline
;
321 struct rb_node
*rb_leftmost
;
323 struct list_head tasks
;
324 struct list_head
*balance_iterator
;
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
330 struct sched_entity
*curr
, *next
, *last
;
332 unsigned int nr_spread_over
;
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
345 struct list_head leaf_cfs_rq_list
;
346 struct task_group
*tg
; /* group that "owns" this runqueue */
350 * the part of load.weight contributed by tasks
352 unsigned long task_weight
;
355 * h_load = weight * f(tg)
357 * Where f(tg) is the recursive weight fraction assigned to
360 unsigned long h_load
;
363 * this cpu's part of tg->shares
365 unsigned long shares
;
368 * load.weight at the time we set shares
370 unsigned long rq_weight
;
375 /* Real-Time classes' related field in a runqueue: */
377 struct rt_prio_array active
;
378 unsigned long rt_nr_running
;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381 int curr
; /* highest queued rt task prio */
383 int next
; /* next highest */
388 unsigned long rt_nr_migratory
;
389 unsigned long rt_nr_total
;
391 struct plist_head pushable_tasks
;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock
;
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted
;
403 struct list_head leaf_rt_rq_list
;
404 struct task_group
*tg
;
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
421 cpumask_var_t online
;
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
427 cpumask_var_t rto_mask
;
429 struct cpupri cpupri
;
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
436 static struct root_domain def_root_domain
;
438 #endif /* CONFIG_SMP */
441 * This is the main, per-CPU runqueue data structure.
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
455 unsigned long nr_running
;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
458 unsigned long last_load_update_tick
;
461 unsigned char nohz_balance_kick
;
463 unsigned int skip_clock_update
;
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load
;
467 unsigned long nr_load_updates
;
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list
;
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list
;
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
487 unsigned long nr_uninterruptible
;
489 struct task_struct
*curr
, *idle
, *stop
;
490 unsigned long next_balance
;
491 struct mm_struct
*prev_mm
;
499 struct root_domain
*rd
;
500 struct sched_domain
*sd
;
502 unsigned long cpu_power
;
504 unsigned char idle_at_tick
;
505 /* For active balancing */
509 struct cpu_stop_work active_balance_work
;
510 /* cpu of this runqueue: */
514 unsigned long avg_load_per_task
;
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
526 /* calc_load related fields */
527 unsigned long calc_load_update
;
528 long calc_load_active
;
530 #ifdef CONFIG_SCHED_HRTICK
532 int hrtick_csd_pending
;
533 struct call_single_data hrtick_csd
;
535 struct hrtimer hrtick_timer
;
538 #ifdef CONFIG_SCHEDSTATS
540 struct sched_info rq_sched_info
;
541 unsigned long long rq_cpu_time
;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
544 /* sys_sched_yield() stats */
545 unsigned int yld_count
;
547 /* schedule() stats */
548 unsigned int sched_switch
;
549 unsigned int sched_count
;
550 unsigned int sched_goidle
;
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count
;
554 unsigned int ttwu_local
;
557 unsigned int bkl_count
;
561 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
564 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
566 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
569 * A queue event has occurred, and we're going to schedule. In
570 * this case, we can save a useless back to back clock update.
572 if (test_tsk_need_resched(p
))
573 rq
->skip_clock_update
= 1;
576 static inline int cpu_of(struct rq
*rq
)
585 #define rcu_dereference_check_sched_domain(p) \
586 rcu_dereference_check((p), \
587 rcu_read_lock_sched_held() || \
588 lockdep_is_held(&sched_domains_mutex))
591 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
592 * See detach_destroy_domains: synchronize_sched for details.
594 * The domain tree of any CPU may only be accessed from within
595 * preempt-disabled sections.
597 #define for_each_domain(cpu, __sd) \
598 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
600 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
601 #define this_rq() (&__get_cpu_var(runqueues))
602 #define task_rq(p) cpu_rq(task_cpu(p))
603 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
604 #define raw_rq() (&__raw_get_cpu_var(runqueues))
606 #ifdef CONFIG_CGROUP_SCHED
609 * Return the group to which this tasks belongs.
611 * We use task_subsys_state_check() and extend the RCU verification
612 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
613 * holds that lock for each task it moves into the cgroup. Therefore
614 * by holding that lock, we pin the task to the current cgroup.
616 static inline struct task_group
*task_group(struct task_struct
*p
)
618 struct cgroup_subsys_state
*css
;
620 css
= task_subsys_state_check(p
, cpu_cgroup_subsys_id
,
621 lockdep_is_held(&task_rq(p
)->lock
));
622 return container_of(css
, struct task_group
, css
);
625 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
626 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
628 #ifdef CONFIG_FAIR_GROUP_SCHED
629 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
630 p
->se
.parent
= task_group(p
)->se
[cpu
];
633 #ifdef CONFIG_RT_GROUP_SCHED
634 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
635 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
639 #else /* CONFIG_CGROUP_SCHED */
641 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
642 static inline struct task_group
*task_group(struct task_struct
*p
)
647 #endif /* CONFIG_CGROUP_SCHED */
649 static u64
irq_time_cpu(int cpu
);
650 static void sched_irq_time_avg_update(struct rq
*rq
, u64 irq_time
);
652 inline void update_rq_clock(struct rq
*rq
)
654 if (!rq
->skip_clock_update
) {
655 int cpu
= cpu_of(rq
);
658 rq
->clock
= sched_clock_cpu(cpu
);
659 irq_time
= irq_time_cpu(cpu
);
660 if (rq
->clock
- irq_time
> rq
->clock_task
)
661 rq
->clock_task
= rq
->clock
- irq_time
;
663 sched_irq_time_avg_update(rq
, irq_time
);
668 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
670 #ifdef CONFIG_SCHED_DEBUG
671 # define const_debug __read_mostly
673 # define const_debug static const
678 * @cpu: the processor in question.
680 * Returns true if the current cpu runqueue is locked.
681 * This interface allows printk to be called with the runqueue lock
682 * held and know whether or not it is OK to wake up the klogd.
684 int runqueue_is_locked(int cpu
)
686 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
690 * Debugging: various feature bits
693 #define SCHED_FEAT(name, enabled) \
694 __SCHED_FEAT_##name ,
697 #include "sched_features.h"
702 #define SCHED_FEAT(name, enabled) \
703 (1UL << __SCHED_FEAT_##name) * enabled |
705 const_debug
unsigned int sysctl_sched_features
=
706 #include "sched_features.h"
711 #ifdef CONFIG_SCHED_DEBUG
712 #define SCHED_FEAT(name, enabled) \
715 static __read_mostly
char *sched_feat_names
[] = {
716 #include "sched_features.h"
722 static int sched_feat_show(struct seq_file
*m
, void *v
)
726 for (i
= 0; sched_feat_names
[i
]; i
++) {
727 if (!(sysctl_sched_features
& (1UL << i
)))
729 seq_printf(m
, "%s ", sched_feat_names
[i
]);
737 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
738 size_t cnt
, loff_t
*ppos
)
748 if (copy_from_user(&buf
, ubuf
, cnt
))
754 if (strncmp(buf
, "NO_", 3) == 0) {
759 for (i
= 0; sched_feat_names
[i
]; i
++) {
760 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
762 sysctl_sched_features
&= ~(1UL << i
);
764 sysctl_sched_features
|= (1UL << i
);
769 if (!sched_feat_names
[i
])
777 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
779 return single_open(filp
, sched_feat_show
, NULL
);
782 static const struct file_operations sched_feat_fops
= {
783 .open
= sched_feat_open
,
784 .write
= sched_feat_write
,
787 .release
= single_release
,
790 static __init
int sched_init_debug(void)
792 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
797 late_initcall(sched_init_debug
);
801 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
804 * Number of tasks to iterate in a single balance run.
805 * Limited because this is done with IRQs disabled.
807 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
810 * ratelimit for updating the group shares.
813 unsigned int sysctl_sched_shares_ratelimit
= 250000;
814 unsigned int normalized_sysctl_sched_shares_ratelimit
= 250000;
817 * Inject some fuzzyness into changing the per-cpu group shares
818 * this avoids remote rq-locks at the expense of fairness.
821 unsigned int sysctl_sched_shares_thresh
= 4;
824 * period over which we average the RT time consumption, measured
829 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
832 * period over which we measure -rt task cpu usage in us.
835 unsigned int sysctl_sched_rt_period
= 1000000;
837 static __read_mostly
int scheduler_running
;
840 * part of the period that we allow rt tasks to run in us.
843 int sysctl_sched_rt_runtime
= 950000;
845 static inline u64
global_rt_period(void)
847 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
850 static inline u64
global_rt_runtime(void)
852 if (sysctl_sched_rt_runtime
< 0)
855 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
858 #ifndef prepare_arch_switch
859 # define prepare_arch_switch(next) do { } while (0)
861 #ifndef finish_arch_switch
862 # define finish_arch_switch(prev) do { } while (0)
865 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
867 return rq
->curr
== p
;
870 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
871 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
873 return task_current(rq
, p
);
876 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
880 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
882 #ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq
->lock
.owner
= current
;
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
891 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
893 raw_spin_unlock_irq(&rq
->lock
);
896 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
897 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
902 return task_current(rq
, p
);
906 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
910 * We can optimise this out completely for !SMP, because the
911 * SMP rebalancing from interrupt is the only thing that cares
916 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 raw_spin_unlock_irq(&rq
->lock
);
919 raw_spin_unlock(&rq
->lock
);
923 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
927 * After ->oncpu is cleared, the task can be moved to a different CPU.
928 * We must ensure this doesn't happen until the switch is completely
934 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
941 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
944 static inline int task_is_waking(struct task_struct
*p
)
946 return unlikely(p
->state
== TASK_WAKING
);
950 * __task_rq_lock - lock the runqueue a given task resides on.
951 * Must be called interrupts disabled.
953 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
960 raw_spin_lock(&rq
->lock
);
961 if (likely(rq
== task_rq(p
)))
963 raw_spin_unlock(&rq
->lock
);
968 * task_rq_lock - lock the runqueue a given task resides on and disable
969 * interrupts. Note the ordering: we can safely lookup the task_rq without
970 * explicitly disabling preemption.
972 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
978 local_irq_save(*flags
);
980 raw_spin_lock(&rq
->lock
);
981 if (likely(rq
== task_rq(p
)))
983 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
987 static void __task_rq_unlock(struct rq
*rq
)
990 raw_spin_unlock(&rq
->lock
);
993 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
996 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
1000 * this_rq_lock - lock this runqueue and disable interrupts.
1002 static struct rq
*this_rq_lock(void)
1003 __acquires(rq
->lock
)
1007 local_irq_disable();
1009 raw_spin_lock(&rq
->lock
);
1014 #ifdef CONFIG_SCHED_HRTICK
1016 * Use HR-timers to deliver accurate preemption points.
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1028 * - enabled by features
1029 * - hrtimer is actually high res
1031 static inline int hrtick_enabled(struct rq
*rq
)
1033 if (!sched_feat(HRTICK
))
1035 if (!cpu_active(cpu_of(rq
)))
1037 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1040 static void hrtick_clear(struct rq
*rq
)
1042 if (hrtimer_active(&rq
->hrtick_timer
))
1043 hrtimer_cancel(&rq
->hrtick_timer
);
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1050 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1052 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1054 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1056 raw_spin_lock(&rq
->lock
);
1057 update_rq_clock(rq
);
1058 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1059 raw_spin_unlock(&rq
->lock
);
1061 return HRTIMER_NORESTART
;
1066 * called from hardirq (IPI) context
1068 static void __hrtick_start(void *arg
)
1070 struct rq
*rq
= arg
;
1072 raw_spin_lock(&rq
->lock
);
1073 hrtimer_restart(&rq
->hrtick_timer
);
1074 rq
->hrtick_csd_pending
= 0;
1075 raw_spin_unlock(&rq
->lock
);
1079 * Called to set the hrtick timer state.
1081 * called with rq->lock held and irqs disabled
1083 static void hrtick_start(struct rq
*rq
, u64 delay
)
1085 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1086 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1088 hrtimer_set_expires(timer
, time
);
1090 if (rq
== this_rq()) {
1091 hrtimer_restart(timer
);
1092 } else if (!rq
->hrtick_csd_pending
) {
1093 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1094 rq
->hrtick_csd_pending
= 1;
1099 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1101 int cpu
= (int)(long)hcpu
;
1104 case CPU_UP_CANCELED
:
1105 case CPU_UP_CANCELED_FROZEN
:
1106 case CPU_DOWN_PREPARE
:
1107 case CPU_DOWN_PREPARE_FROZEN
:
1109 case CPU_DEAD_FROZEN
:
1110 hrtick_clear(cpu_rq(cpu
));
1117 static __init
void init_hrtick(void)
1119 hotcpu_notifier(hotplug_hrtick
, 0);
1123 * Called to set the hrtick timer state.
1125 * called with rq->lock held and irqs disabled
1127 static void hrtick_start(struct rq
*rq
, u64 delay
)
1129 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1130 HRTIMER_MODE_REL_PINNED
, 0);
1133 static inline void init_hrtick(void)
1136 #endif /* CONFIG_SMP */
1138 static void init_rq_hrtick(struct rq
*rq
)
1141 rq
->hrtick_csd_pending
= 0;
1143 rq
->hrtick_csd
.flags
= 0;
1144 rq
->hrtick_csd
.func
= __hrtick_start
;
1145 rq
->hrtick_csd
.info
= rq
;
1148 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1149 rq
->hrtick_timer
.function
= hrtick
;
1151 #else /* CONFIG_SCHED_HRTICK */
1152 static inline void hrtick_clear(struct rq
*rq
)
1156 static inline void init_rq_hrtick(struct rq
*rq
)
1160 static inline void init_hrtick(void)
1163 #endif /* CONFIG_SCHED_HRTICK */
1166 * resched_task - mark a task 'to be rescheduled now'.
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1174 #ifndef tsk_is_polling
1175 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 static void resched_task(struct task_struct
*p
)
1182 assert_raw_spin_locked(&task_rq(p
)->lock
);
1184 if (test_tsk_need_resched(p
))
1187 set_tsk_need_resched(p
);
1190 if (cpu
== smp_processor_id())
1193 /* NEED_RESCHED must be visible before we test polling */
1195 if (!tsk_is_polling(p
))
1196 smp_send_reschedule(cpu
);
1199 static void resched_cpu(int cpu
)
1201 struct rq
*rq
= cpu_rq(cpu
);
1202 unsigned long flags
;
1204 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1206 resched_task(cpu_curr(cpu
));
1207 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1212 * In the semi idle case, use the nearest busy cpu for migrating timers
1213 * from an idle cpu. This is good for power-savings.
1215 * We don't do similar optimization for completely idle system, as
1216 * selecting an idle cpu will add more delays to the timers than intended
1217 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1219 int get_nohz_timer_target(void)
1221 int cpu
= smp_processor_id();
1223 struct sched_domain
*sd
;
1225 for_each_domain(cpu
, sd
) {
1226 for_each_cpu(i
, sched_domain_span(sd
))
1233 * When add_timer_on() enqueues a timer into the timer wheel of an
1234 * idle CPU then this timer might expire before the next timer event
1235 * which is scheduled to wake up that CPU. In case of a completely
1236 * idle system the next event might even be infinite time into the
1237 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1238 * leaves the inner idle loop so the newly added timer is taken into
1239 * account when the CPU goes back to idle and evaluates the timer
1240 * wheel for the next timer event.
1242 void wake_up_idle_cpu(int cpu
)
1244 struct rq
*rq
= cpu_rq(cpu
);
1246 if (cpu
== smp_processor_id())
1250 * This is safe, as this function is called with the timer
1251 * wheel base lock of (cpu) held. When the CPU is on the way
1252 * to idle and has not yet set rq->curr to idle then it will
1253 * be serialized on the timer wheel base lock and take the new
1254 * timer into account automatically.
1256 if (rq
->curr
!= rq
->idle
)
1260 * We can set TIF_RESCHED on the idle task of the other CPU
1261 * lockless. The worst case is that the other CPU runs the
1262 * idle task through an additional NOOP schedule()
1264 set_tsk_need_resched(rq
->idle
);
1266 /* NEED_RESCHED must be visible before we test polling */
1268 if (!tsk_is_polling(rq
->idle
))
1269 smp_send_reschedule(cpu
);
1272 #endif /* CONFIG_NO_HZ */
1274 static u64
sched_avg_period(void)
1276 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1279 static void sched_avg_update(struct rq
*rq
)
1281 s64 period
= sched_avg_period();
1283 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1285 * Inline assembly required to prevent the compiler
1286 * optimising this loop into a divmod call.
1287 * See __iter_div_u64_rem() for another example of this.
1289 asm("" : "+rm" (rq
->age_stamp
));
1290 rq
->age_stamp
+= period
;
1295 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1297 rq
->rt_avg
+= rt_delta
;
1298 sched_avg_update(rq
);
1301 #else /* !CONFIG_SMP */
1302 static void resched_task(struct task_struct
*p
)
1304 assert_raw_spin_locked(&task_rq(p
)->lock
);
1305 set_tsk_need_resched(p
);
1308 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1312 static void sched_avg_update(struct rq
*rq
)
1315 #endif /* CONFIG_SMP */
1317 #if BITS_PER_LONG == 32
1318 # define WMULT_CONST (~0UL)
1320 # define WMULT_CONST (1UL << 32)
1323 #define WMULT_SHIFT 32
1326 * Shift right and round:
1328 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1331 * delta *= weight / lw
1333 static unsigned long
1334 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1335 struct load_weight
*lw
)
1339 if (!lw
->inv_weight
) {
1340 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1343 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1347 tmp
= (u64
)delta_exec
* weight
;
1349 * Check whether we'd overflow the 64-bit multiplication:
1351 if (unlikely(tmp
> WMULT_CONST
))
1352 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1355 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1357 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1360 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1366 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1373 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1374 * of tasks with abnormal "nice" values across CPUs the contribution that
1375 * each task makes to its run queue's load is weighted according to its
1376 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1377 * scaled version of the new time slice allocation that they receive on time
1381 #define WEIGHT_IDLEPRIO 3
1382 #define WMULT_IDLEPRIO 1431655765
1385 * Nice levels are multiplicative, with a gentle 10% change for every
1386 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1387 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1388 * that remained on nice 0.
1390 * The "10% effect" is relative and cumulative: from _any_ nice level,
1391 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1392 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1393 * If a task goes up by ~10% and another task goes down by ~10% then
1394 * the relative distance between them is ~25%.)
1396 static const int prio_to_weight
[40] = {
1397 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1398 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1399 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1400 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1401 /* 0 */ 1024, 820, 655, 526, 423,
1402 /* 5 */ 335, 272, 215, 172, 137,
1403 /* 10 */ 110, 87, 70, 56, 45,
1404 /* 15 */ 36, 29, 23, 18, 15,
1408 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1410 * In cases where the weight does not change often, we can use the
1411 * precalculated inverse to speed up arithmetics by turning divisions
1412 * into multiplications:
1414 static const u32 prio_to_wmult
[40] = {
1415 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1416 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1417 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1418 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1419 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1420 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1421 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1422 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1425 /* Time spent by the tasks of the cpu accounting group executing in ... */
1426 enum cpuacct_stat_index
{
1427 CPUACCT_STAT_USER
, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1430 CPUACCT_STAT_NSTATS
,
1433 #ifdef CONFIG_CGROUP_CPUACCT
1434 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1435 static void cpuacct_update_stats(struct task_struct
*tsk
,
1436 enum cpuacct_stat_index idx
, cputime_t val
);
1438 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1439 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1440 enum cpuacct_stat_index idx
, cputime_t val
) {}
1443 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1445 update_load_add(&rq
->load
, load
);
1448 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1450 update_load_sub(&rq
->load
, load
);
1453 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1454 typedef int (*tg_visitor
)(struct task_group
*, void *);
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1460 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1462 struct task_group
*parent
, *child
;
1466 parent
= &root_task_group
;
1468 ret
= (*down
)(parent
, data
);
1471 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1478 ret
= (*up
)(parent
, data
);
1483 parent
= parent
->parent
;
1492 static int tg_nop(struct task_group
*tg
, void *data
)
1499 /* Used instead of source_load when we know the type == 0 */
1500 static unsigned long weighted_cpuload(const int cpu
)
1502 return cpu_rq(cpu
)->load
.weight
;
1506 * Return a low guess at the load of a migration-source cpu weighted
1507 * according to the scheduling class and "nice" value.
1509 * We want to under-estimate the load of migration sources, to
1510 * balance conservatively.
1512 static unsigned long source_load(int cpu
, int type
)
1514 struct rq
*rq
= cpu_rq(cpu
);
1515 unsigned long total
= weighted_cpuload(cpu
);
1517 if (type
== 0 || !sched_feat(LB_BIAS
))
1520 return min(rq
->cpu_load
[type
-1], total
);
1524 * Return a high guess at the load of a migration-target cpu weighted
1525 * according to the scheduling class and "nice" value.
1527 static unsigned long target_load(int cpu
, int type
)
1529 struct rq
*rq
= cpu_rq(cpu
);
1530 unsigned long total
= weighted_cpuload(cpu
);
1532 if (type
== 0 || !sched_feat(LB_BIAS
))
1535 return max(rq
->cpu_load
[type
-1], total
);
1538 static unsigned long power_of(int cpu
)
1540 return cpu_rq(cpu
)->cpu_power
;
1543 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1545 static unsigned long cpu_avg_load_per_task(int cpu
)
1547 struct rq
*rq
= cpu_rq(cpu
);
1548 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1551 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1553 rq
->avg_load_per_task
= 0;
1555 return rq
->avg_load_per_task
;
1558 #ifdef CONFIG_FAIR_GROUP_SCHED
1560 static __read_mostly
unsigned long __percpu
*update_shares_data
;
1562 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1565 * Calculate and set the cpu's group shares.
1567 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1568 unsigned long sd_shares
,
1569 unsigned long sd_rq_weight
,
1570 unsigned long *usd_rq_weight
)
1572 unsigned long shares
, rq_weight
;
1575 rq_weight
= usd_rq_weight
[cpu
];
1578 rq_weight
= NICE_0_LOAD
;
1582 * \Sum_j shares_j * rq_weight_i
1583 * shares_i = -----------------------------
1584 * \Sum_j rq_weight_j
1586 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1587 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1589 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1590 sysctl_sched_shares_thresh
) {
1591 struct rq
*rq
= cpu_rq(cpu
);
1592 unsigned long flags
;
1594 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1595 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1596 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1597 __set_se_shares(tg
->se
[cpu
], shares
);
1598 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1603 * Re-compute the task group their per cpu shares over the given domain.
1604 * This needs to be done in a bottom-up fashion because the rq weight of a
1605 * parent group depends on the shares of its child groups.
1607 static int tg_shares_up(struct task_group
*tg
, void *data
)
1609 unsigned long weight
, rq_weight
= 0, sum_weight
= 0, shares
= 0;
1610 unsigned long *usd_rq_weight
;
1611 struct sched_domain
*sd
= data
;
1612 unsigned long flags
;
1618 local_irq_save(flags
);
1619 usd_rq_weight
= per_cpu_ptr(update_shares_data
, smp_processor_id());
1621 for_each_cpu(i
, sched_domain_span(sd
)) {
1622 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1623 usd_rq_weight
[i
] = weight
;
1625 rq_weight
+= weight
;
1627 * If there are currently no tasks on the cpu pretend there
1628 * is one of average load so that when a new task gets to
1629 * run here it will not get delayed by group starvation.
