ocfs2: Remove JBD compatibility layer
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ocfs2 / alloc.c
blob69d67ab069bbcbcb0779241e854f6fc2e27533c7
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * alloc.c
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
35 #include "ocfs2.h"
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
50 #include "buffer_head_io.h"
54 * Operations for a specific extent tree type.
56 * To implement an on-disk btree (extent tree) type in ocfs2, add
57 * an ocfs2_extent_tree_operations structure and the matching
58 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
59 * for the allocation portion of the extent tree.
61 struct ocfs2_extent_tree_operations {
63 * last_eb_blk is the block number of the right most leaf extent
64 * block. Most on-disk structures containing an extent tree store
65 * this value for fast access. The ->eo_set_last_eb_blk() and
66 * ->eo_get_last_eb_blk() operations access this value. They are
67 * both required.
69 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
70 u64 blkno);
71 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
74 * The on-disk structure usually keeps track of how many total
75 * clusters are stored in this extent tree. This function updates
76 * that value. new_clusters is the delta, and must be
77 * added to the total. Required.
79 void (*eo_update_clusters)(struct inode *inode,
80 struct ocfs2_extent_tree *et,
81 u32 new_clusters);
84 * If ->eo_insert_check() exists, it is called before rec is
85 * inserted into the extent tree. It is optional.
87 int (*eo_insert_check)(struct inode *inode,
88 struct ocfs2_extent_tree *et,
89 struct ocfs2_extent_rec *rec);
90 int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
93 * --------------------------------------------------------------
94 * The remaining are internal to ocfs2_extent_tree and don't have
95 * accessor functions
99 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
100 * It is required.
102 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
105 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
106 * it exists. If it does not, et->et_max_leaf_clusters is set
107 * to 0 (unlimited). Optional.
109 void (*eo_fill_max_leaf_clusters)(struct inode *inode,
110 struct ocfs2_extent_tree *et);
115 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
116 * in the methods.
118 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
119 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
120 u64 blkno);
121 static void ocfs2_dinode_update_clusters(struct inode *inode,
122 struct ocfs2_extent_tree *et,
123 u32 clusters);
124 static int ocfs2_dinode_insert_check(struct inode *inode,
125 struct ocfs2_extent_tree *et,
126 struct ocfs2_extent_rec *rec);
127 static int ocfs2_dinode_sanity_check(struct inode *inode,
128 struct ocfs2_extent_tree *et);
129 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
130 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
131 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk,
132 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk,
133 .eo_update_clusters = ocfs2_dinode_update_clusters,
134 .eo_insert_check = ocfs2_dinode_insert_check,
135 .eo_sanity_check = ocfs2_dinode_sanity_check,
136 .eo_fill_root_el = ocfs2_dinode_fill_root_el,
139 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
140 u64 blkno)
142 struct ocfs2_dinode *di = et->et_object;
144 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
145 di->i_last_eb_blk = cpu_to_le64(blkno);
148 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
150 struct ocfs2_dinode *di = et->et_object;
152 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
153 return le64_to_cpu(di->i_last_eb_blk);
156 static void ocfs2_dinode_update_clusters(struct inode *inode,
157 struct ocfs2_extent_tree *et,
158 u32 clusters)
160 struct ocfs2_dinode *di = et->et_object;
162 le32_add_cpu(&di->i_clusters, clusters);
163 spin_lock(&OCFS2_I(inode)->ip_lock);
164 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
165 spin_unlock(&OCFS2_I(inode)->ip_lock);
168 static int ocfs2_dinode_insert_check(struct inode *inode,
169 struct ocfs2_extent_tree *et,
170 struct ocfs2_extent_rec *rec)
172 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
174 BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
175 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
176 (OCFS2_I(inode)->ip_clusters != rec->e_cpos),
177 "Device %s, asking for sparse allocation: inode %llu, "
178 "cpos %u, clusters %u\n",
179 osb->dev_str,
180 (unsigned long long)OCFS2_I(inode)->ip_blkno,
181 rec->e_cpos,
182 OCFS2_I(inode)->ip_clusters);
184 return 0;
187 static int ocfs2_dinode_sanity_check(struct inode *inode,
188 struct ocfs2_extent_tree *et)
190 struct ocfs2_dinode *di = et->et_object;
192 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
193 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
195 return 0;
198 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
200 struct ocfs2_dinode *di = et->et_object;
202 et->et_root_el = &di->id2.i_list;
206 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
208 struct ocfs2_xattr_value_root *xv = et->et_object;
210 et->et_root_el = &xv->xr_list;
213 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
214 u64 blkno)
216 struct ocfs2_xattr_value_root *xv =
217 (struct ocfs2_xattr_value_root *)et->et_object;
219 xv->xr_last_eb_blk = cpu_to_le64(blkno);
222 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
224 struct ocfs2_xattr_value_root *xv =
225 (struct ocfs2_xattr_value_root *) et->et_object;
227 return le64_to_cpu(xv->xr_last_eb_blk);
230 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
231 struct ocfs2_extent_tree *et,
232 u32 clusters)
234 struct ocfs2_xattr_value_root *xv =
235 (struct ocfs2_xattr_value_root *)et->et_object;
237 le32_add_cpu(&xv->xr_clusters, clusters);
240 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
241 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk,
242 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk,
243 .eo_update_clusters = ocfs2_xattr_value_update_clusters,
244 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el,
247 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
249 struct ocfs2_xattr_block *xb = et->et_object;
251 et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
254 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
255 struct ocfs2_extent_tree *et)
257 et->et_max_leaf_clusters =
258 ocfs2_clusters_for_bytes(inode->i_sb,
259 OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
262 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
263 u64 blkno)
265 struct ocfs2_xattr_block *xb = et->et_object;
266 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
268 xt->xt_last_eb_blk = cpu_to_le64(blkno);
271 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
273 struct ocfs2_xattr_block *xb = et->et_object;
274 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
276 return le64_to_cpu(xt->xt_last_eb_blk);
279 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
280 struct ocfs2_extent_tree *et,
281 u32 clusters)
283 struct ocfs2_xattr_block *xb = et->et_object;
285 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
288 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
289 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk,
290 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk,
291 .eo_update_clusters = ocfs2_xattr_tree_update_clusters,
292 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el,
293 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
296 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
297 struct inode *inode,
298 struct buffer_head *bh,
299 void *obj,
300 struct ocfs2_extent_tree_operations *ops)
302 et->et_ops = ops;
303 et->et_root_bh = bh;
304 if (!obj)
305 obj = (void *)bh->b_data;
306 et->et_object = obj;
308 et->et_ops->eo_fill_root_el(et);
309 if (!et->et_ops->eo_fill_max_leaf_clusters)
310 et->et_max_leaf_clusters = 0;
311 else
312 et->et_ops->eo_fill_max_leaf_clusters(inode, et);
315 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
316 struct inode *inode,
317 struct buffer_head *bh)
319 __ocfs2_init_extent_tree(et, inode, bh, NULL, &ocfs2_dinode_et_ops);
322 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
323 struct inode *inode,
324 struct buffer_head *bh)
326 __ocfs2_init_extent_tree(et, inode, bh, NULL,
327 &ocfs2_xattr_tree_et_ops);
330 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
331 struct inode *inode,
332 struct buffer_head *bh,
333 struct ocfs2_xattr_value_root *xv)
335 __ocfs2_init_extent_tree(et, inode, bh, xv,
336 &ocfs2_xattr_value_et_ops);
339 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
340 u64 new_last_eb_blk)
342 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
345 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
347 return et->et_ops->eo_get_last_eb_blk(et);
350 static inline void ocfs2_et_update_clusters(struct inode *inode,
351 struct ocfs2_extent_tree *et,
352 u32 clusters)
354 et->et_ops->eo_update_clusters(inode, et, clusters);
357 static inline int ocfs2_et_insert_check(struct inode *inode,
358 struct ocfs2_extent_tree *et,
359 struct ocfs2_extent_rec *rec)
361 int ret = 0;
363 if (et->et_ops->eo_insert_check)
364 ret = et->et_ops->eo_insert_check(inode, et, rec);
365 return ret;
368 static inline int ocfs2_et_sanity_check(struct inode *inode,
369 struct ocfs2_extent_tree *et)
371 int ret = 0;
373 if (et->et_ops->eo_sanity_check)
374 ret = et->et_ops->eo_sanity_check(inode, et);
375 return ret;
378 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
379 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
380 struct ocfs2_extent_block *eb);
383 * Structures which describe a path through a btree, and functions to
384 * manipulate them.
386 * The idea here is to be as generic as possible with the tree
387 * manipulation code.
389 struct ocfs2_path_item {
390 struct buffer_head *bh;
391 struct ocfs2_extent_list *el;
394 #define OCFS2_MAX_PATH_DEPTH 5
396 struct ocfs2_path {
397 int p_tree_depth;
398 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH];
401 #define path_root_bh(_path) ((_path)->p_node[0].bh)
402 #define path_root_el(_path) ((_path)->p_node[0].el)
403 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
404 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
405 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
408 * Reset the actual path elements so that we can re-use the structure
409 * to build another path. Generally, this involves freeing the buffer
410 * heads.
412 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
414 int i, start = 0, depth = 0;
415 struct ocfs2_path_item *node;
417 if (keep_root)
418 start = 1;
420 for(i = start; i < path_num_items(path); i++) {
421 node = &path->p_node[i];
423 brelse(node->bh);
424 node->bh = NULL;
425 node->el = NULL;
429 * Tree depth may change during truncate, or insert. If we're
430 * keeping the root extent list, then make sure that our path
431 * structure reflects the proper depth.
433 if (keep_root)
434 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
436 path->p_tree_depth = depth;
439 static void ocfs2_free_path(struct ocfs2_path *path)
441 if (path) {
442 ocfs2_reinit_path(path, 0);
443 kfree(path);
448 * All the elements of src into dest. After this call, src could be freed
449 * without affecting dest.
451 * Both paths should have the same root. Any non-root elements of dest
452 * will be freed.
454 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
456 int i;
458 BUG_ON(path_root_bh(dest) != path_root_bh(src));
459 BUG_ON(path_root_el(dest) != path_root_el(src));
461 ocfs2_reinit_path(dest, 1);
463 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
464 dest->p_node[i].bh = src->p_node[i].bh;
465 dest->p_node[i].el = src->p_node[i].el;
467 if (dest->p_node[i].bh)
468 get_bh(dest->p_node[i].bh);
473 * Make the *dest path the same as src and re-initialize src path to
474 * have a root only.
476 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
478 int i;
480 BUG_ON(path_root_bh(dest) != path_root_bh(src));
482 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
483 brelse(dest->p_node[i].bh);
485 dest->p_node[i].bh = src->p_node[i].bh;
486 dest->p_node[i].el = src->p_node[i].el;
488 src->p_node[i].bh = NULL;
489 src->p_node[i].el = NULL;
494 * Insert an extent block at given index.
496 * This will not take an additional reference on eb_bh.
498 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
499 struct buffer_head *eb_bh)
501 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
504 * Right now, no root bh is an extent block, so this helps
505 * catch code errors with dinode trees. The assertion can be
506 * safely removed if we ever need to insert extent block
507 * structures at the root.
509 BUG_ON(index == 0);
511 path->p_node[index].bh = eb_bh;
512 path->p_node[index].el = &eb->h_list;
515 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
516 struct ocfs2_extent_list *root_el)
518 struct ocfs2_path *path;
520 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
522 path = kzalloc(sizeof(*path), GFP_NOFS);
523 if (path) {
524 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
525 get_bh(root_bh);
526 path_root_bh(path) = root_bh;
527 path_root_el(path) = root_el;
530 return path;
534 * Convenience function to journal all components in a path.
536 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
537 struct ocfs2_path *path)
539 int i, ret = 0;
541 if (!path)
542 goto out;
544 for(i = 0; i < path_num_items(path); i++) {
545 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
546 OCFS2_JOURNAL_ACCESS_WRITE);
547 if (ret < 0) {
548 mlog_errno(ret);
549 goto out;
553 out:
554 return ret;
558 * Return the index of the extent record which contains cluster #v_cluster.
559 * -1 is returned if it was not found.
561 * Should work fine on interior and exterior nodes.
563 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
565 int ret = -1;
566 int i;
567 struct ocfs2_extent_rec *rec;
568 u32 rec_end, rec_start, clusters;
570 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
571 rec = &el->l_recs[i];
573 rec_start = le32_to_cpu(rec->e_cpos);
574 clusters = ocfs2_rec_clusters(el, rec);
576 rec_end = rec_start + clusters;
578 if (v_cluster >= rec_start && v_cluster < rec_end) {
579 ret = i;
580 break;
584 return ret;
587 enum ocfs2_contig_type {
588 CONTIG_NONE = 0,
589 CONTIG_LEFT,
590 CONTIG_RIGHT,
591 CONTIG_LEFTRIGHT,
596 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
597 * ocfs2_extent_contig only work properly against leaf nodes!
599 static int ocfs2_block_extent_contig(struct super_block *sb,
600 struct ocfs2_extent_rec *ext,
601 u64 blkno)
603 u64 blk_end = le64_to_cpu(ext->e_blkno);
605 blk_end += ocfs2_clusters_to_blocks(sb,
606 le16_to_cpu(ext->e_leaf_clusters));
608 return blkno == blk_end;
611 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
612 struct ocfs2_extent_rec *right)
614 u32 left_range;
616 left_range = le32_to_cpu(left->e_cpos) +
617 le16_to_cpu(left->e_leaf_clusters);
619 return (left_range == le32_to_cpu(right->e_cpos));
622 static enum ocfs2_contig_type
623 ocfs2_extent_contig(struct inode *inode,
624 struct ocfs2_extent_rec *ext,
625 struct ocfs2_extent_rec *insert_rec)
627 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
630 * Refuse to coalesce extent records with different flag
631 * fields - we don't want to mix unwritten extents with user
632 * data.
634 if (ext->e_flags != insert_rec->e_flags)
635 return CONTIG_NONE;
637 if (ocfs2_extents_adjacent(ext, insert_rec) &&
638 ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
639 return CONTIG_RIGHT;
641 blkno = le64_to_cpu(ext->e_blkno);
642 if (ocfs2_extents_adjacent(insert_rec, ext) &&
643 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
644 return CONTIG_LEFT;
646 return CONTIG_NONE;
650 * NOTE: We can have pretty much any combination of contiguousness and
651 * appending.
653 * The usefulness of APPEND_TAIL is more in that it lets us know that
654 * we'll have to update the path to that leaf.
656 enum ocfs2_append_type {
657 APPEND_NONE = 0,
658 APPEND_TAIL,
661 enum ocfs2_split_type {
662 SPLIT_NONE = 0,
663 SPLIT_LEFT,
664 SPLIT_RIGHT,
667 struct ocfs2_insert_type {
668 enum ocfs2_split_type ins_split;
669 enum ocfs2_append_type ins_appending;
670 enum ocfs2_contig_type ins_contig;
671 int ins_contig_index;
672 int ins_tree_depth;
675 struct ocfs2_merge_ctxt {
676 enum ocfs2_contig_type c_contig_type;
677 int c_has_empty_extent;
678 int c_split_covers_rec;
681 static int ocfs2_validate_extent_block(struct super_block *sb,
682 struct buffer_head *bh)
684 struct ocfs2_extent_block *eb =
685 (struct ocfs2_extent_block *)bh->b_data;
687 mlog(0, "Validating extent block %llu\n",
688 (unsigned long long)bh->b_blocknr);
690 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
691 ocfs2_error(sb,
692 "Extent block #%llu has bad signature %.*s",
693 (unsigned long long)bh->b_blocknr, 7,
694 eb->h_signature);
695 return -EINVAL;
698 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
699 ocfs2_error(sb,
700 "Extent block #%llu has an invalid h_blkno "
701 "of %llu",
702 (unsigned long long)bh->b_blocknr,
703 (unsigned long long)le64_to_cpu(eb->h_blkno));
704 return -EINVAL;
707 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
708 ocfs2_error(sb,
709 "Extent block #%llu has an invalid "
710 "h_fs_generation of #%u",
711 (unsigned long long)bh->b_blocknr,
712 le32_to_cpu(eb->h_fs_generation));
713 return -EINVAL;
716 return 0;
719 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno,
720 struct buffer_head **bh)
722 int rc;
723 struct buffer_head *tmp = *bh;
725 rc = ocfs2_read_block(inode, eb_blkno, &tmp,
726 ocfs2_validate_extent_block);
728 /* If ocfs2_read_block() got us a new bh, pass it up. */
729 if (!rc && !*bh)
730 *bh = tmp;
732 return rc;
737 * How many free extents have we got before we need more meta data?
739 int ocfs2_num_free_extents(struct ocfs2_super *osb,
740 struct inode *inode,
741 struct ocfs2_extent_tree *et)
743 int retval;
744 struct ocfs2_extent_list *el = NULL;
745 struct ocfs2_extent_block *eb;
746 struct buffer_head *eb_bh = NULL;
747 u64 last_eb_blk = 0;
749 mlog_entry_void();
751 el = et->et_root_el;
752 last_eb_blk = ocfs2_et_get_last_eb_blk(et);
754 if (last_eb_blk) {
755 retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh);
756 if (retval < 0) {
757 mlog_errno(retval);
758 goto bail;
760 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
761 el = &eb->h_list;
764 BUG_ON(el->l_tree_depth != 0);
766 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
767 bail:
768 brelse(eb_bh);
770 mlog_exit(retval);
771 return retval;
774 /* expects array to already be allocated
776 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
777 * l_count for you
779 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
780 handle_t *handle,
781 struct inode *inode,
782 int wanted,
783 struct ocfs2_alloc_context *meta_ac,
784 struct buffer_head *bhs[])
786 int count, status, i;
787 u16 suballoc_bit_start;
788 u32 num_got;
789 u64 first_blkno;
790 struct ocfs2_extent_block *eb;
792 mlog_entry_void();
794 count = 0;
795 while (count < wanted) {
796 status = ocfs2_claim_metadata(osb,
797 handle,
798 meta_ac,
799 wanted - count,
800 &suballoc_bit_start,
801 &num_got,
802 &first_blkno);
803 if (status < 0) {
804 mlog_errno(status);
805 goto bail;
808 for(i = count; i < (num_got + count); i++) {
809 bhs[i] = sb_getblk(osb->sb, first_blkno);
810 if (bhs[i] == NULL) {
811 status = -EIO;
812 mlog_errno(status);
813 goto bail;
815 ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
817 status = ocfs2_journal_access(handle, inode, bhs[i],
818 OCFS2_JOURNAL_ACCESS_CREATE);
819 if (status < 0) {
820 mlog_errno(status);
821 goto bail;
824 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
825 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
826 /* Ok, setup the minimal stuff here. */
827 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
828 eb->h_blkno = cpu_to_le64(first_blkno);
829 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
830 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
831 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
832 eb->h_list.l_count =
833 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
835 suballoc_bit_start++;
836 first_blkno++;
838 /* We'll also be dirtied by the caller, so
839 * this isn't absolutely necessary. */
840 status = ocfs2_journal_dirty(handle, bhs[i]);
841 if (status < 0) {
842 mlog_errno(status);
843 goto bail;
847 count += num_got;
850 status = 0;
851 bail:
852 if (status < 0) {
853 for(i = 0; i < wanted; i++) {
854 brelse(bhs[i]);
855 bhs[i] = NULL;
858 mlog_exit(status);
859 return status;
863 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
865 * Returns the sum of the rightmost extent rec logical offset and
866 * cluster count.
868 * ocfs2_add_branch() uses this to determine what logical cluster
869 * value should be populated into the leftmost new branch records.
871 * ocfs2_shift_tree_depth() uses this to determine the # clusters
872 * value for the new topmost tree record.
874 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
876 int i;
878 i = le16_to_cpu(el->l_next_free_rec) - 1;
880 return le32_to_cpu(el->l_recs[i].e_cpos) +
881 ocfs2_rec_clusters(el, &el->l_recs[i]);
885 * Add an entire tree branch to our inode. eb_bh is the extent block
886 * to start at, if we don't want to start the branch at the dinode
887 * structure.
889 * last_eb_bh is required as we have to update it's next_leaf pointer
890 * for the new last extent block.
892 * the new branch will be 'empty' in the sense that every block will
893 * contain a single record with cluster count == 0.
895 static int ocfs2_add_branch(struct ocfs2_super *osb,
896 handle_t *handle,
897 struct inode *inode,
898 struct ocfs2_extent_tree *et,
899 struct buffer_head *eb_bh,
900 struct buffer_head **last_eb_bh,
901 struct ocfs2_alloc_context *meta_ac)
903 int status, new_blocks, i;
904 u64 next_blkno, new_last_eb_blk;
905 struct buffer_head *bh;
906 struct buffer_head **new_eb_bhs = NULL;
907 struct ocfs2_extent_block *eb;
908 struct ocfs2_extent_list *eb_el;
909 struct ocfs2_extent_list *el;
910 u32 new_cpos;
912 mlog_entry_void();
914 BUG_ON(!last_eb_bh || !*last_eb_bh);
916 if (eb_bh) {
917 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
918 el = &eb->h_list;
919 } else
920 el = et->et_root_el;
922 /* we never add a branch to a leaf. */
923 BUG_ON(!el->l_tree_depth);
925 new_blocks = le16_to_cpu(el->l_tree_depth);
927 /* allocate the number of new eb blocks we need */
928 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
929 GFP_KERNEL);
930 if (!new_eb_bhs) {
931 status = -ENOMEM;
932 mlog_errno(status);
933 goto bail;
936 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
937 meta_ac, new_eb_bhs);
938 if (status < 0) {
939 mlog_errno(status);
940 goto bail;
943 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
944 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
946 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
947 * linked with the rest of the tree.
948 * conversly, new_eb_bhs[0] is the new bottommost leaf.
950 * when we leave the loop, new_last_eb_blk will point to the
951 * newest leaf, and next_blkno will point to the topmost extent
952 * block. */
953 next_blkno = new_last_eb_blk = 0;
954 for(i = 0; i < new_blocks; i++) {
955 bh = new_eb_bhs[i];
956 eb = (struct ocfs2_extent_block *) bh->b_data;
957 /* ocfs2_create_new_meta_bhs() should create it right! */
958 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
959 eb_el = &eb->h_list;
961 status = ocfs2_journal_access(handle, inode, bh,
962 OCFS2_JOURNAL_ACCESS_CREATE);
963 if (status < 0) {
964 mlog_errno(status);
965 goto bail;
968 eb->h_next_leaf_blk = 0;
969 eb_el->l_tree_depth = cpu_to_le16(i);
970 eb_el->l_next_free_rec = cpu_to_le16(1);
972 * This actually counts as an empty extent as
973 * c_clusters == 0
975 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
976 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
978 * eb_el isn't always an interior node, but even leaf
979 * nodes want a zero'd flags and reserved field so
980 * this gets the whole 32 bits regardless of use.
