2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
21 /* max queue in one round of service */
22 static const int cfq_quantum
= 4;
23 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max
= 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty
= 2;
28 static const int cfq_slice_sync
= HZ
/ 10;
29 static int cfq_slice_async
= HZ
/ 25;
30 static const int cfq_slice_async_rq
= 2;
31 static int cfq_slice_idle
= HZ
/ 125;
32 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
33 static const int cfq_hist_divisor
= 4;
36 * offset from end of service tree
38 #define CFQ_IDLE_DELAY (HZ / 5)
41 * below this threshold, we consider thinktime immediate
43 #define CFQ_MIN_TT (2)
45 #define CFQ_SLICE_SCALE (5)
46 #define CFQ_HW_QUEUE_MIN (5)
47 #define CFQ_SERVICE_SHIFT 12
49 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
50 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
51 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
54 ((struct cfq_io_context *) (rq)->elevator_private)
55 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
57 static struct kmem_cache
*cfq_pool
;
58 static struct kmem_cache
*cfq_ioc_pool
;
60 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
61 static struct completion
*ioc_gone
;
62 static DEFINE_SPINLOCK(ioc_gone_lock
);
64 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
65 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68 #define sample_valid(samples) ((samples) > 80)
69 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
72 * Most of our rbtree usage is for sorting with min extraction, so
73 * if we cache the leftmost node we don't have to walk down the tree
74 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
75 * move this into the elevator for the rq sorting as well.
82 struct rb_node
*active
;
83 unsigned total_weight
;
85 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88 * Per process-grouping structure
93 /* various state flags, see below */
96 struct cfq_data
*cfqd
;
97 /* service_tree member */
98 struct rb_node rb_node
;
99 /* service_tree key */
100 unsigned long rb_key
;
101 /* prio tree member */
102 struct rb_node p_node
;
103 /* prio tree root we belong to, if any */
104 struct rb_root
*p_root
;
105 /* sorted list of pending requests */
106 struct rb_root sort_list
;
107 /* if fifo isn't expired, next request to serve */
108 struct request
*next_rq
;
109 /* requests queued in sort_list */
111 /* currently allocated requests */
113 /* fifo list of requests in sort_list */
114 struct list_head fifo
;
116 /* time when queue got scheduled in to dispatch first request. */
117 unsigned long dispatch_start
;
118 unsigned int allocated_slice
;
119 unsigned int slice_dispatch
;
120 /* time when first request from queue completed and slice started. */
121 unsigned long slice_start
;
122 unsigned long slice_end
;
125 /* pending metadata requests */
127 /* number of requests that are on the dispatch list or inside driver */
130 /* io prio of this group */
131 unsigned short ioprio
, org_ioprio
;
132 unsigned short ioprio_class
, org_ioprio_class
;
137 sector_t last_request_pos
;
139 struct cfq_rb_root
*service_tree
;
140 struct cfq_queue
*new_cfqq
;
141 struct cfq_group
*cfqg
;
142 struct cfq_group
*orig_cfqg
;
143 /* Sectors dispatched in current dispatch round */
144 unsigned long nr_sectors
;
148 * First index in the service_trees.
149 * IDLE is handled separately, so it has negative index
158 * Second index in the service_trees.
162 SYNC_NOIDLE_WORKLOAD
= 1,
166 /* This is per cgroup per device grouping structure */
168 /* group service_tree member */
169 struct rb_node rb_node
;
171 /* group service_tree key */
176 /* number of cfqq currently on this group */
179 /* Per group busy queus average. Useful for workload slice calc. */
180 unsigned int busy_queues_avg
[2];
182 * rr lists of queues with requests, onle rr for each priority class.
183 * Counts are embedded in the cfq_rb_root
185 struct cfq_rb_root service_trees
[2][3];
186 struct cfq_rb_root service_tree_idle
;
188 unsigned long saved_workload_slice
;
189 enum wl_type_t saved_workload
;
190 enum wl_prio_t saved_serving_prio
;
191 struct blkio_group blkg
;
192 #ifdef CONFIG_CFQ_GROUP_IOSCHED
193 struct hlist_node cfqd_node
;
199 * Per block device queue structure
202 struct request_queue
*queue
;
203 /* Root service tree for cfq_groups */
204 struct cfq_rb_root grp_service_tree
;
205 struct cfq_group root_group
;
208 * The priority currently being served
210 enum wl_prio_t serving_prio
;
211 enum wl_type_t serving_type
;
212 unsigned long workload_expires
;
213 struct cfq_group
*serving_group
;
214 bool noidle_tree_requires_idle
;
217 * Each priority tree is sorted by next_request position. These
218 * trees are used when determining if two or more queues are
219 * interleaving requests (see cfq_close_cooperator).