1632 weight
= NICE_0_LOAD
;
1634 sum_weight
+= weight
;
1635 shares
+= tg
->cfs_rq
[i
]->shares
;
1639 rq_weight
= sum_weight
;
1641 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1642 shares
= tg
->shares
;
1644 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1645 shares
= tg
->shares
;
1647 for_each_cpu(i
, sched_domain_span(sd
))
1648 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd_rq_weight
);
1650 local_irq_restore(flags
);
1656 * Compute the cpu's hierarchical load factor for each task group.
1657 * This needs to be done in a top-down fashion because the load of a child
1658 * group is a fraction of its parents load.
1660 static int tg_load_down(struct task_group
*tg
, void *data
)
1663 long cpu
= (long)data
;
1666 load
= cpu_rq(cpu
)->load
.weight
;
1668 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1669 load
*= tg
->cfs_rq
[cpu
]->shares
;
1670 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1673 tg
->cfs_rq
[cpu
]->h_load
= load
;
1678 static void update_shares(struct sched_domain
*sd
)
1683 if (root_task_group_empty())
1686 now
= local_clock();
1687 elapsed
= now
- sd
->last_update
;
1689 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1690 sd
->last_update
= now
;
1691 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1695 static void update_h_load(long cpu
)
1697 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1702 static inline void update_shares(struct sched_domain
*sd
)
1708 #ifdef CONFIG_PREEMPT
1710 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1713 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1714 * way at the expense of forcing extra atomic operations in all
1715 * invocations. This assures that the double_lock is acquired using the
1716 * same underlying policy as the spinlock_t on this architecture, which
1717 * reduces latency compared to the unfair variant below. However, it
1718 * also adds more overhead and therefore may reduce throughput.
1720 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1721 __releases(this_rq
->lock
)
1722 __acquires(busiest
->lock
)
1723 __acquires(this_rq
->lock
)
1725 raw_spin_unlock(&this_rq
->lock
);
1726 double_rq_lock(this_rq
, busiest
);
1733 * Unfair double_lock_balance: Optimizes throughput at the expense of
1734 * latency by eliminating extra atomic operations when the locks are
1735 * already in proper order on entry. This favors lower cpu-ids and will
1736 * grant the double lock to lower cpus over higher ids under contention,
1737 * regardless of entry order into the function.
1739 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1740 __releases(this_rq
->lock
)
1741 __acquires(busiest
->lock
)
1742 __acquires(this_rq
->lock
)
1746 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1747 if (busiest
< this_rq
) {
1748 raw_spin_unlock(&this_rq
->lock
);
1749 raw_spin_lock(&busiest
->lock
);
1750 raw_spin_lock_nested(&this_rq
->lock
,
1751 SINGLE_DEPTH_NESTING
);
1754 raw_spin_lock_nested(&busiest
->lock
,
1755 SINGLE_DEPTH_NESTING
);
1760 #endif /* CONFIG_PREEMPT */
1763 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1765 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1767 if (unlikely(!irqs_disabled())) {
1768 /* printk() doesn't work good under rq->lock */
1769 raw_spin_unlock(&this_rq
->lock
);
1773 return _double_lock_balance(this_rq
, busiest
);
1776 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1777 __releases(busiest
->lock
)
1779 raw_spin_unlock(&busiest
->lock
);
1780 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1784 * double_rq_lock - safely lock two runqueues
1786 * Note this does not disable interrupts like task_rq_lock,
1787 * you need to do so manually before calling.
1789 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1790 __acquires(rq1
->lock
)
1791 __acquires(rq2
->lock
)
1793 BUG_ON(!irqs_disabled());
1795 raw_spin_lock(&rq1
->lock
);
1796 __acquire(rq2
->lock
); /* Fake it out ;) */
1799 raw_spin_lock(&rq1
->lock
);
1800 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1802 raw_spin_lock(&rq2
->lock
);
1803 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1809 * double_rq_unlock - safely unlock two runqueues
1811 * Note this does not restore interrupts like task_rq_unlock,
1812 * you need to do so manually after calling.
1814 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1815 __releases(rq1
->lock
)
1816 __releases(rq2
->lock
)
1818 raw_spin_unlock(&rq1
->lock
);
1820 raw_spin_unlock(&rq2
->lock
);
1822 __release(rq2
->lock
);
1827 #ifdef CONFIG_FAIR_GROUP_SCHED
1828 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1831 cfs_rq
->shares
= shares
;
1836 static void calc_load_account_idle(struct rq
*this_rq
);
1837 static void update_sysctl(void);
1838 static int get_update_sysctl_factor(void);
1839 static void update_cpu_load(struct rq
*this_rq
);
1841 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1843 set_task_rq(p
, cpu
);
1846 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1847 * successfuly executed on another CPU. We must ensure that updates of
1848 * per-task data have been completed by this moment.
1851 task_thread_info(p
)->cpu
= cpu
;
1855 static const struct sched_class rt_sched_class
;
1857 #define sched_class_highest (&stop_sched_class)
1858 #define for_each_class(class) \
1859 for (class = sched_class_highest; class; class = class->next)
1861 #include "sched_stats.h"
1863 static void inc_nr_running(struct rq
*rq
)
1868 static void dec_nr_running(struct rq
*rq
)
1873 static void set_load_weight(struct task_struct
*p
)
1876 * SCHED_IDLE tasks get minimal weight:
1878 if (p
->policy
== SCHED_IDLE
) {
1879 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1880 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1884 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1885 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1888 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1890 update_rq_clock(rq
);
1891 sched_info_queued(p
);
1892 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1896 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1898 update_rq_clock(rq
);
1899 sched_info_dequeued(p
);
1900 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1905 * activate_task - move a task to the runqueue.
1907 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1909 if (task_contributes_to_load(p
))
1910 rq
->nr_uninterruptible
--;
1912 enqueue_task(rq
, p
, flags
);
1917 * deactivate_task - remove a task from the runqueue.
1919 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1921 if (task_contributes_to_load(p
))
1922 rq
->nr_uninterruptible
++;
1924 dequeue_task(rq
, p
, flags
);
1928 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1931 * There are no locks covering percpu hardirq/softirq time.
1932 * They are only modified in account_system_vtime, on corresponding CPU
1933 * with interrupts disabled. So, writes are safe.
1934 * They are read and saved off onto struct rq in update_rq_clock().
1935 * This may result in other CPU reading this CPU's irq time and can
1936 * race with irq/account_system_vtime on this CPU. We would either get old
1937 * or new value (or semi updated value on 32 bit) with a side effect of
1938 * accounting a slice of irq time to wrong task when irq is in progress
1939 * while we read rq->clock. That is a worthy compromise in place of having
1940 * locks on each irq in account_system_time.
1942 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
1943 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
1945 static DEFINE_PER_CPU(u64
, irq_start_time
);
1946 static int sched_clock_irqtime
;
1948 void enable_sched_clock_irqtime(void)
1950 sched_clock_irqtime
= 1;
1953 void disable_sched_clock_irqtime(void)
1955 sched_clock_irqtime
= 0;
1958 static u64
irq_time_cpu(int cpu
)
1960 if (!sched_clock_irqtime
)
1963 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1966 void account_system_vtime(struct task_struct
*curr
)
1968 unsigned long flags
;
1972 if (!sched_clock_irqtime
)
1975 local_irq_save(flags
);
1977 cpu
= smp_processor_id();
1978 now
= sched_clock_cpu(cpu
);
1979 delta
= now
- per_cpu(irq_start_time
, cpu
);
1980 per_cpu(irq_start_time
, cpu
) = now
;
1982 * We do not account for softirq time from ksoftirqd here.
1983 * We want to continue accounting softirq time to ksoftirqd thread
1984 * in that case, so as not to confuse scheduler with a special task
1985 * that do not consume any time, but still wants to run.
1987 if (hardirq_count())
1988 per_cpu(cpu_hardirq_time
, cpu
) += delta
;
1989 else if (in_serving_softirq() && !(curr
->flags
& PF_KSOFTIRQD
))
1990 per_cpu(cpu_softirq_time
, cpu
) += delta
;
1992 local_irq_restore(flags
);
1994 EXPORT_SYMBOL_GPL(account_system_vtime
);
1996 static void sched_irq_time_avg_update(struct rq
*rq
, u64 curr_irq_time
)
1998 if (sched_clock_irqtime
&& sched_feat(NONIRQ_POWER
)) {
1999 u64 delta_irq
= curr_irq_time
- rq
->prev_irq_time
;
2000 rq
->prev_irq_time
= curr_irq_time
;
2001 sched_rt_avg_update(rq
, delta_irq
);
2007 static u64
irq_time_cpu(int cpu
)
2012 static void sched_irq_time_avg_update(struct rq
*rq
, u64 curr_irq_time
) { }
2016 #include "sched_idletask.c"
2017 #include "sched_fair.c"
2018 #include "sched_rt.c"
2019 #include "sched_stoptask.c"
2020 #ifdef CONFIG_SCHED_DEBUG
2021 # include "sched_debug.c"
2024 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
2026 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
2027 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
2031 * Make it appear like a SCHED_FIFO task, its something
2032 * userspace knows about and won't get confused about.
2034 * Also, it will make PI more or less work without too
2035 * much confusion -- but then, stop work should not
2036 * rely on PI working anyway.
2038 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
2040 stop
->sched_class
= &stop_sched_class
;
2043 cpu_rq(cpu
)->stop
= stop
;
2047 * Reset it back to a normal scheduling class so that
2048 * it can die in pieces.
2050 old_stop
->sched_class
= &rt_sched_class
;
2055 * __normal_prio - return the priority that is based on the static prio
2057 static inline int __normal_prio(struct task_struct
*p
)
2059 return p
->static_prio
;
2063 * Calculate the expected normal priority: i.e. priority
2064 * without taking RT-inheritance into account. Might be
2065 * boosted by interactivity modifiers. Changes upon fork,
2066 * setprio syscalls, and whenever the interactivity
2067 * estimator recalculates.
2069 static inline int normal_prio(struct task_struct
*p
)
2073 if (task_has_rt_policy(p
))
2074 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
2076 prio
= __normal_prio(p
);
2081 * Calculate the current priority, i.e. the priority
2082 * taken into account by the scheduler. This value might
2083 * be boosted by RT tasks, or might be boosted by
2084 * interactivity modifiers. Will be RT if the task got
2085 * RT-boosted. If not then it returns p->normal_prio.
2087 static int effective_prio(struct task_struct
*p
)
2089 p
->normal_prio
= normal_prio(p
);
2091 * If we are RT tasks or we were boosted to RT priority,
2092 * keep the priority unchanged. Otherwise, update priority
2093 * to the normal priority:
2095 if (!rt_prio(p
->prio
))
2096 return p
->normal_prio
;
2101 * task_curr - is this task currently executing on a CPU?
2102 * @p: the task in question.
2104 inline int task_curr(const struct task_struct
*p
)
2106 return cpu_curr(task_cpu(p
)) == p
;
2109 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2110 const struct sched_class
*prev_class
,
2111 int oldprio
, int running
)
2113 if (prev_class
!= p
->sched_class
) {
2114 if (prev_class
->switched_from
)
2115 prev_class
->switched_from(rq
, p
, running
);
2116 p
->sched_class
->switched_to(rq
, p
, running
);
2118 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
2123 * Is this task likely cache-hot:
2126 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2130 if (p
->sched_class
!= &fair_sched_class
)
2133 if (unlikely(p
->policy
== SCHED_IDLE
))
2137 * Buddy candidates are cache hot:
2139 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2140 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2141 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2144 if (sysctl_sched_migration_cost
== -1)
2146 if (sysctl_sched_migration_cost
== 0)
2149 delta
= now
- p
->se
.exec_start
;
2151 return delta
< (s64
)sysctl_sched_migration_cost
;
2154 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2156 #ifdef CONFIG_SCHED_DEBUG
2158 * We should never call set_task_cpu() on a blocked task,
2159 * ttwu() will sort out the placement.
2161 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2162 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2165 trace_sched_migrate_task(p
, new_cpu
);
2167 if (task_cpu(p
) != new_cpu
) {
2168 p
->se
.nr_migrations
++;
2169 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2172 __set_task_cpu(p
, new_cpu
);
2175 struct migration_arg
{
2176 struct task_struct
*task
;
2180 static int migration_cpu_stop(void *data
);
2183 * The task's runqueue lock must be held.
2184 * Returns true if you have to wait for migration thread.
2186 static bool migrate_task(struct task_struct
*p
, int dest_cpu
)
2188 struct rq
*rq
= task_rq(p
);
2191 * If the task is not on a runqueue (and not running), then
2192 * the next wake-up will properly place the task.
2194 return p
->se
.on_rq
|| task_running(rq
, p
);
2198 * wait_task_inactive - wait for a thread to unschedule.
2200 * If @match_state is nonzero, it's the @p->state value just checked and
2201 * not expected to change. If it changes, i.e. @p might have woken up,
2202 * then return zero. When we succeed in waiting for @p to be off its CPU,
2203 * we return a positive number (its total switch count). If a second call
2204 * a short while later returns the same number, the caller can be sure that
2205 * @p has remained unscheduled the whole time.
2207 * The caller must ensure that the task *will* unschedule sometime soon,
2208 * else this function might spin for a *long* time. This function can't
2209 * be called with interrupts off, or it may introduce deadlock with
2210 * smp_call_function() if an IPI is sent by the same process we are
2211 * waiting to become inactive.
2213 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2215 unsigned long flags
;
2222 * We do the initial early heuristics without holding
2223 * any task-queue locks at all. We'll only try to get
2224 * the runqueue lock when things look like they will
2230 * If the task is actively running on another CPU
2231 * still, just relax and busy-wait without holding
2234 * NOTE! Since we don't hold any locks, it's not
2235 * even sure that "rq" stays as the right runqueue!
2236 * But we don't care, since "task_running()" will
2237 * return false if the runqueue has changed and p
2238 * is actually now running somewhere else!
2240 while (task_running(rq
, p
)) {
2241 if (match_state
&& unlikely(p
->state
!= match_state
))
2247 * Ok, time to look more closely! We need the rq
2248 * lock now, to be *sure*. If we're wrong, we'll
2249 * just go back and repeat.
2251 rq
= task_rq_lock(p
, &flags
);
2252 trace_sched_wait_task(p
);
2253 running
= task_running(rq
, p
);
2254 on_rq
= p
->se
.on_rq
;
2256 if (!match_state
|| p
->state
== match_state
)
2257 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2258 task_rq_unlock(rq
, &flags
);
2261 * If it changed from the expected state, bail out now.
2263 if (unlikely(!ncsw
))
2267 * Was it really running after all now that we
2268 * checked with the proper locks actually held?
2270 * Oops. Go back and try again..
2272 if (unlikely(running
)) {
2278 * It's not enough that it's not actively running,
2279 * it must be off the runqueue _entirely_, and not
2282 * So if it was still runnable (but just not actively
2283 * running right now), it's preempted, and we should
2284 * yield - it could be a while.
2286 if (unlikely(on_rq
)) {
2287 schedule_timeout_uninterruptible(1);
2292 * Ahh, all good. It wasn't running, and it wasn't
2293 * runnable, which means that it will never become
2294 * running in the future either. We're all done!
2303 * kick_process - kick a running thread to enter/exit the kernel
2304 * @p: the to-be-kicked thread
2306 * Cause a process which is running on another CPU to enter
2307 * kernel-mode, without any delay. (to get signals handled.)
2309 * NOTE: this function doesnt have to take the runqueue lock,
2310 * because all it wants to ensure is that the remote task enters
2311 * the kernel. If the IPI races and the task has been migrated
2312 * to another CPU then no harm is done and the purpose has been
2315 void kick_process(struct task_struct
*p
)
2321 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2322 smp_send_reschedule(cpu
);
2325 EXPORT_SYMBOL_GPL(kick_process
);
2326 #endif /* CONFIG_SMP */
2329 * task_oncpu_function_call - call a function on the cpu on which a task runs
2330 * @p: the task to evaluate
2331 * @func: the function to be called
2332 * @info: the function call argument
2334 * Calls the function @func when the task is currently running. This might
2335 * be on the current CPU, which just calls the function directly
2337 void task_oncpu_function_call(struct task_struct
*p
,
2338 void (*func
) (void *info
), void *info
)
2345 smp_call_function_single(cpu
, func
, info
, 1);
2351 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2353 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2356 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2358 /* Look for allowed, online CPU in same node. */
2359 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2360 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2363 /* Any allowed, online CPU? */
2364 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2365 if (dest_cpu
< nr_cpu_ids
)
2368 /* No more Mr. Nice Guy. */
2369 if (unlikely(dest_cpu
>= nr_cpu_ids
)) {
2370 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2372 * Don't tell them about moving exiting tasks or
2373 * kernel threads (both mm NULL), since they never
2376 if (p
->mm
&& printk_ratelimit()) {
2377 printk(KERN_INFO
"process %d (%s) no "
2378 "longer affine to cpu%d\n",
2379 task_pid_nr(p
), p
->comm
, cpu
);
2387 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2390 int select_task_rq(struct rq
*rq
, struct task_struct
*p
, int sd_flags
, int wake_flags
)
2392 int cpu
= p
->sched_class
->select_task_rq(rq
, p
, sd_flags
, wake_flags
);
2395 * In order not to call set_task_cpu() on a blocking task we need
2396 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2399 * Since this is common to all placement strategies, this lives here.
2401 * [ this allows ->select_task() to simply return task_cpu(p) and
2402 * not worry about this generic constraint ]
2404 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2406 cpu
= select_fallback_rq(task_cpu(p
), p
);
2411 static void update_avg(u64
*avg
, u64 sample
)
2413 s64 diff
= sample
- *avg
;
2418 static inline void ttwu_activate(struct task_struct
*p
, struct rq
*rq
,
2419 bool is_sync
, bool is_migrate
, bool is_local
,
2420 unsigned long en_flags
)
2422 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2424 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2426 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2428 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2430 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2432 activate_task(rq
, p
, en_flags
);
2435 static inline void ttwu_post_activation(struct task_struct
*p
, struct rq
*rq
,
2436 int wake_flags
, bool success
)
2438 trace_sched_wakeup(p
, success
);
2439 check_preempt_curr(rq
, p
, wake_flags
);
2441 p
->state
= TASK_RUNNING
;
2443 if (p
->sched_class
->task_woken
)
2444 p
->sched_class
->task_woken(rq
, p
);
2446 if (unlikely(rq
->idle_stamp
)) {
2447 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2448 u64 max
= 2*sysctl_sched_migration_cost
;
2453 update_avg(&rq
->avg_idle
, delta
);
2457 /* if a worker is waking up, notify workqueue */
2458 if ((p
->flags
& PF_WQ_WORKER
) && success
)
2459 wq_worker_waking_up(p
, cpu_of(rq
));
2463 * try_to_wake_up - wake up a thread
2464 * @p: the thread to be awakened
2465 * @state: the mask of task states that can be woken
2466 * @wake_flags: wake modifier flags (WF_*)
2468 * Put it on the run-queue if it's not already there. The "current"
2469 * thread is always on the run-queue (except when the actual
2470 * re-schedule is in progress), and as such you're allowed to do
2471 * the simpler "current->state = TASK_RUNNING" to mark yourself
2472 * runnable without the overhead of this.
2474 * Returns %true if @p was woken up, %false if it was already running
2475 * or @state didn't match @p's state.
2477 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2480 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2481 unsigned long flags
;
2482 unsigned long en_flags
= ENQUEUE_WAKEUP
;
2485 this_cpu
= get_cpu();
2488 rq
= task_rq_lock(p
, &flags
);
2489 if (!(p
->state
& state
))
2499 if (unlikely(task_running(rq
, p
)))
2503 * In order to handle concurrent wakeups and release the rq->lock
2504 * we put the task in TASK_WAKING state.
2506 * First fix up the nr_uninterruptible count:
2508 if (task_contributes_to_load(p
)) {
2509 if (likely(cpu_online(orig_cpu
)))
2510 rq
->nr_uninterruptible
--;
2512 this_rq()->nr_uninterruptible
--;
2514 p
->state
= TASK_WAKING
;
2516 if (p
->sched_class
->task_waking
) {
2517 p
->sched_class
->task_waking(rq
, p
);
2518 en_flags
|= ENQUEUE_WAKING
;
2521 cpu
= select_task_rq(rq
, p
, SD_BALANCE_WAKE
, wake_flags
);
2522 if (cpu
!= orig_cpu
)
2523 set_task_cpu(p
, cpu
);
2524 __task_rq_unlock(rq
);
2527 raw_spin_lock(&rq
->lock
);
2530 * We migrated the task without holding either rq->lock, however
2531 * since the task is not on the task list itself, nobody else
2532 * will try and migrate the task, hence the rq should match the
2533 * cpu we just moved it to.
2535 WARN_ON(task_cpu(p
) != cpu
);
2536 WARN_ON(p
->state
!= TASK_WAKING
);
2538 #ifdef CONFIG_SCHEDSTATS
2539 schedstat_inc(rq
, ttwu_count
);
2540 if (cpu
== this_cpu
)
2541 schedstat_inc(rq
, ttwu_local
);
2543 struct sched_domain
*sd
;
2544 for_each_domain(this_cpu
, sd
) {
2545 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2546 schedstat_inc(sd
, ttwu_wake_remote
);
2551 #endif /* CONFIG_SCHEDSTATS */
2554 #endif /* CONFIG_SMP */
2555 ttwu_activate(p
, rq
, wake_flags
& WF_SYNC
, orig_cpu
!= cpu
,
2556 cpu
== this_cpu
, en_flags
);
2559 ttwu_post_activation(p
, rq
, wake_flags
, success
);
2561 task_rq_unlock(rq
, &flags
);
2568 * try_to_wake_up_local - try to wake up a local task with rq lock held
2569 * @p: the thread to be awakened
2571 * Put @p on the run-queue if it's not alredy there. The caller must
2572 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2573 * the current task. this_rq() stays locked over invocation.
2575 static void try_to_wake_up_local(struct task_struct
*p
)
2577 struct rq
*rq
= task_rq(p
);
2578 bool success
= false;
2580 BUG_ON(rq
!= this_rq());
2581 BUG_ON(p
== current
);
2582 lockdep_assert_held(&rq
->lock
);
2584 if (!(p
->state
& TASK_NORMAL
))
2588 if (likely(!task_running(rq
, p
))) {
2589 schedstat_inc(rq
, ttwu_count
);
2590 schedstat_inc(rq
, ttwu_local
);
2592 ttwu_activate(p
, rq
, false, false, true, ENQUEUE_WAKEUP
);
2595 ttwu_post_activation(p
, rq
, 0, success
);
2599 * wake_up_process - Wake up a specific process
2600 * @p: The process to be woken up.
2602 * Attempt to wake up the nominated process and move it to the set of runnable
2603 * processes. Returns 1 if the process was woken up, 0 if it was already
2606 * It may be assumed that this function implies a write memory barrier before
2607 * changing the task state if and only if any tasks are woken up.
2609 int wake_up_process(struct task_struct
*p
)
2611 return try_to_wake_up(p
, TASK_ALL
, 0);
2613 EXPORT_SYMBOL(wake_up_process
);
2615 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2617 return try_to_wake_up(p
, state
, 0);
2621 * Perform scheduler related setup for a newly forked process p.
2622 * p is forked by current.