982 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
983 if (!eb_el->l_tree_depth)
984 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
986 status = ocfs2_journal_dirty(handle, bh);
987 if (status < 0) {
988 mlog_errno(status);
989 goto bail;
992 next_blkno = le64_to_cpu(eb->h_blkno);
995 /* This is a bit hairy. We want to update up to three blocks
996 * here without leaving any of them in an inconsistent state
997 * in case of error. We don't have to worry about
998 * journal_dirty erroring as it won't unless we've aborted the
999 * handle (in which case we would never be here) so reserving
1000 * the write with journal_access is all we need to do. */
1001 status = ocfs2_journal_access(handle, inode, *last_eb_bh,
1002 OCFS2_JOURNAL_ACCESS_WRITE);
1003 if (status < 0) {
1004 mlog_errno(status);
1005 goto bail;
1007 status = ocfs2_journal_access(handle, inode, et->et_root_bh,
1008 OCFS2_JOURNAL_ACCESS_WRITE);
1009 if (status < 0) {
1010 mlog_errno(status);
1011 goto bail;
1013 if (eb_bh) {
1014 status = ocfs2_journal_access(handle, inode, eb_bh,
1015 OCFS2_JOURNAL_ACCESS_WRITE);
1016 if (status < 0) {
1017 mlog_errno(status);
1018 goto bail;
1022 /* Link the new branch into the rest of the tree (el will
1023 * either be on the root_bh, or the extent block passed in. */
1024 i = le16_to_cpu(el->l_next_free_rec);
1025 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1026 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1027 el->l_recs[i].e_int_clusters = 0;
1028 le16_add_cpu(&el->l_next_free_rec, 1);
1030 /* fe needs a new last extent block pointer, as does the
1031 * next_leaf on the previously last-extent-block. */
1032 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1034 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1035 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1037 status = ocfs2_journal_dirty(handle, *last_eb_bh);
1038 if (status < 0)
1039 mlog_errno(status);
1040 status = ocfs2_journal_dirty(handle, et->et_root_bh);
1041 if (status < 0)
1042 mlog_errno(status);
1043 if (eb_bh) {
1044 status = ocfs2_journal_dirty(handle, eb_bh);
1045 if (status < 0)
1046 mlog_errno(status);
1050 * Some callers want to track the rightmost leaf so pass it
1051 * back here.
1053 brelse(*last_eb_bh);
1054 get_bh(new_eb_bhs[0]);
1055 *last_eb_bh = new_eb_bhs[0];
1057 status = 0;
1058 bail:
1059 if (new_eb_bhs) {
1060 for (i = 0; i < new_blocks; i++)
1061 brelse(new_eb_bhs[i]);
1062 kfree(new_eb_bhs);
1065 mlog_exit(status);
1066 return status;
1070 * adds another level to the allocation tree.
1071 * returns back the new extent block so you can add a branch to it
1072 * after this call.
1074 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1075 handle_t *handle,
1076 struct inode *inode,
1077 struct ocfs2_extent_tree *et,
1078 struct ocfs2_alloc_context *meta_ac,
1079 struct buffer_head **ret_new_eb_bh)
1081 int status, i;
1082 u32 new_clusters;
1083 struct buffer_head *new_eb_bh = NULL;
1084 struct ocfs2_extent_block *eb;
1085 struct ocfs2_extent_list *root_el;
1086 struct ocfs2_extent_list *eb_el;
1088 mlog_entry_void();
1090 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1091 &new_eb_bh);
1092 if (status < 0) {
1093 mlog_errno(status);
1094 goto bail;
1097 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1098 /* ocfs2_create_new_meta_bhs() should create it right! */
1099 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1101 eb_el = &eb->h_list;
1102 root_el = et->et_root_el;
1104 status = ocfs2_journal_access(handle, inode, new_eb_bh,
1105 OCFS2_JOURNAL_ACCESS_CREATE);
1106 if (status < 0) {
1107 mlog_errno(status);
1108 goto bail;
1111 /* copy the root extent list data into the new extent block */
1112 eb_el->l_tree_depth = root_el->l_tree_depth;
1113 eb_el->l_next_free_rec = root_el->l_next_free_rec;
1114 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1115 eb_el->l_recs[i] = root_el->l_recs[i];
1117 status = ocfs2_journal_dirty(handle, new_eb_bh);
1118 if (status < 0) {
1119 mlog_errno(status);
1120 goto bail;
1123 status = ocfs2_journal_access(handle, inode, et->et_root_bh,
1124 OCFS2_JOURNAL_ACCESS_WRITE);
1125 if (status < 0) {
1126 mlog_errno(status);
1127 goto bail;
1130 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1132 /* update root_bh now */
1133 le16_add_cpu(&root_el->l_tree_depth, 1);
1134 root_el->l_recs[0].e_cpos = 0;
1135 root_el->l_recs[0].e_blkno = eb->h_blkno;
1136 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1137 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1138 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1139 root_el->l_next_free_rec = cpu_to_le16(1);
1141 /* If this is our 1st tree depth shift, then last_eb_blk
1142 * becomes the allocated extent block */
1143 if (root_el->l_tree_depth == cpu_to_le16(1))
1144 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1146 status = ocfs2_journal_dirty(handle, et->et_root_bh);
1147 if (status < 0) {
1148 mlog_errno(status);
1149 goto bail;
1152 *ret_new_eb_bh = new_eb_bh;
1153 new_eb_bh = NULL;
1154 status = 0;
1155 bail:
1156 brelse(new_eb_bh);
1158 mlog_exit(status);
1159 return status;
1163 * Should only be called when there is no space left in any of the
1164 * leaf nodes. What we want to do is find the lowest tree depth
1165 * non-leaf extent block with room for new records. There are three
1166 * valid results of this search:
1168 * 1) a lowest extent block is found, then we pass it back in
1169 * *lowest_eb_bh and return '0'
1171 * 2) the search fails to find anything, but the root_el has room. We
1172 * pass NULL back in *lowest_eb_bh, but still return '0'
1174 * 3) the search fails to find anything AND the root_el is full, in
1175 * which case we return > 0
1177 * return status < 0 indicates an error.
1179 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1180 struct inode *inode,
1181 struct ocfs2_extent_tree *et,
1182 struct buffer_head **target_bh)
1184 int status = 0, i;
1185 u64 blkno;
1186 struct ocfs2_extent_block *eb;
1187 struct ocfs2_extent_list *el;
1188 struct buffer_head *bh = NULL;
1189 struct buffer_head *lowest_bh = NULL;
1191 mlog_entry_void();
1193 *target_bh = NULL;
1195 el = et->et_root_el;
1197 while(le16_to_cpu(el->l_tree_depth) > 1) {
1198 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1199 ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1200 "extent list (next_free_rec == 0)",
1201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1202 status = -EIO;
1203 goto bail;
1205 i = le16_to_cpu(el->l_next_free_rec) - 1;
1206 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1207 if (!blkno) {
1208 ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1209 "list where extent # %d has no physical "
1210 "block start",
1211 (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1212 status = -EIO;
1213 goto bail;
1216 brelse(bh);
1217 bh = NULL;
1219 status = ocfs2_read_extent_block(inode, blkno, &bh);
1220 if (status < 0) {
1221 mlog_errno(status);
1222 goto bail;
1225 eb = (struct ocfs2_extent_block *) bh->b_data;
1226 el = &eb->h_list;
1228 if (le16_to_cpu(el->l_next_free_rec) <
1229 le16_to_cpu(el->l_count)) {
1230 brelse(lowest_bh);
1231 lowest_bh = bh;
1232 get_bh(lowest_bh);
1236 /* If we didn't find one and the fe doesn't have any room,
1237 * then return '1' */
1238 el = et->et_root_el;
1239 if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1240 status = 1;
1242 *target_bh = lowest_bh;
1243 bail:
1244 brelse(bh);
1246 mlog_exit(status);
1247 return status;
1251 * Grow a b-tree so that it has more records.
1253 * We might shift the tree depth in which case existing paths should
1254 * be considered invalid.
1256 * Tree depth after the grow is returned via *final_depth.
1258 * *last_eb_bh will be updated by ocfs2_add_branch().
1260 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1261 struct ocfs2_extent_tree *et, int *final_depth,
1262 struct buffer_head **last_eb_bh,
1263 struct ocfs2_alloc_context *meta_ac)
1265 int ret, shift;
1266 struct ocfs2_extent_list *el = et->et_root_el;
1267 int depth = le16_to_cpu(el->l_tree_depth);
1268 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1269 struct buffer_head *bh = NULL;
1271 BUG_ON(meta_ac == NULL);
1273 shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1274 if (shift < 0) {
1275 ret = shift;
1276 mlog_errno(ret);
1277 goto out;
1280 /* We traveled all the way to the bottom of the allocation tree
1281 * and didn't find room for any more extents - we need to add
1282 * another tree level */
1283 if (shift) {
1284 BUG_ON(bh);
1285 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1287 /* ocfs2_shift_tree_depth will return us a buffer with
1288 * the new extent block (so we can pass that to
1289 * ocfs2_add_branch). */
1290 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1291 meta_ac, &bh);
1292 if (ret < 0) {
1293 mlog_errno(ret);
1294 goto out;
1296 depth++;
1297 if (depth == 1) {
1299 * Special case: we have room now if we shifted from
1300 * tree_depth 0, so no more work needs to be done.
1302 * We won't be calling add_branch, so pass
1303 * back *last_eb_bh as the new leaf. At depth
1304 * zero, it should always be null so there's
1305 * no reason to brelse.
1307 BUG_ON(*last_eb_bh);
1308 get_bh(bh);
1309 *last_eb_bh = bh;
1310 goto out;
1314 /* call ocfs2_add_branch to add the final part of the tree with
1315 * the new data. */
1316 mlog(0, "add branch. bh = %p\n", bh);
1317 ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1318 meta_ac);
1319 if (ret < 0) {
1320 mlog_errno(ret);
1321 goto out;
1324 out:
1325 if (final_depth)
1326 *final_depth = depth;
1327 brelse(bh);
1328 return ret;
1332 * This function will discard the rightmost extent record.
1334 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1336 int next_free = le16_to_cpu(el->l_next_free_rec);
1337 int count = le16_to_cpu(el->l_count);
1338 unsigned int num_bytes;
1340 BUG_ON(!next_free);
1341 /* This will cause us to go off the end of our extent list. */
1342 BUG_ON(next_free >= count);
1344 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1346 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1349 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1350 struct ocfs2_extent_rec *insert_rec)
1352 int i, insert_index, next_free, has_empty, num_bytes;
1353 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1354 struct ocfs2_extent_rec *rec;
1356 next_free = le16_to_cpu(el->l_next_free_rec);
1357 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1359 BUG_ON(!next_free);
1361 /* The tree code before us didn't allow enough room in the leaf. */
1362 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1365 * The easiest way to approach this is to just remove the
1366 * empty extent and temporarily decrement next_free.
1368 if (has_empty) {
1370 * If next_free was 1 (only an empty extent), this
1371 * loop won't execute, which is fine. We still want
1372 * the decrement above to happen.
1374 for(i = 0; i < (next_free - 1); i++)
1375 el->l_recs[i] = el->l_recs[i+1];
1377 next_free--;
1381 * Figure out what the new record index should be.
1383 for(i = 0; i < next_free; i++) {
1384 rec = &el->l_recs[i];
1386 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1387 break;
1389 insert_index = i;
1391 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1392 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1394 BUG_ON(insert_index < 0);
1395 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1396 BUG_ON(insert_index > next_free);
1399 * No need to memmove if we're just adding to the tail.
1401 if (insert_index != next_free) {
1402 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1404 num_bytes = next_free - insert_index;
1405 num_bytes *= sizeof(struct ocfs2_extent_rec);
1406 memmove(&el->l_recs[insert_index + 1],
1407 &el->l_recs[insert_index],
1408 num_bytes);
1412 * Either we had an empty extent, and need to re-increment or
1413 * there was no empty extent on a non full rightmost leaf node,
1414 * in which case we still need to increment.
1416 next_free++;
1417 el->l_next_free_rec = cpu_to_le16(next_free);
1419 * Make sure none of the math above just messed up our tree.
1421 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1423 el->l_recs[insert_index] = *insert_rec;
1427 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1429 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1431 BUG_ON(num_recs == 0);
1433 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1434 num_recs--;
1435 size = num_recs * sizeof(struct ocfs2_extent_rec);
1436 memmove(&el->l_recs[0], &el->l_recs[1], size);
1437 memset(&el->l_recs[num_recs], 0,
1438 sizeof(struct ocfs2_extent_rec));
1439 el->l_next_free_rec = cpu_to_le16(num_recs);
1444 * Create an empty extent record .
1446 * l_next_free_rec may be updated.
1448 * If an empty extent already exists do nothing.
1450 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1452 int next_free = le16_to_cpu(el->l_next_free_rec);
1454 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1456 if (next_free == 0)
1457 goto set_and_inc;
1459 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1460 return;
1462 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1463 "Asked to create an empty extent in a full list:\n"
1464 "count = %u, tree depth = %u",
1465 le16_to_cpu(el->l_count),
1466 le16_to_cpu(el->l_tree_depth));
1468 ocfs2_shift_records_right(el);
1470 set_and_inc:
1471 le16_add_cpu(&el->l_next_free_rec, 1);
1472 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1476 * For a rotation which involves two leaf nodes, the "root node" is
1477 * the lowest level tree node which contains a path to both leafs. This
1478 * resulting set of information can be used to form a complete "subtree"
1480 * This function is passed two full paths from the dinode down to a
1481 * pair of adjacent leaves. It's task is to figure out which path
1482 * index contains the subtree root - this can be the root index itself
1483 * in a worst-case rotation.
1485 * The array index of the subtree root is passed back.
1487 static int ocfs2_find_subtree_root(struct inode *inode,
1488 struct ocfs2_path *left,
1489 struct ocfs2_path *right)
1491 int i = 0;
1494 * Check that the caller passed in two paths from the same tree.
1496 BUG_ON(path_root_bh(left) != path_root_bh(right));
1498 do {
1499 i++;
1502 * The caller didn't pass two adjacent paths.
1504 mlog_bug_on_msg(i > left->p_tree_depth,
1505 "Inode %lu, left depth %u, right depth %u\n"
1506 "left leaf blk %llu, right leaf blk %llu\n",
1507 inode->i_ino, left->p_tree_depth,
1508 right->p_tree_depth,
1509 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1510 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1511 } while (left->p_node[i].bh->b_blocknr ==
1512 right->p_node[i].bh->b_blocknr);
1514 return i - 1;
1517 typedef void (path_insert_t)(void *, struct buffer_head *);
1520 * Traverse a btree path in search of cpos, starting at root_el.
1522 * This code can be called with a cpos larger than the tree, in which
1523 * case it will return the rightmost path.
1525 static int __ocfs2_find_path(struct inode *inode,
1526 struct ocfs2_extent_list *root_el, u32 cpos,
1527 path_insert_t *func, void *data)
1529 int i, ret = 0;
1530 u32 range;
1531 u64 blkno;
1532 struct buffer_head *bh = NULL;
1533 struct ocfs2_extent_block *eb;
1534 struct ocfs2_extent_list *el;
1535 struct ocfs2_extent_rec *rec;
1536 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1538 el = root_el;
1539 while (el->l_tree_depth) {
1540 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1541 ocfs2_error(inode->i_sb,
1542 "Inode %llu has empty extent list at "
1543 "depth %u\n",
1544 (unsigned long long)oi->ip_blkno,
1545 le16_to_cpu(el->l_tree_depth));
1546 ret = -EROFS;
1547 goto out;
1551 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1552 rec = &el->l_recs[i];
1555 * In the case that cpos is off the allocation
1556 * tree, this should just wind up returning the
1557 * rightmost record.
1559 range = le32_to_cpu(rec->e_cpos) +
1560 ocfs2_rec_clusters(el, rec);
1561 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1562 break;
1565 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1566 if (blkno == 0) {
1567 ocfs2_error(inode->i_sb,
1568 "Inode %llu has bad blkno in extent list "
1569 "at depth %u (index %d)\n",
1570 (unsigned long long)oi->ip_blkno,
1571 le16_to_cpu(el->l_tree_depth), i);
1572 ret = -EROFS;
1573 goto out;
1576 brelse(bh);
1577 bh = NULL;
1578 ret = ocfs2_read_extent_block(inode, blkno, &bh);
1579 if (ret) {
1580 mlog_errno(ret);
1581 goto out;
1584 eb = (struct ocfs2_extent_block *) bh->b_data;
1585 el = &eb->h_list;
1587 if (le16_to_cpu(el->l_next_free_rec) >
1588 le16_to_cpu(el->l_count)) {
1589 ocfs2_error(inode->i_sb,
1590 "Inode %llu has bad count in extent list "
1591 "at block %llu (next free=%u, count=%u)\n",
1592 (unsigned long long)oi->ip_blkno,
1593 (unsigned long long)bh->b_blocknr,
1594 le16_to_cpu(el->l_next_free_rec),
1595 le16_to_cpu(el->l_count));
1596 ret = -EROFS;
1597 goto out;
1600 if (func)
1601 func(data, bh);
1604 out:
1606 * Catch any trailing bh that the loop didn't handle.
1608 brelse(bh);
1610 return ret;
1614 * Given an initialized path (that is, it has a valid root extent
1615 * list), this function will traverse the btree in search of the path
1616 * which would contain cpos.
1618 * The path traveled is recorded in the path structure.
1620 * Note that this will not do any comparisons on leaf node extent
1621 * records, so it will work fine in the case that we just added a tree
1622 * branch.
1624 struct find_path_data {
1625 int index;
1626 struct ocfs2_path *path;
1628 static void find_path_ins(void *data, struct buffer_head *bh)
1630 struct find_path_data *fp = data;
1632 get_bh(bh);
1633 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1634 fp->index++;
1636 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1637 u32 cpos)
1639 struct find_path_data data;
1641 data.index = 1;
1642 data.path = path;
1643 return __ocfs2_find_path(inode, path_root_el(path), cpos,
1644 find_path_ins, &data);
1647 static void find_leaf_ins(void *data, struct buffer_head *bh)
1649 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1650 struct ocfs2_extent_list *el = &eb->h_list;
1651 struct buffer_head **ret = data;
1653 /* We want to retain only the leaf block. */
1654 if (le16_to_cpu(el->l_tree_depth) == 0) {
1655 get_bh(bh);
1656 *ret = bh;
1660 * Find the leaf block in the tree which would contain cpos. No
1661 * checking of the actual leaf is done.
1663 * Some paths want to call this instead of allocating a path structure
1664 * and calling ocfs2_find_path().
1666 * This function doesn't handle non btree extent lists.
1668 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1669 u32 cpos, struct buffer_head **leaf_bh)
1671 int ret;
1672 struct buffer_head *bh = NULL;
1674 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1675 if (ret) {
1676 mlog_errno(ret);
1677 goto out;
1680 *leaf_bh = bh;
1681 out:
1682 return ret;
1686 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1688 * Basically, we've moved stuff around at the bottom of the tree and
1689 * we need to fix up the extent records above the changes to reflect
1690 * the new changes.
1692 * left_rec: the record on the left.
1693 * left_child_el: is the child list pointed to by left_rec
1694 * right_rec: the record to the right of left_rec
1695 * right_child_el: is the child list pointed to by right_rec
1697 * By definition, this only works on interior nodes.
1699 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1700 struct ocfs2_extent_list *left_child_el,
1701 struct ocfs2_extent_rec *right_rec,
1702 struct ocfs2_extent_list *right_child_el)
1704 u32 left_clusters, right_end;
1707 * Interior nodes never have holes. Their cpos is the cpos of
1708 * the leftmost record in their child list. Their cluster
1709 * count covers the full theoretical range of their child list
1710 * - the range between their cpos and the cpos of the record
1711 * immediately to their right.
1713 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1714 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1715 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1716 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1718 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1719 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1722 * Calculate the rightmost cluster count boundary before
1723 * moving cpos - we will need to adjust clusters after
1724 * updating e_cpos to keep the same highest cluster count.
1726 right_end = le32_to_cpu(right_rec->e_cpos);
1727 right_end += le32_to_cpu(right_rec->e_int_clusters);
1729 right_rec->e_cpos = left_rec->e_cpos;
1730 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1732 right_end -= le32_to_cpu(right_rec->e_cpos);
1733 right_rec->e_int_clusters = cpu_to_le32(right_end);
1737 * Adjust the adjacent root node records involved in a
1738 * rotation. left_el_blkno is passed in as a key so that we can easily
1739 * find it's index in the root list.
1741 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1742 struct ocfs2_extent_list *left_el,
1743 struct ocfs2_extent_list *right_el,
1744 u64 left_el_blkno)
1746 int i;
1748 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1749 le16_to_cpu(left_el->l_tree_depth));
1751 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1752 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1753 break;
1757 * The path walking code should have never returned a root and
1758 * two paths which are not adjacent.
1760 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1762 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1763 &root_el->l_recs[i + 1], right_el);
1767 * We've changed a leaf block (in right_path) and need to reflect that
1768 * change back up the subtree.
1770 * This happens in multiple places:
1771 * - When we've moved an extent record from the left path leaf to the right
1772 * path leaf to make room for an empty extent in the left path leaf.
1773 * - When our insert into the right path leaf is at the leftmost edge
1774 * and requires an update of the path immediately to it's left. This
1775 * can occur at the end of some types of rotation and appending inserts.
1776 * - When we've adjusted the last extent record in the left path leaf and the
1777 * 1st extent record in the right path leaf during cross extent block merge.
1779 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1780 struct ocfs2_path *left_path,
1781 struct ocfs2_path *right_path,
1782 int subtree_index)
1784 int ret, i, idx;
1785 struct ocfs2_extent_list *el, *left_el, *right_el;
1786 struct ocfs2_extent_rec *left_rec, *right_rec;
1787 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1790 * Update the counts and position values within all the
1791 * interior nodes to reflect the leaf rotation we just did.
1793 * The root node is handled below the loop.
1795 * We begin the loop with right_el and left_el pointing to the
1796 * leaf lists and work our way up.
1798 * NOTE: within this loop, left_el and right_el always refer
1799 * to the *child* lists.
1801 left_el = path_leaf_el(left_path);
1802 right_el = path_leaf_el(right_path);
1803 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1804 mlog(0, "Adjust records at index %u\n", i);
1807 * One nice property of knowing that all of these
1808 * nodes are below the root is that we only deal with
1809 * the leftmost right node record and the rightmost
1810 * left node record.
1812 el = left_path->p_node[i].el;
1813 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1814 left_rec = &el->l_recs[idx];
1816 el = right_path->p_node[i].el;
1817 right_rec = &el->l_recs[0];
1819 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1820 right_el);
1822 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1823 if (ret)
1824 mlog_errno(ret);
1826 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1827 if (ret)
1828 mlog_errno(ret);
1831 * Setup our list pointers now so that the current
1832 * parents become children in the next iteration.
1834 left_el = left_path->p_node[i].el;
1835 right_el = right_path->p_node[i].el;
1839 * At the root node, adjust the two adjacent records which
1840 * begin our path to the leaves.
1843 el = left_path->p_node[subtree_index].el;
1844 left_el = left_path->p_node[subtree_index + 1].el;
1845 right_el = right_path->p_node[subtree_index + 1].el;
1847 ocfs2_adjust_root_records(el, left_el, right_el,
1848 left_path->p_node[subtree_index + 1].bh->b_blocknr);
1850 root_bh = left_path->p_node[subtree_index].bh;
1852 ret = ocfs2_journal_dirty(handle, root_bh);
1853 if (ret)
1854 mlog_errno(ret);
1857 static int ocfs2_rotate_subtree_right(struct inode *inode,
1858 handle_t *handle,
1859 struct ocfs2_path *left_path,
1860 struct ocfs2_path *right_path,
1861 int subtree_index)
1863 int ret, i;
1864 struct buffer_head *right_leaf_bh;
1865 struct buffer_head *left_leaf_bh = NULL;
1866 struct buffer_head *root_bh;
1867 struct ocfs2_extent_list *right_el, *left_el;
1868 struct ocfs2_extent_rec move_rec;
1870 left_leaf_bh = path_leaf_bh(left_path);
1871 left_el = path_leaf_el(left_path);
1873 if (left_el->l_next_free_rec != left_el->l_count) {
1874 ocfs2_error(inode->i_sb,
1875 "Inode %llu has non-full interior leaf node %llu"
1876 "(next free = %u)",
1877 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1878 (unsigned long long)left_leaf_bh->b_blocknr,
1879 le16_to_cpu(left_el->l_next_free_rec));
1880 return -EROFS;
1884 * This extent block may already have an empty record, so we
1885 * return early if so.