221 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
223 unsigned int busy_queues
;
229 * queue-depth detection
235 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
236 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
239 int hw_tag_est_depth
;
240 unsigned int hw_tag_samples
;
243 * idle window management
245 struct timer_list idle_slice_timer
;
246 struct work_struct unplug_work
;
248 struct cfq_queue
*active_queue
;
249 struct cfq_io_context
*active_cic
;
252 * async queue for each priority case
254 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
255 struct cfq_queue
*async_idle_cfqq
;
257 sector_t last_position
;
260 * tunables, see top of file
262 unsigned int cfq_quantum
;
263 unsigned int cfq_fifo_expire
[2];
264 unsigned int cfq_back_penalty
;
265 unsigned int cfq_back_max
;
266 unsigned int cfq_slice
[2];
267 unsigned int cfq_slice_async_rq
;
268 unsigned int cfq_slice_idle
;
269 unsigned int cfq_latency
;
270 unsigned int cfq_group_isolation
;
272 struct list_head cic_list
;
275 * Fallback dummy cfqq for extreme OOM conditions
277 struct cfq_queue oom_cfqq
;
279 unsigned long last_delayed_sync
;
281 /* List of cfq groups being managed on this device*/
282 struct hlist_head cfqg_list
;
286 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
288 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
295 if (prio
== IDLE_WORKLOAD
)
296 return &cfqg
->service_tree_idle
;
298 return &cfqg
->service_trees
[prio
][type
];
301 enum cfqq_state_flags
{
302 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
303 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
304 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
305 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
306 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
307 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
308 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
309 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
310 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
311 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
312 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
313 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
314 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
317 #define CFQ_CFQQ_FNS(name) \
318 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
320 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
322 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
324 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
326 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
328 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
332 CFQ_CFQQ_FNS(wait_request
);
333 CFQ_CFQQ_FNS(must_dispatch
);
334 CFQ_CFQQ_FNS(must_alloc_slice
);
335 CFQ_CFQQ_FNS(fifo_expire
);
336 CFQ_CFQQ_FNS(idle_window
);
337 CFQ_CFQQ_FNS(prio_changed
);
338 CFQ_CFQQ_FNS(slice_new
);
341 CFQ_CFQQ_FNS(split_coop
);
343 CFQ_CFQQ_FNS(wait_busy
);
346 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
347 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
348 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
349 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
350 blkg_path(&(cfqq)->cfqg->blkg), ##args);
352 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
353 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
354 blkg_path(&(cfqg)->blkg), ##args); \
357 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
358 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
359 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
361 #define cfq_log(cfqd, fmt, args...) \
362 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
364 /* Traverses through cfq group service trees */
365 #define for_each_cfqg_st(cfqg, i, j, st) \
366 for (i = 0; i <= IDLE_WORKLOAD; i++) \
367 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
368 : &cfqg->service_tree_idle; \
369 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
370 (i == IDLE_WORKLOAD && j == 0); \
371 j++, st = i < IDLE_WORKLOAD ? \
372 &cfqg->service_trees[i][j]: NULL) \
375 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
377 if (cfq_class_idle(cfqq
))
378 return IDLE_WORKLOAD
;
379 if (cfq_class_rt(cfqq
))
385 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
387 if (!cfq_cfqq_sync(cfqq
))
388 return ASYNC_WORKLOAD
;
389 if (!cfq_cfqq_idle_window(cfqq
))
390 return SYNC_NOIDLE_WORKLOAD
;
391 return SYNC_WORKLOAD
;
394 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
395 struct cfq_data
*cfqd
,
396 struct cfq_group
*cfqg
)
398 if (wl
== IDLE_WORKLOAD
)
399 return cfqg
->service_tree_idle
.count
;
401 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
402 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
403 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
406 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
407 struct cfq_group
*cfqg
)
409 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
410 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
413 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
414 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
415 struct io_context
*, gfp_t
);
416 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
417 struct io_context
*);
419 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
422 return cic
->cfqq
[is_sync
];
425 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
426 struct cfq_queue
*cfqq
, bool is_sync
)
428 cic
->cfqq
[is_sync
] = cfqq
;
432 * We regard a request as SYNC, if it's either a read or has the SYNC bit
433 * set (in which case it could also be direct WRITE).