2624 * __sched_fork() is basic setup used by init_idle() too:
2626 static void __sched_fork(struct task_struct
*p
)
2628 p
->se
.exec_start
= 0;
2629 p
->se
.sum_exec_runtime
= 0;
2630 p
->se
.prev_sum_exec_runtime
= 0;
2631 p
->se
.nr_migrations
= 0;
2633 #ifdef CONFIG_SCHEDSTATS
2634 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2637 INIT_LIST_HEAD(&p
->rt
.run_list
);
2639 INIT_LIST_HEAD(&p
->se
.group_node
);
2641 #ifdef CONFIG_PREEMPT_NOTIFIERS
2642 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2647 * fork()/clone()-time setup:
2649 void sched_fork(struct task_struct
*p
, int clone_flags
)
2651 int cpu
= get_cpu();
2655 * We mark the process as running here. This guarantees that
2656 * nobody will actually run it, and a signal or other external
2657 * event cannot wake it up and insert it on the runqueue either.
2659 p
->state
= TASK_RUNNING
;
2662 * Revert to default priority/policy on fork if requested.
2664 if (unlikely(p
->sched_reset_on_fork
)) {
2665 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2666 p
->policy
= SCHED_NORMAL
;
2667 p
->normal_prio
= p
->static_prio
;
2670 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2671 p
->static_prio
= NICE_TO_PRIO(0);
2672 p
->normal_prio
= p
->static_prio
;
2677 * We don't need the reset flag anymore after the fork. It has
2678 * fulfilled its duty:
2680 p
->sched_reset_on_fork
= 0;
2684 * Make sure we do not leak PI boosting priority to the child.
2686 p
->prio
= current
->normal_prio
;
2688 if (!rt_prio(p
->prio
))
2689 p
->sched_class
= &fair_sched_class
;
2691 if (p
->sched_class
->task_fork
)
2692 p
->sched_class
->task_fork(p
);
2695 * The child is not yet in the pid-hash so no cgroup attach races,
2696 * and the cgroup is pinned to this child due to cgroup_fork()
2697 * is ran before sched_fork().
2699 * Silence PROVE_RCU.
2702 set_task_cpu(p
, cpu
);
2705 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2706 if (likely(sched_info_on()))
2707 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2709 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2712 #ifdef CONFIG_PREEMPT
2713 /* Want to start with kernel preemption disabled. */
2714 task_thread_info(p
)->preempt_count
= 1;
2716 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2722 * wake_up_new_task - wake up a newly created task for the first time.
2724 * This function will do some initial scheduler statistics housekeeping
2725 * that must be done for every newly created context, then puts the task
2726 * on the runqueue and wakes it.
2728 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2730 unsigned long flags
;
2732 int cpu __maybe_unused
= get_cpu();
2735 rq
= task_rq_lock(p
, &flags
);
2736 p
->state
= TASK_WAKING
;
2739 * Fork balancing, do it here and not earlier because:
2740 * - cpus_allowed can change in the fork path
2741 * - any previously selected cpu might disappear through hotplug
2743 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2744 * without people poking at ->cpus_allowed.
2746 cpu
= select_task_rq(rq
, p
, SD_BALANCE_FORK
, 0);
2747 set_task_cpu(p
, cpu
);
2749 p
->state
= TASK_RUNNING
;
2750 task_rq_unlock(rq
, &flags
);
2753 rq
= task_rq_lock(p
, &flags
);
2754 activate_task(rq
, p
, 0);
2755 trace_sched_wakeup_new(p
, 1);
2756 check_preempt_curr(rq
, p
, WF_FORK
);
2758 if (p
->sched_class
->task_woken
)
2759 p
->sched_class
->task_woken(rq
, p
);
2761 task_rq_unlock(rq
, &flags
);
2765 #ifdef CONFIG_PREEMPT_NOTIFIERS
2768 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2769 * @notifier: notifier struct to register
2771 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2773 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2775 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2778 * preempt_notifier_unregister - no longer interested in preemption notifications
2779 * @notifier: notifier struct to unregister
2781 * This is safe to call from within a preemption notifier.
2783 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2785 hlist_del(¬ifier
->link
);
2787 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2789 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2791 struct preempt_notifier
*notifier
;
2792 struct hlist_node
*node
;
2794 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2795 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2799 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2800 struct task_struct
*next
)
2802 struct preempt_notifier
*notifier
;
2803 struct hlist_node
*node
;
2805 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2806 notifier
->ops
->sched_out(notifier
, next
);
2809 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2811 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2816 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2817 struct task_struct
*next
)
2821 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2824 * prepare_task_switch - prepare to switch tasks
2825 * @rq: the runqueue preparing to switch
2826 * @prev: the current task that is being switched out
2827 * @next: the task we are going to switch to.
2829 * This is called with the rq lock held and interrupts off. It must
2830 * be paired with a subsequent finish_task_switch after the context
2833 * prepare_task_switch sets up locking and calls architecture specific
2837 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2838 struct task_struct
*next
)
2840 fire_sched_out_preempt_notifiers(prev
, next
);
2841 prepare_lock_switch(rq
, next
);
2842 prepare_arch_switch(next
);
2846 * finish_task_switch - clean up after a task-switch
2847 * @rq: runqueue associated with task-switch
2848 * @prev: the thread we just switched away from.
2850 * finish_task_switch must be called after the context switch, paired
2851 * with a prepare_task_switch call before the context switch.
2852 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2853 * and do any other architecture-specific cleanup actions.
2855 * Note that we may have delayed dropping an mm in context_switch(). If
2856 * so, we finish that here outside of the runqueue lock. (Doing it
2857 * with the lock held can cause deadlocks; see schedule() for
2860 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2861 __releases(rq
->lock
)
2863 struct mm_struct
*mm
= rq
->prev_mm
;
2869 * A task struct has one reference for the use as "current".
2870 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2871 * schedule one last time. The schedule call will never return, and
2872 * the scheduled task must drop that reference.
2873 * The test for TASK_DEAD must occur while the runqueue locks are
2874 * still held, otherwise prev could be scheduled on another cpu, die
2875 * there before we look at prev->state, and then the reference would
2877 * Manfred Spraul <manfred@colorfullife.com>
2879 prev_state
= prev
->state
;
2880 finish_arch_switch(prev
);
2881 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2882 local_irq_disable();
2883 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2884 perf_event_task_sched_in(current
);
2885 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2887 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2888 finish_lock_switch(rq
, prev
);
2890 fire_sched_in_preempt_notifiers(current
);
2893 if (unlikely(prev_state
== TASK_DEAD
)) {
2895 * Remove function-return probe instances associated with this
2896 * task and put them back on the free list.
2898 kprobe_flush_task(prev
);
2899 put_task_struct(prev
);
2905 /* assumes rq->lock is held */
2906 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2908 if (prev
->sched_class
->pre_schedule
)
2909 prev
->sched_class
->pre_schedule(rq
, prev
);
2912 /* rq->lock is NOT held, but preemption is disabled */
2913 static inline void post_schedule(struct rq
*rq
)
2915 if (rq
->post_schedule
) {
2916 unsigned long flags
;
2918 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2919 if (rq
->curr
->sched_class
->post_schedule
)
2920 rq
->curr
->sched_class
->post_schedule(rq
);
2921 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2923 rq
->post_schedule
= 0;
2929 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2933 static inline void post_schedule(struct rq
*rq
)
2940 * schedule_tail - first thing a freshly forked thread must call.
2941 * @prev: the thread we just switched away from.
2943 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2944 __releases(rq
->lock
)
2946 struct rq
*rq
= this_rq();
2948 finish_task_switch(rq
, prev
);
2951 * FIXME: do we need to worry about rq being invalidated by the
2956 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2957 /* In this case, finish_task_switch does not reenable preemption */
2960 if (current
->set_child_tid
)
2961 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2965 * context_switch - switch to the new MM and the new
2966 * thread's register state.
2969 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2970 struct task_struct
*next
)
2972 struct mm_struct
*mm
, *oldmm
;
2974 prepare_task_switch(rq
, prev
, next
);
2975 trace_sched_switch(prev
, next
);
2977 oldmm
= prev
->active_mm
;
2979 * For paravirt, this is coupled with an exit in switch_to to
2980 * combine the page table reload and the switch backend into
2983 arch_start_context_switch(prev
);
2986 next
->active_mm
= oldmm
;
2987 atomic_inc(&oldmm
->mm_count
);
2988 enter_lazy_tlb(oldmm
, next
);
2990 switch_mm(oldmm
, mm
, next
);
2993 prev
->active_mm
= NULL
;
2994 rq
->prev_mm
= oldmm
;
2997 * Since the runqueue lock will be released by the next
2998 * task (which is an invalid locking op but in the case
2999 * of the scheduler it's an obvious special-case), so we
3000 * do an early lockdep release here:
3002 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3003 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
3006 /* Here we just switch the register state and the stack. */
3007 switch_to(prev
, next
, prev
);
3011 * this_rq must be evaluated again because prev may have moved
3012 * CPUs since it called schedule(), thus the 'rq' on its stack
3013 * frame will be invalid.
3015 finish_task_switch(this_rq(), prev
);
3019 * nr_running, nr_uninterruptible and nr_context_switches:
3021 * externally visible scheduler statistics: current number of runnable
3022 * threads, current number of uninterruptible-sleeping threads, total
3023 * number of context switches performed since bootup.
3025 unsigned long nr_running(void)
3027 unsigned long i
, sum
= 0;
3029 for_each_online_cpu(i
)
3030 sum
+= cpu_rq(i
)->nr_running
;
3035 unsigned long nr_uninterruptible(void)
3037 unsigned long i
, sum
= 0;
3039 for_each_possible_cpu(i
)
3040 sum
+= cpu_rq(i
)->nr_uninterruptible
;
3043 * Since we read the counters lockless, it might be slightly
3044 * inaccurate. Do not allow it to go below zero though:
3046 if (unlikely((long)sum
< 0))
3052 unsigned long long nr_context_switches(void)
3055 unsigned long long sum
= 0;
3057 for_each_possible_cpu(i
)
3058 sum
+= cpu_rq(i
)->nr_switches
;
3063 unsigned long nr_iowait(void)
3065 unsigned long i
, sum
= 0;
3067 for_each_possible_cpu(i
)
3068 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
3073 unsigned long nr_iowait_cpu(int cpu
)
3075 struct rq
*this = cpu_rq(cpu
);
3076 return atomic_read(&this->nr_iowait
);
3079 unsigned long this_cpu_load(void)
3081 struct rq
*this = this_rq();
3082 return this->cpu_load
[0];
3086 /* Variables and functions for calc_load */
3087 static atomic_long_t calc_load_tasks
;
3088 static unsigned long calc_load_update
;
3089 unsigned long avenrun
[3];
3090 EXPORT_SYMBOL(avenrun
);
3092 static long calc_load_fold_active(struct rq
*this_rq
)
3094 long nr_active
, delta
= 0;
3096 nr_active
= this_rq
->nr_running
;
3097 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3099 if (nr_active
!= this_rq
->calc_load_active
) {
3100 delta
= nr_active
- this_rq
->calc_load_active
;
3101 this_rq
->calc_load_active
= nr_active
;
3109 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3111 * When making the ILB scale, we should try to pull this in as well.
3113 static atomic_long_t calc_load_tasks_idle
;
3115 static void calc_load_account_idle(struct rq
*this_rq
)
3119 delta
= calc_load_fold_active(this_rq
);
3121 atomic_long_add(delta
, &calc_load_tasks_idle
);
3124 static long calc_load_fold_idle(void)
3129 * Its got a race, we don't care...
3131 if (atomic_long_read(&calc_load_tasks_idle
))
3132 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
3137 static void calc_load_account_idle(struct rq
*this_rq
)
3141 static inline long calc_load_fold_idle(void)
3148 * get_avenrun - get the load average array
3149 * @loads: pointer to dest load array
3150 * @offset: offset to add
3151 * @shift: shift count to shift the result left
3153 * These values are estimates at best, so no need for locking.
3155 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3157 loads
[0] = (avenrun
[0] + offset
) << shift
;
3158 loads
[1] = (avenrun
[1] + offset
) << shift
;
3159 loads
[2] = (avenrun
[2] + offset
) << shift
;
3162 static unsigned long
3163 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3166 load
+= active
* (FIXED_1
- exp
);
3167 return load
>> FSHIFT
;
3171 * calc_load - update the avenrun load estimates 10 ticks after the
3172 * CPUs have updated calc_load_tasks.
3174 void calc_global_load(void)
3176 unsigned long upd
= calc_load_update
+ 10;
3179 if (time_before(jiffies
, upd
))
3182 active
= atomic_long_read(&calc_load_tasks
);
3183 active
= active
> 0 ? active
* FIXED_1
: 0;
3185 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3186 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3187 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3189 calc_load_update
+= LOAD_FREQ
;
3193 * Called from update_cpu_load() to periodically update this CPU's
3196 static void calc_load_account_active(struct rq
*this_rq
)
3200 if (time_before(jiffies
, this_rq
->calc_load_update
))
3203 delta
= calc_load_fold_active(this_rq
);
3204 delta
+= calc_load_fold_idle();
3206 atomic_long_add(delta
, &calc_load_tasks
);
3208 this_rq
->calc_load_update
+= LOAD_FREQ
;
3212 * The exact cpuload at various idx values, calculated at every tick would be
3213 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3215 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3216 * on nth tick when cpu may be busy, then we have:
3217 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3218 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3220 * decay_load_missed() below does efficient calculation of
3221 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3222 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3224 * The calculation is approximated on a 128 point scale.
3225 * degrade_zero_ticks is the number of ticks after which load at any
3226 * particular idx is approximated to be zero.
3227 * degrade_factor is a precomputed table, a row for each load idx.
3228 * Each column corresponds to degradation factor for a power of two ticks,
3229 * based on 128 point scale.
3231 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3232 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3234 * With this power of 2 load factors, we can degrade the load n times
3235 * by looking at 1 bits in n and doing as many mult/shift instead of
3236 * n mult/shifts needed by the exact degradation.
3238 #define DEGRADE_SHIFT 7
3239 static const unsigned char
3240 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
3241 static const unsigned char
3242 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
3243 {0, 0, 0, 0, 0, 0, 0, 0},
3244 {64, 32, 8, 0, 0, 0, 0, 0},
3245 {96, 72, 40, 12, 1, 0, 0},
3246 {112, 98, 75, 43, 15, 1, 0},
3247 {120, 112, 98, 76, 45, 16, 2} };
3250 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3251 * would be when CPU is idle and so we just decay the old load without
3252 * adding any new load.
3254 static unsigned long
3255 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
3259 if (!missed_updates
)
3262 if (missed_updates
>= degrade_zero_ticks
[idx
])
3266 return load
>> missed_updates
;
3268 while (missed_updates
) {
3269 if (missed_updates
% 2)
3270 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
3272 missed_updates
>>= 1;
3279 * Update rq->cpu_load[] statistics. This function is usually called every
3280 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3281 * every tick. We fix it up based on jiffies.
3283 static void update_cpu_load(struct rq
*this_rq
)
3285 unsigned long this_load
= this_rq
->load
.weight
;
3286 unsigned long curr_jiffies
= jiffies
;
3287 unsigned long pending_updates
;
3290 this_rq
->nr_load_updates
++;
3292 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3293 if (curr_jiffies
== this_rq
->last_load_update_tick
)
3296 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3297 this_rq
->last_load_update_tick
= curr_jiffies
;
3299 /* Update our load: */
3300 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
3301 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3302 unsigned long old_load
, new_load
;
3304 /* scale is effectively 1 << i now, and >> i divides by scale */
3306 old_load
= this_rq
->cpu_load
[i
];
3307 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
3308 new_load
= this_load
;
3310 * Round up the averaging division if load is increasing. This
3311 * prevents us from getting stuck on 9 if the load is 10, for
3314 if (new_load
> old_load
)
3315 new_load
+= scale
- 1;
3317 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
3320 sched_avg_update(this_rq
);
3323 static void update_cpu_load_active(struct rq
*this_rq
)
3325 update_cpu_load(this_rq
);
3327 calc_load_account_active(this_rq
);
3333 * sched_exec - execve() is a valuable balancing opportunity, because at
3334 * this point the task has the smallest effective memory and cache footprint.
3336 void sched_exec(void)
3338 struct task_struct
*p
= current
;
3339 unsigned long flags
;
3343 rq
= task_rq_lock(p
, &flags
);
3344 dest_cpu
= p
->sched_class
->select_task_rq(rq
, p
, SD_BALANCE_EXEC
, 0);
3345 if (dest_cpu
== smp_processor_id())
3349 * select_task_rq() can race against ->cpus_allowed
3351 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
) &&
3352 likely(cpu_active(dest_cpu
)) && migrate_task(p
, dest_cpu
)) {
3353 struct migration_arg arg
= { p
, dest_cpu
};
3355 task_rq_unlock(rq
, &flags
);
3356 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
3360 task_rq_unlock(rq
, &flags
);
3365 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3367 EXPORT_PER_CPU_SYMBOL(kstat
);
3370 * Return any ns on the sched_clock that have not yet been accounted in
3371 * @p in case that task is currently running.
3373 * Called with task_rq_lock() held on @rq.
3375 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3379 if (task_current(rq
, p
)) {
3380 update_rq_clock(rq
);
3381 ns
= rq
->clock_task
- p
->se
.exec_start
;
3389 unsigned long long task_delta_exec(struct task_struct
*p
)
3391 unsigned long flags
;
3395 rq
= task_rq_lock(p
, &flags
);
3396 ns
= do_task_delta_exec(p
, rq
);
3397 task_rq_unlock(rq
, &flags
);
3403 * Return accounted runtime for the task.
3404 * In case the task is currently running, return the runtime plus current's
3405 * pending runtime that have not been accounted yet.
3407 unsigned long long task_sched_runtime(struct task_struct
*p
)
3409 unsigned long flags
;
3413 rq
= task_rq_lock(p
, &flags
);
3414 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3415 task_rq_unlock(rq
, &flags
);
3421 * Return sum_exec_runtime for the thread group.
3422 * In case the task is currently running, return the sum plus current's
3423 * pending runtime that have not been accounted yet.
3425 * Note that the thread group might have other running tasks as well,
3426 * so the return value not includes other pending runtime that other
3427 * running tasks might have.
3429 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3431 struct task_cputime totals
;
3432 unsigned long flags
;
3436 rq
= task_rq_lock(p
, &flags
);
3437 thread_group_cputime(p
, &totals
);
3438 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3439 task_rq_unlock(rq
, &flags
);
3445 * Account user cpu time to a process.
3446 * @p: the process that the cpu time gets accounted to
3447 * @cputime: the cpu time spent in user space since the last update
3448 * @cputime_scaled: cputime scaled by cpu frequency
3450 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3451 cputime_t cputime_scaled
)
3453 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3456 /* Add user time to process. */
3457 p
->utime
= cputime_add(p
->utime
, cputime
);
3458 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3459 account_group_user_time(p
, cputime
);
3461 /* Add user time to cpustat. */
3462 tmp
= cputime_to_cputime64(cputime
);
3463 if (TASK_NICE(p
) > 0)
3464 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3466 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3468 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3469 /* Account for user time used */
3470 acct_update_integrals(p
);
3474 * Account guest cpu time to a process.
3475 * @p: the process that the cpu time gets accounted to
3476 * @cputime: the cpu time spent in virtual machine since the last update
3477 * @cputime_scaled: cputime scaled by cpu frequency
3479 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3480 cputime_t cputime_scaled
)
3483 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3485 tmp
= cputime_to_cputime64(cputime
);
3487 /* Add guest time to process. */
3488 p
->utime
= cputime_add(p
->utime
, cputime
);
3489 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3490 account_group_user_time(p
, cputime
);
3491 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3493 /* Add guest time to cpustat. */
3494 if (TASK_NICE(p
) > 0) {
3495 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3496 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3498 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3499 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3504 * Account system cpu time to a process.
3505 * @p: the process that the cpu time gets accounted to
3506 * @hardirq_offset: the offset to subtract from hardirq_count()
3507 * @cputime: the cpu time spent in kernel space since the last update
3508 * @cputime_scaled: cputime scaled by cpu frequency
3510 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3511 cputime_t cputime
, cputime_t cputime_scaled
)
3513 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3516 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3517 account_guest_time(p
, cputime
, cputime_scaled
);
3521 /* Add system time to process. */
3522 p
->stime
= cputime_add(p
->stime
, cputime
);
3523 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3524 account_group_system_time(p
, cputime
);
3526 /* Add system time to cpustat. */
3527 tmp
= cputime_to_cputime64(cputime
);
3528 if (hardirq_count() - hardirq_offset
)
3529 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3530 else if (in_serving_softirq())
3531 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3533 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3535 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3537 /* Account for system time used */
3538 acct_update_integrals(p
);
3542 * Account for involuntary wait time.
3543 * @steal: the cpu time spent in involuntary wait
3545 void account_steal_time(cputime_t cputime
)
3547 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3548 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3550 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3554 * Account for idle time.
3555 * @cputime: the cpu time spent in idle wait
3557 void account_idle_time(cputime_t cputime
)
3559 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3560 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3561 struct rq
*rq
= this_rq();
3563 if (atomic_read(&rq
->nr_iowait
) > 0)
3564 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3566 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3569 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3572 * Account a single tick of cpu time.
3573 * @p: the process that the cpu time gets accounted to
3574 * @user_tick: indicates if the tick is a user or a system tick
3576 void account_process_tick(struct task_struct
*p
, int user_tick
)
3578 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3579 struct rq
*rq
= this_rq();
3582 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3583 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3584 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3587 account_idle_time(cputime_one_jiffy
);
3591 * Account multiple ticks of steal time.
3592 * @p: the process from which the cpu time has been stolen
3593 * @ticks: number of stolen ticks
3595 void account_steal_ticks(unsigned long ticks
)
3597 account_steal_time(jiffies_to_cputime(ticks
));
3601 * Account multiple ticks of idle time.
3602 * @ticks: number of stolen ticks
3604 void account_idle_ticks(unsigned long ticks
)
3606 account_idle_time(jiffies_to_cputime(ticks
));
3612 * Use precise platform statistics if available:
3614 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3615 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3621 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3623 struct task_cputime cputime
;
3625 thread_group_cputime(p
, &cputime
);
3627 *ut
= cputime
.utime
;
3628 *st
= cputime
.stime
;
3632 #ifndef nsecs_to_cputime
3633 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3636 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3638 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3641 * Use CFS's precise accounting:
3643 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3649 do_div(temp
, total
);
3650 utime
= (cputime_t
)temp
;
3655 * Compare with previous values, to keep monotonicity:
3657 p
->prev_utime
= max(p
->prev_utime
, utime
);
3658 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
3660 *ut
= p
->prev_utime
;
3661 *st
= p
->prev_stime
;
3665 * Must be called with siglock held.
3667 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3669 struct signal_struct
*sig
= p
->signal
;
3670 struct task_cputime cputime
;
3671 cputime_t rtime
, utime
, total
;
3673 thread_group_cputime(p
, &cputime
);
3675 total
= cputime_add(cputime
.utime
, cputime
.stime
);
3676 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
3681 temp
*= cputime
.utime
;
3682 do_div(temp
, total
);
3683 utime
= (cputime_t
)temp
;
3687 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
3688 sig
->prev_stime
= max(sig
->prev_stime
,
3689 cputime_sub(rtime
, sig
->prev_utime
));
3691 *ut
= sig
->prev_utime
;
3692 *st
= sig
->prev_stime
;
3697 * This function gets called by the timer code, with HZ frequency.
3698 * We call it with interrupts disabled.