1887 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1888 return 0;
1890 root_bh = left_path->p_node[subtree_index].bh;
1891 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1893 ret = ocfs2_journal_access(handle, inode, root_bh,
1894 OCFS2_JOURNAL_ACCESS_WRITE);
1895 if (ret) {
1896 mlog_errno(ret);
1897 goto out;
1900 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1901 ret = ocfs2_journal_access(handle, inode,
1902 right_path->p_node[i].bh,
1903 OCFS2_JOURNAL_ACCESS_WRITE);
1904 if (ret) {
1905 mlog_errno(ret);
1906 goto out;
1909 ret = ocfs2_journal_access(handle, inode,
1910 left_path->p_node[i].bh,
1911 OCFS2_JOURNAL_ACCESS_WRITE);
1912 if (ret) {
1913 mlog_errno(ret);
1914 goto out;
1918 right_leaf_bh = path_leaf_bh(right_path);
1919 right_el = path_leaf_el(right_path);
1921 /* This is a code error, not a disk corruption. */
1922 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1923 "because rightmost leaf block %llu is empty\n",
1924 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1925 (unsigned long long)right_leaf_bh->b_blocknr);
1927 ocfs2_create_empty_extent(right_el);
1929 ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1930 if (ret) {
1931 mlog_errno(ret);
1932 goto out;
1935 /* Do the copy now. */
1936 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1937 move_rec = left_el->l_recs[i];
1938 right_el->l_recs[0] = move_rec;
1941 * Clear out the record we just copied and shift everything
1942 * over, leaving an empty extent in the left leaf.
1944 * We temporarily subtract from next_free_rec so that the
1945 * shift will lose the tail record (which is now defunct).
1947 le16_add_cpu(&left_el->l_next_free_rec, -1);
1948 ocfs2_shift_records_right(left_el);
1949 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1950 le16_add_cpu(&left_el->l_next_free_rec, 1);
1952 ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1953 if (ret) {
1954 mlog_errno(ret);
1955 goto out;
1958 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1959 subtree_index);
1961 out:
1962 return ret;
1966 * Given a full path, determine what cpos value would return us a path
1967 * containing the leaf immediately to the left of the current one.
1969 * Will return zero if the path passed in is already the leftmost path.
1971 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1972 struct ocfs2_path *path, u32 *cpos)
1974 int i, j, ret = 0;
1975 u64 blkno;
1976 struct ocfs2_extent_list *el;
1978 BUG_ON(path->p_tree_depth == 0);
1980 *cpos = 0;
1982 blkno = path_leaf_bh(path)->b_blocknr;
1984 /* Start at the tree node just above the leaf and work our way up. */
1985 i = path->p_tree_depth - 1;
1986 while (i >= 0) {
1987 el = path->p_node[i].el;
1990 * Find the extent record just before the one in our
1991 * path.
1993 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1994 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1995 if (j == 0) {
1996 if (i == 0) {
1998 * We've determined that the
1999 * path specified is already
2000 * the leftmost one - return a
2001 * cpos of zero.
2003 goto out;
2006 * The leftmost record points to our
2007 * leaf - we need to travel up the
2008 * tree one level.
2010 goto next_node;
2013 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2014 *cpos = *cpos + ocfs2_rec_clusters(el,
2015 &el->l_recs[j - 1]);
2016 *cpos = *cpos - 1;
2017 goto out;
2022 * If we got here, we never found a valid node where
2023 * the tree indicated one should be.
2025 ocfs2_error(sb,
2026 "Invalid extent tree at extent block %llu\n",
2027 (unsigned long long)blkno);
2028 ret = -EROFS;
2029 goto out;
2031 next_node:
2032 blkno = path->p_node[i].bh->b_blocknr;
2033 i--;
2036 out:
2037 return ret;
2041 * Extend the transaction by enough credits to complete the rotation,
2042 * and still leave at least the original number of credits allocated
2043 * to this transaction.
2045 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2046 int op_credits,
2047 struct ocfs2_path *path)
2049 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2051 if (handle->h_buffer_credits < credits)
2052 return ocfs2_extend_trans(handle, credits);
2054 return 0;
2058 * Trap the case where we're inserting into the theoretical range past
2059 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2060 * whose cpos is less than ours into the right leaf.
2062 * It's only necessary to look at the rightmost record of the left
2063 * leaf because the logic that calls us should ensure that the
2064 * theoretical ranges in the path components above the leaves are
2065 * correct.
2067 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2068 u32 insert_cpos)
2070 struct ocfs2_extent_list *left_el;
2071 struct ocfs2_extent_rec *rec;
2072 int next_free;
2074 left_el = path_leaf_el(left_path);
2075 next_free = le16_to_cpu(left_el->l_next_free_rec);
2076 rec = &left_el->l_recs[next_free - 1];
2078 if (insert_cpos > le32_to_cpu(rec->e_cpos))
2079 return 1;
2080 return 0;
2083 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2085 int next_free = le16_to_cpu(el->l_next_free_rec);
2086 unsigned int range;
2087 struct ocfs2_extent_rec *rec;
2089 if (next_free == 0)
2090 return 0;
2092 rec = &el->l_recs[0];
2093 if (ocfs2_is_empty_extent(rec)) {
2094 /* Empty list. */
2095 if (next_free == 1)
2096 return 0;
2097 rec = &el->l_recs[1];
2100 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2101 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2102 return 1;
2103 return 0;
2107 * Rotate all the records in a btree right one record, starting at insert_cpos.
2109 * The path to the rightmost leaf should be passed in.
2111 * The array is assumed to be large enough to hold an entire path (tree depth).
2113 * Upon succesful return from this function:
2115 * - The 'right_path' array will contain a path to the leaf block
2116 * whose range contains e_cpos.
2117 * - That leaf block will have a single empty extent in list index 0.
2118 * - In the case that the rotation requires a post-insert update,
2119 * *ret_left_path will contain a valid path which can be passed to
2120 * ocfs2_insert_path().
2122 static int ocfs2_rotate_tree_right(struct inode *inode,
2123 handle_t *handle,
2124 enum ocfs2_split_type split,
2125 u32 insert_cpos,
2126 struct ocfs2_path *right_path,
2127 struct ocfs2_path **ret_left_path)
2129 int ret, start, orig_credits = handle->h_buffer_credits;
2130 u32 cpos;
2131 struct ocfs2_path *left_path = NULL;
2133 *ret_left_path = NULL;
2135 left_path = ocfs2_new_path(path_root_bh(right_path),
2136 path_root_el(right_path));
2137 if (!left_path) {
2138 ret = -ENOMEM;
2139 mlog_errno(ret);
2140 goto out;
2143 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2144 if (ret) {
2145 mlog_errno(ret);
2146 goto out;
2149 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2152 * What we want to do here is:
2154 * 1) Start with the rightmost path.
2156 * 2) Determine a path to the leaf block directly to the left
2157 * of that leaf.
2159 * 3) Determine the 'subtree root' - the lowest level tree node
2160 * which contains a path to both leaves.
2162 * 4) Rotate the subtree.
2164 * 5) Find the next subtree by considering the left path to be
2165 * the new right path.
2167 * The check at the top of this while loop also accepts
2168 * insert_cpos == cpos because cpos is only a _theoretical_
2169 * value to get us the left path - insert_cpos might very well
2170 * be filling that hole.
2172 * Stop at a cpos of '0' because we either started at the
2173 * leftmost branch (i.e., a tree with one branch and a
2174 * rotation inside of it), or we've gone as far as we can in
2175 * rotating subtrees.
2177 while (cpos && insert_cpos <= cpos) {
2178 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2179 insert_cpos, cpos);
2181 ret = ocfs2_find_path(inode, left_path, cpos);
2182 if (ret) {
2183 mlog_errno(ret);
2184 goto out;
2187 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2188 path_leaf_bh(right_path),
2189 "Inode %lu: error during insert of %u "
2190 "(left path cpos %u) results in two identical "
2191 "paths ending at %llu\n",
2192 inode->i_ino, insert_cpos, cpos,
2193 (unsigned long long)
2194 path_leaf_bh(left_path)->b_blocknr);
2196 if (split == SPLIT_NONE &&
2197 ocfs2_rotate_requires_path_adjustment(left_path,
2198 insert_cpos)) {
2201 * We've rotated the tree as much as we
2202 * should. The rest is up to
2203 * ocfs2_insert_path() to complete, after the
2204 * record insertion. We indicate this
2205 * situation by returning the left path.
2207 * The reason we don't adjust the records here
2208 * before the record insert is that an error
2209 * later might break the rule where a parent
2210 * record e_cpos will reflect the actual
2211 * e_cpos of the 1st nonempty record of the
2212 * child list.
2214 *ret_left_path = left_path;
2215 goto out_ret_path;
2218 start = ocfs2_find_subtree_root(inode, left_path, right_path);
2220 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2221 start,
2222 (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2223 right_path->p_tree_depth);
2225 ret = ocfs2_extend_rotate_transaction(handle, start,
2226 orig_credits, right_path);
2227 if (ret) {
2228 mlog_errno(ret);
2229 goto out;
2232 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2233 right_path, start);
2234 if (ret) {
2235 mlog_errno(ret);
2236 goto out;
2239 if (split != SPLIT_NONE &&
2240 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2241 insert_cpos)) {
2243 * A rotate moves the rightmost left leaf
2244 * record over to the leftmost right leaf
2245 * slot. If we're doing an extent split
2246 * instead of a real insert, then we have to
2247 * check that the extent to be split wasn't
2248 * just moved over. If it was, then we can
2249 * exit here, passing left_path back -
2250 * ocfs2_split_extent() is smart enough to
2251 * search both leaves.
2253 *ret_left_path = left_path;
2254 goto out_ret_path;
2258 * There is no need to re-read the next right path
2259 * as we know that it'll be our current left
2260 * path. Optimize by copying values instead.
2262 ocfs2_mv_path(right_path, left_path);
2264 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2265 &cpos);
2266 if (ret) {
2267 mlog_errno(ret);
2268 goto out;
2272 out:
2273 ocfs2_free_path(left_path);
2275 out_ret_path:
2276 return ret;
2279 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2280 struct ocfs2_path *path)
2282 int i, idx;
2283 struct ocfs2_extent_rec *rec;
2284 struct ocfs2_extent_list *el;
2285 struct ocfs2_extent_block *eb;
2286 u32 range;
2288 /* Path should always be rightmost. */
2289 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2290 BUG_ON(eb->h_next_leaf_blk != 0ULL);
2292 el = &eb->h_list;
2293 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2294 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2295 rec = &el->l_recs[idx];
2296 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2298 for (i = 0; i < path->p_tree_depth; i++) {
2299 el = path->p_node[i].el;
2300 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2301 rec = &el->l_recs[idx];
2303 rec->e_int_clusters = cpu_to_le32(range);
2304 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2306 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2310 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2311 struct ocfs2_cached_dealloc_ctxt *dealloc,
2312 struct ocfs2_path *path, int unlink_start)
2314 int ret, i;
2315 struct ocfs2_extent_block *eb;
2316 struct ocfs2_extent_list *el;
2317 struct buffer_head *bh;
2319 for(i = unlink_start; i < path_num_items(path); i++) {
2320 bh = path->p_node[i].bh;
2322 eb = (struct ocfs2_extent_block *)bh->b_data;
2324 * Not all nodes might have had their final count
2325 * decremented by the caller - handle this here.
2327 el = &eb->h_list;
2328 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2329 mlog(ML_ERROR,
2330 "Inode %llu, attempted to remove extent block "
2331 "%llu with %u records\n",
2332 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2333 (unsigned long long)le64_to_cpu(eb->h_blkno),
2334 le16_to_cpu(el->l_next_free_rec));
2336 ocfs2_journal_dirty(handle, bh);
2337 ocfs2_remove_from_cache(inode, bh);
2338 continue;
2341 el->l_next_free_rec = 0;
2342 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2344 ocfs2_journal_dirty(handle, bh);
2346 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2347 if (ret)
2348 mlog_errno(ret);
2350 ocfs2_remove_from_cache(inode, bh);
2354 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2355 struct ocfs2_path *left_path,
2356 struct ocfs2_path *right_path,
2357 int subtree_index,
2358 struct ocfs2_cached_dealloc_ctxt *dealloc)
2360 int i;
2361 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2362 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2363 struct ocfs2_extent_list *el;
2364 struct ocfs2_extent_block *eb;
2366 el = path_leaf_el(left_path);
2368 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2370 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2371 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2372 break;
2374 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2376 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2377 le16_add_cpu(&root_el->l_next_free_rec, -1);
2379 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2380 eb->h_next_leaf_blk = 0;
2382 ocfs2_journal_dirty(handle, root_bh);
2383 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2385 ocfs2_unlink_path(inode, handle, dealloc, right_path,
2386 subtree_index + 1);
2389 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2390 struct ocfs2_path *left_path,
2391 struct ocfs2_path *right_path,
2392 int subtree_index,
2393 struct ocfs2_cached_dealloc_ctxt *dealloc,
2394 int *deleted,
2395 struct ocfs2_extent_tree *et)
2397 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2398 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2399 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2400 struct ocfs2_extent_block *eb;
2402 *deleted = 0;
2404 right_leaf_el = path_leaf_el(right_path);
2405 left_leaf_el = path_leaf_el(left_path);
2406 root_bh = left_path->p_node[subtree_index].bh;
2407 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2409 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2410 return 0;
2412 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2413 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2415 * It's legal for us to proceed if the right leaf is
2416 * the rightmost one and it has an empty extent. There
2417 * are two cases to handle - whether the leaf will be
2418 * empty after removal or not. If the leaf isn't empty
2419 * then just remove the empty extent up front. The
2420 * next block will handle empty leaves by flagging
2421 * them for unlink.
2423 * Non rightmost leaves will throw -EAGAIN and the
2424 * caller can manually move the subtree and retry.
2427 if (eb->h_next_leaf_blk != 0ULL)
2428 return -EAGAIN;
2430 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2431 ret = ocfs2_journal_access(handle, inode,
2432 path_leaf_bh(right_path),
2433 OCFS2_JOURNAL_ACCESS_WRITE);
2434 if (ret) {
2435 mlog_errno(ret);
2436 goto out;
2439 ocfs2_remove_empty_extent(right_leaf_el);
2440 } else
2441 right_has_empty = 1;
2444 if (eb->h_next_leaf_blk == 0ULL &&
2445 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2447 * We have to update i_last_eb_blk during the meta
2448 * data delete.
2450 ret = ocfs2_journal_access(handle, inode, et_root_bh,
2451 OCFS2_JOURNAL_ACCESS_WRITE);
2452 if (ret) {
2453 mlog_errno(ret);
2454 goto out;
2457 del_right_subtree = 1;
2461 * Getting here with an empty extent in the right path implies
2462 * that it's the rightmost path and will be deleted.
2464 BUG_ON(right_has_empty && !del_right_subtree);
2466 ret = ocfs2_journal_access(handle, inode, root_bh,
2467 OCFS2_JOURNAL_ACCESS_WRITE);
2468 if (ret) {
2469 mlog_errno(ret);
2470 goto out;
2473 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2474 ret = ocfs2_journal_access(handle, inode,
2475 right_path->p_node[i].bh,
2476 OCFS2_JOURNAL_ACCESS_WRITE);
2477 if (ret) {
2478 mlog_errno(ret);
2479 goto out;
2482 ret = ocfs2_journal_access(handle, inode,
2483 left_path->p_node[i].bh,
2484 OCFS2_JOURNAL_ACCESS_WRITE);
2485 if (ret) {
2486 mlog_errno(ret);
2487 goto out;
2491 if (!right_has_empty) {
2493 * Only do this if we're moving a real
2494 * record. Otherwise, the action is delayed until
2495 * after removal of the right path in which case we
2496 * can do a simple shift to remove the empty extent.
2498 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2499 memset(&right_leaf_el->l_recs[0], 0,
2500 sizeof(struct ocfs2_extent_rec));
2502 if (eb->h_next_leaf_blk == 0ULL) {
2504 * Move recs over to get rid of empty extent, decrease
2505 * next_free. This is allowed to remove the last
2506 * extent in our leaf (setting l_next_free_rec to
2507 * zero) - the delete code below won't care.
2509 ocfs2_remove_empty_extent(right_leaf_el);
2512 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2513 if (ret)
2514 mlog_errno(ret);
2515 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2516 if (ret)
2517 mlog_errno(ret);
2519 if (del_right_subtree) {
2520 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2521 subtree_index, dealloc);
2522 ocfs2_update_edge_lengths(inode, handle, left_path);
2524 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2525 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2528 * Removal of the extent in the left leaf was skipped
2529 * above so we could delete the right path
2530 * 1st.
2532 if (right_has_empty)
2533 ocfs2_remove_empty_extent(left_leaf_el);
2535 ret = ocfs2_journal_dirty(handle, et_root_bh);
2536 if (ret)
2537 mlog_errno(ret);
2539 *deleted = 1;
2540 } else
2541 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2542 subtree_index);
2544 out:
2545 return ret;
2549 * Given a full path, determine what cpos value would return us a path
2550 * containing the leaf immediately to the right of the current one.
2552 * Will return zero if the path passed in is already the rightmost path.
2554 * This looks similar, but is subtly different to
2555 * ocfs2_find_cpos_for_left_leaf().
2557 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2558 struct ocfs2_path *path, u32 *cpos)
2560 int i, j, ret = 0;
2561 u64 blkno;
2562 struct ocfs2_extent_list *el;
2564 *cpos = 0;
2566 if (path->p_tree_depth == 0)
2567 return 0;
2569 blkno = path_leaf_bh(path)->b_blocknr;
2571 /* Start at the tree node just above the leaf and work our way up. */
2572 i = path->p_tree_depth - 1;
2573 while (i >= 0) {
2574 int next_free;
2576 el = path->p_node[i].el;
2579 * Find the extent record just after the one in our
2580 * path.
2582 next_free = le16_to_cpu(el->l_next_free_rec);
2583 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2584 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2585 if (j == (next_free - 1)) {
2586 if (i == 0) {
2588 * We've determined that the
2589 * path specified is already
2590 * the rightmost one - return a
2591 * cpos of zero.
2593 goto out;
2596 * The rightmost record points to our
2597 * leaf - we need to travel up the
2598 * tree one level.
2600 goto next_node;
2603 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2604 goto out;
2609 * If we got here, we never found a valid node where
2610 * the tree indicated one should be.
2612 ocfs2_error(sb,
2613 "Invalid extent tree at extent block %llu\n",
2614 (unsigned long long)blkno);
2615 ret = -EROFS;
2616 goto out;
2618 next_node:
2619 blkno = path->p_node[i].bh->b_blocknr;
2620 i--;
2623 out:
2624 return ret;
2627 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2628 handle_t *handle,
2629 struct buffer_head *bh,
2630 struct ocfs2_extent_list *el)
2632 int ret;
2634 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2635 return 0;
2637 ret = ocfs2_journal_access(handle, inode, bh,
2638 OCFS2_JOURNAL_ACCESS_WRITE);
2639 if (ret) {
2640 mlog_errno(ret);
2641 goto out;
2644 ocfs2_remove_empty_extent(el);
2646 ret = ocfs2_journal_dirty(handle, bh);
2647 if (ret)
2648 mlog_errno(ret);
2650 out:
2651 return ret;
2654 static int __ocfs2_rotate_tree_left(struct inode *inode,
2655 handle_t *handle, int orig_credits,
2656 struct ocfs2_path *path,
2657 struct ocfs2_cached_dealloc_ctxt *dealloc,
2658 struct ocfs2_path **empty_extent_path,
2659 struct ocfs2_extent_tree *et)
2661 int ret, subtree_root, deleted;
2662 u32 right_cpos;
2663 struct ocfs2_path *left_path = NULL;
2664 struct ocfs2_path *right_path = NULL;
2666 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2668 *empty_extent_path = NULL;
2670 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2671 &right_cpos);
2672 if (ret) {
2673 mlog_errno(ret);
2674 goto out;
2677 left_path = ocfs2_new_path(path_root_bh(path),
2678 path_root_el(path));
2679 if (!left_path) {
2680 ret = -ENOMEM;
2681 mlog_errno(ret);
2682 goto out;
2685 ocfs2_cp_path(left_path, path);
2687 right_path = ocfs2_new_path(path_root_bh(path),
2688 path_root_el(path));
2689 if (!right_path) {
2690 ret = -ENOMEM;
2691 mlog_errno(ret);
2692 goto out;
2695 while (right_cpos) {
2696 ret = ocfs2_find_path(inode, right_path, right_cpos);
2697 if (ret) {
2698 mlog_errno(ret);
2699 goto out;
2702 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2703 right_path);
2705 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2706 subtree_root,
2707 (unsigned long long)
2708 right_path->p_node[subtree_root].bh->b_blocknr,
2709 right_path->p_tree_depth);
2711 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2712 orig_credits, left_path);
2713 if (ret) {
2714 mlog_errno(ret);
2715 goto out;
2719 * Caller might still want to make changes to the
2720 * tree root, so re-add it to the journal here.
2722 ret = ocfs2_journal_access(handle, inode,
2723 path_root_bh(left_path),
2724 OCFS2_JOURNAL_ACCESS_WRITE);
2725 if (ret) {
2726 mlog_errno(ret);
2727 goto out;
2730 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2731 right_path, subtree_root,
2732 dealloc, &deleted, et);
2733 if (ret == -EAGAIN) {
2735 * The rotation has to temporarily stop due to
2736 * the right subtree having an empty
2737 * extent. Pass it back to the caller for a
2738 * fixup.
2740 *empty_extent_path = right_path;
2741 right_path = NULL;
2742 goto out;
2744 if (ret) {
2745 mlog_errno(ret);
2746 goto out;
2750 * The subtree rotate might have removed records on
2751 * the rightmost edge. If so, then rotation is
2752 * complete.
2754 if (deleted)
2755 break;
2757 ocfs2_mv_path(left_path, right_path);
2759 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2760 &right_cpos);
2761 if (ret) {
2762 mlog_errno(ret);
2763 goto out;
2767 out:
2768 ocfs2_free_path(right_path);
2769 ocfs2_free_path(left_path);
2771 return ret;
2774 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2775 struct ocfs2_path *path,
2776 struct ocfs2_cached_dealloc_ctxt *dealloc,
2777 struct ocfs2_extent_tree *et)
2779 int ret, subtree_index;
2780 u32 cpos;
2781 struct ocfs2_path *left_path = NULL;
2782 struct ocfs2_extent_block *eb;
2783 struct ocfs2_extent_list *el;
2786 ret = ocfs2_et_sanity_check(inode, et);
2787 if (ret)
2788 goto out;
2790 * There's two ways we handle this depending on
2791 * whether path is the only existing one.
2793 ret = ocfs2_extend_rotate_transaction(handle, 0,
2794 handle->h_buffer_credits,
2795 path);
2796 if (ret) {
2797 mlog_errno(ret);
2798 goto out;
2801 ret = ocfs2_journal_access_path(inode, handle, path);
2802 if (ret) {
2803 mlog_errno(ret);
2804 goto out;
2807 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2808 if (ret) {
2809 mlog_errno(ret);
2810 goto out;
2813 if (cpos) {
2815 * We have a path to the left of this one - it needs
2816 * an update too.
2818 left_path = ocfs2_new_path(path_root_bh(path),
2819 path_root_el(path));
2820 if (!left_path) {
2821 ret = -ENOMEM;
2822 mlog_errno(ret);
2823 goto out;
2826 ret = ocfs2_find_path(inode, left_path, cpos);
2827 if (ret) {
2828 mlog_errno(ret);
2829 goto out;
2832 ret = ocfs2_journal_access_path(inode, handle, left_path);
2833 if (ret) {
2834 mlog_errno(ret);
2835 goto out;
2838 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2840 ocfs2_unlink_subtree(inode, handle, left_path, path,
2841 subtree_index, dealloc);
2842 ocfs2_update_edge_lengths(inode, handle, left_path);
2844 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2845 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2846 } else {
2848 * 'path' is also the leftmost path which
2849 * means it must be the only one. This gets
2850 * handled differently because we want to
2851 * revert the inode back to having extents
2852 * in-line.