3700 * It also gets called by the fork code, when changing the parent's
3703 void scheduler_tick(void)
3705 int cpu
= smp_processor_id();
3706 struct rq
*rq
= cpu_rq(cpu
);
3707 struct task_struct
*curr
= rq
->curr
;
3711 raw_spin_lock(&rq
->lock
);
3712 update_rq_clock(rq
);
3713 update_cpu_load_active(rq
);
3714 curr
->sched_class
->task_tick(rq
, curr
, 0);
3715 raw_spin_unlock(&rq
->lock
);
3717 perf_event_task_tick();
3720 rq
->idle_at_tick
= idle_cpu(cpu
);
3721 trigger_load_balance(rq
, cpu
);
3725 notrace
unsigned long get_parent_ip(unsigned long addr
)
3727 if (in_lock_functions(addr
)) {
3728 addr
= CALLER_ADDR2
;
3729 if (in_lock_functions(addr
))
3730 addr
= CALLER_ADDR3
;
3735 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3736 defined(CONFIG_PREEMPT_TRACER))
3738 void __kprobes
add_preempt_count(int val
)
3740 #ifdef CONFIG_DEBUG_PREEMPT
3744 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3747 preempt_count() += val
;
3748 #ifdef CONFIG_DEBUG_PREEMPT
3750 * Spinlock count overflowing soon?
3752 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3755 if (preempt_count() == val
)
3756 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3758 EXPORT_SYMBOL(add_preempt_count
);
3760 void __kprobes
sub_preempt_count(int val
)
3762 #ifdef CONFIG_DEBUG_PREEMPT
3766 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3769 * Is the spinlock portion underflowing?
3771 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3772 !(preempt_count() & PREEMPT_MASK
)))
3776 if (preempt_count() == val
)
3777 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3778 preempt_count() -= val
;
3780 EXPORT_SYMBOL(sub_preempt_count
);
3785 * Print scheduling while atomic bug:
3787 static noinline
void __schedule_bug(struct task_struct
*prev
)
3789 struct pt_regs
*regs
= get_irq_regs();
3791 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3792 prev
->comm
, prev
->pid
, preempt_count());
3794 debug_show_held_locks(prev
);
3796 if (irqs_disabled())
3797 print_irqtrace_events(prev
);
3806 * Various schedule()-time debugging checks and statistics:
3808 static inline void schedule_debug(struct task_struct
*prev
)
3811 * Test if we are atomic. Since do_exit() needs to call into
3812 * schedule() atomically, we ignore that path for now.
3813 * Otherwise, whine if we are scheduling when we should not be.
3815 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
3816 __schedule_bug(prev
);
3818 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3820 schedstat_inc(this_rq(), sched_count
);
3821 #ifdef CONFIG_SCHEDSTATS
3822 if (unlikely(prev
->lock_depth
>= 0)) {
3823 schedstat_inc(this_rq(), bkl_count
);
3824 schedstat_inc(prev
, sched_info
.bkl_count
);
3829 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
3832 update_rq_clock(rq
);
3833 rq
->skip_clock_update
= 0;
3834 prev
->sched_class
->put_prev_task(rq
, prev
);
3838 * Pick up the highest-prio task:
3840 static inline struct task_struct
*
3841 pick_next_task(struct rq
*rq
)
3843 const struct sched_class
*class;
3844 struct task_struct
*p
;
3847 * Optimization: we know that if all tasks are in
3848 * the fair class we can call that function directly:
3850 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3851 p
= fair_sched_class
.pick_next_task(rq
);
3856 for_each_class(class) {
3857 p
= class->pick_next_task(rq
);
3862 BUG(); /* the idle class will always have a runnable task */
3866 * schedule() is the main scheduler function.
3868 asmlinkage
void __sched
schedule(void)
3870 struct task_struct
*prev
, *next
;
3871 unsigned long *switch_count
;
3877 cpu
= smp_processor_id();
3879 rcu_note_context_switch(cpu
);
3882 release_kernel_lock(prev
);
3883 need_resched_nonpreemptible
:
3885 schedule_debug(prev
);
3887 if (sched_feat(HRTICK
))
3890 raw_spin_lock_irq(&rq
->lock
);
3891 clear_tsk_need_resched(prev
);
3893 switch_count
= &prev
->nivcsw
;
3894 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3895 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
3896 prev
->state
= TASK_RUNNING
;
3899 * If a worker is going to sleep, notify and
3900 * ask workqueue whether it wants to wake up a
3901 * task to maintain concurrency. If so, wake
3904 if (prev
->flags
& PF_WQ_WORKER
) {
3905 struct task_struct
*to_wakeup
;
3907 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
3909 try_to_wake_up_local(to_wakeup
);
3911 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
3913 switch_count
= &prev
->nvcsw
;
3916 pre_schedule(rq
, prev
);
3918 if (unlikely(!rq
->nr_running
))
3919 idle_balance(cpu
, rq
);
3921 put_prev_task(rq
, prev
);
3922 next
= pick_next_task(rq
);
3924 if (likely(prev
!= next
)) {
3925 sched_info_switch(prev
, next
);
3926 perf_event_task_sched_out(prev
, next
);
3932 context_switch(rq
, prev
, next
); /* unlocks the rq */
3934 * The context switch have flipped the stack from under us
3935 * and restored the local variables which were saved when
3936 * this task called schedule() in the past. prev == current
3937 * is still correct, but it can be moved to another cpu/rq.
3939 cpu
= smp_processor_id();
3942 raw_spin_unlock_irq(&rq
->lock
);
3946 if (unlikely(reacquire_kernel_lock(prev
)))
3947 goto need_resched_nonpreemptible
;
3949 preempt_enable_no_resched();
3953 EXPORT_SYMBOL(schedule
);
3955 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3957 * Look out! "owner" is an entirely speculative pointer
3958 * access and not reliable.
3960 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
3965 if (!sched_feat(OWNER_SPIN
))
3968 #ifdef CONFIG_DEBUG_PAGEALLOC
3970 * Need to access the cpu field knowing that
3971 * DEBUG_PAGEALLOC could have unmapped it if
3972 * the mutex owner just released it and exited.
3974 if (probe_kernel_address(&owner
->cpu
, cpu
))
3981 * Even if the access succeeded (likely case),
3982 * the cpu field may no longer be valid.
3984 if (cpu
>= nr_cpumask_bits
)
3988 * We need to validate that we can do a
3989 * get_cpu() and that we have the percpu area.
3991 if (!cpu_online(cpu
))
3998 * Owner changed, break to re-assess state.
4000 if (lock
->owner
!= owner
) {
4002 * If the lock has switched to a different owner,
4003 * we likely have heavy contention. Return 0 to quit
4004 * optimistic spinning and not contend further:
4012 * Is that owner really running on that cpu?
4014 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
4024 #ifdef CONFIG_PREEMPT
4026 * this is the entry point to schedule() from in-kernel preemption
4027 * off of preempt_enable. Kernel preemptions off return from interrupt
4028 * occur there and call schedule directly.
4030 asmlinkage
void __sched notrace
preempt_schedule(void)
4032 struct thread_info
*ti
= current_thread_info();
4035 * If there is a non-zero preempt_count or interrupts are disabled,
4036 * we do not want to preempt the current task. Just return..
4038 if (likely(ti
->preempt_count
|| irqs_disabled()))
4042 add_preempt_count_notrace(PREEMPT_ACTIVE
);
4044 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
4047 * Check again in case we missed a preemption opportunity
4048 * between schedule and now.
4051 } while (need_resched());
4053 EXPORT_SYMBOL(preempt_schedule
);
4056 * this is the entry point to schedule() from kernel preemption
4057 * off of irq context.
4058 * Note, that this is called and return with irqs disabled. This will
4059 * protect us against recursive calling from irq.
4061 asmlinkage
void __sched
preempt_schedule_irq(void)
4063 struct thread_info
*ti
= current_thread_info();
4065 /* Catch callers which need to be fixed */
4066 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4069 add_preempt_count(PREEMPT_ACTIVE
);
4072 local_irq_disable();
4073 sub_preempt_count(PREEMPT_ACTIVE
);
4076 * Check again in case we missed a preemption opportunity
4077 * between schedule and now.
4080 } while (need_resched());
4083 #endif /* CONFIG_PREEMPT */
4085 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
4088 return try_to_wake_up(curr
->private, mode
, wake_flags
);
4090 EXPORT_SYMBOL(default_wake_function
);
4093 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4094 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4095 * number) then we wake all the non-exclusive tasks and one exclusive task.
4097 * There are circumstances in which we can try to wake a task which has already
4098 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4099 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4101 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4102 int nr_exclusive
, int wake_flags
, void *key
)
4104 wait_queue_t
*curr
, *next
;
4106 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4107 unsigned flags
= curr
->flags
;
4109 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
4110 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4116 * __wake_up - wake up threads blocked on a waitqueue.
4118 * @mode: which threads
4119 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4120 * @key: is directly passed to the wakeup function
4122 * It may be assumed that this function implies a write memory barrier before
4123 * changing the task state if and only if any tasks are woken up.
4125 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4126 int nr_exclusive
, void *key
)
4128 unsigned long flags
;
4130 spin_lock_irqsave(&q
->lock
, flags
);
4131 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4132 spin_unlock_irqrestore(&q
->lock
, flags
);
4134 EXPORT_SYMBOL(__wake_up
);
4137 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4139 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4141 __wake_up_common(q
, mode
, 1, 0, NULL
);
4143 EXPORT_SYMBOL_GPL(__wake_up_locked
);
4145 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
4147 __wake_up_common(q
, mode
, 1, 0, key
);
4151 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4153 * @mode: which threads
4154 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4155 * @key: opaque value to be passed to wakeup targets
4157 * The sync wakeup differs that the waker knows that it will schedule
4158 * away soon, so while the target thread will be woken up, it will not
4159 * be migrated to another CPU - ie. the two threads are 'synchronized'
4160 * with each other. This can prevent needless bouncing between CPUs.
4162 * On UP it can prevent extra preemption.
4164 * It may be assumed that this function implies a write memory barrier before
4165 * changing the task state if and only if any tasks are woken up.
4167 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
4168 int nr_exclusive
, void *key
)
4170 unsigned long flags
;
4171 int wake_flags
= WF_SYNC
;
4176 if (unlikely(!nr_exclusive
))
4179 spin_lock_irqsave(&q
->lock
, flags
);
4180 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
4181 spin_unlock_irqrestore(&q
->lock
, flags
);
4183 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
4186 * __wake_up_sync - see __wake_up_sync_key()
4188 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4190 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
4192 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4195 * complete: - signals a single thread waiting on this completion
4196 * @x: holds the state of this particular completion
4198 * This will wake up a single thread waiting on this completion. Threads will be
4199 * awakened in the same order in which they were queued.
4201 * See also complete_all(), wait_for_completion() and related routines.
4203 * It may be assumed that this function implies a write memory barrier before
4204 * changing the task state if and only if any tasks are woken up.
4206 void complete(struct completion
*x
)
4208 unsigned long flags
;
4210 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4212 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4213 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4215 EXPORT_SYMBOL(complete
);
4218 * complete_all: - signals all threads waiting on this completion
4219 * @x: holds the state of this particular completion
4221 * This will wake up all threads waiting on this particular completion event.
4223 * It may be assumed that this function implies a write memory barrier before
4224 * changing the task state if and only if any tasks are woken up.
4226 void complete_all(struct completion
*x
)
4228 unsigned long flags
;
4230 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4231 x
->done
+= UINT_MAX
/2;
4232 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4233 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4235 EXPORT_SYMBOL(complete_all
);
4237 static inline long __sched
4238 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4241 DECLARE_WAITQUEUE(wait
, current
);
4243 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
4245 if (signal_pending_state(state
, current
)) {
4246 timeout
= -ERESTARTSYS
;
4249 __set_current_state(state
);
4250 spin_unlock_irq(&x
->wait
.lock
);
4251 timeout
= schedule_timeout(timeout
);
4252 spin_lock_irq(&x
->wait
.lock
);
4253 } while (!x
->done
&& timeout
);
4254 __remove_wait_queue(&x
->wait
, &wait
);
4259 return timeout
?: 1;
4263 wait_for_common(struct completion
*x
, long timeout
, int state
)
4267 spin_lock_irq(&x
->wait
.lock
);
4268 timeout
= do_wait_for_common(x
, timeout
, state
);
4269 spin_unlock_irq(&x
->wait
.lock
);
4274 * wait_for_completion: - waits for completion of a task
4275 * @x: holds the state of this particular completion
4277 * This waits to be signaled for completion of a specific task. It is NOT
4278 * interruptible and there is no timeout.
4280 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4281 * and interrupt capability. Also see complete().
4283 void __sched
wait_for_completion(struct completion
*x
)
4285 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4287 EXPORT_SYMBOL(wait_for_completion
);
4290 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4291 * @x: holds the state of this particular completion
4292 * @timeout: timeout value in jiffies
4294 * This waits for either a completion of a specific task to be signaled or for a
4295 * specified timeout to expire. The timeout is in jiffies. It is not
4298 unsigned long __sched
4299 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4301 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4303 EXPORT_SYMBOL(wait_for_completion_timeout
);
4306 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4307 * @x: holds the state of this particular completion
4309 * This waits for completion of a specific task to be signaled. It is
4312 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4314 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4315 if (t
== -ERESTARTSYS
)
4319 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4322 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4323 * @x: holds the state of this particular completion
4324 * @timeout: timeout value in jiffies
4326 * This waits for either a completion of a specific task to be signaled or for a
4327 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4329 unsigned long __sched
4330 wait_for_completion_interruptible_timeout(struct completion
*x
,
4331 unsigned long timeout
)
4333 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4335 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4338 * wait_for_completion_killable: - waits for completion of a task (killable)
4339 * @x: holds the state of this particular completion
4341 * This waits to be signaled for completion of a specific task. It can be
4342 * interrupted by a kill signal.
4344 int __sched
wait_for_completion_killable(struct completion
*x
)
4346 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4347 if (t
== -ERESTARTSYS
)
4351 EXPORT_SYMBOL(wait_for_completion_killable
);
4354 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4355 * @x: holds the state of this particular completion
4356 * @timeout: timeout value in jiffies
4358 * This waits for either a completion of a specific task to be
4359 * signaled or for a specified timeout to expire. It can be
4360 * interrupted by a kill signal. The timeout is in jiffies.
4362 unsigned long __sched
4363 wait_for_completion_killable_timeout(struct completion
*x
,
4364 unsigned long timeout
)
4366 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
4368 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
4371 * try_wait_for_completion - try to decrement a completion without blocking
4372 * @x: completion structure
4374 * Returns: 0 if a decrement cannot be done without blocking
4375 * 1 if a decrement succeeded.
4377 * If a completion is being used as a counting completion,
4378 * attempt to decrement the counter without blocking. This
4379 * enables us to avoid waiting if the resource the completion
4380 * is protecting is not available.
4382 bool try_wait_for_completion(struct completion
*x
)
4384 unsigned long flags
;
4387 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4392 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4395 EXPORT_SYMBOL(try_wait_for_completion
);
4398 * completion_done - Test to see if a completion has any waiters
4399 * @x: completion structure
4401 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4402 * 1 if there are no waiters.
4405 bool completion_done(struct completion
*x
)
4407 unsigned long flags
;
4410 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4413 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4416 EXPORT_SYMBOL(completion_done
);
4419 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4421 unsigned long flags
;
4424 init_waitqueue_entry(&wait
, current
);
4426 __set_current_state(state
);
4428 spin_lock_irqsave(&q
->lock
, flags
);
4429 __add_wait_queue(q
, &wait
);
4430 spin_unlock(&q
->lock
);
4431 timeout
= schedule_timeout(timeout
);
4432 spin_lock_irq(&q
->lock
);
4433 __remove_wait_queue(q
, &wait
);
4434 spin_unlock_irqrestore(&q
->lock
, flags
);
4439 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4441 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4443 EXPORT_SYMBOL(interruptible_sleep_on
);
4446 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4448 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4450 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4452 void __sched
sleep_on(wait_queue_head_t
*q
)
4454 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4456 EXPORT_SYMBOL(sleep_on
);
4458 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4460 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4462 EXPORT_SYMBOL(sleep_on_timeout
);
4464 #ifdef CONFIG_RT_MUTEXES
4467 * rt_mutex_setprio - set the current priority of a task
4469 * @prio: prio value (kernel-internal form)
4471 * This function changes the 'effective' priority of a task. It does
4472 * not touch ->normal_prio like __setscheduler().
4474 * Used by the rt_mutex code to implement priority inheritance logic.
4476 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4478 unsigned long flags
;
4479 int oldprio
, on_rq
, running
;
4481 const struct sched_class
*prev_class
;
4483 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4485 rq
= task_rq_lock(p
, &flags
);
4487 trace_sched_pi_setprio(p
, prio
);
4489 prev_class
= p
->sched_class
;
4490 on_rq
= p
->se
.on_rq
;
4491 running
= task_current(rq
, p
);
4493 dequeue_task(rq
, p
, 0);
4495 p
->sched_class
->put_prev_task(rq
, p
);
4498 p
->sched_class
= &rt_sched_class
;
4500 p
->sched_class
= &fair_sched_class
;
4505 p
->sched_class
->set_curr_task(rq
);
4507 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
4509 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4511 task_rq_unlock(rq
, &flags
);
4516 void set_user_nice(struct task_struct
*p
, long nice
)
4518 int old_prio
, delta
, on_rq
;
4519 unsigned long flags
;
4522 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4525 * We have to be careful, if called from sys_setpriority(),
4526 * the task might be in the middle of scheduling on another CPU.
4528 rq
= task_rq_lock(p
, &flags
);
4530 * The RT priorities are set via sched_setscheduler(), but we still
4531 * allow the 'normal' nice value to be set - but as expected
4532 * it wont have any effect on scheduling until the task is
4533 * SCHED_FIFO/SCHED_RR:
4535 if (task_has_rt_policy(p
)) {
4536 p
->static_prio
= NICE_TO_PRIO(nice
);
4539 on_rq
= p
->se
.on_rq
;
4541 dequeue_task(rq
, p
, 0);
4543 p
->static_prio
= NICE_TO_PRIO(nice
);
4546 p
->prio
= effective_prio(p
);
4547 delta
= p
->prio
- old_prio
;
4550 enqueue_task(rq
, p
, 0);
4552 * If the task increased its priority or is running and
4553 * lowered its priority, then reschedule its CPU:
4555 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4556 resched_task(rq
->curr
);
4559 task_rq_unlock(rq
, &flags
);
4561 EXPORT_SYMBOL(set_user_nice
);
4564 * can_nice - check if a task can reduce its nice value
4568 int can_nice(const struct task_struct
*p
, const int nice
)
4570 /* convert nice value [19,-20] to rlimit style value [1,40] */
4571 int nice_rlim
= 20 - nice
;
4573 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4574 capable(CAP_SYS_NICE
));
4577 #ifdef __ARCH_WANT_SYS_NICE
4580 * sys_nice - change the priority of the current process.
4581 * @increment: priority increment
4583 * sys_setpriority is a more generic, but much slower function that
4584 * does similar things.
4586 SYSCALL_DEFINE1(nice
, int, increment
)
4591 * Setpriority might change our priority at the same moment.
4592 * We don't have to worry. Conceptually one call occurs first
4593 * and we have a single winner.
4595 if (increment
< -40)
4600 nice
= TASK_NICE(current
) + increment
;
4606 if (increment
< 0 && !can_nice(current
, nice
))
4609 retval
= security_task_setnice(current
, nice
);
4613 set_user_nice(current
, nice
);
4620 * task_prio - return the priority value of a given task.
4621 * @p: the task in question.
4623 * This is the priority value as seen by users in /proc.
4624 * RT tasks are offset by -200. Normal tasks are centered
4625 * around 0, value goes from -16 to +15.
4627 int task_prio(const struct task_struct
*p
)
4629 return p
->prio
- MAX_RT_PRIO
;
4633 * task_nice - return the nice value of a given task.
4634 * @p: the task in question.
4636 int task_nice(const struct task_struct
*p
)
4638 return TASK_NICE(p
);
4640 EXPORT_SYMBOL(task_nice
);
4643 * idle_cpu - is a given cpu idle currently?
4644 * @cpu: the processor in question.
4646 int idle_cpu(int cpu
)
4648 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4652 * idle_task - return the idle task for a given cpu.
4653 * @cpu: the processor in question.
4655 struct task_struct
*idle_task(int cpu
)
4657 return cpu_rq(cpu
)->idle
;
4661 * find_process_by_pid - find a process with a matching PID value.
4662 * @pid: the pid in question.
4664 static struct task_struct
*find_process_by_pid(pid_t pid
)
4666 return pid
? find_task_by_vpid(pid
) : current
;
4669 /* Actually do priority change: must hold rq lock. */
4671 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4673 BUG_ON(p
->se
.on_rq
);
4676 p
->rt_priority
= prio
;
4677 p
->normal_prio
= normal_prio(p
);
4678 /* we are holding p->pi_lock already */
4679 p
->prio
= rt_mutex_getprio(p
);
4680 if (rt_prio(p
->prio
))
4681 p
->sched_class
= &rt_sched_class
;
4683 p
->sched_class
= &fair_sched_class
;
4688 * check the target process has a UID that matches the current process's
4690 static bool check_same_owner(struct task_struct
*p
)
4692 const struct cred
*cred
= current_cred(), *pcred
;
4696 pcred
= __task_cred(p
);
4697 match
= (cred
->euid
== pcred
->euid
||
4698 cred
->euid
== pcred
->uid
);
4703 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4704 struct sched_param
*param
, bool user
)
4706 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4707 unsigned long flags
;
4708 const struct sched_class
*prev_class
;
4712 /* may grab non-irq protected spin_locks */
4713 BUG_ON(in_interrupt());
4715 /* double check policy once rq lock held */
4717 reset_on_fork
= p
->sched_reset_on_fork
;
4718 policy
= oldpolicy
= p
->policy
;
4720 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
4721 policy
&= ~SCHED_RESET_ON_FORK
;
4723 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4724 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4725 policy
!= SCHED_IDLE
)
4730 * Valid priorities for SCHED_FIFO and SCHED_RR are
4731 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4732 * SCHED_BATCH and SCHED_IDLE is 0.
4734 if (param
->sched_priority
< 0 ||
4735 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4736 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4738 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4742 * Allow unprivileged RT tasks to decrease priority:
4744 if (user
&& !capable(CAP_SYS_NICE
)) {
4745 if (rt_policy(policy
)) {
4746 unsigned long rlim_rtprio
=
4747 task_rlimit(p
, RLIMIT_RTPRIO
);
4749 /* can't set/change the rt policy */
4750 if (policy
!= p
->policy
&& !rlim_rtprio
)
4753 /* can't increase priority */
4754 if (param
->sched_priority
> p
->rt_priority
&&
4755 param
->sched_priority
> rlim_rtprio
)
4759 * Like positive nice levels, dont allow tasks to
4760 * move out of SCHED_IDLE either:
4762 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4765 /* can't change other user's priorities */
4766 if (!check_same_owner(p
))
4769 /* Normal users shall not reset the sched_reset_on_fork flag */
4770 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4775 retval
= security_task_setscheduler(p
);
4781 * make sure no PI-waiters arrive (or leave) while we are
4782 * changing the priority of the task:
4784 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4786 * To be able to change p->policy safely, the apropriate
4787 * runqueue lock must be held.
4789 rq
= __task_rq_lock(p
);
4792 * Changing the policy of the stop threads its a very bad idea
4794 if (p
== rq
->stop
) {
4795 __task_rq_unlock(rq
);
4796 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4800 #ifdef CONFIG_RT_GROUP_SCHED
4803 * Do not allow realtime tasks into groups that have no runtime
4806 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4807 task_group(p
)->rt_bandwidth
.rt_runtime
== 0) {
4808 __task_rq_unlock(rq
);
4809 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4815 /* recheck policy now with rq lock held */
4816 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4817 policy
= oldpolicy
= -1;
4818 __task_rq_unlock(rq
);
4819 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4822 on_rq
= p
->se
.on_rq
;
4823 running
= task_current(rq
, p
);
4825 deactivate_task(rq
, p
, 0);
4827 p
->sched_class
->put_prev_task(rq
, p
);
4829 p
->sched_reset_on_fork
= reset_on_fork
;
4832 prev_class
= p
->sched_class
;
4833 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4836 p
->sched_class
->set_curr_task(rq
);
4838 activate_task(rq
, p
, 0);
4840 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4842 __task_rq_unlock(rq
);
4843 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4845 rt_mutex_adjust_pi(p
);
4851 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4852 * @p: the task in question.
4853 * @policy: new policy.
4854 * @param: structure containing the new RT priority.
4856 * NOTE that the task may be already dead.
4858 int sched_setscheduler(struct task_struct
*p
, int policy
,
4859 struct sched_param
*param
)
4861 return __sched_setscheduler(p
, policy
, param
, true);
4863 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4866 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4867 * @p: the task in question.
4868 * @policy: new policy.
4869 * @param: structure containing the new RT priority.
4871 * Just like sched_setscheduler, only don't bother checking if the
4872 * current context has permission. For example, this is needed in
4873 * stop_machine(): we create temporary high priority worker threads,
4874 * but our caller might not have that capability.
4876 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4877 struct sched_param
*param
)
4879 return __sched_setscheduler(p
, policy
, param
, false);
4883 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4885 struct sched_param lparam
;
4886 struct task_struct
*p
;
4889 if (!param
|| pid
< 0)
4891 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4896 p
= find_process_by_pid(pid
);
4898 retval
= sched_setscheduler(p
, policy
, &lparam
);
4905 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4906 * @pid: the pid in question.
4907 * @policy: new policy.
4908 * @param: structure containing the new RT priority.
4910 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
4911 struct sched_param __user
*, param
)
4913 /* negative values for policy are not valid */
4917 return do_sched_setscheduler(pid
, policy
, param
);
4921 * sys_sched_setparam - set/change the RT priority of a thread
4922 * @pid: the pid in question.
4923 * @param: structure containing the new RT priority.
4925 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4927 return do_sched_setscheduler(pid
, -1, param
);
4931 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4932 * @pid: the pid in question.
4934 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4936 struct task_struct
*p
;
4944 p
= find_process_by_pid(pid
);
4946 retval
= security_task_getscheduler(p
);
4949 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4956 * sys_sched_getparam - get the RT priority of a thread
4957 * @pid: the pid in question.
4958 * @param: structure containing the RT priority.
4960 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4962 struct sched_param lp
;
4963 struct task_struct
*p
;
4966 if (!param
|| pid
< 0)
4970 p
= find_process_by_pid(pid
);
4975 retval
= security_task_getscheduler(p
);
4979 lp
.sched_priority
= p
->rt_priority
;
4983 * This one might sleep, we cannot do it with a spinlock held ...
4985 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4994 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4996 cpumask_var_t cpus_allowed
, new_mask
;
4997 struct task_struct
*p
;
5003 p
= find_process_by_pid(pid
);
5010 /* Prevent p going away */
5014 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5018 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5020 goto out_free_cpus_allowed
;
5023 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
5026 retval
= security_task_setscheduler(p
);
5030 cpuset_cpus_allowed(p
, cpus_allowed
);
5031 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5033 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5036 cpuset_cpus_allowed(p
, cpus_allowed
);
5037 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5039 * We must have raced with a concurrent cpuset
5040 * update. Just reset the cpus_allowed to the
5041 * cpuset's cpus_allowed
5043 cpumask_copy(new_mask
, cpus_allowed
);
5048 free_cpumask_var(new_mask
);
5049 out_free_cpus_allowed
:
5050 free_cpumask_var(cpus_allowed
);
5057 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5058 struct cpumask
*new_mask
)
5060 if (len
< cpumask_size())
5061 cpumask_clear(new_mask
);
5062 else if (len
> cpumask_size())
5063 len
= cpumask_size();
5065 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5069 * sys_sched_setaffinity - set the cpu affinity of a process
5070 * @pid: pid of the process
5071 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5072 * @user_mask_ptr: user-space pointer to the new cpu mask
5074 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5075 unsigned long __user
*, user_mask_ptr
)
5077 cpumask_var_t new_mask
;
5080 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5083 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5085 retval
= sched_setaffinity(pid
, new_mask
);
5086 free_cpumask_var(new_mask
);
5090 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5092 struct task_struct
*p
;
5093 unsigned long flags
;
5101 p
= find_process_by_pid(pid
);
5105 retval
= security_task_getscheduler(p
);
5109 rq
= task_rq_lock(p
, &flags
);
5110 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5111 task_rq_unlock(rq
, &flags
);
5121 * sys_sched_getaffinity - get the cpu affinity of a process
5122 * @pid: pid of the process
5123 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5124 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5126 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5127 unsigned long __user
*, user_mask_ptr
)
5132 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
5134 if (len
& (sizeof(unsigned long)-1))
5137 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5140 ret
= sched_getaffinity(pid
, mask
);
5142 size_t retlen
= min_t(size_t, len
, cpumask_size());
5144 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
5149 free_cpumask_var(mask
);
5155 * sys_sched_yield - yield the current processor to other threads.
5157 * This function yields the current CPU to other tasks. If there are no
5158 * other threads running on this CPU then this function will return.
5160 SYSCALL_DEFINE0(sched_yield
)
5162 struct rq
*rq
= this_rq_lock();
5164 schedstat_inc(rq
, yld_count
);
5165 current
->sched_class
->yield_task(rq
);
5168 * Since we are going to call schedule() anyway, there's
5169 * no need to preempt or enable interrupts:
5171 __release(rq
->lock
);
5172 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5173 do_raw_spin_unlock(&rq
->lock
);
5174 preempt_enable_no_resched();
5181 static inline int should_resched(void)
5183 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
5186 static void __cond_resched(void)
5188 add_preempt_count(PREEMPT_ACTIVE
);
5190 sub_preempt_count(PREEMPT_ACTIVE
);
5193 int __sched
_cond_resched(void)
5195 if (should_resched()) {
5201 EXPORT_SYMBOL(_cond_resched
);
5204 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5205 * call schedule, and on return reacquire the lock.
5207 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5208 * operations here to prevent schedule() from being called twice (once via
5209 * spin_unlock(), once by hand).
5211 int __cond_resched_lock(spinlock_t
*lock
)
5213 int resched
= should_resched();
5216 lockdep_assert_held(lock
);
5218 if (spin_needbreak(lock
) || resched
) {
5229 EXPORT_SYMBOL(__cond_resched_lock
);
5231 int __sched
__cond_resched_softirq(void)
5233 BUG_ON(!in_softirq());
5235 if (should_resched()) {
5243 EXPORT_SYMBOL(__cond_resched_softirq
);
5246 * yield - yield the current processor to other threads.
5248 * This is a shortcut for kernel-space yielding - it marks the
5249 * thread runnable and calls sys_sched_yield().
5251 void __sched
yield(void)
5253 set_current_state(TASK_RUNNING
);
5256 EXPORT_SYMBOL(yield
);
5259 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5260 * that process accounting knows that this is a task in IO wait state.
5262 void __sched
io_schedule(void)
5264 struct rq
*rq
= raw_rq();
5266 delayacct_blkio_start();
5267 atomic_inc(&rq
->nr_iowait
);
5268 current
->in_iowait
= 1;
5270 current
->in_iowait
= 0;
5271 atomic_dec(&rq
->nr_iowait
);
5272 delayacct_blkio_end();
5274 EXPORT_SYMBOL(io_schedule
);
5276 long __sched
io_schedule_timeout(long timeout
)
5278 struct rq
*rq
= raw_rq();
5281 delayacct_blkio_start();
5282 atomic_inc(&rq
->nr_iowait
);
5283 current
->in_iowait
= 1;
5284 ret
= schedule_timeout(timeout
);
5285 current
->in_iowait
= 0;
5286 atomic_dec(&rq
->nr_iowait
);
5287 delayacct_blkio_end();
5292 * sys_sched_get_priority_max - return maximum RT priority.
5293 * @policy: scheduling class.
5295 * this syscall returns the maximum rt_priority that can be used
5296 * by a given scheduling class.
5298 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5305 ret
= MAX_USER_RT_PRIO
-1;
5317 * sys_sched_get_priority_min - return minimum RT priority.
5318 * @policy: scheduling class.
5320 * this syscall returns the minimum rt_priority that can be used
5321 * by a given scheduling class.
5323 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5341 * sys_sched_rr_get_interval - return the default timeslice of a process.
5342 * @pid: pid of the process.
5343 * @interval: userspace pointer to the timeslice value.
5345 * this syscall writes the default timeslice value of a given process
5346 * into the user-space timespec buffer. A value of '0' means infinity.
5348 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5349 struct timespec __user
*, interval
)
5351 struct task_struct
*p
;
5352 unsigned int time_slice
;
5353 unsigned long flags
;
5363 p
= find_process_by_pid(pid
);
5367 retval
= security_task_getscheduler(p
);
5371 rq
= task_rq_lock(p
, &flags
);
5372 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5373 task_rq_unlock(rq
, &flags
);
5376 jiffies_to_timespec(time_slice
, &t
);
5377 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5385 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5387 void sched_show_task(struct task_struct
*p
)
5389 unsigned long free
= 0;
5392 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5393 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5394 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5395 #if BITS_PER_LONG == 32
5396 if (state
== TASK_RUNNING
)
5397 printk(KERN_CONT
" running ");
5399 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5401 if (state
== TASK_RUNNING
)
5402 printk(KERN_CONT
" running task ");
5404 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5406 #ifdef CONFIG_DEBUG_STACK_USAGE
5407 free
= stack_not_used(p
);
5409 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5410 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5411 (unsigned long)task_thread_info(p
)->flags
);
5413 show_stack(p
, NULL
);
5416 void show_state_filter(unsigned long state_filter
)
5418 struct task_struct
*g
, *p
;
5420 #if BITS_PER_LONG == 32
5422 " task PC stack pid father\n");
5425 " task PC stack pid father\n");
5427 read_lock(&tasklist_lock
);
5428 do_each_thread(g
, p
) {
5430 * reset the NMI-timeout, listing all files on a slow
5431 * console might take alot of time:
5433 touch_nmi_watchdog();
5434 if (!state_filter
|| (p
->state
& state_filter
))
5436 } while_each_thread(g
, p
);
5438 touch_all_softlockup_watchdogs();
5440 #ifdef CONFIG_SCHED_DEBUG
5441 sysrq_sched_debug_show();
5443 read_unlock(&tasklist_lock
);
5445 * Only show locks if all tasks are dumped:
5448 debug_show_all_locks();
5451 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5453 idle
->sched_class
= &idle_sched_class
;
5457 * init_idle - set up an idle thread for a given CPU
5458 * @idle: task in question
5459 * @cpu: cpu the idle task belongs to
5461 * NOTE: this function does not set the idle thread's NEED_RESCHED
5462 * flag, to make booting more robust.
5464 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5466 struct rq
*rq
= cpu_rq(cpu
);
5467 unsigned long flags
;
5469 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5472 idle
->state
= TASK_RUNNING
;
5473 idle
->se
.exec_start
= sched_clock();
5475 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
5477 * We're having a chicken and egg problem, even though we are
5478 * holding rq->lock, the cpu isn't yet set to this cpu so the
5479 * lockdep check in task_group() will fail.
5481 * Similar case to sched_fork(). / Alternatively we could
5482 * use task_rq_lock() here and obtain the other rq->lock.
5487 __set_task_cpu(idle
, cpu
);
5490 rq
->curr
= rq
->idle
= idle
;
5491 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5494 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5496 /* Set the preempt count _outside_ the spinlocks! */
5497 #if defined(CONFIG_PREEMPT)
5498 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5500 task_thread_info(idle
)->preempt_count
= 0;
5503 * The idle tasks have their own, simple scheduling class:
5505 idle
->sched_class
= &idle_sched_class
;
5506 ftrace_graph_init_task(idle
);
5510 * In a system that switches off the HZ timer nohz_cpu_mask
5511 * indicates which cpus entered this state. This is used
5512 * in the rcu update to wait only for active cpus. For system
5513 * which do not switch off the HZ timer nohz_cpu_mask should
5514 * always be CPU_BITS_NONE.
5516 cpumask_var_t nohz_cpu_mask
;
5519 * Increase the granularity value when there are more CPUs,
5520 * because with more CPUs the 'effective latency' as visible
5521 * to users decreases. But the relationship is not linear,
5522 * so pick a second-best guess by going with the log2 of the
5525 * This idea comes from the SD scheduler of Con Kolivas:
5527 static int get_update_sysctl_factor(void)
5529 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5530 unsigned int factor
;
5532 switch (sysctl_sched_tunable_scaling
) {
5533 case SCHED_TUNABLESCALING_NONE
:
5536 case SCHED_TUNABLESCALING_LINEAR
:
5539 case SCHED_TUNABLESCALING_LOG
:
5541 factor
= 1 + ilog2(cpus
);
5548 static void update_sysctl(void)
5550 unsigned int factor
= get_update_sysctl_factor();
5552 #define SET_SYSCTL(name) \
5553 (sysctl_##name = (factor) * normalized_sysctl_##name)
5554 SET_SYSCTL(sched_min_granularity
);
5555 SET_SYSCTL(sched_latency
);
5556 SET_SYSCTL(sched_wakeup_granularity
);
5557 SET_SYSCTL(sched_shares_ratelimit
);
5561 static inline void sched_init_granularity(void)
5568 * This is how migration works:
5570 * 1) we invoke migration_cpu_stop() on the target CPU using
5572 * 2) stopper starts to run (implicitly forcing the migrated thread
5574 * 3) it checks whether the migrated task is still in the wrong runqueue.
5575 * 4) if it's in the wrong runqueue then the migration thread removes
5576 * it and puts it into the right queue.
5577 * 5) stopper completes and stop_one_cpu() returns and the migration
5582 * Change a given task's CPU affinity. Migrate the thread to a
5583 * proper CPU and schedule it away if the CPU it's executing on
5584 * is removed from the allowed bitmask.
5586 * NOTE: the caller must have a valid reference to the task, the
5587 * task must not exit() & deallocate itself prematurely. The
5588 * call is not atomic; no spinlocks may be held.
5590 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5592 unsigned long flags
;
5594 unsigned int dest_cpu
;
5598 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5599 * drop the rq->lock and still rely on ->cpus_allowed.
5602 while (task_is_waking(p
))
5604 rq
= task_rq_lock(p
, &flags
);
5605 if (task_is_waking(p
)) {
5606 task_rq_unlock(rq
, &flags
);
5610 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
5615 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5616 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
5621 if (p
->sched_class
->set_cpus_allowed
)
5622 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5624 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5625 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5628 /* Can the task run on the task's current CPU? If so, we're done */
5629 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
5632 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
5633 if (migrate_task(p
, dest_cpu
)) {
5634 struct migration_arg arg
= { p
, dest_cpu
};
5635 /* Need help from migration thread: drop lock and wait. */
5636 task_rq_unlock(rq
, &flags
);
5637 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
5638 tlb_migrate_finish(p
->mm
);
5642 task_rq_unlock(rq
, &flags
);
5646 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5649 * Move (not current) task off this cpu, onto dest cpu. We're doing
5650 * this because either it can't run here any more (set_cpus_allowed()
5651 * away from this CPU, or CPU going down), or because we're
5652 * attempting to rebalance this task on exec (sched_exec).
5654 * So we race with normal scheduler movements, but that's OK, as long
5655 * as the task is no longer on this CPU.
5657 * Returns non-zero if task was successfully migrated.
5659 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5661 struct rq
*rq_dest
, *rq_src
;
5664 if (unlikely(!cpu_active(dest_cpu
)))
5667 rq_src
= cpu_rq(src_cpu
);
5668 rq_dest
= cpu_rq(dest_cpu
);
5670 double_rq_lock(rq_src
, rq_dest
);
5671 /* Already moved. */
5672 if (task_cpu(p
) != src_cpu
)
5674 /* Affinity changed (again). */
5675 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
5679 * If we're not on a rq, the next wake-up will ensure we're
5683 deactivate_task(rq_src
, p
, 0);
5684 set_task_cpu(p
, dest_cpu
);
5685 activate_task(rq_dest
, p
, 0);
5686 check_preempt_curr(rq_dest
, p
, 0);
5691 double_rq_unlock(rq_src
, rq_dest
);
5696 * migration_cpu_stop - this will be executed by a highprio stopper thread
5697 * and performs thread migration by bumping thread off CPU then
5698 * 'pushing' onto another runqueue.
5700 static int migration_cpu_stop(void *data
)
5702 struct migration_arg
*arg
= data
;
5705 * The original target cpu might have gone down and we might
5706 * be on another cpu but it doesn't matter.
5708 local_irq_disable();
5709 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
5714 #ifdef CONFIG_HOTPLUG_CPU
5716 * Figure out where task on dead CPU should go, use force if necessary.
5718 void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5720 struct rq
*rq
= cpu_rq(dead_cpu
);
5721 int needs_cpu
, uninitialized_var(dest_cpu
);
5722 unsigned long flags
;
5724 local_irq_save(flags
);
5726 raw_spin_lock(&rq
->lock
);
5727 needs_cpu
= (task_cpu(p
) == dead_cpu
) && (p
->state
!= TASK_WAKING
);
5729 dest_cpu
= select_fallback_rq(dead_cpu
, p
);
5730 raw_spin_unlock(&rq
->lock
);
5732 * It can only fail if we race with set_cpus_allowed(),
5733 * in the racer should migrate the task anyway.
5736 __migrate_task(p
, dead_cpu
, dest_cpu
);
5737 local_irq_restore(flags
);
5741 * While a dead CPU has no uninterruptible tasks queued at this point,
5742 * it might still have a nonzero ->nr_uninterruptible counter, because
5743 * for performance reasons the counter is not stricly tracking tasks to
5744 * their home CPUs. So we just add the counter to another CPU's counter,
5745 * to keep the global sum constant after CPU-down:
5747 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5749 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
5750 unsigned long flags
;
5752 local_irq_save(flags
);
5753 double_rq_lock(rq_src
, rq_dest
);
5754 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5755 rq_src
->nr_uninterruptible
= 0;
5756 double_rq_unlock(rq_src
, rq_dest
);
5757 local_irq_restore(flags
);
5760 /* Run through task list and migrate tasks from the dead cpu. */
5761 static void migrate_live_tasks(int src_cpu
)
5763 struct task_struct
*p
, *t
;
5765 read_lock(&tasklist_lock
);
5767 do_each_thread(t
, p
) {
5771 if (task_cpu(p
) == src_cpu
)
5772 move_task_off_dead_cpu(src_cpu
, p
);
5773 } while_each_thread(t
, p
);
5775 read_unlock(&tasklist_lock
);
5779 * Schedules idle task to be the next runnable task on current CPU.
5780 * It does so by boosting its priority to highest possible.
5781 * Used by CPU offline code.
5783 void sched_idle_next(void)
5785 int this_cpu
= smp_processor_id();
5786 struct rq
*rq
= cpu_rq(this_cpu
);
5787 struct task_struct
*p
= rq
->idle
;
5788 unsigned long flags
;
5790 /* cpu has to be offline */
5791 BUG_ON(cpu_online(this_cpu
));
5794 * Strictly not necessary since rest of the CPUs are stopped by now
5795 * and interrupts disabled on the current cpu.
5797 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5799 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5801 activate_task(rq
, p
, 0);
5803 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5807 * Ensures that the idle task is using init_mm right before its cpu goes
5810 void idle_task_exit(void)
5812 struct mm_struct
*mm
= current
->active_mm
;
5814 BUG_ON(cpu_online(smp_processor_id()));
5817 switch_mm(mm
, &init_mm
, current
);
5821 /* called under rq->lock with disabled interrupts */
5822 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5824 struct rq
*rq
= cpu_rq(dead_cpu
);
5826 /* Must be exiting, otherwise would be on tasklist. */
5827 BUG_ON(!p
->exit_state
);
5829 /* Cannot have done final schedule yet: would have vanished. */
5830 BUG_ON(p
->state
== TASK_DEAD
);
5835 * Drop lock around migration; if someone else moves it,
5836 * that's OK. No task can be added to this CPU, so iteration is
5839 raw_spin_unlock_irq(&rq
->lock
);
5840 move_task_off_dead_cpu(dead_cpu
, p
);
5841 raw_spin_lock_irq(&rq
->lock
);
5846 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5847 static void migrate_dead_tasks(unsigned int dead_cpu
)
5849 struct rq
*rq
= cpu_rq(dead_cpu
);
5850 struct task_struct
*next
;
5853 if (!rq
->nr_running
)
5855 next
= pick_next_task(rq
);
5858 next
->sched_class
->put_prev_task(rq
, next
);
5859 migrate_dead(dead_cpu
, next
);
5865 * remove the tasks which were accounted by rq from calc_load_tasks.
5867 static void calc_global_load_remove(struct rq
*rq
)
5869 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
5870 rq
->calc_load_active
= 0;
5872 #endif /* CONFIG_HOTPLUG_CPU */
5874 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5876 static struct ctl_table sd_ctl_dir
[] = {
5878 .procname
= "sched_domain",
5884 static struct ctl_table sd_ctl_root
[] = {
5886 .procname
= "kernel",
5888 .child
= sd_ctl_dir
,
5893 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5895 struct ctl_table
*entry
=
5896 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5901 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5903 struct ctl_table
*entry
;
5906 * In the intermediate directories, both the child directory and
5907 * procname are dynamically allocated and could fail but the mode
5908 * will always be set. In the lowest directory the names are
5909 * static strings and all have proc handlers.