2854 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2856 el = et->et_root_el;
2857 el->l_tree_depth = 0;
2858 el->l_next_free_rec = 0;
2859 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2861 ocfs2_et_set_last_eb_blk(et, 0);
2864 ocfs2_journal_dirty(handle, path_root_bh(path));
2866 out:
2867 ocfs2_free_path(left_path);
2868 return ret;
2872 * Left rotation of btree records.
2874 * In many ways, this is (unsurprisingly) the opposite of right
2875 * rotation. We start at some non-rightmost path containing an empty
2876 * extent in the leaf block. The code works its way to the rightmost
2877 * path by rotating records to the left in every subtree.
2879 * This is used by any code which reduces the number of extent records
2880 * in a leaf. After removal, an empty record should be placed in the
2881 * leftmost list position.
2883 * This won't handle a length update of the rightmost path records if
2884 * the rightmost tree leaf record is removed so the caller is
2885 * responsible for detecting and correcting that.
2887 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2888 struct ocfs2_path *path,
2889 struct ocfs2_cached_dealloc_ctxt *dealloc,
2890 struct ocfs2_extent_tree *et)
2892 int ret, orig_credits = handle->h_buffer_credits;
2893 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2894 struct ocfs2_extent_block *eb;
2895 struct ocfs2_extent_list *el;
2897 el = path_leaf_el(path);
2898 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2899 return 0;
2901 if (path->p_tree_depth == 0) {
2902 rightmost_no_delete:
2904 * Inline extents. This is trivially handled, so do
2905 * it up front.
2907 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2908 path_leaf_bh(path),
2909 path_leaf_el(path));
2910 if (ret)
2911 mlog_errno(ret);
2912 goto out;
2916 * Handle rightmost branch now. There's several cases:
2917 * 1) simple rotation leaving records in there. That's trivial.
2918 * 2) rotation requiring a branch delete - there's no more
2919 * records left. Two cases of this:
2920 * a) There are branches to the left.
2921 * b) This is also the leftmost (the only) branch.
2923 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
2924 * 2a) we need the left branch so that we can update it with the unlink
2925 * 2b) we need to bring the inode back to inline extents.
2928 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2929 el = &eb->h_list;
2930 if (eb->h_next_leaf_blk == 0) {
2932 * This gets a bit tricky if we're going to delete the
2933 * rightmost path. Get the other cases out of the way
2934 * 1st.
2936 if (le16_to_cpu(el->l_next_free_rec) > 1)
2937 goto rightmost_no_delete;
2939 if (le16_to_cpu(el->l_next_free_rec) == 0) {
2940 ret = -EIO;
2941 ocfs2_error(inode->i_sb,
2942 "Inode %llu has empty extent block at %llu",
2943 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2944 (unsigned long long)le64_to_cpu(eb->h_blkno));
2945 goto out;
2949 * XXX: The caller can not trust "path" any more after
2950 * this as it will have been deleted. What do we do?
2952 * In theory the rotate-for-merge code will never get
2953 * here because it'll always ask for a rotate in a
2954 * nonempty list.
2957 ret = ocfs2_remove_rightmost_path(inode, handle, path,
2958 dealloc, et);
2959 if (ret)
2960 mlog_errno(ret);
2961 goto out;
2965 * Now we can loop, remembering the path we get from -EAGAIN
2966 * and restarting from there.
2968 try_rotate:
2969 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2970 dealloc, &restart_path, et);
2971 if (ret && ret != -EAGAIN) {
2972 mlog_errno(ret);
2973 goto out;
2976 while (ret == -EAGAIN) {
2977 tmp_path = restart_path;
2978 restart_path = NULL;
2980 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2981 tmp_path, dealloc,
2982 &restart_path, et);
2983 if (ret && ret != -EAGAIN) {
2984 mlog_errno(ret);
2985 goto out;
2988 ocfs2_free_path(tmp_path);
2989 tmp_path = NULL;
2991 if (ret == 0)
2992 goto try_rotate;
2995 out:
2996 ocfs2_free_path(tmp_path);
2997 ocfs2_free_path(restart_path);
2998 return ret;
3001 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3002 int index)
3004 struct ocfs2_extent_rec *rec = &el->l_recs[index];
3005 unsigned int size;
3007 if (rec->e_leaf_clusters == 0) {
3009 * We consumed all of the merged-from record. An empty
3010 * extent cannot exist anywhere but the 1st array
3011 * position, so move things over if the merged-from
3012 * record doesn't occupy that position.
3014 * This creates a new empty extent so the caller
3015 * should be smart enough to have removed any existing
3016 * ones.
3018 if (index > 0) {
3019 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3020 size = index * sizeof(struct ocfs2_extent_rec);
3021 memmove(&el->l_recs[1], &el->l_recs[0], size);
3025 * Always memset - the caller doesn't check whether it
3026 * created an empty extent, so there could be junk in
3027 * the other fields.
3029 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3033 static int ocfs2_get_right_path(struct inode *inode,
3034 struct ocfs2_path *left_path,
3035 struct ocfs2_path **ret_right_path)
3037 int ret;
3038 u32 right_cpos;
3039 struct ocfs2_path *right_path = NULL;
3040 struct ocfs2_extent_list *left_el;
3042 *ret_right_path = NULL;
3044 /* This function shouldn't be called for non-trees. */
3045 BUG_ON(left_path->p_tree_depth == 0);
3047 left_el = path_leaf_el(left_path);
3048 BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3050 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3051 &right_cpos);
3052 if (ret) {
3053 mlog_errno(ret);
3054 goto out;
3057 /* This function shouldn't be called for the rightmost leaf. */
3058 BUG_ON(right_cpos == 0);
3060 right_path = ocfs2_new_path(path_root_bh(left_path),
3061 path_root_el(left_path));
3062 if (!right_path) {
3063 ret = -ENOMEM;
3064 mlog_errno(ret);
3065 goto out;
3068 ret = ocfs2_find_path(inode, right_path, right_cpos);
3069 if (ret) {
3070 mlog_errno(ret);
3071 goto out;
3074 *ret_right_path = right_path;
3075 out:
3076 if (ret)
3077 ocfs2_free_path(right_path);
3078 return ret;
3082 * Remove split_rec clusters from the record at index and merge them
3083 * onto the beginning of the record "next" to it.
3084 * For index < l_count - 1, the next means the extent rec at index + 1.
3085 * For index == l_count - 1, the "next" means the 1st extent rec of the
3086 * next extent block.
3088 static int ocfs2_merge_rec_right(struct inode *inode,
3089 struct ocfs2_path *left_path,
3090 handle_t *handle,
3091 struct ocfs2_extent_rec *split_rec,
3092 int index)
3094 int ret, next_free, i;
3095 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3096 struct ocfs2_extent_rec *left_rec;
3097 struct ocfs2_extent_rec *right_rec;
3098 struct ocfs2_extent_list *right_el;
3099 struct ocfs2_path *right_path = NULL;
3100 int subtree_index = 0;
3101 struct ocfs2_extent_list *el = path_leaf_el(left_path);
3102 struct buffer_head *bh = path_leaf_bh(left_path);
3103 struct buffer_head *root_bh = NULL;
3105 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3106 left_rec = &el->l_recs[index];
3108 if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3109 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3110 /* we meet with a cross extent block merge. */
3111 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3112 if (ret) {
3113 mlog_errno(ret);
3114 goto out;
3117 right_el = path_leaf_el(right_path);
3118 next_free = le16_to_cpu(right_el->l_next_free_rec);
3119 BUG_ON(next_free <= 0);
3120 right_rec = &right_el->l_recs[0];
3121 if (ocfs2_is_empty_extent(right_rec)) {
3122 BUG_ON(next_free <= 1);
3123 right_rec = &right_el->l_recs[1];
3126 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3127 le16_to_cpu(left_rec->e_leaf_clusters) !=
3128 le32_to_cpu(right_rec->e_cpos));
3130 subtree_index = ocfs2_find_subtree_root(inode,
3131 left_path, right_path);
3133 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3134 handle->h_buffer_credits,
3135 right_path);
3136 if (ret) {
3137 mlog_errno(ret);
3138 goto out;
3141 root_bh = left_path->p_node[subtree_index].bh;
3142 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3144 ret = ocfs2_journal_access(handle, inode, root_bh,
3145 OCFS2_JOURNAL_ACCESS_WRITE);
3146 if (ret) {
3147 mlog_errno(ret);
3148 goto out;
3151 for (i = subtree_index + 1;
3152 i < path_num_items(right_path); i++) {
3153 ret = ocfs2_journal_access(handle, inode,
3154 right_path->p_node[i].bh,
3155 OCFS2_JOURNAL_ACCESS_WRITE);
3156 if (ret) {
3157 mlog_errno(ret);
3158 goto out;
3161 ret = ocfs2_journal_access(handle, inode,
3162 left_path->p_node[i].bh,
3163 OCFS2_JOURNAL_ACCESS_WRITE);
3164 if (ret) {
3165 mlog_errno(ret);
3166 goto out;
3170 } else {
3171 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3172 right_rec = &el->l_recs[index + 1];
3175 ret = ocfs2_journal_access(handle, inode, bh,
3176 OCFS2_JOURNAL_ACCESS_WRITE);
3177 if (ret) {
3178 mlog_errno(ret);
3179 goto out;
3182 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3184 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3185 le64_add_cpu(&right_rec->e_blkno,
3186 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3187 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3189 ocfs2_cleanup_merge(el, index);
3191 ret = ocfs2_journal_dirty(handle, bh);
3192 if (ret)
3193 mlog_errno(ret);
3195 if (right_path) {
3196 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3197 if (ret)
3198 mlog_errno(ret);
3200 ocfs2_complete_edge_insert(inode, handle, left_path,
3201 right_path, subtree_index);
3203 out:
3204 if (right_path)
3205 ocfs2_free_path(right_path);
3206 return ret;
3209 static int ocfs2_get_left_path(struct inode *inode,
3210 struct ocfs2_path *right_path,
3211 struct ocfs2_path **ret_left_path)
3213 int ret;
3214 u32 left_cpos;
3215 struct ocfs2_path *left_path = NULL;
3217 *ret_left_path = NULL;
3219 /* This function shouldn't be called for non-trees. */
3220 BUG_ON(right_path->p_tree_depth == 0);
3222 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3223 right_path, &left_cpos);
3224 if (ret) {
3225 mlog_errno(ret);
3226 goto out;
3229 /* This function shouldn't be called for the leftmost leaf. */
3230 BUG_ON(left_cpos == 0);
3232 left_path = ocfs2_new_path(path_root_bh(right_path),
3233 path_root_el(right_path));
3234 if (!left_path) {
3235 ret = -ENOMEM;
3236 mlog_errno(ret);
3237 goto out;
3240 ret = ocfs2_find_path(inode, left_path, left_cpos);
3241 if (ret) {
3242 mlog_errno(ret);
3243 goto out;
3246 *ret_left_path = left_path;
3247 out:
3248 if (ret)
3249 ocfs2_free_path(left_path);
3250 return ret;
3254 * Remove split_rec clusters from the record at index and merge them
3255 * onto the tail of the record "before" it.
3256 * For index > 0, the "before" means the extent rec at index - 1.
3258 * For index == 0, the "before" means the last record of the previous
3259 * extent block. And there is also a situation that we may need to
3260 * remove the rightmost leaf extent block in the right_path and change
3261 * the right path to indicate the new rightmost path.
3263 static int ocfs2_merge_rec_left(struct inode *inode,
3264 struct ocfs2_path *right_path,
3265 handle_t *handle,
3266 struct ocfs2_extent_rec *split_rec,
3267 struct ocfs2_cached_dealloc_ctxt *dealloc,
3268 struct ocfs2_extent_tree *et,
3269 int index)
3271 int ret, i, subtree_index = 0, has_empty_extent = 0;
3272 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3273 struct ocfs2_extent_rec *left_rec;
3274 struct ocfs2_extent_rec *right_rec;
3275 struct ocfs2_extent_list *el = path_leaf_el(right_path);
3276 struct buffer_head *bh = path_leaf_bh(right_path);
3277 struct buffer_head *root_bh = NULL;
3278 struct ocfs2_path *left_path = NULL;
3279 struct ocfs2_extent_list *left_el;
3281 BUG_ON(index < 0);
3283 right_rec = &el->l_recs[index];
3284 if (index == 0) {
3285 /* we meet with a cross extent block merge. */
3286 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3287 if (ret) {
3288 mlog_errno(ret);
3289 goto out;
3292 left_el = path_leaf_el(left_path);
3293 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3294 le16_to_cpu(left_el->l_count));
3296 left_rec = &left_el->l_recs[
3297 le16_to_cpu(left_el->l_next_free_rec) - 1];
3298 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3299 le16_to_cpu(left_rec->e_leaf_clusters) !=
3300 le32_to_cpu(split_rec->e_cpos));
3302 subtree_index = ocfs2_find_subtree_root(inode,
3303 left_path, right_path);
3305 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3306 handle->h_buffer_credits,
3307 left_path);
3308 if (ret) {
3309 mlog_errno(ret);
3310 goto out;
3313 root_bh = left_path->p_node[subtree_index].bh;
3314 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3316 ret = ocfs2_journal_access(handle, inode, root_bh,
3317 OCFS2_JOURNAL_ACCESS_WRITE);
3318 if (ret) {
3319 mlog_errno(ret);
3320 goto out;
3323 for (i = subtree_index + 1;
3324 i < path_num_items(right_path); i++) {
3325 ret = ocfs2_journal_access(handle, inode,
3326 right_path->p_node[i].bh,
3327 OCFS2_JOURNAL_ACCESS_WRITE);
3328 if (ret) {
3329 mlog_errno(ret);
3330 goto out;
3333 ret = ocfs2_journal_access(handle, inode,
3334 left_path->p_node[i].bh,
3335 OCFS2_JOURNAL_ACCESS_WRITE);
3336 if (ret) {
3337 mlog_errno(ret);
3338 goto out;
3341 } else {
3342 left_rec = &el->l_recs[index - 1];
3343 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3344 has_empty_extent = 1;
3347 ret = ocfs2_journal_access(handle, inode, bh,
3348 OCFS2_JOURNAL_ACCESS_WRITE);
3349 if (ret) {
3350 mlog_errno(ret);
3351 goto out;
3354 if (has_empty_extent && index == 1) {
3356 * The easy case - we can just plop the record right in.
3358 *left_rec = *split_rec;
3360 has_empty_extent = 0;
3361 } else
3362 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3364 le32_add_cpu(&right_rec->e_cpos, split_clusters);
3365 le64_add_cpu(&right_rec->e_blkno,
3366 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3367 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3369 ocfs2_cleanup_merge(el, index);
3371 ret = ocfs2_journal_dirty(handle, bh);
3372 if (ret)
3373 mlog_errno(ret);
3375 if (left_path) {
3376 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3377 if (ret)
3378 mlog_errno(ret);
3381 * In the situation that the right_rec is empty and the extent
3382 * block is empty also, ocfs2_complete_edge_insert can't handle
3383 * it and we need to delete the right extent block.
3385 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3386 le16_to_cpu(el->l_next_free_rec) == 1) {
3388 ret = ocfs2_remove_rightmost_path(inode, handle,
3389 right_path,
3390 dealloc, et);
3391 if (ret) {
3392 mlog_errno(ret);
3393 goto out;
3396 /* Now the rightmost extent block has been deleted.
3397 * So we use the new rightmost path.
3399 ocfs2_mv_path(right_path, left_path);
3400 left_path = NULL;
3401 } else
3402 ocfs2_complete_edge_insert(inode, handle, left_path,
3403 right_path, subtree_index);
3405 out:
3406 if (left_path)
3407 ocfs2_free_path(left_path);
3408 return ret;
3411 static int ocfs2_try_to_merge_extent(struct inode *inode,
3412 handle_t *handle,
3413 struct ocfs2_path *path,
3414 int split_index,
3415 struct ocfs2_extent_rec *split_rec,
3416 struct ocfs2_cached_dealloc_ctxt *dealloc,
3417 struct ocfs2_merge_ctxt *ctxt,
3418 struct ocfs2_extent_tree *et)
3421 int ret = 0;
3422 struct ocfs2_extent_list *el = path_leaf_el(path);
3423 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3425 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3427 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3429 * The merge code will need to create an empty
3430 * extent to take the place of the newly
3431 * emptied slot. Remove any pre-existing empty
3432 * extents - having more than one in a leaf is
3433 * illegal.
3435 ret = ocfs2_rotate_tree_left(inode, handle, path,
3436 dealloc, et);
3437 if (ret) {
3438 mlog_errno(ret);
3439 goto out;
3441 split_index--;
3442 rec = &el->l_recs[split_index];
3445 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3447 * Left-right contig implies this.
3449 BUG_ON(!ctxt->c_split_covers_rec);
3452 * Since the leftright insert always covers the entire
3453 * extent, this call will delete the insert record
3454 * entirely, resulting in an empty extent record added to
3455 * the extent block.
3457 * Since the adding of an empty extent shifts
3458 * everything back to the right, there's no need to
3459 * update split_index here.
3461 * When the split_index is zero, we need to merge it to the
3462 * prevoius extent block. It is more efficient and easier
3463 * if we do merge_right first and merge_left later.
3465 ret = ocfs2_merge_rec_right(inode, path,
3466 handle, split_rec,
3467 split_index);
3468 if (ret) {
3469 mlog_errno(ret);
3470 goto out;
3474 * We can only get this from logic error above.
3476 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3478 /* The merge left us with an empty extent, remove it. */
3479 ret = ocfs2_rotate_tree_left(inode, handle, path,
3480 dealloc, et);
3481 if (ret) {
3482 mlog_errno(ret);
3483 goto out;
3486 rec = &el->l_recs[split_index];
3489 * Note that we don't pass split_rec here on purpose -
3490 * we've merged it into the rec already.
3492 ret = ocfs2_merge_rec_left(inode, path,
3493 handle, rec,
3494 dealloc, et,
3495 split_index);
3497 if (ret) {
3498 mlog_errno(ret);
3499 goto out;
3502 ret = ocfs2_rotate_tree_left(inode, handle, path,
3503 dealloc, et);
3505 * Error from this last rotate is not critical, so
3506 * print but don't bubble it up.
3508 if (ret)
3509 mlog_errno(ret);
3510 ret = 0;
3511 } else {
3513 * Merge a record to the left or right.
3515 * 'contig_type' is relative to the existing record,
3516 * so for example, if we're "right contig", it's to
3517 * the record on the left (hence the left merge).
3519 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3520 ret = ocfs2_merge_rec_left(inode,
3521 path,
3522 handle, split_rec,
3523 dealloc, et,
3524 split_index);
3525 if (ret) {
3526 mlog_errno(ret);
3527 goto out;
3529 } else {
3530 ret = ocfs2_merge_rec_right(inode,
3531 path,
3532 handle, split_rec,
3533 split_index);
3534 if (ret) {
3535 mlog_errno(ret);
3536 goto out;
3540 if (ctxt->c_split_covers_rec) {
3542 * The merge may have left an empty extent in
3543 * our leaf. Try to rotate it away.
3545 ret = ocfs2_rotate_tree_left(inode, handle, path,
3546 dealloc, et);
3547 if (ret)
3548 mlog_errno(ret);
3549 ret = 0;
3553 out:
3554 return ret;
3557 static void ocfs2_subtract_from_rec(struct super_block *sb,
3558 enum ocfs2_split_type split,
3559 struct ocfs2_extent_rec *rec,
3560 struct ocfs2_extent_rec *split_rec)
3562 u64 len_blocks;
3564 len_blocks = ocfs2_clusters_to_blocks(sb,
3565 le16_to_cpu(split_rec->e_leaf_clusters));
3567 if (split == SPLIT_LEFT) {
3569 * Region is on the left edge of the existing
3570 * record.
3572 le32_add_cpu(&rec->e_cpos,
3573 le16_to_cpu(split_rec->e_leaf_clusters));
3574 le64_add_cpu(&rec->e_blkno, len_blocks);
3575 le16_add_cpu(&rec->e_leaf_clusters,
3576 -le16_to_cpu(split_rec->e_leaf_clusters));
3577 } else {
3579 * Region is on the right edge of the existing
3580 * record.
3582 le16_add_cpu(&rec->e_leaf_clusters,
3583 -le16_to_cpu(split_rec->e_leaf_clusters));
3588 * Do the final bits of extent record insertion at the target leaf
3589 * list. If this leaf is part of an allocation tree, it is assumed
3590 * that the tree above has been prepared.
3592 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3593 struct ocfs2_extent_list *el,
3594 struct ocfs2_insert_type *insert,
3595 struct inode *inode)
3597 int i = insert->ins_contig_index;
3598 unsigned int range;
3599 struct ocfs2_extent_rec *rec;
3601 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3603 if (insert->ins_split != SPLIT_NONE) {
3604 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3605 BUG_ON(i == -1);
3606 rec = &el->l_recs[i];
3607 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3608 insert_rec);
3609 goto rotate;
3613 * Contiguous insert - either left or right.
3615 if (insert->ins_contig != CONTIG_NONE) {
3616 rec = &el->l_recs[i];
3617 if (insert->ins_contig == CONTIG_LEFT) {
3618 rec->e_blkno = insert_rec->e_blkno;
3619 rec->e_cpos = insert_rec->e_cpos;
3621 le16_add_cpu(&rec->e_leaf_clusters,
3622 le16_to_cpu(insert_rec->e_leaf_clusters));
3623 return;
3627 * Handle insert into an empty leaf.
3629 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3630 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3631 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3632 el->l_recs[0] = *insert_rec;
3633 el->l_next_free_rec = cpu_to_le16(1);
3634 return;
3638 * Appending insert.
3640 if (insert->ins_appending == APPEND_TAIL) {
3641 i = le16_to_cpu(el->l_next_free_rec) - 1;
3642 rec = &el->l_recs[i];
3643 range = le32_to_cpu(rec->e_cpos)
3644 + le16_to_cpu(rec->e_leaf_clusters);
3645 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3647 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3648 le16_to_cpu(el->l_count),
3649 "inode %lu, depth %u, count %u, next free %u, "
3650 "rec.cpos %u, rec.clusters %u, "
3651 "insert.cpos %u, insert.clusters %u\n",
3652 inode->i_ino,
3653 le16_to_cpu(el->l_tree_depth),
3654 le16_to_cpu(el->l_count),
3655 le16_to_cpu(el->l_next_free_rec),
3656 le32_to_cpu(el->l_recs[i].e_cpos),
3657 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3658 le32_to_cpu(insert_rec->e_cpos),
3659 le16_to_cpu(insert_rec->e_leaf_clusters));
3660 i++;
3661 el->l_recs[i] = *insert_rec;
3662 le16_add_cpu(&el->l_next_free_rec, 1);
3663 return;
3666 rotate:
3668 * Ok, we have to rotate.
3670 * At this point, it is safe to assume that inserting into an
3671 * empty leaf and appending to a leaf have both been handled
3672 * above.
3674 * This leaf needs to have space, either by the empty 1st
3675 * extent record, or by virtue of an l_next_rec < l_count.
3677 ocfs2_rotate_leaf(el, insert_rec);
3680 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3681 handle_t *handle,
3682 struct ocfs2_path *path,
3683 struct ocfs2_extent_rec *insert_rec)
3685 int ret, i, next_free;
3686 struct buffer_head *bh;
3687 struct ocfs2_extent_list *el;
3688 struct ocfs2_extent_rec *rec;
3691 * Update everything except the leaf block.