5911 for (entry
= *tablep
; entry
->mode
; entry
++) {
5913 sd_free_ctl_entry(&entry
->child
);
5914 if (entry
->proc_handler
== NULL
)
5915 kfree(entry
->procname
);
5923 set_table_entry(struct ctl_table
*entry
,
5924 const char *procname
, void *data
, int maxlen
,
5925 mode_t mode
, proc_handler
*proc_handler
)
5927 entry
->procname
= procname
;
5929 entry
->maxlen
= maxlen
;
5931 entry
->proc_handler
= proc_handler
;
5934 static struct ctl_table
*
5935 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5937 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
5942 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5943 sizeof(long), 0644, proc_doulongvec_minmax
);
5944 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5945 sizeof(long), 0644, proc_doulongvec_minmax
);
5946 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5947 sizeof(int), 0644, proc_dointvec_minmax
);
5948 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5949 sizeof(int), 0644, proc_dointvec_minmax
);
5950 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5951 sizeof(int), 0644, proc_dointvec_minmax
);
5952 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5953 sizeof(int), 0644, proc_dointvec_minmax
);
5954 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5955 sizeof(int), 0644, proc_dointvec_minmax
);
5956 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5957 sizeof(int), 0644, proc_dointvec_minmax
);
5958 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5959 sizeof(int), 0644, proc_dointvec_minmax
);
5960 set_table_entry(&table
[9], "cache_nice_tries",
5961 &sd
->cache_nice_tries
,
5962 sizeof(int), 0644, proc_dointvec_minmax
);
5963 set_table_entry(&table
[10], "flags", &sd
->flags
,
5964 sizeof(int), 0644, proc_dointvec_minmax
);
5965 set_table_entry(&table
[11], "name", sd
->name
,
5966 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
5967 /* &table[12] is terminator */
5972 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5974 struct ctl_table
*entry
, *table
;
5975 struct sched_domain
*sd
;
5976 int domain_num
= 0, i
;
5979 for_each_domain(cpu
, sd
)
5981 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5986 for_each_domain(cpu
, sd
) {
5987 snprintf(buf
, 32, "domain%d", i
);
5988 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5990 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5997 static struct ctl_table_header
*sd_sysctl_header
;
5998 static void register_sched_domain_sysctl(void)
6000 int i
, cpu_num
= num_possible_cpus();
6001 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6004 WARN_ON(sd_ctl_dir
[0].child
);
6005 sd_ctl_dir
[0].child
= entry
;
6010 for_each_possible_cpu(i
) {
6011 snprintf(buf
, 32, "cpu%d", i
);
6012 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6014 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6018 WARN_ON(sd_sysctl_header
);
6019 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6022 /* may be called multiple times per register */
6023 static void unregister_sched_domain_sysctl(void)
6025 if (sd_sysctl_header
)
6026 unregister_sysctl_table(sd_sysctl_header
);
6027 sd_sysctl_header
= NULL
;
6028 if (sd_ctl_dir
[0].child
)
6029 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6032 static void register_sched_domain_sysctl(void)
6035 static void unregister_sched_domain_sysctl(void)
6040 static void set_rq_online(struct rq
*rq
)
6043 const struct sched_class
*class;
6045 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6048 for_each_class(class) {
6049 if (class->rq_online
)
6050 class->rq_online(rq
);
6055 static void set_rq_offline(struct rq
*rq
)
6058 const struct sched_class
*class;
6060 for_each_class(class) {
6061 if (class->rq_offline
)
6062 class->rq_offline(rq
);
6065 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6071 * migration_call - callback that gets triggered when a CPU is added.
6072 * Here we can start up the necessary migration thread for the new CPU.
6074 static int __cpuinit
6075 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6077 int cpu
= (long)hcpu
;
6078 unsigned long flags
;
6079 struct rq
*rq
= cpu_rq(cpu
);
6083 case CPU_UP_PREPARE
:
6084 case CPU_UP_PREPARE_FROZEN
:
6085 rq
->calc_load_update
= calc_load_update
;
6089 case CPU_ONLINE_FROZEN
:
6090 /* Update our root-domain */
6091 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6093 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6097 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6100 #ifdef CONFIG_HOTPLUG_CPU
6102 case CPU_DEAD_FROZEN
:
6103 migrate_live_tasks(cpu
);
6104 /* Idle task back to normal (off runqueue, low prio) */
6105 raw_spin_lock_irq(&rq
->lock
);
6106 deactivate_task(rq
, rq
->idle
, 0);
6107 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6108 rq
->idle
->sched_class
= &idle_sched_class
;
6109 migrate_dead_tasks(cpu
);
6110 raw_spin_unlock_irq(&rq
->lock
);
6111 migrate_nr_uninterruptible(rq
);
6112 BUG_ON(rq
->nr_running
!= 0);
6113 calc_global_load_remove(rq
);
6117 case CPU_DYING_FROZEN
:
6118 /* Update our root-domain */
6119 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6121 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6124 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6132 * Register at high priority so that task migration (migrate_all_tasks)
6133 * happens before everything else. This has to be lower priority than
6134 * the notifier in the perf_event subsystem, though.
6136 static struct notifier_block __cpuinitdata migration_notifier
= {
6137 .notifier_call
= migration_call
,
6138 .priority
= CPU_PRI_MIGRATION
,
6141 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
6142 unsigned long action
, void *hcpu
)
6144 switch (action
& ~CPU_TASKS_FROZEN
) {
6146 case CPU_DOWN_FAILED
:
6147 set_cpu_active((long)hcpu
, true);
6154 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
6155 unsigned long action
, void *hcpu
)
6157 switch (action
& ~CPU_TASKS_FROZEN
) {
6158 case CPU_DOWN_PREPARE
:
6159 set_cpu_active((long)hcpu
, false);
6166 static int __init
migration_init(void)
6168 void *cpu
= (void *)(long)smp_processor_id();
6171 /* Initialize migration for the boot CPU */
6172 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6173 BUG_ON(err
== NOTIFY_BAD
);
6174 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6175 register_cpu_notifier(&migration_notifier
);
6177 /* Register cpu active notifiers */
6178 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
6179 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
6183 early_initcall(migration_init
);
6188 #ifdef CONFIG_SCHED_DEBUG
6190 static __read_mostly
int sched_domain_debug_enabled
;
6192 static int __init
sched_domain_debug_setup(char *str
)
6194 sched_domain_debug_enabled
= 1;
6198 early_param("sched_debug", sched_domain_debug_setup
);
6200 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6201 struct cpumask
*groupmask
)
6203 struct sched_group
*group
= sd
->groups
;
6206 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6207 cpumask_clear(groupmask
);
6209 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6211 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6212 printk("does not load-balance\n");
6214 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6219 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6221 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6222 printk(KERN_ERR
"ERROR: domain->span does not contain "
6225 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6226 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6230 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6234 printk(KERN_ERR
"ERROR: group is NULL\n");
6238 if (!group
->cpu_power
) {
6239 printk(KERN_CONT
"\n");
6240 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6245 if (!cpumask_weight(sched_group_cpus(group
))) {
6246 printk(KERN_CONT
"\n");
6247 printk(KERN_ERR
"ERROR: empty group\n");
6251 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6252 printk(KERN_CONT
"\n");
6253 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6257 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6259 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6261 printk(KERN_CONT
" %s", str
);
6262 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
6263 printk(KERN_CONT
" (cpu_power = %d)",
6267 group
= group
->next
;
6268 } while (group
!= sd
->groups
);
6269 printk(KERN_CONT
"\n");
6271 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6272 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6275 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6276 printk(KERN_ERR
"ERROR: parent span is not a superset "
6277 "of domain->span\n");
6281 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6283 cpumask_var_t groupmask
;
6286 if (!sched_domain_debug_enabled
)
6290 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6294 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6296 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
6297 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6302 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6309 free_cpumask_var(groupmask
);
6311 #else /* !CONFIG_SCHED_DEBUG */
6312 # define sched_domain_debug(sd, cpu) do { } while (0)
6313 #endif /* CONFIG_SCHED_DEBUG */
6315 static int sd_degenerate(struct sched_domain
*sd
)
6317 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6320 /* Following flags need at least 2 groups */
6321 if (sd
->flags
& (SD_LOAD_BALANCE
|
6322 SD_BALANCE_NEWIDLE
|
6326 SD_SHARE_PKG_RESOURCES
)) {
6327 if (sd
->groups
!= sd
->groups
->next
)
6331 /* Following flags don't use groups */
6332 if (sd
->flags
& (SD_WAKE_AFFINE
))
6339 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6341 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6343 if (sd_degenerate(parent
))
6346 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6349 /* Flags needing groups don't count if only 1 group in parent */
6350 if (parent
->groups
== parent
->groups
->next
) {
6351 pflags
&= ~(SD_LOAD_BALANCE
|
6352 SD_BALANCE_NEWIDLE
|
6356 SD_SHARE_PKG_RESOURCES
);
6357 if (nr_node_ids
== 1)
6358 pflags
&= ~SD_SERIALIZE
;
6360 if (~cflags
& pflags
)
6366 static void free_rootdomain(struct root_domain
*rd
)
6368 synchronize_sched();
6370 cpupri_cleanup(&rd
->cpupri
);
6372 free_cpumask_var(rd
->rto_mask
);
6373 free_cpumask_var(rd
->online
);
6374 free_cpumask_var(rd
->span
);
6378 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6380 struct root_domain
*old_rd
= NULL
;
6381 unsigned long flags
;
6383 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6388 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6391 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6394 * If we dont want to free the old_rt yet then
6395 * set old_rd to NULL to skip the freeing later
6398 if (!atomic_dec_and_test(&old_rd
->refcount
))
6402 atomic_inc(&rd
->refcount
);
6405 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6406 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6409 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6412 free_rootdomain(old_rd
);
6415 static int init_rootdomain(struct root_domain
*rd
)
6417 memset(rd
, 0, sizeof(*rd
));
6419 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6421 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6423 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6426 if (cpupri_init(&rd
->cpupri
) != 0)
6431 free_cpumask_var(rd
->rto_mask
);
6433 free_cpumask_var(rd
->online
);
6435 free_cpumask_var(rd
->span
);
6440 static void init_defrootdomain(void)
6442 init_rootdomain(&def_root_domain
);
6444 atomic_set(&def_root_domain
.refcount
, 1);
6447 static struct root_domain
*alloc_rootdomain(void)
6449 struct root_domain
*rd
;
6451 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6455 if (init_rootdomain(rd
) != 0) {
6464 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6465 * hold the hotplug lock.
6468 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6470 struct rq
*rq
= cpu_rq(cpu
);
6471 struct sched_domain
*tmp
;
6473 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
)
6474 tmp
->span_weight
= cpumask_weight(sched_domain_span(tmp
));
6476 /* Remove the sched domains which do not contribute to scheduling. */
6477 for (tmp
= sd
; tmp
; ) {
6478 struct sched_domain
*parent
= tmp
->parent
;
6482 if (sd_parent_degenerate(tmp
, parent
)) {
6483 tmp
->parent
= parent
->parent
;
6485 parent
->parent
->child
= tmp
;
6490 if (sd
&& sd_degenerate(sd
)) {
6496 sched_domain_debug(sd
, cpu
);
6498 rq_attach_root(rq
, rd
);
6499 rcu_assign_pointer(rq
->sd
, sd
);
6502 /* cpus with isolated domains */
6503 static cpumask_var_t cpu_isolated_map
;
6505 /* Setup the mask of cpus configured for isolated domains */
6506 static int __init
isolated_cpu_setup(char *str
)
6508 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6509 cpulist_parse(str
, cpu_isolated_map
);
6513 __setup("isolcpus=", isolated_cpu_setup
);
6516 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6517 * to a function which identifies what group(along with sched group) a CPU
6518 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6519 * (due to the fact that we keep track of groups covered with a struct cpumask).
6521 * init_sched_build_groups will build a circular linked list of the groups
6522 * covered by the given span, and will set each group's ->cpumask correctly,
6523 * and ->cpu_power to 0.
6526 init_sched_build_groups(const struct cpumask
*span
,
6527 const struct cpumask
*cpu_map
,
6528 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
6529 struct sched_group
**sg
,
6530 struct cpumask
*tmpmask
),
6531 struct cpumask
*covered
, struct cpumask
*tmpmask
)
6533 struct sched_group
*first
= NULL
, *last
= NULL
;
6536 cpumask_clear(covered
);
6538 for_each_cpu(i
, span
) {
6539 struct sched_group
*sg
;
6540 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6543 if (cpumask_test_cpu(i
, covered
))
6546 cpumask_clear(sched_group_cpus(sg
));
6549 for_each_cpu(j
, span
) {
6550 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6553 cpumask_set_cpu(j
, covered
);
6554 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6565 #define SD_NODES_PER_DOMAIN 16
6570 * find_next_best_node - find the next node to include in a sched_domain
6571 * @node: node whose sched_domain we're building
6572 * @used_nodes: nodes already in the sched_domain
6574 * Find the next node to include in a given scheduling domain. Simply
6575 * finds the closest node not already in the @used_nodes map.
6577 * Should use nodemask_t.
6579 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6581 int i
, n
, val
, min_val
, best_node
= 0;
6585 for (i
= 0; i
< nr_node_ids
; i
++) {
6586 /* Start at @node */
6587 n
= (node
+ i
) % nr_node_ids
;
6589 if (!nr_cpus_node(n
))
6592 /* Skip already used nodes */
6593 if (node_isset(n
, *used_nodes
))
6596 /* Simple min distance search */
6597 val
= node_distance(node
, n
);
6599 if (val
< min_val
) {
6605 node_set(best_node
, *used_nodes
);
6610 * sched_domain_node_span - get a cpumask for a node's sched_domain
6611 * @node: node whose cpumask we're constructing
6612 * @span: resulting cpumask
6614 * Given a node, construct a good cpumask for its sched_domain to span. It
6615 * should be one that prevents unnecessary balancing, but also spreads tasks
6618 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6620 nodemask_t used_nodes
;
6623 cpumask_clear(span
);
6624 nodes_clear(used_nodes
);
6626 cpumask_or(span
, span
, cpumask_of_node(node
));
6627 node_set(node
, used_nodes
);
6629 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6630 int next_node
= find_next_best_node(node
, &used_nodes
);
6632 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6635 #endif /* CONFIG_NUMA */
6637 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6640 * The cpus mask in sched_group and sched_domain hangs off the end.
6642 * ( See the the comments in include/linux/sched.h:struct sched_group
6643 * and struct sched_domain. )
6645 struct static_sched_group
{
6646 struct sched_group sg
;
6647 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
6650 struct static_sched_domain
{
6651 struct sched_domain sd
;
6652 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
6658 cpumask_var_t domainspan
;
6659 cpumask_var_t covered
;
6660 cpumask_var_t notcovered
;
6662 cpumask_var_t nodemask
;
6663 cpumask_var_t this_sibling_map
;
6664 cpumask_var_t this_core_map
;
6665 cpumask_var_t this_book_map
;
6666 cpumask_var_t send_covered
;
6667 cpumask_var_t tmpmask
;
6668 struct sched_group
**sched_group_nodes
;
6669 struct root_domain
*rd
;
6673 sa_sched_groups
= 0,
6679 sa_this_sibling_map
,
6681 sa_sched_group_nodes
,
6691 * SMT sched-domains:
6693 #ifdef CONFIG_SCHED_SMT
6694 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
6695 static DEFINE_PER_CPU(struct static_sched_group
, sched_groups
);
6698 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
6699 struct sched_group
**sg
, struct cpumask
*unused
)
6702 *sg
= &per_cpu(sched_groups
, cpu
).sg
;
6705 #endif /* CONFIG_SCHED_SMT */
6708 * multi-core sched-domains:
6710 #ifdef CONFIG_SCHED_MC
6711 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
6712 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
6715 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6716 struct sched_group
**sg
, struct cpumask
*mask
)
6719 #ifdef CONFIG_SCHED_SMT
6720 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6721 group
= cpumask_first(mask
);
6726 *sg
= &per_cpu(sched_group_core
, group
).sg
;
6729 #endif /* CONFIG_SCHED_MC */
6732 * book sched-domains:
6734 #ifdef CONFIG_SCHED_BOOK
6735 static DEFINE_PER_CPU(struct static_sched_domain
, book_domains
);
6736 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_book
);
6739 cpu_to_book_group(int cpu
, const struct cpumask
*cpu_map
,
6740 struct sched_group
**sg
, struct cpumask
*mask
)
6743 #ifdef CONFIG_SCHED_MC
6744 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6745 group
= cpumask_first(mask
);
6746 #elif defined(CONFIG_SCHED_SMT)
6747 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6748 group
= cpumask_first(mask
);
6751 *sg
= &per_cpu(sched_group_book
, group
).sg
;
6754 #endif /* CONFIG_SCHED_BOOK */
6756 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
6757 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
6760 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
6761 struct sched_group
**sg
, struct cpumask
*mask
)
6764 #ifdef CONFIG_SCHED_BOOK
6765 cpumask_and(mask
, cpu_book_mask(cpu
), cpu_map
);
6766 group
= cpumask_first(mask
);
6767 #elif defined(CONFIG_SCHED_MC)
6768 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6769 group
= cpumask_first(mask
);
6770 #elif defined(CONFIG_SCHED_SMT)
6771 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6772 group
= cpumask_first(mask
);
6777 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
6783 * The init_sched_build_groups can't handle what we want to do with node
6784 * groups, so roll our own. Now each node has its own list of groups which
6785 * gets dynamically allocated.
6787 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
6788 static struct sched_group
***sched_group_nodes_bycpu
;
6790 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
6791 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
6793 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
6794 struct sched_group
**sg
,
6795 struct cpumask
*nodemask
)
6799 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
6800 group
= cpumask_first(nodemask
);
6803 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
6807 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6809 struct sched_group
*sg
= group_head
;
6815 for_each_cpu(j
, sched_group_cpus(sg
)) {
6816 struct sched_domain
*sd
;
6818 sd
= &per_cpu(phys_domains
, j
).sd
;
6819 if (j
!= group_first_cpu(sd
->groups
)) {
6821 * Only add "power" once for each
6827 sg
->cpu_power
+= sd
->groups
->cpu_power
;
6830 } while (sg
!= group_head
);
6833 static int build_numa_sched_groups(struct s_data
*d
,
6834 const struct cpumask
*cpu_map
, int num
)
6836 struct sched_domain
*sd
;
6837 struct sched_group
*sg
, *prev
;
6840 cpumask_clear(d
->covered
);
6841 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
6842 if (cpumask_empty(d
->nodemask
)) {
6843 d
->sched_group_nodes
[num
] = NULL
;
6847 sched_domain_node_span(num
, d
->domainspan
);
6848 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
6850 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6853 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
6857 d
->sched_group_nodes
[num
] = sg
;
6859 for_each_cpu(j
, d
->nodemask
) {
6860 sd
= &per_cpu(node_domains
, j
).sd
;
6865 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
6867 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
6870 for (j
= 0; j
< nr_node_ids
; j
++) {
6871 n
= (num
+ j
) % nr_node_ids
;
6872 cpumask_complement(d
->notcovered
, d
->covered
);
6873 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
6874 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
6875 if (cpumask_empty(d
->tmpmask
))
6877 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
6878 if (cpumask_empty(d
->tmpmask
))
6880 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6884 "Can not alloc domain group for node %d\n", j
);
6888 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
6889 sg
->next
= prev
->next
;
6890 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
6897 #endif /* CONFIG_NUMA */
6900 /* Free memory allocated for various sched_group structures */
6901 static void free_sched_groups(const struct cpumask
*cpu_map
,
6902 struct cpumask
*nodemask
)
6906 for_each_cpu(cpu
, cpu_map
) {
6907 struct sched_group
**sched_group_nodes
6908 = sched_group_nodes_bycpu
[cpu
];
6910 if (!sched_group_nodes
)
6913 for (i
= 0; i
< nr_node_ids
; i
++) {
6914 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6916 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
6917 if (cpumask_empty(nodemask
))
6927 if (oldsg
!= sched_group_nodes
[i
])
6930 kfree(sched_group_nodes
);
6931 sched_group_nodes_bycpu
[cpu
] = NULL
;
6934 #else /* !CONFIG_NUMA */
6935 static void free_sched_groups(const struct cpumask
*cpu_map
,
6936 struct cpumask
*nodemask
)
6939 #endif /* CONFIG_NUMA */
6942 * Initialize sched groups cpu_power.
6944 * cpu_power indicates the capacity of sched group, which is used while
6945 * distributing the load between different sched groups in a sched domain.
6946 * Typically cpu_power for all the groups in a sched domain will be same unless
6947 * there are asymmetries in the topology. If there are asymmetries, group
6948 * having more cpu_power will pickup more load compared to the group having
6951 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6953 struct sched_domain
*child
;
6954 struct sched_group
*group
;
6958 WARN_ON(!sd
|| !sd
->groups
);
6960 if (cpu
!= group_first_cpu(sd
->groups
))
6965 sd
->groups
->cpu_power
= 0;
6968 power
= SCHED_LOAD_SCALE
;
6969 weight
= cpumask_weight(sched_domain_span(sd
));
6971 * SMT siblings share the power of a single core.
6972 * Usually multiple threads get a better yield out of
6973 * that one core than a single thread would have,
6974 * reflect that in sd->smt_gain.
6976 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
6977 power
*= sd
->smt_gain
;
6979 power
>>= SCHED_LOAD_SHIFT
;
6981 sd
->groups
->cpu_power
+= power
;
6986 * Add cpu_power of each child group to this groups cpu_power.
6988 group
= child
->groups
;
6990 sd
->groups
->cpu_power
+= group
->cpu_power
;
6991 group
= group
->next
;
6992 } while (group
!= child
->groups
);
6996 * Initializers for schedule domains
6997 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7000 #ifdef CONFIG_SCHED_DEBUG
7001 # define SD_INIT_NAME(sd, type) sd->name = #type
7003 # define SD_INIT_NAME(sd, type) do { } while (0)
7006 #define SD_INIT(sd, type) sd_init_##type(sd)
7008 #define SD_INIT_FUNC(type) \
7009 static noinline void sd_init_##type(struct sched_domain *sd) \
7011 memset(sd, 0, sizeof(*sd)); \
7012 *sd = SD_##type##_INIT; \
7013 sd->level = SD_LV_##type; \
7014 SD_INIT_NAME(sd, type); \
7019 SD_INIT_FUNC(ALLNODES
)
7022 #ifdef CONFIG_SCHED_SMT
7023 SD_INIT_FUNC(SIBLING
)
7025 #ifdef CONFIG_SCHED_MC
7028 #ifdef CONFIG_SCHED_BOOK
7032 static int default_relax_domain_level
= -1;
7034 static int __init
setup_relax_domain_level(char *str
)
7038 val
= simple_strtoul(str
, NULL
, 0);
7039 if (val
< SD_LV_MAX
)
7040 default_relax_domain_level
= val
;
7044 __setup("relax_domain_level=", setup_relax_domain_level
);
7046 static void set_domain_attribute(struct sched_domain
*sd
,
7047 struct sched_domain_attr
*attr
)
7051 if (!attr
|| attr
->relax_domain_level
< 0) {
7052 if (default_relax_domain_level
< 0)
7055 request
= default_relax_domain_level
;
7057 request
= attr
->relax_domain_level
;
7058 if (request
< sd
->level
) {
7059 /* turn off idle balance on this domain */
7060 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7062 /* turn on idle balance on this domain */
7063 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7067 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
7068 const struct cpumask
*cpu_map
)
7071 case sa_sched_groups
:
7072 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
7073 d
->sched_group_nodes
= NULL
;
7075 free_rootdomain(d
->rd
); /* fall through */
7077 free_cpumask_var(d
->tmpmask
); /* fall through */
7078 case sa_send_covered
:
7079 free_cpumask_var(d
->send_covered
); /* fall through */
7080 case sa_this_book_map
:
7081 free_cpumask_var(d
->this_book_map
); /* fall through */
7082 case sa_this_core_map
:
7083 free_cpumask_var(d
->this_core_map
); /* fall through */
7084 case sa_this_sibling_map
:
7085 free_cpumask_var(d
->this_sibling_map
); /* fall through */
7087 free_cpumask_var(d
->nodemask
); /* fall through */
7088 case sa_sched_group_nodes
:
7090 kfree(d
->sched_group_nodes
); /* fall through */
7092 free_cpumask_var(d
->notcovered
); /* fall through */
7094 free_cpumask_var(d
->covered
); /* fall through */
7096 free_cpumask_var(d
->domainspan
); /* fall through */
7103 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
7104 const struct cpumask
*cpu_map
)
7107 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
7109 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
7110 return sa_domainspan
;
7111 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
7113 /* Allocate the per-node list of sched groups */
7114 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
7115 sizeof(struct sched_group
*), GFP_KERNEL
);
7116 if (!d
->sched_group_nodes
) {
7117 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7118 return sa_notcovered
;
7120 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
7122 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
7123 return sa_sched_group_nodes
;
7124 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
7126 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
7127 return sa_this_sibling_map
;
7128 if (!alloc_cpumask_var(&d
->this_book_map
, GFP_KERNEL
))
7129 return sa_this_core_map
;
7130 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
7131 return sa_this_book_map
;
7132 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
7133 return sa_send_covered
;
7134 d
->rd
= alloc_rootdomain();
7136 printk(KERN_WARNING
"Cannot alloc root domain\n");
7139 return sa_rootdomain
;
7142 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
7143 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
7145 struct sched_domain
*sd
= NULL
;
7147 struct sched_domain
*parent
;
7150 if (cpumask_weight(cpu_map
) >
7151 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
7152 sd
= &per_cpu(allnodes_domains
, i
).sd
;
7153 SD_INIT(sd
, ALLNODES
);
7154 set_domain_attribute(sd
, attr
);
7155 cpumask_copy(sched_domain_span(sd
), cpu_map
);
7156 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7161 sd
= &per_cpu(node_domains
, i
).sd
;
7163 set_domain_attribute(sd
, attr
);
7164 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
7165 sd
->parent
= parent
;
7168 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
7173 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
7174 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7175 struct sched_domain
*parent
, int i
)
7177 struct sched_domain
*sd
;
7178 sd
= &per_cpu(phys_domains
, i
).sd
;
7180 set_domain_attribute(sd
, attr
);
7181 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
7182 sd
->parent
= parent
;
7185 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7189 static struct sched_domain
*__build_book_sched_domain(struct s_data
*d
,
7190 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7191 struct sched_domain
*parent
, int i
)
7193 struct sched_domain
*sd
= parent
;
7194 #ifdef CONFIG_SCHED_BOOK
7195 sd
= &per_cpu(book_domains
, i
).sd
;
7197 set_domain_attribute(sd
, attr
);
7198 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_book_mask(i
));
7199 sd
->parent
= parent
;
7201 cpu_to_book_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7206 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
7207 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7208 struct sched_domain
*parent
, int i
)
7210 struct sched_domain
*sd
= parent
;
7211 #ifdef CONFIG_SCHED_MC
7212 sd
= &per_cpu(core_domains
, i
).sd
;
7214 set_domain_attribute(sd
, attr
);
7215 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
7216 sd
->parent
= parent
;
7218 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7223 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
7224 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7225 struct sched_domain
*parent
, int i
)
7227 struct sched_domain
*sd
= parent
;
7228 #ifdef CONFIG_SCHED_SMT
7229 sd
= &per_cpu(cpu_domains
, i
).sd
;
7230 SD_INIT(sd
, SIBLING
);
7231 set_domain_attribute(sd
, attr
);
7232 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
7233 sd
->parent
= parent
;
7235 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7240 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
7241 const struct cpumask
*cpu_map
, int cpu
)
7244 #ifdef CONFIG_SCHED_SMT
7245 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
7246 cpumask_and(d
->this_sibling_map
, cpu_map
,
7247 topology_thread_cpumask(cpu
));
7248 if (cpu
== cpumask_first(d
->this_sibling_map
))
7249 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
7251 d
->send_covered
, d
->tmpmask
);
7254 #ifdef CONFIG_SCHED_MC
7255 case SD_LV_MC
: /* set up multi-core groups */
7256 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
7257 if (cpu
== cpumask_first(d
->this_core_map
))
7258 init_sched_build_groups(d
->this_core_map
, cpu_map
,
7260 d
->send_covered
, d
->tmpmask
);
7263 #ifdef CONFIG_SCHED_BOOK
7264 case SD_LV_BOOK
: /* set up book groups */
7265 cpumask_and(d
->this_book_map
, cpu_map
, cpu_book_mask(cpu
));
7266 if (cpu
== cpumask_first(d
->this_book_map
))
7267 init_sched_build_groups(d
->this_book_map
, cpu_map
,
7269 d
->send_covered
, d
->tmpmask
);
7272 case SD_LV_CPU
: /* set up physical groups */
7273 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
7274 if (!cpumask_empty(d
->nodemask
))
7275 init_sched_build_groups(d
->nodemask
, cpu_map
,
7277 d
->send_covered
, d
->tmpmask
);
7280 case SD_LV_ALLNODES
:
7281 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
7282 d
->send_covered
, d
->tmpmask
);
7291 * Build sched domains for a given set of cpus and attach the sched domains
7292 * to the individual cpus
7294 static int __build_sched_domains(const struct cpumask
*cpu_map
,
7295 struct sched_domain_attr
*attr
)
7297 enum s_alloc alloc_state
= sa_none
;
7299 struct sched_domain
*sd
;
7305 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7306 if (alloc_state
!= sa_rootdomain
)
7308 alloc_state
= sa_sched_groups
;
7311 * Set up domains for cpus specified by the cpu_map.
7313 for_each_cpu(i
, cpu_map
) {
7314 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
7317 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
7318 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7319 sd
= __build_book_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7320 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7321 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7324 for_each_cpu(i
, cpu_map
) {
7325 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
7326 build_sched_groups(&d
, SD_LV_BOOK
, cpu_map
, i
);
7327 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
7330 /* Set up physical groups */
7331 for (i
= 0; i
< nr_node_ids
; i
++)
7332 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
7335 /* Set up node groups */
7337 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
7339 for (i
= 0; i
< nr_node_ids
; i
++)
7340 if (build_numa_sched_groups(&d
, cpu_map
, i
))
7344 /* Calculate CPU power for physical packages and nodes */
7345 #ifdef CONFIG_SCHED_SMT
7346 for_each_cpu(i
, cpu_map
) {
7347 sd
= &per_cpu(cpu_domains
, i
).sd
;
7348 init_sched_groups_power(i
, sd
);
7351 #ifdef CONFIG_SCHED_MC
7352 for_each_cpu(i
, cpu_map
) {
7353 sd
= &per_cpu(core_domains
, i
).sd
;
7354 init_sched_groups_power(i
, sd
);
7357 #ifdef CONFIG_SCHED_BOOK
7358 for_each_cpu(i
, cpu_map
) {
7359 sd
= &per_cpu(book_domains
, i
).sd
;
7360 init_sched_groups_power(i
, sd
);
7364 for_each_cpu(i
, cpu_map
) {
7365 sd
= &per_cpu(phys_domains
, i
).sd
;
7366 init_sched_groups_power(i
, sd
);
7370 for (i
= 0; i
< nr_node_ids
; i
++)
7371 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
7373 if (d
.sd_allnodes
) {
7374 struct sched_group
*sg
;
7376 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
7378 init_numa_sched_groups_power(sg
);
7382 /* Attach the domains */
7383 for_each_cpu(i
, cpu_map
) {
7384 #ifdef CONFIG_SCHED_SMT
7385 sd
= &per_cpu(cpu_domains
, i
).sd
;
7386 #elif defined(CONFIG_SCHED_MC)
7387 sd
= &per_cpu(core_domains
, i
).sd
;
7388 #elif defined(CONFIG_SCHED_BOOK)
7389 sd
= &per_cpu(book_domains
, i
).sd
;
7391 sd
= &per_cpu(phys_domains
, i
).sd
;
7393 cpu_attach_domain(sd
, d
.rd
, i
);
7396 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
7397 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
7401 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7405 static int build_sched_domains(const struct cpumask
*cpu_map
)
7407 return __build_sched_domains(cpu_map
, NULL
);
7410 static cpumask_var_t
*doms_cur
; /* current sched domains */
7411 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7412 static struct sched_domain_attr
*dattr_cur
;
7413 /* attribues of custom domains in 'doms_cur' */
7416 * Special case: If a kmalloc of a doms_cur partition (array of
7417 * cpumask) fails, then fallback to a single sched domain,
7418 * as determined by the single cpumask fallback_doms.
7420 static cpumask_var_t fallback_doms
;
7423 * arch_update_cpu_topology lets virtualized architectures update the
7424 * cpu core maps. It is supposed to return 1 if the topology changed
7425 * or 0 if it stayed the same.
7427 int __attribute__((weak
)) arch_update_cpu_topology(void)
7432 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7435 cpumask_var_t
*doms
;
7437 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7440 for (i
= 0; i
< ndoms
; i
++) {
7441 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7442 free_sched_domains(doms
, i
);
7449 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7452 for (i
= 0; i
< ndoms
; i
++)
7453 free_cpumask_var(doms
[i
]);
7458 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7459 * For now this just excludes isolated cpus, but could be used to
7460 * exclude other special cases in the future.
7462 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7466 arch_update_cpu_topology();
7468 doms_cur
= alloc_sched_domains(ndoms_cur
);
7470 doms_cur
= &fallback_doms
;
7471 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7473 err
= build_sched_domains(doms_cur
[0]);
7474 register_sched_domain_sysctl();
7479 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7480 struct cpumask
*tmpmask
)
7482 free_sched_groups(cpu_map
, tmpmask
);
7486 * Detach sched domains from a group of cpus specified in cpu_map
7487 * These cpus will now be attached to the NULL domain
7489 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7491 /* Save because hotplug lock held. */
7492 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7495 for_each_cpu(i
, cpu_map
)
7496 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7497 synchronize_sched();
7498 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7501 /* handle null as "default" */
7502 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7503 struct sched_domain_attr
*new, int idx_new
)
7505 struct sched_domain_attr tmp
;
7512 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7513 new ? (new + idx_new
) : &tmp
,
7514 sizeof(struct sched_domain_attr
));
7518 * Partition sched domains as specified by the 'ndoms_new'
7519 * cpumasks in the array doms_new[] of cpumasks. This compares
7520 * doms_new[] to the current sched domain partitioning, doms_cur[].
7521 * It destroys each deleted domain and builds each new domain.
7523 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7524 * The masks don't intersect (don't overlap.) We should setup one
7525 * sched domain for each mask. CPUs not in any of the cpumasks will
7526 * not be load balanced. If the same cpumask appears both in the
7527 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7530 * The passed in 'doms_new' should be allocated using
7531 * alloc_sched_domains. This routine takes ownership of it and will
7532 * free_sched_domains it when done with it. If the caller failed the
7533 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7534 * and partition_sched_domains() will fallback to the single partition
7535 * 'fallback_doms', it also forces the domains to be rebuilt.
7537 * If doms_new == NULL it will be replaced with cpu_online_mask.
7538 * ndoms_new == 0 is a special case for destroying existing domains,
7539 * and it will not create the default domain.
7541 * Call with hotplug lock held
7543 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7544 struct sched_domain_attr
*dattr_new
)
7549 mutex_lock(&sched_domains_mutex
);
7551 /* always unregister in case we don't destroy any domains */
7552 unregister_sched_domain_sysctl();
7554 /* Let architecture update cpu core mappings. */
7555 new_topology
= arch_update_cpu_topology();
7557 n
= doms_new
? ndoms_new
: 0;
7559 /* Destroy deleted domains */
7560 for (i
= 0; i
< ndoms_cur
; i
++) {
7561 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7562 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7563 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7566 /* no match - a current sched domain not in new doms_new[] */
7567 detach_destroy_domains(doms_cur
[i
]);
7572 if (doms_new
== NULL
) {
7574 doms_new
= &fallback_doms
;
7575 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7576 WARN_ON_ONCE(dattr_new
);
7579 /* Build new domains */
7580 for (i
= 0; i
< ndoms_new
; i
++) {
7581 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7582 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7583 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7586 /* no match - add a new doms_new */
7587 __build_sched_domains(doms_new
[i
],
7588 dattr_new
? dattr_new
+ i
: NULL
);
7593 /* Remember the new sched domains */
7594 if (doms_cur
!= &fallback_doms
)
7595 free_sched_domains(doms_cur
, ndoms_cur
);
7596 kfree(dattr_cur
); /* kfree(NULL) is safe */
7597 doms_cur
= doms_new
;
7598 dattr_cur
= dattr_new
;
7599 ndoms_cur
= ndoms_new
;
7601 register_sched_domain_sysctl();
7603 mutex_unlock(&sched_domains_mutex
);
7606 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7607 static void arch_reinit_sched_domains(void)
7611 /* Destroy domains first to force the rebuild */
7612 partition_sched_domains(0, NULL
, NULL
);
7614 rebuild_sched_domains();
7618 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7620 unsigned int level
= 0;
7622 if (sscanf(buf
, "%u", &level
) != 1)
7626 * level is always be positive so don't check for
7627 * level < POWERSAVINGS_BALANCE_NONE which is 0
7628 * What happens on 0 or 1 byte write,
7629 * need to check for count as well?
7632 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7636 sched_smt_power_savings
= level
;
7638 sched_mc_power_savings
= level
;
7640 arch_reinit_sched_domains();
7645 #ifdef CONFIG_SCHED_MC
7646 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7647 struct sysdev_class_attribute
*attr
,
7650 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7652 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7653 struct sysdev_class_attribute
*attr
,
7654 const char *buf
, size_t count
)
7656 return sched_power_savings_store(buf
, count
, 0);
7658 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7659 sched_mc_power_savings_show
,
7660 sched_mc_power_savings_store
);
7663 #ifdef CONFIG_SCHED_SMT
7664 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7665 struct sysdev_class_attribute
*attr
,
7668 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7670 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7671 struct sysdev_class_attribute
*attr
,
7672 const char *buf
, size_t count
)
7674 return sched_power_savings_store(buf
, count
, 1);
7676 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7677 sched_smt_power_savings_show
,
7678 sched_smt_power_savings_store
);
7681 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7685 #ifdef CONFIG_SCHED_SMT
7687 err
= sysfs_create_file(&cls
->kset
.kobj
,
7688 &attr_sched_smt_power_savings
.attr
);
7690 #ifdef CONFIG_SCHED_MC
7691 if (!err
&& mc_capable())
7692 err
= sysfs_create_file(&cls
->kset
.kobj
,
7693 &attr_sched_mc_power_savings
.attr
);
7697 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7700 * Update cpusets according to cpu_active mask. If cpusets are
7701 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7702 * around partition_sched_domains().
7704 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
7707 switch (action
& ~CPU_TASKS_FROZEN
) {
7709 case CPU_DOWN_FAILED
:
7710 cpuset_update_active_cpus();
7717 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
7720 switch (action
& ~CPU_TASKS_FROZEN
) {
7721 case CPU_DOWN_PREPARE
:
7722 cpuset_update_active_cpus();
7729 static int update_runtime(struct notifier_block
*nfb
,
7730 unsigned long action
, void *hcpu
)
7732 int cpu
= (int)(long)hcpu
;
7735 case CPU_DOWN_PREPARE
:
7736 case CPU_DOWN_PREPARE_FROZEN
:
7737 disable_runtime(cpu_rq(cpu
));
7740 case CPU_DOWN_FAILED
:
7741 case CPU_DOWN_FAILED_FROZEN
:
7743 case CPU_ONLINE_FROZEN
:
7744 enable_runtime(cpu_rq(cpu
));
7752 void __init
sched_init_smp(void)
7754 cpumask_var_t non_isolated_cpus
;
7756 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7757 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7759 #if defined(CONFIG_NUMA)
7760 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7762 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7765 mutex_lock(&sched_domains_mutex
);
7766 arch_init_sched_domains(cpu_active_mask
);
7767 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7768 if (cpumask_empty(non_isolated_cpus
))
7769 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7770 mutex_unlock(&sched_domains_mutex
);
7773 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
7774 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
7776 /* RT runtime code needs to handle some hotplug events */
7777 hotcpu_notifier(update_runtime
, 0);
7781 /* Move init over to a non-isolated CPU */
7782 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7784 sched_init_granularity();
7785 free_cpumask_var(non_isolated_cpus
);
7787 init_sched_rt_class();
7790 void __init
sched_init_smp(void)
7792 sched_init_granularity();
7794 #endif /* CONFIG_SMP */
7796 const_debug
unsigned int sysctl_timer_migration
= 1;
7798 int in_sched_functions(unsigned long addr
)
7800 return in_lock_functions(addr
) ||
7801 (addr
>= (unsigned long)__sched_text_start
7802 && addr
< (unsigned long)__sched_text_end
);
7805 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7807 cfs_rq
->tasks_timeline
= RB_ROOT
;
7808 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7809 #ifdef CONFIG_FAIR_GROUP_SCHED
7812 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7815 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7817 struct rt_prio_array
*array
;
7820 array
= &rt_rq
->active
;
7821 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7822 INIT_LIST_HEAD(array
->queue
+ i
);
7823 __clear_bit(i
, array
->bitmap
);
7825 /* delimiter for bitsearch: */
7826 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7828 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7829 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
7831 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
7835 rt_rq
->rt_nr_migratory
= 0;
7836 rt_rq
->overloaded
= 0;
7837 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
7841 rt_rq
->rt_throttled
= 0;
7842 rt_rq
->rt_runtime
= 0;
7843 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
7845 #ifdef CONFIG_RT_GROUP_SCHED
7846 rt_rq
->rt_nr_boosted
= 0;
7851 #ifdef CONFIG_FAIR_GROUP_SCHED
7852 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7853 struct sched_entity
*se
, int cpu
, int add
,
7854 struct sched_entity
*parent
)
7856 struct rq
*rq
= cpu_rq(cpu
);
7857 tg
->cfs_rq
[cpu
] = cfs_rq
;
7858 init_cfs_rq(cfs_rq
, rq
);
7861 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7864 /* se could be NULL for init_task_group */
7869 se
->cfs_rq
= &rq
->cfs
;
7871 se
->cfs_rq
= parent
->my_q
;
7874 se
->load
.weight
= tg
->shares
;
7875 se
->load
.inv_weight
= 0;
7876 se
->parent
= parent
;
7880 #ifdef CONFIG_RT_GROUP_SCHED
7881 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7882 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
7883 struct sched_rt_entity
*parent
)
7885 struct rq
*rq
= cpu_rq(cpu
);
7887 tg
->rt_rq
[cpu
] = rt_rq
;
7888 init_rt_rq(rt_rq
, rq
);
7890 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7892 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7894 tg
->rt_se
[cpu
] = rt_se
;
7899 rt_se
->rt_rq
= &rq
->rt
;
7901 rt_se
->rt_rq
= parent
->my_q
;
7903 rt_se
->my_q
= rt_rq
;
7904 rt_se
->parent
= parent
;
7905 INIT_LIST_HEAD(&rt_se
->run_list
);
7909 void __init
sched_init(void)
7912 unsigned long alloc_size
= 0, ptr
;
7914 #ifdef CONFIG_FAIR_GROUP_SCHED
7915 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7917 #ifdef CONFIG_RT_GROUP_SCHED
7918 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7920 #ifdef CONFIG_CPUMASK_OFFSTACK
7921 alloc_size
+= num_possible_cpus() * cpumask_size();
7924 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7926 #ifdef CONFIG_FAIR_GROUP_SCHED
7927 init_task_group
.se
= (struct sched_entity
**)ptr
;
7928 ptr
+= nr_cpu_ids
* sizeof(void **);
7930 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7931 ptr
+= nr_cpu_ids
* sizeof(void **);
7933 #endif /* CONFIG_FAIR_GROUP_SCHED */
7934 #ifdef CONFIG_RT_GROUP_SCHED
7935 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7936 ptr
+= nr_cpu_ids
* sizeof(void **);
7938 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7939 ptr
+= nr_cpu_ids
* sizeof(void **);
7941 #endif /* CONFIG_RT_GROUP_SCHED */
7942 #ifdef CONFIG_CPUMASK_OFFSTACK
7943 for_each_possible_cpu(i
) {
7944 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
7945 ptr
+= cpumask_size();
7947 #endif /* CONFIG_CPUMASK_OFFSTACK */
7951 init_defrootdomain();
7954 init_rt_bandwidth(&def_rt_bandwidth
,
7955 global_rt_period(), global_rt_runtime());
7957 #ifdef CONFIG_RT_GROUP_SCHED
7958 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
7959 global_rt_period(), global_rt_runtime());
7960 #endif /* CONFIG_RT_GROUP_SCHED */
7962 #ifdef CONFIG_CGROUP_SCHED
7963 list_add(&init_task_group
.list
, &task_groups
);
7964 INIT_LIST_HEAD(&init_task_group
.children
);
7966 #endif /* CONFIG_CGROUP_SCHED */
7968 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7969 update_shares_data
= __alloc_percpu(nr_cpu_ids
* sizeof(unsigned long),
7970 __alignof__(unsigned long));
7972 for_each_possible_cpu(i
) {
7976 raw_spin_lock_init(&rq
->lock
);
7978 rq
->calc_load_active
= 0;
7979 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7980 init_cfs_rq(&rq
->cfs
, rq
);
7981 init_rt_rq(&rq
->rt
, rq
);
7982 #ifdef CONFIG_FAIR_GROUP_SCHED
7983 init_task_group
.shares
= init_task_group_load
;
7984 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7985 #ifdef CONFIG_CGROUP_SCHED
7987 * How much cpu bandwidth does init_task_group get?
7989 * In case of task-groups formed thr' the cgroup filesystem, it
7990 * gets 100% of the cpu resources in the system. This overall
7991 * system cpu resource is divided among the tasks of
7992 * init_task_group and its child task-groups in a fair manner,
7993 * based on each entity's (task or task-group's) weight
7994 * (se->load.weight).
7996 * In other words, if init_task_group has 10 tasks of weight
7997 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7998 * then A0's share of the cpu resource is:
8000 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8002 * We achieve this by letting init_task_group's tasks sit
8003 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8005 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8007 #endif /* CONFIG_FAIR_GROUP_SCHED */
8009 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8010 #ifdef CONFIG_RT_GROUP_SCHED
8011 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8012 #ifdef CONFIG_CGROUP_SCHED
8013 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8017 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8018 rq
->cpu_load
[j
] = 0;
8020 rq
->last_load_update_tick
= jiffies
;
8025 rq
->cpu_power
= SCHED_LOAD_SCALE
;
8026 rq
->post_schedule
= 0;
8027 rq
->active_balance
= 0;
8028 rq
->next_balance
= jiffies
;
8033 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
8034 rq_attach_root(rq
, &def_root_domain
);
8036 rq
->nohz_balance_kick
= 0;
8037 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb
, i
));
8041 atomic_set(&rq
->nr_iowait
, 0);
8044 set_load_weight(&init_task
);
8046 #ifdef CONFIG_PREEMPT_NOTIFIERS
8047 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8051 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8054 #ifdef CONFIG_RT_MUTEXES
8055 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8059 * The boot idle thread does lazy MMU switching as well:
8061 atomic_inc(&init_mm
.mm_count
);
8062 enter_lazy_tlb(&init_mm
, current
);
8065 * Make us the idle thread. Technically, schedule() should not be
8066 * called from this thread, however somewhere below it might be,
8067 * but because we are the idle thread, we just pick up running again
8068 * when this runqueue becomes "idle".