3693 for (i = 0; i < path->p_tree_depth; i++) {
3694 bh = path->p_node[i].bh;
3695 el = path->p_node[i].el;
3697 next_free = le16_to_cpu(el->l_next_free_rec);
3698 if (next_free == 0) {
3699 ocfs2_error(inode->i_sb,
3700 "Dinode %llu has a bad extent list",
3701 (unsigned long long)OCFS2_I(inode)->ip_blkno);
3702 ret = -EIO;
3703 return;
3706 rec = &el->l_recs[next_free - 1];
3708 rec->e_int_clusters = insert_rec->e_cpos;
3709 le32_add_cpu(&rec->e_int_clusters,
3710 le16_to_cpu(insert_rec->e_leaf_clusters));
3711 le32_add_cpu(&rec->e_int_clusters,
3712 -le32_to_cpu(rec->e_cpos));
3714 ret = ocfs2_journal_dirty(handle, bh);
3715 if (ret)
3716 mlog_errno(ret);
3721 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3722 struct ocfs2_extent_rec *insert_rec,
3723 struct ocfs2_path *right_path,
3724 struct ocfs2_path **ret_left_path)
3726 int ret, next_free;
3727 struct ocfs2_extent_list *el;
3728 struct ocfs2_path *left_path = NULL;
3730 *ret_left_path = NULL;
3733 * This shouldn't happen for non-trees. The extent rec cluster
3734 * count manipulation below only works for interior nodes.
3736 BUG_ON(right_path->p_tree_depth == 0);
3739 * If our appending insert is at the leftmost edge of a leaf,
3740 * then we might need to update the rightmost records of the
3741 * neighboring path.
3743 el = path_leaf_el(right_path);
3744 next_free = le16_to_cpu(el->l_next_free_rec);
3745 if (next_free == 0 ||
3746 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3747 u32 left_cpos;
3749 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3750 &left_cpos);
3751 if (ret) {
3752 mlog_errno(ret);
3753 goto out;
3756 mlog(0, "Append may need a left path update. cpos: %u, "
3757 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3758 left_cpos);
3761 * No need to worry if the append is already in the
3762 * leftmost leaf.
3764 if (left_cpos) {
3765 left_path = ocfs2_new_path(path_root_bh(right_path),
3766 path_root_el(right_path));
3767 if (!left_path) {
3768 ret = -ENOMEM;
3769 mlog_errno(ret);
3770 goto out;
3773 ret = ocfs2_find_path(inode, left_path, left_cpos);
3774 if (ret) {
3775 mlog_errno(ret);
3776 goto out;
3780 * ocfs2_insert_path() will pass the left_path to the
3781 * journal for us.
3786 ret = ocfs2_journal_access_path(inode, handle, right_path);
3787 if (ret) {
3788 mlog_errno(ret);
3789 goto out;
3792 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3794 *ret_left_path = left_path;
3795 ret = 0;
3796 out:
3797 if (ret != 0)
3798 ocfs2_free_path(left_path);
3800 return ret;
3803 static void ocfs2_split_record(struct inode *inode,
3804 struct ocfs2_path *left_path,
3805 struct ocfs2_path *right_path,
3806 struct ocfs2_extent_rec *split_rec,
3807 enum ocfs2_split_type split)
3809 int index;
3810 u32 cpos = le32_to_cpu(split_rec->e_cpos);
3811 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3812 struct ocfs2_extent_rec *rec, *tmprec;
3814 right_el = path_leaf_el(right_path);;
3815 if (left_path)
3816 left_el = path_leaf_el(left_path);
3818 el = right_el;
3819 insert_el = right_el;
3820 index = ocfs2_search_extent_list(el, cpos);
3821 if (index != -1) {
3822 if (index == 0 && left_path) {
3823 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3826 * This typically means that the record
3827 * started in the left path but moved to the
3828 * right as a result of rotation. We either
3829 * move the existing record to the left, or we
3830 * do the later insert there.
3832 * In this case, the left path should always
3833 * exist as the rotate code will have passed
3834 * it back for a post-insert update.
3837 if (split == SPLIT_LEFT) {
3839 * It's a left split. Since we know
3840 * that the rotate code gave us an
3841 * empty extent in the left path, we
3842 * can just do the insert there.
3844 insert_el = left_el;
3845 } else {
3847 * Right split - we have to move the
3848 * existing record over to the left
3849 * leaf. The insert will be into the
3850 * newly created empty extent in the
3851 * right leaf.
3853 tmprec = &right_el->l_recs[index];
3854 ocfs2_rotate_leaf(left_el, tmprec);
3855 el = left_el;
3857 memset(tmprec, 0, sizeof(*tmprec));
3858 index = ocfs2_search_extent_list(left_el, cpos);
3859 BUG_ON(index == -1);
3862 } else {
3863 BUG_ON(!left_path);
3864 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3866 * Left path is easy - we can just allow the insert to
3867 * happen.
3869 el = left_el;
3870 insert_el = left_el;
3871 index = ocfs2_search_extent_list(el, cpos);
3872 BUG_ON(index == -1);
3875 rec = &el->l_recs[index];
3876 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3877 ocfs2_rotate_leaf(insert_el, split_rec);
3881 * This function only does inserts on an allocation b-tree. For tree
3882 * depth = 0, ocfs2_insert_at_leaf() is called directly.
3884 * right_path is the path we want to do the actual insert
3885 * in. left_path should only be passed in if we need to update that
3886 * portion of the tree after an edge insert.
3888 static int ocfs2_insert_path(struct inode *inode,
3889 handle_t *handle,
3890 struct ocfs2_path *left_path,
3891 struct ocfs2_path *right_path,
3892 struct ocfs2_extent_rec *insert_rec,
3893 struct ocfs2_insert_type *insert)
3895 int ret, subtree_index;
3896 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3898 if (left_path) {
3899 int credits = handle->h_buffer_credits;
3902 * There's a chance that left_path got passed back to
3903 * us without being accounted for in the
3904 * journal. Extend our transaction here to be sure we
3905 * can change those blocks.
3907 credits += left_path->p_tree_depth;
3909 ret = ocfs2_extend_trans(handle, credits);
3910 if (ret < 0) {
3911 mlog_errno(ret);
3912 goto out;
3915 ret = ocfs2_journal_access_path(inode, handle, left_path);
3916 if (ret < 0) {
3917 mlog_errno(ret);
3918 goto out;
3923 * Pass both paths to the journal. The majority of inserts
3924 * will be touching all components anyway.
3926 ret = ocfs2_journal_access_path(inode, handle, right_path);
3927 if (ret < 0) {
3928 mlog_errno(ret);
3929 goto out;
3932 if (insert->ins_split != SPLIT_NONE) {
3934 * We could call ocfs2_insert_at_leaf() for some types
3935 * of splits, but it's easier to just let one separate
3936 * function sort it all out.
3938 ocfs2_split_record(inode, left_path, right_path,
3939 insert_rec, insert->ins_split);
3942 * Split might have modified either leaf and we don't
3943 * have a guarantee that the later edge insert will
3944 * dirty this for us.
3946 if (left_path)
3947 ret = ocfs2_journal_dirty(handle,
3948 path_leaf_bh(left_path));
3949 if (ret)
3950 mlog_errno(ret);
3951 } else
3952 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3953 insert, inode);
3955 ret = ocfs2_journal_dirty(handle, leaf_bh);
3956 if (ret)
3957 mlog_errno(ret);
3959 if (left_path) {
3961 * The rotate code has indicated that we need to fix
3962 * up portions of the tree after the insert.
3964 * XXX: Should we extend the transaction here?
3966 subtree_index = ocfs2_find_subtree_root(inode, left_path,
3967 right_path);
3968 ocfs2_complete_edge_insert(inode, handle, left_path,
3969 right_path, subtree_index);
3972 ret = 0;
3973 out:
3974 return ret;
3977 static int ocfs2_do_insert_extent(struct inode *inode,
3978 handle_t *handle,
3979 struct ocfs2_extent_tree *et,
3980 struct ocfs2_extent_rec *insert_rec,
3981 struct ocfs2_insert_type *type)
3983 int ret, rotate = 0;
3984 u32 cpos;
3985 struct ocfs2_path *right_path = NULL;
3986 struct ocfs2_path *left_path = NULL;
3987 struct ocfs2_extent_list *el;
3989 el = et->et_root_el;
3991 ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
3992 OCFS2_JOURNAL_ACCESS_WRITE);
3993 if (ret) {
3994 mlog_errno(ret);
3995 goto out;
3998 if (le16_to_cpu(el->l_tree_depth) == 0) {
3999 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4000 goto out_update_clusters;
4003 right_path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
4004 if (!right_path) {
4005 ret = -ENOMEM;
4006 mlog_errno(ret);
4007 goto out;
4011 * Determine the path to start with. Rotations need the
4012 * rightmost path, everything else can go directly to the
4013 * target leaf.
4015 cpos = le32_to_cpu(insert_rec->e_cpos);
4016 if (type->ins_appending == APPEND_NONE &&
4017 type->ins_contig == CONTIG_NONE) {
4018 rotate = 1;
4019 cpos = UINT_MAX;
4022 ret = ocfs2_find_path(inode, right_path, cpos);
4023 if (ret) {
4024 mlog_errno(ret);
4025 goto out;
4029 * Rotations and appends need special treatment - they modify
4030 * parts of the tree's above them.
4032 * Both might pass back a path immediate to the left of the
4033 * one being inserted to. This will be cause
4034 * ocfs2_insert_path() to modify the rightmost records of
4035 * left_path to account for an edge insert.
4037 * XXX: When modifying this code, keep in mind that an insert
4038 * can wind up skipping both of these two special cases...
4040 if (rotate) {
4041 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4042 le32_to_cpu(insert_rec->e_cpos),
4043 right_path, &left_path);
4044 if (ret) {
4045 mlog_errno(ret);
4046 goto out;
4050 * ocfs2_rotate_tree_right() might have extended the
4051 * transaction without re-journaling our tree root.
4053 ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
4054 OCFS2_JOURNAL_ACCESS_WRITE);
4055 if (ret) {
4056 mlog_errno(ret);
4057 goto out;
4059 } else if (type->ins_appending == APPEND_TAIL
4060 && type->ins_contig != CONTIG_LEFT) {
4061 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4062 right_path, &left_path);
4063 if (ret) {
4064 mlog_errno(ret);
4065 goto out;
4069 ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4070 insert_rec, type);
4071 if (ret) {
4072 mlog_errno(ret);
4073 goto out;
4076 out_update_clusters:
4077 if (type->ins_split == SPLIT_NONE)
4078 ocfs2_et_update_clusters(inode, et,
4079 le16_to_cpu(insert_rec->e_leaf_clusters));
4081 ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4082 if (ret)
4083 mlog_errno(ret);
4085 out:
4086 ocfs2_free_path(left_path);
4087 ocfs2_free_path(right_path);
4089 return ret;
4092 static enum ocfs2_contig_type
4093 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4094 struct ocfs2_extent_list *el, int index,
4095 struct ocfs2_extent_rec *split_rec)
4097 int status;
4098 enum ocfs2_contig_type ret = CONTIG_NONE;
4099 u32 left_cpos, right_cpos;
4100 struct ocfs2_extent_rec *rec = NULL;
4101 struct ocfs2_extent_list *new_el;
4102 struct ocfs2_path *left_path = NULL, *right_path = NULL;
4103 struct buffer_head *bh;
4104 struct ocfs2_extent_block *eb;
4106 if (index > 0) {
4107 rec = &el->l_recs[index - 1];
4108 } else if (path->p_tree_depth > 0) {
4109 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4110 path, &left_cpos);
4111 if (status)
4112 goto out;
4114 if (left_cpos != 0) {
4115 left_path = ocfs2_new_path(path_root_bh(path),
4116 path_root_el(path));
4117 if (!left_path)
4118 goto out;
4120 status = ocfs2_find_path(inode, left_path, left_cpos);
4121 if (status)
4122 goto out;
4124 new_el = path_leaf_el(left_path);
4126 if (le16_to_cpu(new_el->l_next_free_rec) !=
4127 le16_to_cpu(new_el->l_count)) {
4128 bh = path_leaf_bh(left_path);
4129 eb = (struct ocfs2_extent_block *)bh->b_data;
4130 ocfs2_error(inode->i_sb,
4131 "Extent block #%llu has an "
4132 "invalid l_next_free_rec of "
4133 "%d. It should have "
4134 "matched the l_count of %d",
4135 (unsigned long long)le64_to_cpu(eb->h_blkno),
4136 le16_to_cpu(new_el->l_next_free_rec),
4137 le16_to_cpu(new_el->l_count));
4138 status = -EINVAL;
4139 goto out;
4141 rec = &new_el->l_recs[
4142 le16_to_cpu(new_el->l_next_free_rec) - 1];
4147 * We're careful to check for an empty extent record here -
4148 * the merge code will know what to do if it sees one.
4150 if (rec) {
4151 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4152 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4153 ret = CONTIG_RIGHT;
4154 } else {
4155 ret = ocfs2_extent_contig(inode, rec, split_rec);
4159 rec = NULL;
4160 if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4161 rec = &el->l_recs[index + 1];
4162 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4163 path->p_tree_depth > 0) {
4164 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4165 path, &right_cpos);
4166 if (status)
4167 goto out;
4169 if (right_cpos == 0)
4170 goto out;
4172 right_path = ocfs2_new_path(path_root_bh(path),
4173 path_root_el(path));
4174 if (!right_path)
4175 goto out;
4177 status = ocfs2_find_path(inode, right_path, right_cpos);
4178 if (status)
4179 goto out;
4181 new_el = path_leaf_el(right_path);
4182 rec = &new_el->l_recs[0];
4183 if (ocfs2_is_empty_extent(rec)) {
4184 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4185 bh = path_leaf_bh(right_path);
4186 eb = (struct ocfs2_extent_block *)bh->b_data;
4187 ocfs2_error(inode->i_sb,
4188 "Extent block #%llu has an "
4189 "invalid l_next_free_rec of %d",
4190 (unsigned long long)le64_to_cpu(eb->h_blkno),
4191 le16_to_cpu(new_el->l_next_free_rec));
4192 status = -EINVAL;
4193 goto out;
4195 rec = &new_el->l_recs[1];
4199 if (rec) {
4200 enum ocfs2_contig_type contig_type;
4202 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4204 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4205 ret = CONTIG_LEFTRIGHT;
4206 else if (ret == CONTIG_NONE)
4207 ret = contig_type;
4210 out:
4211 if (left_path)
4212 ocfs2_free_path(left_path);
4213 if (right_path)
4214 ocfs2_free_path(right_path);
4216 return ret;
4219 static void ocfs2_figure_contig_type(struct inode *inode,
4220 struct ocfs2_insert_type *insert,
4221 struct ocfs2_extent_list *el,
4222 struct ocfs2_extent_rec *insert_rec,
4223 struct ocfs2_extent_tree *et)
4225 int i;
4226 enum ocfs2_contig_type contig_type = CONTIG_NONE;
4228 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4230 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4231 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4232 insert_rec);
4233 if (contig_type != CONTIG_NONE) {
4234 insert->ins_contig_index = i;
4235 break;
4238 insert->ins_contig = contig_type;
4240 if (insert->ins_contig != CONTIG_NONE) {
4241 struct ocfs2_extent_rec *rec =
4242 &el->l_recs[insert->ins_contig_index];
4243 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4244 le16_to_cpu(insert_rec->e_leaf_clusters);
4247 * Caller might want us to limit the size of extents, don't
4248 * calculate contiguousness if we might exceed that limit.
4250 if (et->et_max_leaf_clusters &&
4251 (len > et->et_max_leaf_clusters))
4252 insert->ins_contig = CONTIG_NONE;
4257 * This should only be called against the righmost leaf extent list.
4259 * ocfs2_figure_appending_type() will figure out whether we'll have to
4260 * insert at the tail of the rightmost leaf.
4262 * This should also work against the root extent list for tree's with 0
4263 * depth. If we consider the root extent list to be the rightmost leaf node
4264 * then the logic here makes sense.
4266 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4267 struct ocfs2_extent_list *el,
4268 struct ocfs2_extent_rec *insert_rec)
4270 int i;
4271 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4272 struct ocfs2_extent_rec *rec;
4274 insert->ins_appending = APPEND_NONE;
4276 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4278 if (!el->l_next_free_rec)
4279 goto set_tail_append;
4281 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4282 /* Were all records empty? */
4283 if (le16_to_cpu(el->l_next_free_rec) == 1)
4284 goto set_tail_append;
4287 i = le16_to_cpu(el->l_next_free_rec) - 1;
4288 rec = &el->l_recs[i];
4290 if (cpos >=
4291 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4292 goto set_tail_append;
4294 return;
4296 set_tail_append:
4297 insert->ins_appending = APPEND_TAIL;
4301 * Helper function called at the begining of an insert.
4303 * This computes a few things that are commonly used in the process of
4304 * inserting into the btree:
4305 * - Whether the new extent is contiguous with an existing one.
4306 * - The current tree depth.
4307 * - Whether the insert is an appending one.
4308 * - The total # of free records in the tree.
4310 * All of the information is stored on the ocfs2_insert_type
4311 * structure.
4313 static int ocfs2_figure_insert_type(struct inode *inode,
4314 struct ocfs2_extent_tree *et,
4315 struct buffer_head **last_eb_bh,
4316 struct ocfs2_extent_rec *insert_rec,
4317 int *free_records,
4318 struct ocfs2_insert_type *insert)
4320 int ret;
4321 struct ocfs2_extent_block *eb;
4322 struct ocfs2_extent_list *el;
4323 struct ocfs2_path *path = NULL;
4324 struct buffer_head *bh = NULL;
4326 insert->ins_split = SPLIT_NONE;
4328 el = et->et_root_el;
4329 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4331 if (el->l_tree_depth) {
4333 * If we have tree depth, we read in the
4334 * rightmost extent block ahead of time as
4335 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4336 * may want it later.
4338 ret = ocfs2_read_extent_block(inode,
4339 ocfs2_et_get_last_eb_blk(et),
4340 &bh);
4341 if (ret) {
4342 mlog_exit(ret);
4343 goto out;
4345 eb = (struct ocfs2_extent_block *) bh->b_data;
4346 el = &eb->h_list;
4350 * Unless we have a contiguous insert, we'll need to know if
4351 * there is room left in our allocation tree for another
4352 * extent record.
4354 * XXX: This test is simplistic, we can search for empty
4355 * extent records too.
4357 *free_records = le16_to_cpu(el->l_count) -
4358 le16_to_cpu(el->l_next_free_rec);
4360 if (!insert->ins_tree_depth) {
4361 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4362 ocfs2_figure_appending_type(insert, el, insert_rec);
4363 return 0;
4366 path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
4367 if (!path) {
4368 ret = -ENOMEM;
4369 mlog_errno(ret);
4370 goto out;
4374 * In the case that we're inserting past what the tree
4375 * currently accounts for, ocfs2_find_path() will return for
4376 * us the rightmost tree path. This is accounted for below in
4377 * the appending code.
4379 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4380 if (ret) {
4381 mlog_errno(ret);
4382 goto out;
4385 el = path_leaf_el(path);
4388 * Now that we have the path, there's two things we want to determine:
4389 * 1) Contiguousness (also set contig_index if this is so)
4391 * 2) Are we doing an append? We can trivially break this up
4392 * into two types of appends: simple record append, or a
4393 * rotate inside the tail leaf.
4395 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4398 * The insert code isn't quite ready to deal with all cases of
4399 * left contiguousness. Specifically, if it's an insert into
4400 * the 1st record in a leaf, it will require the adjustment of
4401 * cluster count on the last record of the path directly to it's
4402 * left. For now, just catch that case and fool the layers
4403 * above us. This works just fine for tree_depth == 0, which
4404 * is why we allow that above.
4406 if (insert->ins_contig == CONTIG_LEFT &&
4407 insert->ins_contig_index == 0)
4408 insert->ins_contig = CONTIG_NONE;
4411 * Ok, so we can simply compare against last_eb to figure out
4412 * whether the path doesn't exist. This will only happen in
4413 * the case that we're doing a tail append, so maybe we can
4414 * take advantage of that information somehow.
4416 if (ocfs2_et_get_last_eb_blk(et) ==
4417 path_leaf_bh(path)->b_blocknr) {
4419 * Ok, ocfs2_find_path() returned us the rightmost
4420 * tree path. This might be an appending insert. There are
4421 * two cases:
4422 * 1) We're doing a true append at the tail:
4423 * -This might even be off the end of the leaf
4424 * 2) We're "appending" by rotating in the tail
4426 ocfs2_figure_appending_type(insert, el, insert_rec);
4429 out:
4430 ocfs2_free_path(path);
4432 if (ret == 0)
4433 *last_eb_bh = bh;
4434 else
4435 brelse(bh);
4436 return ret;
4440 * Insert an extent into an inode btree.
4442 * The caller needs to update fe->i_clusters
4444 int ocfs2_insert_extent(struct ocfs2_super *osb,
4445 handle_t *handle,
4446 struct inode *inode,
4447 struct ocfs2_extent_tree *et,
4448 u32 cpos,
4449 u64 start_blk,
4450 u32 new_clusters,
4451 u8 flags,
4452 struct ocfs2_alloc_context *meta_ac)
4454 int status;
4455 int uninitialized_var(free_records);
4456 struct buffer_head *last_eb_bh = NULL;
4457 struct ocfs2_insert_type insert = {0, };
4458 struct ocfs2_extent_rec rec;
4460 mlog(0, "add %u clusters at position %u to inode %llu\n",
4461 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4463 memset(&rec, 0, sizeof(rec));
4464 rec.e_cpos = cpu_to_le32(cpos);
4465 rec.e_blkno = cpu_to_le64(start_blk);
4466 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4467 rec.e_flags = flags;
4468 status = ocfs2_et_insert_check(inode, et, &rec);
4469 if (status) {
4470 mlog_errno(status);
4471 goto bail;
4474 status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4475 &free_records, &insert);
4476 if (status < 0) {
4477 mlog_errno(status);
4478 goto bail;
4481 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4482 "Insert.contig_index: %d, Insert.free_records: %d, "
4483 "Insert.tree_depth: %d\n",
4484 insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4485 free_records, insert.ins_tree_depth);
4487 if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4488 status = ocfs2_grow_tree(inode, handle, et,
4489 &insert.ins_tree_depth, &last_eb_bh,
4490 meta_ac);
4491 if (status) {
4492 mlog_errno(status);
4493 goto bail;
4497 /* Finally, we can add clusters. This might rotate the tree for us. */
4498 status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4499 if (status < 0)
4500 mlog_errno(status);
4501 else if (et->et_ops == &ocfs2_dinode_et_ops)
4502 ocfs2_extent_map_insert_rec(inode, &rec);
4504 bail:
4505 brelse(last_eb_bh);
4507 mlog_exit(status);
4508 return status;
4512 * Allcate and add clusters into the extent b-tree.
4513 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4514 * The extent b-tree's root is specified by et, and
4515 * it is not limited to the file storage. Any extent tree can use this
4516 * function if it implements the proper ocfs2_extent_tree.
4518 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4519 struct inode *inode,
4520 u32 *logical_offset,
4521 u32 clusters_to_add,
4522 int mark_unwritten,
4523 struct ocfs2_extent_tree *et,
4524 handle_t *handle,
4525 struct ocfs2_alloc_context *data_ac,
4526 struct ocfs2_alloc_context *meta_ac,
4527 enum ocfs2_alloc_restarted *reason_ret)
4529 int status = 0;
4530 int free_extents;
4531 enum ocfs2_alloc_restarted reason = RESTART_NONE;
4532 u32 bit_off, num_bits;
4533 u64 block;
4534 u8 flags = 0;
4536 BUG_ON(!clusters_to_add);
4538 if (mark_unwritten)
4539 flags = OCFS2_EXT_UNWRITTEN;
4541 free_extents = ocfs2_num_free_extents(osb, inode, et);
4542 if (free_extents < 0) {
4543 status = free_extents;
4544 mlog_errno(status);
4545 goto leave;
4548 /* there are two cases which could cause us to EAGAIN in the
4549 * we-need-more-metadata case:
4550 * 1) we haven't reserved *any*
4551 * 2) we are so fragmented, we've needed to add metadata too
4552 * many times. */
4553 if (!free_extents && !meta_ac) {
4554 mlog(0, "we haven't reserved any metadata!\n");
4555 status = -EAGAIN;
4556 reason = RESTART_META;
4557 goto leave;
4558 } else if ((!free_extents)
4559 && (ocfs2_alloc_context_bits_left(meta_ac)
4560 < ocfs2_extend_meta_needed(et->et_root_el))) {
4561 mlog(0, "filesystem is really fragmented...\n");
4562 status = -EAGAIN;
4563 reason = RESTART_META;
4564 goto leave;
4567 status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4568 clusters_to_add, &bit_off, &num_bits);
4569 if (status < 0) {
4570 if (status != -ENOSPC)
4571 mlog_errno(status);
4572 goto leave;
4575 BUG_ON(num_bits > clusters_to_add);
4577 /* reserve our write early -- insert_extent may update the inode */
4578 status = ocfs2_journal_access(handle, inode, et->et_root_bh,
4579 OCFS2_JOURNAL_ACCESS_WRITE);
4580 if (status < 0) {
4581 mlog_errno(status);
4582 goto leave;
4585 block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4586 mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4587 num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4588 status = ocfs2_insert_extent(osb, handle, inode, et,
4589 *logical_offset, block,
4590 num_bits, flags, meta_ac);
4591 if (status < 0) {
4592 mlog_errno(status);
4593 goto leave;
4596 status = ocfs2_journal_dirty(handle, et->et_root_bh);
4597 if (status < 0) {
4598 mlog_errno(status);
4599 goto leave;
4602 clusters_to_add -= num_bits;
4603 *logical_offset += num_bits;
4605 if (clusters_to_add) {
4606 mlog(0, "need to alloc once more, wanted = %u\n",
4607 clusters_to_add);
4608 status = -EAGAIN;
4609 reason = RESTART_TRANS;
4612 leave:
4613 mlog_exit(status);
4614 if (reason_ret)
4615 *reason_ret = reason;
4616 return status;
4619 static void ocfs2_make_right_split_rec(struct super_block *sb,
4620 struct ocfs2_extent_rec *split_rec,
4621 u32 cpos,
4622 struct ocfs2_extent_rec *rec)
4624 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4625 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4627 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4629 split_rec->e_cpos = cpu_to_le32(cpos);
4630 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4632 split_rec->e_blkno = rec->e_blkno;
4633 le64_add_cpu(&split_rec->e_blkno,
4634 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4636 split_rec->e_flags = rec->e_flags;
4639 static int ocfs2_split_and_insert(struct inode *inode,
4640 handle_t *handle,
4641 struct ocfs2_path *path,
4642 struct ocfs2_extent_tree *et,
4643 struct buffer_head **last_eb_bh,
4644 int split_index,
4645 struct ocfs2_extent_rec *orig_split_rec,
4646 struct ocfs2_alloc_context *meta_ac)
4648 int ret = 0, depth;
4649 unsigned int insert_range, rec_range, do_leftright = 0;
4650 struct ocfs2_extent_rec tmprec;
4651 struct ocfs2_extent_list *rightmost_el;
4652 struct ocfs2_extent_rec rec;
4653 struct ocfs2_extent_rec split_rec = *orig_split_rec;
4654 struct ocfs2_insert_type insert;
4655 struct ocfs2_extent_block *eb;
4657 leftright:
4659 * Store a copy of the record on the stack - it might move
4660 * around as the tree is manipulated below.
4662 rec = path_leaf_el(path)->l_recs[split_index];
4664 rightmost_el = et->et_root_el;
4666 depth = le16_to_cpu(rightmost_el->l_tree_depth);
4667 if (depth) {
4668 BUG_ON(!(*last_eb_bh));
4669 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4670 rightmost_el = &eb->h_list;
4673 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4674 le16_to_cpu(rightmost_el->l_count)) {
4675 ret = ocfs2_grow_tree(inode, handle, et,
4676 &depth, last_eb_bh, meta_ac);
4677 if (ret) {
4678 mlog_errno(ret);
4679 goto out;
4683 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4684 insert.ins_appending = APPEND_NONE;
4685 insert.ins_contig = CONTIG_NONE;
4686 insert.ins_tree_depth = depth;
4688 insert_range = le32_to_cpu(split_rec.e_cpos) +
4689 le16_to_cpu(split_rec.e_leaf_clusters);
4690 rec_range = le32_to_cpu(rec.e_cpos) +
4691 le16_to_cpu(rec.e_leaf_clusters);
4693 if (split_rec.e_cpos == rec.e_cpos) {
4694 insert.ins_split = SPLIT_LEFT;
4695 } else if (insert_range == rec_range) {
4696 insert.ins_split = SPLIT_RIGHT;
4697 } else {
4699 * Left/right split. We fake this as a right split
4700 * first and then make a second pass as a left split.
4702 insert.ins_split = SPLIT_RIGHT;
4704 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4705 &rec);
4707 split_rec = tmprec;
4709 BUG_ON(do_leftright);
4710 do_leftright = 1;
4713 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4714 if (ret) {
4715 mlog_errno(ret);
4716 goto out;
4719 if (do_leftright == 1) {
4720 u32 cpos;
4721 struct ocfs2_extent_list *el;
4723 do_leftright++;
4724 split_rec = *orig_split_rec;
4726 ocfs2_reinit_path(path, 1);
4728 cpos = le32_to_cpu(split_rec.e_cpos);
4729 ret = ocfs2_find_path(inode, path, cpos);
4730 if (ret) {
4731 mlog_errno(ret);
4732 goto out;
4735 el = path_leaf_el(path);
4736 split_index = ocfs2_search_extent_list(el, cpos);
4737 goto leftright;
4739 out:
4741 return ret;
4745 * Mark part or all of the extent record at split_index in the leaf
4746 * pointed to by path as written. This removes the unwritten
4747 * extent flag.
4749 * Care is taken to handle contiguousness so as to not grow the tree.
4751 * meta_ac is not strictly necessary - we only truly need it if growth
4752 * of the tree is required. All other cases will degrade into a less
4753 * optimal tree layout.
4755 * last_eb_bh should be the rightmost leaf block for any extent
4756 * btree. Since a split may grow the tree or a merge might shrink it,
4757 * the caller cannot trust the contents of that buffer after this call.
4759 * This code is optimized for readability - several passes might be
4760 * made over certain portions of the tree. All of those blocks will
4761 * have been brought into cache (and pinned via the journal), so the
4762 * extra overhead is not expressed in terms of disk reads.
4764 static int __ocfs2_mark_extent_written(struct inode *inode,
4765 struct ocfs2_extent_tree *et,
4766 handle_t *handle,
4767 struct ocfs2_path *path,
4768 int split_index,
4769 struct ocfs2_extent_rec *split_rec,
4770 struct ocfs2_alloc_context *meta_ac,
4771 struct ocfs2_cached_dealloc_ctxt *dealloc)
4773 int ret = 0;
4774 struct ocfs2_extent_list *el = path_leaf_el(path);
4775 struct buffer_head *last_eb_bh = NULL;
4776 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4777 struct ocfs2_merge_ctxt ctxt;
4778 struct ocfs2_extent_list *rightmost_el;
4780 if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4781 ret = -EIO;
4782 mlog_errno(ret);
4783 goto out;
4786 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4787 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4788 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4789 ret = -EIO;
4790 mlog_errno(ret);
4791 goto out;
4794 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
4795 split_index,
4796 split_rec);
4799 * The core merge / split code wants to know how much room is
4800 * left in this inodes allocation tree, so we pass the
4801 * rightmost extent list.
4803 if (path->p_tree_depth) {
4804 struct ocfs2_extent_block *eb;
4806 ret = ocfs2_read_extent_block(inode,
4807 ocfs2_et_get_last_eb_blk(et),
4808 &last_eb_bh);
4809 if (ret) {
4810 mlog_exit(ret);
4811 goto out;
4814 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4815 rightmost_el = &eb->h_list;
4816 } else
4817 rightmost_el = path_root_el(path);
4819 if (rec->e_cpos == split_rec->e_cpos &&
4820 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4821 ctxt.c_split_covers_rec = 1;
4822 else
4823 ctxt.c_split_covers_rec = 0;
4825 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4827 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4828 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4829 ctxt.c_split_covers_rec);
4831 if (ctxt.c_contig_type == CONTIG_NONE) {
4832 if (ctxt.c_split_covers_rec)
4833 el->l_recs[split_index] = *split_rec;
4834 else
4835 ret = ocfs2_split_and_insert(inode, handle, path, et,
4836 &last_eb_bh, split_index,
4837 split_rec, meta_ac);
4838 if (ret)
4839 mlog_errno(ret);
4840 } else {
4841 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4842 split_index, split_rec,
4843 dealloc, &ctxt, et);
4844 if (ret)
4845 mlog_errno(ret);
4848 out:
4849 brelse(last_eb_bh);
4850 return ret;
4854 * Mark the already-existing extent at cpos as written for len clusters.
4856 * If the existing extent is larger than the request, initiate a
4857 * split. An attempt will be made at merging with adjacent extents.
4859 * The caller is responsible for passing down meta_ac if we'll need it.
4861 int ocfs2_mark_extent_written(struct inode *inode,
4862 struct ocfs2_extent_tree *et,
4863 handle_t *handle, u32 cpos, u32 len, u32 phys,
4864 struct ocfs2_alloc_context *meta_ac,
4865 struct ocfs2_cached_dealloc_ctxt *dealloc)
4867 int ret, index;
4868 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4869 struct ocfs2_extent_rec split_rec;
4870 struct ocfs2_path *left_path = NULL;
4871 struct ocfs2_extent_list *el;
4873 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4874 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4876 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4877 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4878 "that are being written to, but the feature bit "
4879 "is not set in the super block.",
4880 (unsigned long long)OCFS2_I(inode)->ip_blkno);
4881 ret = -EROFS;
4882 goto out;
4886 * XXX: This should be fixed up so that we just re-insert the
4887 * next extent records.
4889 * XXX: This is a hack on the extent tree, maybe it should be
4890 * an op?
4892 if (et->et_ops == &ocfs2_dinode_et_ops)
4893 ocfs2_extent_map_trunc(inode, 0);
4895 left_path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
4896 if (!left_path) {
4897 ret = -ENOMEM;
4898 mlog_errno(ret);
4899 goto out;
4902 ret = ocfs2_find_path(inode, left_path, cpos);
4903 if (ret) {
4904 mlog_errno(ret);
4905 goto out;
4907 el = path_leaf_el(left_path);
4909 index = ocfs2_search_extent_list(el, cpos);
4910 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4911 ocfs2_error(inode->i_sb,
4912 "Inode %llu has an extent at cpos %u which can no "
4913 "longer be found.\n",
4914 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4915 ret = -EROFS;
4916 goto out;
4919 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4920 split_rec.e_cpos = cpu_to_le32(cpos);
4921 split_rec.e_leaf_clusters = cpu_to_le16(len);
4922 split_rec.e_blkno = cpu_to_le64(start_blkno);
4923 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4924 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4926 ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
4927 index, &split_rec, meta_ac,
4928 dealloc);
4929 if (ret)
4930 mlog_errno(ret);
4932 out:
4933 ocfs2_free_path(left_path);
4934 return ret;
4937 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
4938 handle_t *handle, struct ocfs2_path *path,
4939 int index, u32 new_range,
4940 struct ocfs2_alloc_context *meta_ac)
4942 int ret, depth, credits = handle->h_buffer_credits;
4943 struct buffer_head *last_eb_bh = NULL;
4944 struct ocfs2_extent_block *eb;
4945 struct ocfs2_extent_list *rightmost_el, *el;
4946 struct ocfs2_extent_rec split_rec;
4947 struct ocfs2_extent_rec *rec;
4948 struct ocfs2_insert_type insert;
4951 * Setup the record to split before we grow the tree.
4953 el = path_leaf_el(path);
4954 rec = &el->l_recs[index];
4955 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4957 depth = path->p_tree_depth;
4958 if (depth > 0) {
4959 ret = ocfs2_read_extent_block(inode,
4960 ocfs2_et_get_last_eb_blk(et),
4961 &last_eb_bh);
4962 if (ret < 0) {
4963 mlog_errno(ret);
4964 goto out;
4967 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4968 rightmost_el = &eb->h_list;
4969 } else
4970 rightmost_el = path_leaf_el(path);
4972 credits += path->p_tree_depth +
4973 ocfs2_extend_meta_needed(et->et_root_el);
4974 ret = ocfs2_extend_trans(handle, credits);
4975 if (ret) {
4976 mlog_errno(ret);
4977 goto out;
4980 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4981 le16_to_cpu(rightmost_el->l_count)) {
4982 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
4983 meta_ac);
4984 if (ret) {
4985 mlog_errno(ret);
4986 goto out;
4990 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4991 insert.ins_appending = APPEND_NONE;
4992 insert.ins_contig = CONTIG_NONE;
4993 insert.ins_split = SPLIT_RIGHT;
4994 insert.ins_tree_depth = depth;
4996 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4997 if (ret)
4998 mlog_errno(ret);
5000 out:
5001 brelse(last_eb_bh);
5002 return ret;
5005 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5006 struct ocfs2_path *path, int index,
5007 struct ocfs2_cached_dealloc_ctxt *dealloc,
5008 u32 cpos, u32 len,
5009 struct ocfs2_extent_tree *et)
5011 int ret;
5012 u32 left_cpos, rec_range, trunc_range;
5013 int wants_rotate = 0, is_rightmost_tree_rec = 0;
5014 struct super_block *sb = inode->i_sb;
5015 struct ocfs2_path *left_path = NULL;
5016 struct ocfs2_extent_list *el = path_leaf_el(path);
5017 struct ocfs2_extent_rec *rec;
5018 struct ocfs2_extent_block *eb;
5020 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5021 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5022 if (ret) {
5023 mlog_errno(ret);
5024 goto out;
5027 index--;
5030 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5031 path->p_tree_depth) {
5033 * Check whether this is the rightmost tree record. If
5034 * we remove all of this record or part of its right
5035 * edge then an update of the record lengths above it
5036 * will be required.
5038 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5039 if (eb->h_next_leaf_blk == 0)
5040 is_rightmost_tree_rec = 1;
5043 rec = &el->l_recs[index];
5044 if (index == 0 && path->p_tree_depth &&
5045 le32_to_cpu(rec->e_cpos) == cpos) {
5047 * Changing the leftmost offset (via partial or whole
5048 * record truncate) of an interior (or rightmost) path
5049 * means we have to update the subtree that is formed
5050 * by this leaf and the one to it's left.
5052 * There are two cases we can skip:
5053 * 1) Path is the leftmost one in our inode tree.
5054 * 2) The leaf is rightmost and will be empty after
5055 * we remove the extent record - the rotate code
5056 * knows how to update the newly formed edge.
5059 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5060 &left_cpos);
5061 if (ret) {
5062 mlog_errno(ret);
5063 goto out;
5066 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5067 left_path = ocfs2_new_path(path_root_bh(path),
5068 path_root_el(path));
5069 if (!left_path) {
5070 ret = -ENOMEM;
5071 mlog_errno(ret);
5072 goto out;
5075 ret = ocfs2_find_path(inode, left_path, left_cpos);
5076 if (ret) {
5077 mlog_errno(ret);
5078 goto out;
5083 ret = ocfs2_extend_rotate_transaction(handle, 0,
5084 handle->h_buffer_credits,
5085 path);
5086 if (ret) {
5087 mlog_errno(ret);
5088 goto out;
5091 ret = ocfs2_journal_access_path(inode, handle, path);
5092 if (ret) {
5093 mlog_errno(ret);
5094 goto out;
5097 ret = ocfs2_journal_access_path(inode, handle, left_path);
5098 if (ret) {
5099 mlog_errno(ret);
5100 goto out;
5103 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5104 trunc_range = cpos + len;
5106 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5107 int next_free;
5109 memset(rec, 0, sizeof(*rec));
5110 ocfs2_cleanup_merge(el, index);
5111 wants_rotate = 1;
5113 next_free = le16_to_cpu(el->l_next_free_rec);
5114 if (is_rightmost_tree_rec && next_free > 1) {
5116 * We skip the edge update if this path will
5117 * be deleted by the rotate code.
5119 rec = &el->l_recs[next_free - 1];
5120 ocfs2_adjust_rightmost_records(inode, handle, path,
5121 rec);
5123 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5124 /* Remove leftmost portion of the record. */
5125 le32_add_cpu(&rec->e_cpos, len);
5126 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5127 le16_add_cpu(&rec->e_leaf_clusters, -len);
5128 } else if (rec_range == trunc_range) {
5129 /* Remove rightmost portion of the record */
5130 le16_add_cpu(&rec->e_leaf_clusters, -len);
5131 if (is_rightmost_tree_rec)
5132 ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5133 } else {
5134 /* Caller should have trapped this. */
5135 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5136 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5137 le32_to_cpu(rec->e_cpos),
5138 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5139 BUG();
5142 if (left_path) {
5143 int subtree_index;
5145 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5146 ocfs2_complete_edge_insert(inode, handle, left_path, path,
5147 subtree_index);
5150 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5152 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5153 if (ret) {
5154 mlog_errno(ret);
5155 goto out;
5158 out:
5159 ocfs2_free_path(left_path);
5160 return ret;
5163 int ocfs2_remove_extent(struct inode *inode,
5164 struct ocfs2_extent_tree *et,
5165 u32 cpos, u32 len, handle_t *handle,
5166 struct ocfs2_alloc_context *meta_ac,
5167 struct ocfs2_cached_dealloc_ctxt *dealloc)
5169 int ret, index;
5170 u32 rec_range, trunc_range;
5171 struct ocfs2_extent_rec *rec;
5172 struct ocfs2_extent_list *el;
5173 struct ocfs2_path *path = NULL;
5175 ocfs2_extent_map_trunc(inode, 0);
5177 path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
5178 if (!path) {
5179 ret = -ENOMEM;
5180 mlog_errno(ret);
5181 goto out;
5184 ret = ocfs2_find_path(inode, path, cpos);
5185 if (ret) {
5186 mlog_errno(ret);
5187 goto out;
5190 el = path_leaf_el(path);
5191 index = ocfs2_search_extent_list(el, cpos);
5192 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5193 ocfs2_error(inode->i_sb,
5194 "Inode %llu has an extent at cpos %u which can no "
5195 "longer be found.\n",
5196 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5197 ret = -EROFS;
5198 goto out;
5202 * We have 3 cases of extent removal:
5203 * 1) Range covers the entire extent rec
5204 * 2) Range begins or ends on one edge of the extent rec
5205 * 3) Range is in the middle of the extent rec (no shared edges)
5207 * For case 1 we remove the extent rec and left rotate to
5208 * fill the hole.
5210 * For case 2 we just shrink the existing extent rec, with a
5211 * tree update if the shrinking edge is also the edge of an
5212 * extent block.
5214 * For case 3 we do a right split to turn the extent rec into
5215 * something case 2 can handle.
5217 rec = &el->l_recs[index];
5218 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5219 trunc_range = cpos + len;
5221 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5223 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5224 "(cpos %u, len %u)\n",
5225 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5226 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5228 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5229 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5230 cpos, len, et);
5231 if (ret) {
5232 mlog_errno(ret);
5233 goto out;
5235 } else {
5236 ret = ocfs2_split_tree(inode, et, handle, path, index,
5237 trunc_range, meta_ac);
5238 if (ret) {
5239 mlog_errno(ret);
5240 goto out;
5244 * The split could have manipulated the tree enough to
5245 * move the record location, so we have to look for it again.
5247 ocfs2_reinit_path(path, 1);
5249 ret = ocfs2_find_path(inode, path, cpos);
5250 if (ret) {
5251 mlog_errno(ret);
5252 goto out;
5255 el = path_leaf_el(path);
5256 index = ocfs2_search_extent_list(el, cpos);
5257 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5258 ocfs2_error(inode->i_sb,
5259 "Inode %llu: split at cpos %u lost record.",
5260 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5261 cpos);
5262 ret = -EROFS;
5263 goto out;
5267 * Double check our values here. If anything is fishy,
5268 * it's easier to catch it at the top level.
5270 rec = &el->l_recs[index];
5271 rec_range = le32_to_cpu(rec->e_cpos) +
5272 ocfs2_rec_clusters(el, rec);
5273 if (rec_range != trunc_range) {
5274 ocfs2_error(inode->i_sb,
5275 "Inode %llu: error after split at cpos %u"
5276 "trunc len %u, existing record is (%u,%u)",
5277 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5278 cpos, len, le32_to_cpu(rec->e_cpos),
5279 ocfs2_rec_clusters(el, rec));
5280 ret = -EROFS;
5281 goto out;
5284 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5285 cpos, len, et);
5286 if (ret) {
5287 mlog_errno(ret);
5288 goto out;
5292 out:
5293 ocfs2_free_path(path);
5294 return ret;
5297 int ocfs2_remove_btree_range(struct inode *inode,
5298 struct ocfs2_extent_tree *et,
5299 u32 cpos, u32 phys_cpos, u32 len,
5300 struct ocfs2_cached_dealloc_ctxt *dealloc)
5302 int ret;
5303 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5304 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5305 struct inode *tl_inode = osb->osb_tl_inode;
5306 handle_t *handle;
5307 struct ocfs2_alloc_context *meta_ac = NULL;
5309 ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5310 if (ret) {
5311 mlog_errno(ret);
5312 return ret;
5315 mutex_lock(&tl_inode->i_mutex);
5317 if (ocfs2_truncate_log_needs_flush(osb)) {
5318 ret = __ocfs2_flush_truncate_log(osb);
5319 if (ret < 0) {
5320 mlog_errno(ret);
5321 goto out;
5325 handle = ocfs2_start_trans(osb, OCFS2_REMOVE_EXTENT_CREDITS);
5326 if (IS_ERR(handle)) {
5327 ret = PTR_ERR(handle);
5328 mlog_errno(ret);
5329 goto out;
5332 ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
5333 OCFS2_JOURNAL_ACCESS_WRITE);
5334 if (ret) {
5335 mlog_errno(ret);
5336 goto out;
5339 ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5340 dealloc);
5341 if (ret) {
5342 mlog_errno(ret);
5343 goto out_commit;
5346 ocfs2_et_update_clusters(inode, et, -len);
5348 ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5349 if (ret) {
5350 mlog_errno(ret);
5351 goto out_commit;
5354 ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5355 if (ret)
5356 mlog_errno(ret);
5358 out_commit:
5359 ocfs2_commit_trans(osb, handle);
5360 out:
5361 mutex_unlock(&tl_inode->i_mutex);
5363 if (meta_ac)
5364 ocfs2_free_alloc_context(meta_ac);
5366 return ret;
5369 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5371 struct buffer_head *tl_bh = osb->osb_tl_bh;
5372 struct ocfs2_dinode *di;
5373 struct ocfs2_truncate_log *tl;
5375 di = (struct ocfs2_dinode *) tl_bh->b_data;
5376 tl = &di->id2.i_dealloc;
5378 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5379 "slot %d, invalid truncate log parameters: used = "
5380 "%u, count = %u\n", osb->slot_num,
5381 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5382 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5385 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5386 unsigned int new_start)
5388 unsigned int tail_index;
5389 unsigned int current_tail;
5391 /* No records, nothing to coalesce */
5392 if (!le16_to_cpu(tl->tl_used))
5393 return 0;
5395 tail_index = le16_to_cpu(tl->tl_used) - 1;
5396 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5397 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5399 return current_tail == new_start;
5402 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5403 handle_t *handle,
5404 u64 start_blk,
5405 unsigned int num_clusters)
5407 int status, index;
5408 unsigned int start_cluster, tl_count;
5409 struct inode *tl_inode = osb->osb_tl_inode;
5410 struct buffer_head *tl_bh = osb->osb_tl_bh;
5411 struct ocfs2_dinode *di;
5412 struct ocfs2_truncate_log *tl;
5414 mlog_entry("start_blk = %llu, num_clusters = %u\n",
5415 (unsigned long long)start_blk, num_clusters);
5417 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5419 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5421 di = (struct ocfs2_dinode *) tl_bh->b_data;
5423 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5424 * by the underlying call to ocfs2_read_inode_block(), so any
5425 * corruption is a code bug */
5426 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5428 tl = &di->id2.i_dealloc;
5429 tl_count = le16_to_cpu(tl->tl_count);
5430 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5431 tl_count == 0,
5432 "Truncate record count on #%llu invalid "
5433 "wanted %u, actual %u\n",
5434 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5435 ocfs2_truncate_recs_per_inode(osb->sb),
5436 le16_to_cpu(tl->tl_count));
5438 /* Caller should have known to flush before calling us. */
5439 index = le16_to_cpu(tl->tl_used);
5440 if (index >= tl_count) {
5441 status = -ENOSPC;
5442 mlog_errno(status);
5443 goto bail;
5446 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5447 OCFS2_JOURNAL_ACCESS_WRITE);
5448 if (status < 0) {
5449 mlog_errno(status);
5450 goto bail;
5453 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5454 "%llu (index = %d)\n", num_clusters, start_cluster,
5455 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5457 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5459 * Move index back to the record we are coalescing with.