8070 init_idle(current
, smp_processor_id());
8072 calc_load_update
= jiffies
+ LOAD_FREQ
;
8075 * During early bootup we pretend to be a normal task:
8077 current
->sched_class
= &fair_sched_class
;
8079 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8080 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
8083 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
8084 alloc_cpumask_var(&nohz
.grp_idle_mask
, GFP_NOWAIT
);
8085 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
8086 atomic_set(&nohz
.first_pick_cpu
, nr_cpu_ids
);
8087 atomic_set(&nohz
.second_pick_cpu
, nr_cpu_ids
);
8089 /* May be allocated at isolcpus cmdline parse time */
8090 if (cpu_isolated_map
== NULL
)
8091 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
8096 scheduler_running
= 1;
8099 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8100 static inline int preempt_count_equals(int preempt_offset
)
8102 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
8104 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
8107 void __might_sleep(const char *file
, int line
, int preempt_offset
)
8110 static unsigned long prev_jiffy
; /* ratelimiting */
8112 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
8113 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8115 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8117 prev_jiffy
= jiffies
;
8120 "BUG: sleeping function called from invalid context at %s:%d\n",
8123 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8124 in_atomic(), irqs_disabled(),
8125 current
->pid
, current
->comm
);
8127 debug_show_held_locks(current
);
8128 if (irqs_disabled())
8129 print_irqtrace_events(current
);
8133 EXPORT_SYMBOL(__might_sleep
);
8136 #ifdef CONFIG_MAGIC_SYSRQ
8137 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8141 on_rq
= p
->se
.on_rq
;
8143 deactivate_task(rq
, p
, 0);
8144 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8146 activate_task(rq
, p
, 0);
8147 resched_task(rq
->curr
);
8151 void normalize_rt_tasks(void)
8153 struct task_struct
*g
, *p
;
8154 unsigned long flags
;
8157 read_lock_irqsave(&tasklist_lock
, flags
);
8158 do_each_thread(g
, p
) {
8160 * Only normalize user tasks:
8165 p
->se
.exec_start
= 0;
8166 #ifdef CONFIG_SCHEDSTATS
8167 p
->se
.statistics
.wait_start
= 0;
8168 p
->se
.statistics
.sleep_start
= 0;
8169 p
->se
.statistics
.block_start
= 0;
8174 * Renice negative nice level userspace
8177 if (TASK_NICE(p
) < 0 && p
->mm
)
8178 set_user_nice(p
, 0);
8182 raw_spin_lock(&p
->pi_lock
);
8183 rq
= __task_rq_lock(p
);
8185 normalize_task(rq
, p
);
8187 __task_rq_unlock(rq
);
8188 raw_spin_unlock(&p
->pi_lock
);
8189 } while_each_thread(g
, p
);
8191 read_unlock_irqrestore(&tasklist_lock
, flags
);
8194 #endif /* CONFIG_MAGIC_SYSRQ */
8196 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8198 * These functions are only useful for the IA64 MCA handling, or kdb.
8200 * They can only be called when the whole system has been
8201 * stopped - every CPU needs to be quiescent, and no scheduling
8202 * activity can take place. Using them for anything else would
8203 * be a serious bug, and as a result, they aren't even visible
8204 * under any other configuration.
8208 * curr_task - return the current task for a given cpu.
8209 * @cpu: the processor in question.
8211 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8213 struct task_struct
*curr_task(int cpu
)
8215 return cpu_curr(cpu
);
8218 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8222 * set_curr_task - set the current task for a given cpu.
8223 * @cpu: the processor in question.
8224 * @p: the task pointer to set.
8226 * Description: This function must only be used when non-maskable interrupts
8227 * are serviced on a separate stack. It allows the architecture to switch the
8228 * notion of the current task on a cpu in a non-blocking manner. This function
8229 * must be called with all CPU's synchronized, and interrupts disabled, the
8230 * and caller must save the original value of the current task (see
8231 * curr_task() above) and restore that value before reenabling interrupts and
8232 * re-starting the system.
8234 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8236 void set_curr_task(int cpu
, struct task_struct
*p
)
8243 #ifdef CONFIG_FAIR_GROUP_SCHED
8244 static void free_fair_sched_group(struct task_group
*tg
)
8248 for_each_possible_cpu(i
) {
8250 kfree(tg
->cfs_rq
[i
]);
8260 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8262 struct cfs_rq
*cfs_rq
;
8263 struct sched_entity
*se
;
8267 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8270 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8274 tg
->shares
= NICE_0_LOAD
;
8276 for_each_possible_cpu(i
) {
8279 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8280 GFP_KERNEL
, cpu_to_node(i
));
8284 se
= kzalloc_node(sizeof(struct sched_entity
),
8285 GFP_KERNEL
, cpu_to_node(i
));
8289 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
8300 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8302 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8303 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8306 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8308 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8310 #else /* !CONFG_FAIR_GROUP_SCHED */
8311 static inline void free_fair_sched_group(struct task_group
*tg
)
8316 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8321 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8325 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8328 #endif /* CONFIG_FAIR_GROUP_SCHED */
8330 #ifdef CONFIG_RT_GROUP_SCHED
8331 static void free_rt_sched_group(struct task_group
*tg
)
8335 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8337 for_each_possible_cpu(i
) {
8339 kfree(tg
->rt_rq
[i
]);
8341 kfree(tg
->rt_se
[i
]);
8349 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8351 struct rt_rq
*rt_rq
;
8352 struct sched_rt_entity
*rt_se
;
8356 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8359 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8363 init_rt_bandwidth(&tg
->rt_bandwidth
,
8364 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8366 for_each_possible_cpu(i
) {
8369 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8370 GFP_KERNEL
, cpu_to_node(i
));
8374 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8375 GFP_KERNEL
, cpu_to_node(i
));
8379 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
8390 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8392 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8393 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8396 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8398 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8400 #else /* !CONFIG_RT_GROUP_SCHED */
8401 static inline void free_rt_sched_group(struct task_group
*tg
)
8406 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8411 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8415 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8418 #endif /* CONFIG_RT_GROUP_SCHED */
8420 #ifdef CONFIG_CGROUP_SCHED
8421 static void free_sched_group(struct task_group
*tg
)
8423 free_fair_sched_group(tg
);
8424 free_rt_sched_group(tg
);
8428 /* allocate runqueue etc for a new task group */
8429 struct task_group
*sched_create_group(struct task_group
*parent
)
8431 struct task_group
*tg
;
8432 unsigned long flags
;
8435 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8437 return ERR_PTR(-ENOMEM
);
8439 if (!alloc_fair_sched_group(tg
, parent
))
8442 if (!alloc_rt_sched_group(tg
, parent
))
8445 spin_lock_irqsave(&task_group_lock
, flags
);
8446 for_each_possible_cpu(i
) {
8447 register_fair_sched_group(tg
, i
);
8448 register_rt_sched_group(tg
, i
);
8450 list_add_rcu(&tg
->list
, &task_groups
);
8452 WARN_ON(!parent
); /* root should already exist */
8454 tg
->parent
= parent
;
8455 INIT_LIST_HEAD(&tg
->children
);
8456 list_add_rcu(&tg
->siblings
, &parent
->children
);
8457 spin_unlock_irqrestore(&task_group_lock
, flags
);
8462 free_sched_group(tg
);
8463 return ERR_PTR(-ENOMEM
);
8466 /* rcu callback to free various structures associated with a task group */
8467 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8469 /* now it should be safe to free those cfs_rqs */
8470 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8473 /* Destroy runqueue etc associated with a task group */
8474 void sched_destroy_group(struct task_group
*tg
)
8476 unsigned long flags
;
8479 spin_lock_irqsave(&task_group_lock
, flags
);
8480 for_each_possible_cpu(i
) {
8481 unregister_fair_sched_group(tg
, i
);
8482 unregister_rt_sched_group(tg
, i
);
8484 list_del_rcu(&tg
->list
);
8485 list_del_rcu(&tg
->siblings
);
8486 spin_unlock_irqrestore(&task_group_lock
, flags
);
8488 /* wait for possible concurrent references to cfs_rqs complete */
8489 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8492 /* change task's runqueue when it moves between groups.
8493 * The caller of this function should have put the task in its new group
8494 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8495 * reflect its new group.
8497 void sched_move_task(struct task_struct
*tsk
)
8500 unsigned long flags
;
8503 rq
= task_rq_lock(tsk
, &flags
);
8505 running
= task_current(rq
, tsk
);
8506 on_rq
= tsk
->se
.on_rq
;
8509 dequeue_task(rq
, tsk
, 0);
8510 if (unlikely(running
))
8511 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8513 set_task_rq(tsk
, task_cpu(tsk
));
8515 #ifdef CONFIG_FAIR_GROUP_SCHED
8516 if (tsk
->sched_class
->moved_group
)
8517 tsk
->sched_class
->moved_group(tsk
, on_rq
);
8520 if (unlikely(running
))
8521 tsk
->sched_class
->set_curr_task(rq
);
8523 enqueue_task(rq
, tsk
, 0);
8525 task_rq_unlock(rq
, &flags
);
8527 #endif /* CONFIG_CGROUP_SCHED */
8529 #ifdef CONFIG_FAIR_GROUP_SCHED
8530 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8532 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8537 dequeue_entity(cfs_rq
, se
, 0);
8539 se
->load
.weight
= shares
;
8540 se
->load
.inv_weight
= 0;
8543 enqueue_entity(cfs_rq
, se
, 0);
8546 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8548 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8549 struct rq
*rq
= cfs_rq
->rq
;
8550 unsigned long flags
;
8552 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8553 __set_se_shares(se
, shares
);
8554 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8557 static DEFINE_MUTEX(shares_mutex
);
8559 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8562 unsigned long flags
;
8565 * We can't change the weight of the root cgroup.
8570 if (shares
< MIN_SHARES
)
8571 shares
= MIN_SHARES
;
8572 else if (shares
> MAX_SHARES
)
8573 shares
= MAX_SHARES
;
8575 mutex_lock(&shares_mutex
);
8576 if (tg
->shares
== shares
)
8579 spin_lock_irqsave(&task_group_lock
, flags
);
8580 for_each_possible_cpu(i
)
8581 unregister_fair_sched_group(tg
, i
);
8582 list_del_rcu(&tg
->siblings
);
8583 spin_unlock_irqrestore(&task_group_lock
, flags
);
8585 /* wait for any ongoing reference to this group to finish */
8586 synchronize_sched();
8589 * Now we are free to modify the group's share on each cpu
8590 * w/o tripping rebalance_share or load_balance_fair.
8592 tg
->shares
= shares
;
8593 for_each_possible_cpu(i
) {
8597 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8598 set_se_shares(tg
->se
[i
], shares
);
8602 * Enable load balance activity on this group, by inserting it back on
8603 * each cpu's rq->leaf_cfs_rq_list.
8605 spin_lock_irqsave(&task_group_lock
, flags
);
8606 for_each_possible_cpu(i
)
8607 register_fair_sched_group(tg
, i
);
8608 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8609 spin_unlock_irqrestore(&task_group_lock
, flags
);
8611 mutex_unlock(&shares_mutex
);
8615 unsigned long sched_group_shares(struct task_group
*tg
)
8621 #ifdef CONFIG_RT_GROUP_SCHED
8623 * Ensure that the real time constraints are schedulable.
8625 static DEFINE_MUTEX(rt_constraints_mutex
);
8627 static unsigned long to_ratio(u64 period
, u64 runtime
)
8629 if (runtime
== RUNTIME_INF
)
8632 return div64_u64(runtime
<< 20, period
);
8635 /* Must be called with tasklist_lock held */
8636 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8638 struct task_struct
*g
, *p
;
8640 do_each_thread(g
, p
) {
8641 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8643 } while_each_thread(g
, p
);
8648 struct rt_schedulable_data
{
8649 struct task_group
*tg
;
8654 static int tg_schedulable(struct task_group
*tg
, void *data
)
8656 struct rt_schedulable_data
*d
= data
;
8657 struct task_group
*child
;
8658 unsigned long total
, sum
= 0;
8659 u64 period
, runtime
;
8661 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8662 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8665 period
= d
->rt_period
;
8666 runtime
= d
->rt_runtime
;
8670 * Cannot have more runtime than the period.
8672 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8676 * Ensure we don't starve existing RT tasks.
8678 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8681 total
= to_ratio(period
, runtime
);
8684 * Nobody can have more than the global setting allows.
8686 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8690 * The sum of our children's runtime should not exceed our own.
8692 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8693 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8694 runtime
= child
->rt_bandwidth
.rt_runtime
;
8696 if (child
== d
->tg
) {
8697 period
= d
->rt_period
;
8698 runtime
= d
->rt_runtime
;
8701 sum
+= to_ratio(period
, runtime
);
8710 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8712 struct rt_schedulable_data data
= {
8714 .rt_period
= period
,
8715 .rt_runtime
= runtime
,
8718 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8721 static int tg_set_bandwidth(struct task_group
*tg
,
8722 u64 rt_period
, u64 rt_runtime
)
8726 mutex_lock(&rt_constraints_mutex
);
8727 read_lock(&tasklist_lock
);
8728 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8732 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8733 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8734 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8736 for_each_possible_cpu(i
) {
8737 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8739 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8740 rt_rq
->rt_runtime
= rt_runtime
;
8741 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8743 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8745 read_unlock(&tasklist_lock
);
8746 mutex_unlock(&rt_constraints_mutex
);
8751 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8753 u64 rt_runtime
, rt_period
;
8755 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8756 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8757 if (rt_runtime_us
< 0)
8758 rt_runtime
= RUNTIME_INF
;
8760 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8763 long sched_group_rt_runtime(struct task_group
*tg
)
8767 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8770 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8771 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8772 return rt_runtime_us
;
8775 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8777 u64 rt_runtime
, rt_period
;
8779 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8780 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8785 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8788 long sched_group_rt_period(struct task_group
*tg
)
8792 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8793 do_div(rt_period_us
, NSEC_PER_USEC
);
8794 return rt_period_us
;
8797 static int sched_rt_global_constraints(void)
8799 u64 runtime
, period
;
8802 if (sysctl_sched_rt_period
<= 0)
8805 runtime
= global_rt_runtime();
8806 period
= global_rt_period();
8809 * Sanity check on the sysctl variables.
8811 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8814 mutex_lock(&rt_constraints_mutex
);
8815 read_lock(&tasklist_lock
);
8816 ret
= __rt_schedulable(NULL
, 0, 0);
8817 read_unlock(&tasklist_lock
);
8818 mutex_unlock(&rt_constraints_mutex
);
8823 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8825 /* Don't accept realtime tasks when there is no way for them to run */
8826 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8832 #else /* !CONFIG_RT_GROUP_SCHED */
8833 static int sched_rt_global_constraints(void)
8835 unsigned long flags
;
8838 if (sysctl_sched_rt_period
<= 0)
8842 * There's always some RT tasks in the root group
8843 * -- migration, kstopmachine etc..
8845 if (sysctl_sched_rt_runtime
== 0)
8848 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8849 for_each_possible_cpu(i
) {
8850 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8852 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8853 rt_rq
->rt_runtime
= global_rt_runtime();
8854 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8856 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8860 #endif /* CONFIG_RT_GROUP_SCHED */
8862 int sched_rt_handler(struct ctl_table
*table
, int write
,
8863 void __user
*buffer
, size_t *lenp
,
8867 int old_period
, old_runtime
;
8868 static DEFINE_MUTEX(mutex
);
8871 old_period
= sysctl_sched_rt_period
;
8872 old_runtime
= sysctl_sched_rt_runtime
;
8874 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8876 if (!ret
&& write
) {
8877 ret
= sched_rt_global_constraints();
8879 sysctl_sched_rt_period
= old_period
;
8880 sysctl_sched_rt_runtime
= old_runtime
;
8882 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8883 def_rt_bandwidth
.rt_period
=
8884 ns_to_ktime(global_rt_period());
8887 mutex_unlock(&mutex
);
8892 #ifdef CONFIG_CGROUP_SCHED
8894 /* return corresponding task_group object of a cgroup */
8895 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8897 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8898 struct task_group
, css
);
8901 static struct cgroup_subsys_state
*
8902 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8904 struct task_group
*tg
, *parent
;
8906 if (!cgrp
->parent
) {
8907 /* This is early initialization for the top cgroup */
8908 return &init_task_group
.css
;
8911 parent
= cgroup_tg(cgrp
->parent
);
8912 tg
= sched_create_group(parent
);
8914 return ERR_PTR(-ENOMEM
);
8920 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8922 struct task_group
*tg
= cgroup_tg(cgrp
);
8924 sched_destroy_group(tg
);
8928 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8930 #ifdef CONFIG_RT_GROUP_SCHED
8931 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
8934 /* We don't support RT-tasks being in separate groups */
8935 if (tsk
->sched_class
!= &fair_sched_class
)
8942 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8943 struct task_struct
*tsk
, bool threadgroup
)
8945 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
8949 struct task_struct
*c
;
8951 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8952 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
8964 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8965 struct cgroup
*old_cont
, struct task_struct
*tsk
,
8968 sched_move_task(tsk
);
8970 struct task_struct
*c
;
8972 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8979 #ifdef CONFIG_FAIR_GROUP_SCHED
8980 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8983 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8986 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8988 struct task_group
*tg
= cgroup_tg(cgrp
);
8990 return (u64
) tg
->shares
;
8992 #endif /* CONFIG_FAIR_GROUP_SCHED */
8994 #ifdef CONFIG_RT_GROUP_SCHED
8995 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8998 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9001 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9003 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9006 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9009 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9012 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9014 return sched_group_rt_period(cgroup_tg(cgrp
));
9016 #endif /* CONFIG_RT_GROUP_SCHED */
9018 static struct cftype cpu_files
[] = {
9019 #ifdef CONFIG_FAIR_GROUP_SCHED
9022 .read_u64
= cpu_shares_read_u64
,
9023 .write_u64
= cpu_shares_write_u64
,
9026 #ifdef CONFIG_RT_GROUP_SCHED
9028 .name
= "rt_runtime_us",
9029 .read_s64
= cpu_rt_runtime_read
,
9030 .write_s64
= cpu_rt_runtime_write
,
9033 .name
= "rt_period_us",
9034 .read_u64
= cpu_rt_period_read_uint
,
9035 .write_u64
= cpu_rt_period_write_uint
,
9040 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9042 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9045 struct cgroup_subsys cpu_cgroup_subsys
= {
9047 .create
= cpu_cgroup_create
,
9048 .destroy
= cpu_cgroup_destroy
,
9049 .can_attach
= cpu_cgroup_can_attach
,
9050 .attach
= cpu_cgroup_attach
,
9051 .populate
= cpu_cgroup_populate
,
9052 .subsys_id
= cpu_cgroup_subsys_id
,
9056 #endif /* CONFIG_CGROUP_SCHED */
9058 #ifdef CONFIG_CGROUP_CPUACCT
9061 * CPU accounting code for task groups.
9063 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9064 * (balbir@in.ibm.com).
9067 /* track cpu usage of a group of tasks and its child groups */
9069 struct cgroup_subsys_state css
;
9070 /* cpuusage holds pointer to a u64-type object on every cpu */
9071 u64 __percpu
*cpuusage
;
9072 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
9073 struct cpuacct
*parent
;
9076 struct cgroup_subsys cpuacct_subsys
;
9078 /* return cpu accounting group corresponding to this container */
9079 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9081 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9082 struct cpuacct
, css
);
9085 /* return cpu accounting group to which this task belongs */
9086 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9088 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9089 struct cpuacct
, css
);
9092 /* create a new cpu accounting group */
9093 static struct cgroup_subsys_state
*cpuacct_create(
9094 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9096 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9102 ca
->cpuusage
= alloc_percpu(u64
);
9106 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9107 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
9108 goto out_free_counters
;
9111 ca
->parent
= cgroup_ca(cgrp
->parent
);
9117 percpu_counter_destroy(&ca
->cpustat
[i
]);
9118 free_percpu(ca
->cpuusage
);
9122 return ERR_PTR(-ENOMEM
);
9125 /* destroy an existing cpu accounting group */
9127 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9129 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9132 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9133 percpu_counter_destroy(&ca
->cpustat
[i
]);
9134 free_percpu(ca
->cpuusage
);
9138 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9140 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9143 #ifndef CONFIG_64BIT
9145 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9147 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9149 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9157 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9159 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9161 #ifndef CONFIG_64BIT
9163 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9165 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9167 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9173 /* return total cpu usage (in nanoseconds) of a group */
9174 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9176 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9177 u64 totalcpuusage
= 0;
9180 for_each_present_cpu(i
)
9181 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9183 return totalcpuusage
;
9186 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9189 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9198 for_each_present_cpu(i
)
9199 cpuacct_cpuusage_write(ca
, i
, 0);
9205 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9208 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9212 for_each_present_cpu(i
) {
9213 percpu
= cpuacct_cpuusage_read(ca
, i
);
9214 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9216 seq_printf(m
, "\n");
9220 static const char *cpuacct_stat_desc
[] = {
9221 [CPUACCT_STAT_USER
] = "user",
9222 [CPUACCT_STAT_SYSTEM
] = "system",
9225 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9226 struct cgroup_map_cb
*cb
)
9228 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9231 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
9232 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
9233 val
= cputime64_to_clock_t(val
);
9234 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
9239 static struct cftype files
[] = {
9242 .read_u64
= cpuusage_read
,
9243 .write_u64
= cpuusage_write
,
9246 .name
= "usage_percpu",
9247 .read_seq_string
= cpuacct_percpu_seq_read
,
9251 .read_map
= cpuacct_stats_show
,
9255 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9257 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9261 * charge this task's execution time to its accounting group.
9263 * called with rq->lock held.
9265 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9270 if (unlikely(!cpuacct_subsys
.active
))
9273 cpu
= task_cpu(tsk
);
9279 for (; ca
; ca
= ca
->parent
) {
9280 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9281 *cpuusage
+= cputime
;
9288 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9289 * in cputime_t units. As a result, cpuacct_update_stats calls
9290 * percpu_counter_add with values large enough to always overflow the
9291 * per cpu batch limit causing bad SMP scalability.
9293 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9294 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9295 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9298 #define CPUACCT_BATCH \
9299 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9301 #define CPUACCT_BATCH 0
9305 * Charge the system/user time to the task's accounting group.
9307 static void cpuacct_update_stats(struct task_struct
*tsk
,
9308 enum cpuacct_stat_index idx
, cputime_t val
)
9311 int batch
= CPUACCT_BATCH
;
9313 if (unlikely(!cpuacct_subsys
.active
))
9320 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
9326 struct cgroup_subsys cpuacct_subsys
= {
9328 .create
= cpuacct_create
,
9329 .destroy
= cpuacct_destroy
,
9330 .populate
= cpuacct_populate
,
9331 .subsys_id
= cpuacct_subsys_id
,
9333 #endif /* CONFIG_CGROUP_CPUACCT */
9337 void synchronize_sched_expedited(void)
9341 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
9343 #else /* #ifndef CONFIG_SMP */
9345 static atomic_t synchronize_sched_expedited_count
= ATOMIC_INIT(0);
9347 static int synchronize_sched_expedited_cpu_stop(void *data
)
9350 * There must be a full memory barrier on each affected CPU
9351 * between the time that try_stop_cpus() is called and the
9352 * time that it returns.
9354 * In the current initial implementation of cpu_stop, the
9355 * above condition is already met when the control reaches
9356 * this point and the following smp_mb() is not strictly
9357 * necessary. Do smp_mb() anyway for documentation and
9358 * robustness against future implementation changes.
9360 smp_mb(); /* See above comment block. */
9365 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9366 * approach to force grace period to end quickly. This consumes
9367 * significant time on all CPUs, and is thus not recommended for
9368 * any sort of common-case code.
9370 * Note that it is illegal to call this function while holding any
9371 * lock that is acquired by a CPU-hotplug notifier. Failing to
9372 * observe this restriction will result in deadlock.
9374 void synchronize_sched_expedited(void)
9376 int snap
, trycount
= 0;
9378 smp_mb(); /* ensure prior mod happens before capturing snap. */
9379 snap
= atomic_read(&synchronize_sched_expedited_count
) + 1;
9381 while (try_stop_cpus(cpu_online_mask
,
9382 synchronize_sched_expedited_cpu_stop
,
9385 if (trycount
++ < 10)
9386 udelay(trycount
* num_online_cpus());
9388 synchronize_sched();
9391 if (atomic_read(&synchronize_sched_expedited_count
) - snap
> 0) {
9392 smp_mb(); /* ensure test happens before caller kfree */
9397 atomic_inc(&synchronize_sched_expedited_count
);
9398 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9401 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
9403 #endif /* #else #ifndef CONFIG_SMP */