5460 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5462 index--;
5464 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5465 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5466 index, le32_to_cpu(tl->tl_recs[index].t_start),
5467 num_clusters);
5468 } else {
5469 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5470 tl->tl_used = cpu_to_le16(index + 1);
5472 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5474 status = ocfs2_journal_dirty(handle, tl_bh);
5475 if (status < 0) {
5476 mlog_errno(status);
5477 goto bail;
5480 bail:
5481 mlog_exit(status);
5482 return status;
5485 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5486 handle_t *handle,
5487 struct inode *data_alloc_inode,
5488 struct buffer_head *data_alloc_bh)
5490 int status = 0;
5491 int i;
5492 unsigned int num_clusters;
5493 u64 start_blk;
5494 struct ocfs2_truncate_rec rec;
5495 struct ocfs2_dinode *di;
5496 struct ocfs2_truncate_log *tl;
5497 struct inode *tl_inode = osb->osb_tl_inode;
5498 struct buffer_head *tl_bh = osb->osb_tl_bh;
5500 mlog_entry_void();
5502 di = (struct ocfs2_dinode *) tl_bh->b_data;
5503 tl = &di->id2.i_dealloc;
5504 i = le16_to_cpu(tl->tl_used) - 1;
5505 while (i >= 0) {
5506 /* Caller has given us at least enough credits to
5507 * update the truncate log dinode */
5508 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5509 OCFS2_JOURNAL_ACCESS_WRITE);
5510 if (status < 0) {
5511 mlog_errno(status);
5512 goto bail;
5515 tl->tl_used = cpu_to_le16(i);
5517 status = ocfs2_journal_dirty(handle, tl_bh);
5518 if (status < 0) {
5519 mlog_errno(status);
5520 goto bail;
5523 /* TODO: Perhaps we can calculate the bulk of the
5524 * credits up front rather than extending like
5525 * this. */
5526 status = ocfs2_extend_trans(handle,
5527 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5528 if (status < 0) {
5529 mlog_errno(status);
5530 goto bail;
5533 rec = tl->tl_recs[i];
5534 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5535 le32_to_cpu(rec.t_start));
5536 num_clusters = le32_to_cpu(rec.t_clusters);
5538 /* if start_blk is not set, we ignore the record as
5539 * invalid. */
5540 if (start_blk) {
5541 mlog(0, "free record %d, start = %u, clusters = %u\n",
5542 i, le32_to_cpu(rec.t_start), num_clusters);
5544 status = ocfs2_free_clusters(handle, data_alloc_inode,
5545 data_alloc_bh, start_blk,
5546 num_clusters);
5547 if (status < 0) {
5548 mlog_errno(status);
5549 goto bail;
5552 i--;
5555 bail:
5556 mlog_exit(status);
5557 return status;
5560 /* Expects you to already be holding tl_inode->i_mutex */
5561 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5563 int status;
5564 unsigned int num_to_flush;
5565 handle_t *handle;
5566 struct inode *tl_inode = osb->osb_tl_inode;
5567 struct inode *data_alloc_inode = NULL;
5568 struct buffer_head *tl_bh = osb->osb_tl_bh;
5569 struct buffer_head *data_alloc_bh = NULL;
5570 struct ocfs2_dinode *di;
5571 struct ocfs2_truncate_log *tl;
5573 mlog_entry_void();
5575 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5577 di = (struct ocfs2_dinode *) tl_bh->b_data;
5579 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5580 * by the underlying call to ocfs2_read_inode_block(), so any
5581 * corruption is a code bug */
5582 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5584 tl = &di->id2.i_dealloc;
5585 num_to_flush = le16_to_cpu(tl->tl_used);
5586 mlog(0, "Flush %u records from truncate log #%llu\n",
5587 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5588 if (!num_to_flush) {
5589 status = 0;
5590 goto out;
5593 data_alloc_inode = ocfs2_get_system_file_inode(osb,
5594 GLOBAL_BITMAP_SYSTEM_INODE,
5595 OCFS2_INVALID_SLOT);
5596 if (!data_alloc_inode) {
5597 status = -EINVAL;
5598 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5599 goto out;
5602 mutex_lock(&data_alloc_inode->i_mutex);
5604 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5605 if (status < 0) {
5606 mlog_errno(status);
5607 goto out_mutex;
5610 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5611 if (IS_ERR(handle)) {
5612 status = PTR_ERR(handle);
5613 mlog_errno(status);
5614 goto out_unlock;
5617 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5618 data_alloc_bh);
5619 if (status < 0)
5620 mlog_errno(status);
5622 ocfs2_commit_trans(osb, handle);
5624 out_unlock:
5625 brelse(data_alloc_bh);
5626 ocfs2_inode_unlock(data_alloc_inode, 1);
5628 out_mutex:
5629 mutex_unlock(&data_alloc_inode->i_mutex);
5630 iput(data_alloc_inode);
5632 out:
5633 mlog_exit(status);
5634 return status;
5637 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5639 int status;
5640 struct inode *tl_inode = osb->osb_tl_inode;
5642 mutex_lock(&tl_inode->i_mutex);
5643 status = __ocfs2_flush_truncate_log(osb);
5644 mutex_unlock(&tl_inode->i_mutex);
5646 return status;
5649 static void ocfs2_truncate_log_worker(struct work_struct *work)
5651 int status;
5652 struct ocfs2_super *osb =
5653 container_of(work, struct ocfs2_super,
5654 osb_truncate_log_wq.work);
5656 mlog_entry_void();
5658 status = ocfs2_flush_truncate_log(osb);
5659 if (status < 0)
5660 mlog_errno(status);
5661 else
5662 ocfs2_init_inode_steal_slot(osb);
5664 mlog_exit(status);
5667 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5668 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5669 int cancel)
5671 if (osb->osb_tl_inode) {
5672 /* We want to push off log flushes while truncates are
5673 * still running. */
5674 if (cancel)
5675 cancel_delayed_work(&osb->osb_truncate_log_wq);
5677 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5678 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5682 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5683 int slot_num,
5684 struct inode **tl_inode,
5685 struct buffer_head **tl_bh)
5687 int status;
5688 struct inode *inode = NULL;
5689 struct buffer_head *bh = NULL;
5691 inode = ocfs2_get_system_file_inode(osb,
5692 TRUNCATE_LOG_SYSTEM_INODE,
5693 slot_num);
5694 if (!inode) {
5695 status = -EINVAL;
5696 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5697 goto bail;
5700 status = ocfs2_read_inode_block(inode, &bh);
5701 if (status < 0) {
5702 iput(inode);
5703 mlog_errno(status);
5704 goto bail;
5707 *tl_inode = inode;
5708 *tl_bh = bh;
5709 bail:
5710 mlog_exit(status);
5711 return status;
5714 /* called during the 1st stage of node recovery. we stamp a clean
5715 * truncate log and pass back a copy for processing later. if the
5716 * truncate log does not require processing, a *tl_copy is set to
5717 * NULL. */
5718 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5719 int slot_num,
5720 struct ocfs2_dinode **tl_copy)
5722 int status;
5723 struct inode *tl_inode = NULL;
5724 struct buffer_head *tl_bh = NULL;
5725 struct ocfs2_dinode *di;
5726 struct ocfs2_truncate_log *tl;
5728 *tl_copy = NULL;
5730 mlog(0, "recover truncate log from slot %d\n", slot_num);
5732 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5733 if (status < 0) {
5734 mlog_errno(status);
5735 goto bail;
5738 di = (struct ocfs2_dinode *) tl_bh->b_data;
5740 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
5741 * validated by the underlying call to ocfs2_read_inode_block(),
5742 * so any corruption is a code bug */
5743 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5745 tl = &di->id2.i_dealloc;
5746 if (le16_to_cpu(tl->tl_used)) {
5747 mlog(0, "We'll have %u logs to recover\n",
5748 le16_to_cpu(tl->tl_used));
5750 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5751 if (!(*tl_copy)) {
5752 status = -ENOMEM;
5753 mlog_errno(status);
5754 goto bail;
5757 /* Assuming the write-out below goes well, this copy
5758 * will be passed back to recovery for processing. */
5759 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5761 /* All we need to do to clear the truncate log is set
5762 * tl_used. */
5763 tl->tl_used = 0;
5765 status = ocfs2_write_block(osb, tl_bh, tl_inode);
5766 if (status < 0) {
5767 mlog_errno(status);
5768 goto bail;
5772 bail:
5773 if (tl_inode)
5774 iput(tl_inode);
5775 brelse(tl_bh);
5777 if (status < 0 && (*tl_copy)) {
5778 kfree(*tl_copy);
5779 *tl_copy = NULL;
5782 mlog_exit(status);
5783 return status;
5786 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5787 struct ocfs2_dinode *tl_copy)
5789 int status = 0;
5790 int i;
5791 unsigned int clusters, num_recs, start_cluster;
5792 u64 start_blk;
5793 handle_t *handle;
5794 struct inode *tl_inode = osb->osb_tl_inode;
5795 struct ocfs2_truncate_log *tl;
5797 mlog_entry_void();
5799 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5800 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5801 return -EINVAL;
5804 tl = &tl_copy->id2.i_dealloc;
5805 num_recs = le16_to_cpu(tl->tl_used);
5806 mlog(0, "cleanup %u records from %llu\n", num_recs,
5807 (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5809 mutex_lock(&tl_inode->i_mutex);
5810 for(i = 0; i < num_recs; i++) {
5811 if (ocfs2_truncate_log_needs_flush(osb)) {
5812 status = __ocfs2_flush_truncate_log(osb);
5813 if (status < 0) {
5814 mlog_errno(status);
5815 goto bail_up;
5819 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5820 if (IS_ERR(handle)) {
5821 status = PTR_ERR(handle);
5822 mlog_errno(status);
5823 goto bail_up;
5826 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5827 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5828 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5830 status = ocfs2_truncate_log_append(osb, handle,
5831 start_blk, clusters);
5832 ocfs2_commit_trans(osb, handle);
5833 if (status < 0) {
5834 mlog_errno(status);
5835 goto bail_up;
5839 bail_up:
5840 mutex_unlock(&tl_inode->i_mutex);
5842 mlog_exit(status);
5843 return status;
5846 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5848 int status;
5849 struct inode *tl_inode = osb->osb_tl_inode;
5851 mlog_entry_void();
5853 if (tl_inode) {
5854 cancel_delayed_work(&osb->osb_truncate_log_wq);
5855 flush_workqueue(ocfs2_wq);
5857 status = ocfs2_flush_truncate_log(osb);
5858 if (status < 0)
5859 mlog_errno(status);
5861 brelse(osb->osb_tl_bh);
5862 iput(osb->osb_tl_inode);
5865 mlog_exit_void();
5868 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5870 int status;
5871 struct inode *tl_inode = NULL;
5872 struct buffer_head *tl_bh = NULL;
5874 mlog_entry_void();
5876 status = ocfs2_get_truncate_log_info(osb,
5877 osb->slot_num,
5878 &tl_inode,
5879 &tl_bh);
5880 if (status < 0)
5881 mlog_errno(status);
5883 /* ocfs2_truncate_log_shutdown keys on the existence of
5884 * osb->osb_tl_inode so we don't set any of the osb variables
5885 * until we're sure all is well. */
5886 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5887 ocfs2_truncate_log_worker);
5888 osb->osb_tl_bh = tl_bh;
5889 osb->osb_tl_inode = tl_inode;
5891 mlog_exit(status);
5892 return status;
5896 * Delayed de-allocation of suballocator blocks.
5898 * Some sets of block de-allocations might involve multiple suballocator inodes.
5900 * The locking for this can get extremely complicated, especially when
5901 * the suballocator inodes to delete from aren't known until deep
5902 * within an unrelated codepath.
5904 * ocfs2_extent_block structures are a good example of this - an inode
5905 * btree could have been grown by any number of nodes each allocating
5906 * out of their own suballoc inode.
5908 * These structures allow the delay of block de-allocation until a
5909 * later time, when locking of multiple cluster inodes won't cause
5910 * deadlock.
5914 * Describe a single bit freed from a suballocator. For the block
5915 * suballocators, it represents one block. For the global cluster
5916 * allocator, it represents some clusters and free_bit indicates
5917 * clusters number.
5919 struct ocfs2_cached_block_free {
5920 struct ocfs2_cached_block_free *free_next;
5921 u64 free_blk;
5922 unsigned int free_bit;
5925 struct ocfs2_per_slot_free_list {
5926 struct ocfs2_per_slot_free_list *f_next_suballocator;
5927 int f_inode_type;
5928 int f_slot;
5929 struct ocfs2_cached_block_free *f_first;
5932 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
5933 int sysfile_type,
5934 int slot,
5935 struct ocfs2_cached_block_free *head)
5937 int ret;
5938 u64 bg_blkno;
5939 handle_t *handle;
5940 struct inode *inode;
5941 struct buffer_head *di_bh = NULL;
5942 struct ocfs2_cached_block_free *tmp;
5944 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5945 if (!inode) {
5946 ret = -EINVAL;
5947 mlog_errno(ret);
5948 goto out;
5951 mutex_lock(&inode->i_mutex);
5953 ret = ocfs2_inode_lock(inode, &di_bh, 1);
5954 if (ret) {
5955 mlog_errno(ret);
5956 goto out_mutex;
5959 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5960 if (IS_ERR(handle)) {
5961 ret = PTR_ERR(handle);
5962 mlog_errno(ret);
5963 goto out_unlock;
5966 while (head) {
5967 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5968 head->free_bit);
5969 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5970 head->free_bit, (unsigned long long)head->free_blk);
5972 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5973 head->free_bit, bg_blkno, 1);
5974 if (ret) {
5975 mlog_errno(ret);
5976 goto out_journal;
5979 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5980 if (ret) {
5981 mlog_errno(ret);
5982 goto out_journal;
5985 tmp = head;
5986 head = head->free_next;
5987 kfree(tmp);
5990 out_journal:
5991 ocfs2_commit_trans(osb, handle);
5993 out_unlock:
5994 ocfs2_inode_unlock(inode, 1);
5995 brelse(di_bh);
5996 out_mutex:
5997 mutex_unlock(&inode->i_mutex);
5998 iput(inode);
5999 out:
6000 while(head) {
6001 /* Premature exit may have left some dangling items. */
6002 tmp = head;
6003 head = head->free_next;
6004 kfree(tmp);
6007 return ret;
6010 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6011 u64 blkno, unsigned int bit)
6013 int ret = 0;
6014 struct ocfs2_cached_block_free *item;
6016 item = kmalloc(sizeof(*item), GFP_NOFS);
6017 if (item == NULL) {
6018 ret = -ENOMEM;
6019 mlog_errno(ret);
6020 return ret;
6023 mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6024 bit, (unsigned long long)blkno);
6026 item->free_blk = blkno;
6027 item->free_bit = bit;
6028 item->free_next = ctxt->c_global_allocator;
6030 ctxt->c_global_allocator = item;
6031 return ret;
6034 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6035 struct ocfs2_cached_block_free *head)
6037 struct ocfs2_cached_block_free *tmp;
6038 struct inode *tl_inode = osb->osb_tl_inode;
6039 handle_t *handle;
6040 int ret = 0;
6042 mutex_lock(&tl_inode->i_mutex);
6044 while (head) {
6045 if (ocfs2_truncate_log_needs_flush(osb)) {
6046 ret = __ocfs2_flush_truncate_log(osb);
6047 if (ret < 0) {
6048 mlog_errno(ret);
6049 break;
6053 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6054 if (IS_ERR(handle)) {
6055 ret = PTR_ERR(handle);
6056 mlog_errno(ret);
6057 break;
6060 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6061 head->free_bit);
6063 ocfs2_commit_trans(osb, handle);
6064 tmp = head;
6065 head = head->free_next;
6066 kfree(tmp);
6068 if (ret < 0) {
6069 mlog_errno(ret);
6070 break;
6074 mutex_unlock(&tl_inode->i_mutex);
6076 while (head) {
6077 /* Premature exit may have left some dangling items. */
6078 tmp = head;
6079 head = head->free_next;
6080 kfree(tmp);
6083 return ret;
6086 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6087 struct ocfs2_cached_dealloc_ctxt *ctxt)
6089 int ret = 0, ret2;
6090 struct ocfs2_per_slot_free_list *fl;
6092 if (!ctxt)
6093 return 0;
6095 while (ctxt->c_first_suballocator) {
6096 fl = ctxt->c_first_suballocator;
6098 if (fl->f_first) {
6099 mlog(0, "Free items: (type %u, slot %d)\n",
6100 fl->f_inode_type, fl->f_slot);
6101 ret2 = ocfs2_free_cached_blocks(osb,
6102 fl->f_inode_type,
6103 fl->f_slot,
6104 fl->f_first);
6105 if (ret2)
6106 mlog_errno(ret2);
6107 if (!ret)
6108 ret = ret2;
6111 ctxt->c_first_suballocator = fl->f_next_suballocator;
6112 kfree(fl);
6115 if (ctxt->c_global_allocator) {
6116 ret2 = ocfs2_free_cached_clusters(osb,
6117 ctxt->c_global_allocator);
6118 if (ret2)
6119 mlog_errno(ret2);
6120 if (!ret)
6121 ret = ret2;
6123 ctxt->c_global_allocator = NULL;
6126 return ret;
6129 static struct ocfs2_per_slot_free_list *
6130 ocfs2_find_per_slot_free_list(int type,
6131 int slot,
6132 struct ocfs2_cached_dealloc_ctxt *ctxt)
6134 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6136 while (fl) {
6137 if (fl->f_inode_type == type && fl->f_slot == slot)
6138 return fl;
6140 fl = fl->f_next_suballocator;
6143 fl = kmalloc(sizeof(*fl), GFP_NOFS);
6144 if (fl) {
6145 fl->f_inode_type = type;
6146 fl->f_slot = slot;
6147 fl->f_first = NULL;
6148 fl->f_next_suballocator = ctxt->c_first_suballocator;
6150 ctxt->c_first_suballocator = fl;
6152 return fl;
6155 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6156 int type, int slot, u64 blkno,
6157 unsigned int bit)
6159 int ret;
6160 struct ocfs2_per_slot_free_list *fl;
6161 struct ocfs2_cached_block_free *item;
6163 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6164 if (fl == NULL) {
6165 ret = -ENOMEM;
6166 mlog_errno(ret);
6167 goto out;
6170 item = kmalloc(sizeof(*item), GFP_NOFS);
6171 if (item == NULL) {
6172 ret = -ENOMEM;
6173 mlog_errno(ret);
6174 goto out;
6177 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6178 type, slot, bit, (unsigned long long)blkno);
6180 item->free_blk = blkno;
6181 item->free_bit = bit;
6182 item->free_next = fl->f_first;
6184 fl->f_first = item;
6186 ret = 0;
6187 out:
6188 return ret;
6191 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6192 struct ocfs2_extent_block *eb)
6194 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6195 le16_to_cpu(eb->h_suballoc_slot),
6196 le64_to_cpu(eb->h_blkno),
6197 le16_to_cpu(eb->h_suballoc_bit));
6200 /* This function will figure out whether the currently last extent
6201 * block will be deleted, and if it will, what the new last extent
6202 * block will be so we can update his h_next_leaf_blk field, as well
6203 * as the dinodes i_last_eb_blk */
6204 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6205 unsigned int clusters_to_del,
6206 struct ocfs2_path *path,
6207 struct buffer_head **new_last_eb)
6209 int next_free, ret = 0;
6210 u32 cpos;
6211 struct ocfs2_extent_rec *rec;
6212 struct ocfs2_extent_block *eb;
6213 struct ocfs2_extent_list *el;
6214 struct buffer_head *bh = NULL;
6216 *new_last_eb = NULL;
6218 /* we have no tree, so of course, no last_eb. */
6219 if (!path->p_tree_depth)
6220 goto out;
6222 /* trunc to zero special case - this makes tree_depth = 0
6223 * regardless of what it is. */
6224 if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6225 goto out;
6227 el = path_leaf_el(path);
6228 BUG_ON(!el->l_next_free_rec);
6231 * Make sure that this extent list will actually be empty
6232 * after we clear away the data. We can shortcut out if
6233 * there's more than one non-empty extent in the
6234 * list. Otherwise, a check of the remaining extent is
6235 * necessary.
6237 next_free = le16_to_cpu(el->l_next_free_rec);
6238 rec = NULL;
6239 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6240 if (next_free > 2)
6241 goto out;
6243 /* We may have a valid extent in index 1, check it. */
6244 if (next_free == 2)
6245 rec = &el->l_recs[1];
6248 * Fall through - no more nonempty extents, so we want
6249 * to delete this leaf.
6251 } else {
6252 if (next_free > 1)
6253 goto out;
6255 rec = &el->l_recs[0];
6258 if (rec) {
6260 * Check it we'll only be trimming off the end of this
6261 * cluster.
6263 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6264 goto out;
6267 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6268 if (ret) {
6269 mlog_errno(ret);
6270 goto out;
6273 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6274 if (ret) {
6275 mlog_errno(ret);
6276 goto out;
6279 eb = (struct ocfs2_extent_block *) bh->b_data;
6280 el = &eb->h_list;
6282 /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6283 * Any corruption is a code bug. */
6284 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6286 *new_last_eb = bh;
6287 get_bh(*new_last_eb);
6288 mlog(0, "returning block %llu, (cpos: %u)\n",
6289 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6290 out:
6291 brelse(bh);
6293 return ret;
6297 * Trim some clusters off the rightmost edge of a tree. Only called
6298 * during truncate.
6300 * The caller needs to:
6301 * - start journaling of each path component.
6302 * - compute and fully set up any new last ext block
6304 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6305 handle_t *handle, struct ocfs2_truncate_context *tc,
6306 u32 clusters_to_del, u64 *delete_start)
6308 int ret, i, index = path->p_tree_depth;
6309 u32 new_edge = 0;
6310 u64 deleted_eb = 0;
6311 struct buffer_head *bh;
6312 struct ocfs2_extent_list *el;
6313 struct ocfs2_extent_rec *rec;
6315 *delete_start = 0;
6317 while (index >= 0) {
6318 bh = path->p_node[index].bh;
6319 el = path->p_node[index].el;
6321 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6322 index, (unsigned long long)bh->b_blocknr);
6324 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6326 if (index !=
6327 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6328 ocfs2_error(inode->i_sb,
6329 "Inode %lu has invalid ext. block %llu",
6330 inode->i_ino,
6331 (unsigned long long)bh->b_blocknr);
6332 ret = -EROFS;
6333 goto out;
6336 find_tail_record:
6337 i = le16_to_cpu(el->l_next_free_rec) - 1;
6338 rec = &el->l_recs[i];
6340 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6341 "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6342 ocfs2_rec_clusters(el, rec),
6343 (unsigned long long)le64_to_cpu(rec->e_blkno),
6344 le16_to_cpu(el->l_next_free_rec));
6346 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6348 if (le16_to_cpu(el->l_tree_depth) == 0) {
6350 * If the leaf block contains a single empty
6351 * extent and no records, we can just remove
6352 * the block.
6354 if (i == 0 && ocfs2_is_empty_extent(rec)) {
6355 memset(rec, 0,
6356 sizeof(struct ocfs2_extent_rec));
6357 el->l_next_free_rec = cpu_to_le16(0);
6359 goto delete;
6363 * Remove any empty extents by shifting things
6364 * left. That should make life much easier on
6365 * the code below. This condition is rare
6366 * enough that we shouldn't see a performance
6367 * hit.
6369 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6370 le16_add_cpu(&el->l_next_free_rec, -1);
6372 for(i = 0;
6373 i < le16_to_cpu(el->l_next_free_rec); i++)
6374 el->l_recs[i] = el->l_recs[i + 1];
6376 memset(&el->l_recs[i], 0,
6377 sizeof(struct ocfs2_extent_rec));
6380 * We've modified our extent list. The
6381 * simplest way to handle this change
6382 * is to being the search from the
6383 * start again.
6385 goto find_tail_record;
6388 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6391 * We'll use "new_edge" on our way back up the
6392 * tree to know what our rightmost cpos is.
6394 new_edge = le16_to_cpu(rec->e_leaf_clusters);
6395 new_edge += le32_to_cpu(rec->e_cpos);
6398 * The caller will use this to delete data blocks.
6400 *delete_start = le64_to_cpu(rec->e_blkno)
6401 + ocfs2_clusters_to_blocks(inode->i_sb,
6402 le16_to_cpu(rec->e_leaf_clusters));
6405 * If it's now empty, remove this record.
6407 if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6408 memset(rec, 0,
6409 sizeof(struct ocfs2_extent_rec));
6410 le16_add_cpu(&el->l_next_free_rec, -1);
6412 } else {
6413 if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6414 memset(rec, 0,
6415 sizeof(struct ocfs2_extent_rec));
6416 le16_add_cpu(&el->l_next_free_rec, -1);
6418 goto delete;
6421 /* Can this actually happen? */
6422 if (le16_to_cpu(el->l_next_free_rec) == 0)
6423 goto delete;
6426 * We never actually deleted any clusters
6427 * because our leaf was empty. There's no
6428 * reason to adjust the rightmost edge then.
6430 if (new_edge == 0)
6431 goto delete;
6433 rec->e_int_clusters = cpu_to_le32(new_edge);
6434 le32_add_cpu(&rec->e_int_clusters,
6435 -le32_to_cpu(rec->e_cpos));
6438 * A deleted child record should have been
6439 * caught above.
6441 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6444 delete:
6445 ret = ocfs2_journal_dirty(handle, bh);
6446 if (ret) {
6447 mlog_errno(ret);
6448 goto out;
6451 mlog(0, "extent list container %llu, after: record %d: "
6452 "(%u, %u, %llu), next = %u.\n",
6453 (unsigned long long)bh->b_blocknr, i,
6454 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6455 (unsigned long long)le64_to_cpu(rec->e_blkno),
6456 le16_to_cpu(el->l_next_free_rec));
6459 * We must be careful to only attempt delete of an
6460 * extent block (and not the root inode block).
6462 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6463 struct ocfs2_extent_block *eb =
6464 (struct ocfs2_extent_block *)bh->b_data;
6467 * Save this for use when processing the
6468 * parent block.
6470 deleted_eb = le64_to_cpu(eb->h_blkno);
6472 mlog(0, "deleting this extent block.\n");
6474 ocfs2_remove_from_cache(inode, bh);
6476 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6477 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6478 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6480 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6481 /* An error here is not fatal. */
6482 if (ret < 0)
6483 mlog_errno(ret);
6484 } else {
6485 deleted_eb = 0;
6488 index--;
6491 ret = 0;
6492 out:
6493 return ret;
6496 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6497 unsigned int clusters_to_del,
6498 struct inode *inode,
6499 struct buffer_head *fe_bh,
6500 handle_t *handle,
6501 struct ocfs2_truncate_context *tc,
6502 struct ocfs2_path *path)
6504 int status;
6505 struct ocfs2_dinode *fe;
6506 struct ocfs2_extent_block *last_eb = NULL;
6507 struct ocfs2_extent_list *el;
6508 struct buffer_head *last_eb_bh = NULL;
6509 u64 delete_blk = 0;
6511 fe = (struct ocfs2_dinode *) fe_bh->b_data;
6513 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6514 path, &last_eb_bh);
6515 if (status < 0) {
6516 mlog_errno(status);
6517 goto bail;
6521 * Each component will be touched, so we might as well journal
6522 * here to avoid having to handle errors later.
6524 status = ocfs2_journal_access_path(inode, handle, path);
6525 if (status < 0) {
6526 mlog_errno(status);
6527 goto bail;
6530 if (last_eb_bh) {
6531 status = ocfs2_journal_access(handle, inode, last_eb_bh,
6532 OCFS2_JOURNAL_ACCESS_WRITE);
6533 if (status < 0) {
6534 mlog_errno(status);
6535 goto bail;
6538 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6541 el = &(fe->id2.i_list);
6544 * Lower levels depend on this never happening, but it's best
6545 * to check it up here before changing the tree.
6547 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6548 ocfs2_error(inode->i_sb,
6549 "Inode %lu has an empty extent record, depth %u\n",
6550 inode->i_ino, le16_to_cpu(el->l_tree_depth));
6551 status = -EROFS;
6552 goto bail;
6555 spin_lock(&OCFS2_I(inode)->ip_lock);
6556 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6557 clusters_to_del;
6558 spin_unlock(&OCFS2_I(inode)->ip_lock);
6559 le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6560 inode->i_blocks = ocfs2_inode_sector_count(inode);
6562 status = ocfs2_trim_tree(inode, path, handle, tc,
6563 clusters_to_del, &delete_blk);
6564 if (status) {
6565 mlog_errno(status);
6566 goto bail;
6569 if (le32_to_cpu(fe->i_clusters) == 0) {
6570 /* trunc to zero is a special case. */
6571 el->l_tree_depth = 0;
6572 fe->i_last_eb_blk = 0;
6573 } else if (last_eb)
6574 fe->i_last_eb_blk = last_eb->h_blkno;
6576 status = ocfs2_journal_dirty(handle, fe_bh);
6577 if (status < 0) {
6578 mlog_errno(status);
6579 goto bail;
6582 if (last_eb) {
6583 /* If there will be a new last extent block, then by
6584 * definition, there cannot be any leaves to the right of
6585 * him. */
6586 last_eb->h_next_leaf_blk = 0;
6587 status = ocfs2_journal_dirty(handle, last_eb_bh);
6588 if (status < 0) {
6589 mlog_errno(status);
6590 goto bail;
6594 if (delete_blk) {
6595 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6596 clusters_to_del);
6597 if (status < 0) {
6598 mlog_errno(status);
6599 goto bail;
6602 status = 0;
6603 bail:
6605 mlog_exit(status);
6606 return status;
6609 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6611 set_buffer_uptodate(bh);
6612 mark_buffer_dirty(bh);
6613 return 0;
6616 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6617 unsigned int from, unsigned int to,
6618 struct page *page, int zero, u64 *phys)
6620 int ret, partial = 0;
6622 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6623 if (ret)
6624 mlog_errno(ret);
6626 if (zero)
6627 zero_user_segment(page, from, to);
6630 * Need to set the buffers we zero'd into uptodate
6631 * here if they aren't - ocfs2_map_page_blocks()
6632 * might've skipped some
6634 ret = walk_page_buffers(handle, page_buffers(page),
6635 from, to, &partial,
6636 ocfs2_zero_func);
6637 if (ret < 0)
6638 mlog_errno(ret);
6639 else if (ocfs2_should_order_data(inode)) {
6640 ret = ocfs2_jbd2_file_inode(handle, inode);
6641 if (ret < 0)
6642 mlog_errno(ret);
6645 if (!partial)
6646 SetPageUptodate(page);
6648 flush_dcache_page(page);
6651 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6652 loff_t end, struct page **pages,
6653 int numpages, u64 phys, handle_t *handle)
6655 int i;
6656 struct page *page;
6657 unsigned int from, to = PAGE_CACHE_SIZE;
6658 struct super_block *sb = inode->i_sb;
6660 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6662 if (numpages == 0)
6663 goto out;
6665 to = PAGE_CACHE_SIZE;
6666 for(i = 0; i < numpages; i++) {
6667 page = pages[i];
6669 from = start & (PAGE_CACHE_SIZE - 1);
6670 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6671 to = end & (PAGE_CACHE_SIZE - 1);
6673 BUG_ON(from > PAGE_CACHE_SIZE);
6674 BUG_ON(to > PAGE_CACHE_SIZE);
6676 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6677 &phys);
6679 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6681 out:
6682 if (pages)
6683 ocfs2_unlock_and_free_pages(pages, numpages);
6686 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6687 struct page **pages, int *num)
6689 int numpages, ret = 0;
6690 struct super_block *sb = inode->i_sb;
6691 struct address_space *mapping = inode->i_mapping;
6692 unsigned long index;
6693 loff_t last_page_bytes;
6695 BUG_ON(start > end);
6697 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6698 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6700 numpages = 0;
6701 last_page_bytes = PAGE_ALIGN(end);
6702 index = start >> PAGE_CACHE_SHIFT;
6703 do {
6704 pages[numpages] = grab_cache_page(mapping, index);
6705 if (!pages[numpages]) {
6706 ret = -ENOMEM;
6707 mlog_errno(ret);
6708 goto out;
6711 numpages++;
6712 index++;
6713 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6715 out:
6716 if (ret != 0) {
6717 if (pages)
6718 ocfs2_unlock_and_free_pages(pages, numpages);
6719 numpages = 0;
6722 *num = numpages;
6724 return ret;
6728 * Zero the area past i_size but still within an allocated
6729 * cluster. This avoids exposing nonzero data on subsequent file
6730 * extends.
6732 * We need to call this before i_size is updated on the inode because
6733 * otherwise block_write_full_page() will skip writeout of pages past
6734 * i_size. The new_i_size parameter is passed for this reason.
6736 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6737 u64 range_start, u64 range_end)
6739 int ret = 0, numpages;
6740 struct page **pages = NULL;
6741 u64 phys;
6742 unsigned int ext_flags;
6743 struct super_block *sb = inode->i_sb;
6746 * File systems which don't support sparse files zero on every
6747 * extend.
6749 if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6750 return 0;
6752 pages = kcalloc(ocfs2_pages_per_cluster(sb),
6753 sizeof(struct page *), GFP_NOFS);
6754 if (pages == NULL) {
6755 ret = -ENOMEM;
6756 mlog_errno(ret);
6757 goto out;
6760 if (range_start == range_end)
6761 goto out;
6763 ret = ocfs2_extent_map_get_blocks(inode,
6764 range_start >> sb->s_blocksize_bits,
6765 &phys, NULL, &ext_flags);
6766 if (ret) {
6767 mlog_errno(ret);
6768 goto out;
6772 * Tail is a hole, or is marked unwritten. In either case, we
6773 * can count on read and write to return/push zero's.
6775 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6776 goto out;
6778 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6779 &numpages);
6780 if (ret) {
6781 mlog_errno(ret);
6782 goto out;
6785 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6786 numpages, phys, handle);
6789 * Initiate writeout of the pages we zero'd here. We don't
6790 * wait on them - the truncate_inode_pages() call later will
6791 * do that for us.
6793 ret = do_sync_mapping_range(inode->i_mapping, range_start,
6794 range_end - 1, SYNC_FILE_RANGE_WRITE);
6795 if (ret)
6796 mlog_errno(ret);
6798 out:
6799 if (pages)
6800 kfree(pages);
6802 return ret;
6805 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6806 struct ocfs2_dinode *di)
6808 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6809 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6811 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6812 memset(&di->id2, 0, blocksize -
6813 offsetof(struct ocfs2_dinode, id2) -
6814 xattrsize);
6815 else
6816 memset(&di->id2, 0, blocksize -
6817 offsetof(struct ocfs2_dinode, id2));
6820 void ocfs2_dinode_new_extent_list(struct inode *inode,
6821 struct ocfs2_dinode *di)
6823 ocfs2_zero_dinode_id2_with_xattr(inode, di);
6824 di->id2.i_list.l_tree_depth = 0;
6825 di->id2.i_list.l_next_free_rec = 0;
6826 di->id2.i_list.l_count = cpu_to_le16(
6827 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6830 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6832 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6833 struct ocfs2_inline_data *idata = &di->id2.i_data;
6835 spin_lock(&oi->ip_lock);
6836 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6837 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6838 spin_unlock(&oi->ip_lock);
6841 * We clear the entire i_data structure here so that all
6842 * fields can be properly initialized.
6844 ocfs2_zero_dinode_id2_with_xattr(inode, di);
6846 idata->id_count = cpu_to_le16(
6847 ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6850 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6851 struct buffer_head *di_bh)
6853 int ret, i, has_data, num_pages = 0;
6854 handle_t *handle;
6855 u64 uninitialized_var(block);
6856 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6857 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6858 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6859 struct ocfs2_alloc_context *data_ac = NULL;
6860 struct page **pages = NULL;
6861 loff_t end = osb->s_clustersize;
6862 struct ocfs2_extent_tree et;
6864 has_data = i_size_read(inode) ? 1 : 0;
6866 if (has_data) {
6867 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6868 sizeof(struct page *), GFP_NOFS);
6869 if (pages == NULL) {
6870 ret = -ENOMEM;
6871 mlog_errno(ret);
6872 goto out;
6875 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6876 if (ret) {
6877 mlog_errno(ret);
6878 goto out;
6882 handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
6883 if (IS_ERR(handle)) {
6884 ret = PTR_ERR(handle);
6885 mlog_errno(ret);
6886 goto out_unlock;
6889 ret = ocfs2_journal_access(handle, inode, di_bh,
6890 OCFS2_JOURNAL_ACCESS_WRITE);
6891 if (ret) {
6892 mlog_errno(ret);
6893 goto out_commit;
6896 if (has_data) {
6897 u32 bit_off, num;
6898 unsigned int page_end;
6899 u64 phys;
6901 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6902 &num);
6903 if (ret) {
6904 mlog_errno(ret);
6905 goto out_commit;
6909 * Save two copies, one for insert, and one that can
6910 * be changed by ocfs2_map_and_dirty_page() below.
6912 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6915 * Non sparse file systems zero on extend, so no need
6916 * to do that now.
6918 if (!ocfs2_sparse_alloc(osb) &&
6919 PAGE_CACHE_SIZE < osb->s_clustersize)
6920 end = PAGE_CACHE_SIZE;
6922 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6923 if (ret) {
6924 mlog_errno(ret);
6925 goto out_commit;
6929 * This should populate the 1st page for us and mark
6930 * it up to date.
6932 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6933 if (ret) {
6934 mlog_errno(ret);
6935 goto out_commit;
6938 page_end = PAGE_CACHE_SIZE;
6939 if (PAGE_CACHE_SIZE > osb->s_clustersize)
6940 page_end = osb->s_clustersize;
6942 for (i = 0; i < num_pages; i++)
6943 ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6944 pages[i], i > 0, &phys);
6947 spin_lock(&oi->ip_lock);
6948 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6949 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6950 spin_unlock(&oi->ip_lock);
6952 ocfs2_dinode_new_extent_list(inode, di);
6954 ocfs2_journal_dirty(handle, di_bh);
6956 if (has_data) {
6958 * An error at this point should be extremely rare. If
6959 * this proves to be false, we could always re-build
6960 * the in-inode data from our pages.
6962 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
6963 ret = ocfs2_insert_extent(osb, handle, inode, &et,
6964 0, block, 1, 0, NULL);
6965 if (ret) {
6966 mlog_errno(ret);
6967 goto out_commit;
6970 inode->i_blocks = ocfs2_inode_sector_count(inode);
6973 out_commit:
6974 ocfs2_commit_trans(osb, handle);
6976 out_unlock:
6977 if (data_ac)
6978 ocfs2_free_alloc_context(data_ac);
6980 out:
6981 if (pages) {
6982 ocfs2_unlock_and_free_pages(pages, num_pages);
6983 kfree(pages);
6986 return ret;
6990 * It is expected, that by the time you call this function,
6991 * inode->i_size and fe->i_size have been adjusted.
6993 * WARNING: This will kfree the truncate context
6995 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6996 struct inode *inode,
6997 struct buffer_head *fe_bh,
6998 struct ocfs2_truncate_context *tc)
7000 int status, i, credits, tl_sem = 0;
7001 u32 clusters_to_del, new_highest_cpos, range;
7002 struct ocfs2_extent_list *el;
7003 handle_t *handle = NULL;
7004 struct inode *tl_inode = osb->osb_tl_inode;
7005 struct ocfs2_path *path = NULL;
7006 struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7008 mlog_entry_void();
7010 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7011 i_size_read(inode));
7013 path = ocfs2_new_path(fe_bh, &di->id2.i_list);
7014 if (!path) {
7015 status = -ENOMEM;
7016 mlog_errno(status);
7017 goto bail;
7020 ocfs2_extent_map_trunc(inode, new_highest_cpos);
7022 start:
7024 * Check that we still have allocation to delete.
7026 if (OCFS2_I(inode)->ip_clusters == 0) {
7027 status = 0;
7028 goto bail;
7032 * Truncate always works against the rightmost tree branch.
7034 status = ocfs2_find_path(inode, path, UINT_MAX);
7035 if (status) {
7036 mlog_errno(status);
7037 goto bail;
7040 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7041 OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7044 * By now, el will point to the extent list on the bottom most
7045 * portion of this tree. Only the tail record is considered in
7046 * each pass.
7048 * We handle the following cases, in order:
7049 * - empty extent: delete the remaining branch
7050 * - remove the entire record
7051 * - remove a partial record
7052 * - no record needs to be removed (truncate has completed)
7054 el = path_leaf_el(path);
7055 if (le16_to_cpu(el->l_next_free_rec) == 0) {
7056 ocfs2_error(inode->i_sb,
7057 "Inode %llu has empty extent block at %llu\n",
7058 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7059 (unsigned long long)path_leaf_bh(path)->b_blocknr);
7060 status = -EROFS;
7061 goto bail;
7064 i = le16_to_cpu(el->l_next_free_rec) - 1;
7065 range = le32_to_cpu(el->l_recs[i].e_cpos) +
7066 ocfs2_rec_clusters(el, &el->l_recs[i]);
7067 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7068 clusters_to_del = 0;
7069 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7070 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7071 } else if (range > new_highest_cpos) {
7072 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7073 le32_to_cpu(el->l_recs[i].e_cpos)) -
7074 new_highest_cpos;
7075 } else {
7076 status = 0;
7077 goto bail;
7080 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7081 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7083 mutex_lock(&tl_inode->i_mutex);
7084 tl_sem = 1;
7085 /* ocfs2_truncate_log_needs_flush guarantees us at least one
7086 * record is free for use. If there isn't any, we flush to get
7087 * an empty truncate log. */
7088 if (ocfs2_truncate_log_needs_flush(osb)) {
7089 status = __ocfs2_flush_truncate_log(osb);
7090 if (status < 0) {
7091 mlog_errno(status);
7092 goto bail;
7096 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7097 (struct ocfs2_dinode *)fe_bh->b_data,
7098 el);
7099 handle = ocfs2_start_trans(osb, credits);
7100 if (IS_ERR(handle)) {
7101 status = PTR_ERR(handle);
7102 handle = NULL;
7103 mlog_errno(status);
7104 goto bail;
7107 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7108 tc, path);
7109 if (status < 0) {
7110 mlog_errno(status);
7111 goto bail;
7114 mutex_unlock(&tl_inode->i_mutex);
7115 tl_sem = 0;
7117 ocfs2_commit_trans(osb, handle);
7118 handle = NULL;
7120 ocfs2_reinit_path(path, 1);
7123 * The check above will catch the case where we've truncated
7124 * away all allocation.
7126 goto start;
7128 bail:
7130 ocfs2_schedule_truncate_log_flush(osb, 1);
7132 if (tl_sem)
7133 mutex_unlock(&tl_inode->i_mutex);
7135 if (handle)
7136 ocfs2_commit_trans(osb, handle);
7138 ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7140 ocfs2_free_path(path);
7142 /* This will drop the ext_alloc cluster lock for us */
7143 ocfs2_free_truncate_context(tc);
7145 mlog_exit(status);
7146 return status;
7150 * Expects the inode to already be locked.
7152 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7153 struct inode *inode,
7154 struct buffer_head *fe_bh,
7155 struct ocfs2_truncate_context **tc)
7157 int status;
7158 unsigned int new_i_clusters;
7159 struct ocfs2_dinode *fe;
7160 struct ocfs2_extent_block *eb;
7161 struct buffer_head *last_eb_bh = NULL;
7163 mlog_entry_void();
7165 *tc = NULL;
7167 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7168 i_size_read(inode));
7169 fe = (struct ocfs2_dinode *) fe_bh->b_data;
7171 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7172 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7173 (unsigned long long)le64_to_cpu(fe->i_size));
7175 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7176 if (!(*tc)) {
7177 status = -ENOMEM;
7178 mlog_errno(status);
7179 goto bail;
7181 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7183 if (fe->id2.i_list.l_tree_depth) {
7184 status = ocfs2_read_extent_block(inode,
7185 le64_to_cpu(fe->i_last_eb_blk),
7186 &last_eb_bh);
7187 if (status < 0) {
7188 mlog_errno(status);
7189 goto bail;
7191 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7194 (*tc)->tc_last_eb_bh = last_eb_bh;
7196 status = 0;
7197 bail:
7198 if (status < 0) {
7199 if (*tc)
7200 ocfs2_free_truncate_context(*tc);
7201 *tc = NULL;
7203 mlog_exit_void();
7204 return status;
7208 * 'start' is inclusive, 'end' is not.
7210 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7211 unsigned int start, unsigned int end, int trunc)
7213 int ret;
7214 unsigned int numbytes;
7215 handle_t *handle;
7216 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7217 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7218 struct ocfs2_inline_data *idata = &di->id2.i_data;
7220 if (end > i_size_read(inode))
7221 end = i_size_read(inode);
7223 BUG_ON(start >= end);
7225 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7226 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7227 !ocfs2_supports_inline_data(osb)) {
7228 ocfs2_error(inode->i_sb,
7229 "Inline data flags for inode %llu don't agree! "
7230 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7231 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7232 le16_to_cpu(di->i_dyn_features),
7233 OCFS2_I(inode)->ip_dyn_features,
7234 osb->s_feature_incompat);
7235 ret = -EROFS;
7236 goto out;
7239 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7240 if (IS_ERR(handle)) {
7241 ret = PTR_ERR(handle);
7242 mlog_errno(ret);
7243 goto out;
7246 ret = ocfs2_journal_access(handle, inode, di_bh,
7247 OCFS2_JOURNAL_ACCESS_WRITE);
7248 if (ret) {
7249 mlog_errno(ret);
7250 goto out_commit;
7253 numbytes = end - start;
7254 memset(idata->id_data + start, 0, numbytes);
7257 * No need to worry about the data page here - it's been
7258 * truncated already and inline data doesn't need it for
7259 * pushing zero's to disk, so we'll let readpage pick it up
7260 * later.
7262 if (trunc) {
7263 i_size_write(inode, start);
7264 di->i_size = cpu_to_le64(start);
7267 inode->i_blocks = ocfs2_inode_sector_count(inode);
7268 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7270 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7271 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7273 ocfs2_journal_dirty(handle, di_bh);
7275 out_commit:
7276 ocfs2_commit_trans(osb, handle);
7278 out:
7279 return ret;
7282 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7285 * The caller is responsible for completing deallocation
7286 * before freeing the context.
7288 if (tc->tc_dealloc.c_first_suballocator != NULL)
7289 mlog(ML_NOTICE,
7290 "Truncate completion has non-empty dealloc context\n");
7292 brelse(tc->tc_last_eb_bh);
7294 kfree(tc);