435 static inline bool cfq_bio_sync(struct bio
*bio
)
437 return bio_data_dir(bio
) == READ
|| bio_rw_flagged(bio
, BIO_RW_SYNCIO
);
441 * scheduler run of queue, if there are requests pending and no one in the
442 * driver that will restart queueing
444 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
446 if (cfqd
->busy_queues
) {
447 cfq_log(cfqd
, "schedule dispatch");
448 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
452 static int cfq_queue_empty(struct request_queue
*q
)
454 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
456 return !cfqd
->rq_queued
;
460 * Scale schedule slice based on io priority. Use the sync time slice only
461 * if a queue is marked sync and has sync io queued. A sync queue with async
462 * io only, should not get full sync slice length.
464 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
467 const int base_slice
= cfqd
->cfq_slice
[sync
];
469 WARN_ON(prio
>= IOPRIO_BE_NR
);
471 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
475 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
477 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
480 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
482 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
484 d
= d
* BLKIO_WEIGHT_DEFAULT
;
485 do_div(d
, cfqg
->weight
);
489 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
491 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
493 min_vdisktime
= vdisktime
;
495 return min_vdisktime
;
498 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
500 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
502 min_vdisktime
= vdisktime
;
504 return min_vdisktime
;
507 static void update_min_vdisktime(struct cfq_rb_root
*st
)
509 u64 vdisktime
= st
->min_vdisktime
;
510 struct cfq_group
*cfqg
;
513 cfqg
= rb_entry_cfqg(st
->active
);
514 vdisktime
= cfqg
->vdisktime
;
518 cfqg
= rb_entry_cfqg(st
->left
);
519 vdisktime
= min_vdisktime(vdisktime
, cfqg
->vdisktime
);
522 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
, vdisktime
);
526 * get averaged number of queues of RT/BE priority.
527 * average is updated, with a formula that gives more weight to higher numbers,
528 * to quickly follows sudden increases and decrease slowly
531 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
532 struct cfq_group
*cfqg
, bool rt
)
534 unsigned min_q
, max_q
;
535 unsigned mult
= cfq_hist_divisor
- 1;
536 unsigned round
= cfq_hist_divisor
/ 2;
537 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
539 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
540 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
541 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
543 return cfqg
->busy_queues_avg
[rt
];
546 static inline unsigned
547 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
549 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
551 return cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
555 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
557 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
558 if (cfqd
->cfq_latency
) {
560 * interested queues (we consider only the ones with the same
561 * priority class in the cfq group)
563 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
565 unsigned sync_slice
= cfqd
->cfq_slice
[1];
566 unsigned expect_latency
= sync_slice
* iq
;
567 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
569 if (expect_latency
> group_slice
) {
570 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
571 /* scale low_slice according to IO priority
572 * and sync vs async */
574 min(slice
, base_low_slice
* slice
/ sync_slice
);
575 /* the adapted slice value is scaled to fit all iqs
576 * into the target latency */
577 slice
= max(slice
* group_slice
/ expect_latency
,
581 cfqq
->slice_start
= jiffies
;
582 cfqq
->slice_end
= jiffies
+ slice
;
583 cfqq
->allocated_slice
= slice
;
584 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
588 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
589 * isn't valid until the first request from the dispatch is activated
590 * and the slice time set.
592 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
594 if (cfq_cfqq_slice_new(cfqq
))
596 if (time_before(jiffies
, cfqq
->slice_end
))
603 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
604 * We choose the request that is closest to the head right now. Distance
605 * behind the head is penalized and only allowed to a certain extent.
607 static struct request
*
608 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
610 sector_t s1
, s2
, d1
= 0, d2
= 0;
611 unsigned long back_max
;
612 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
613 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
614 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
616 if (rq1
== NULL
|| rq1
== rq2
)
621 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
623 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
625 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
627 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
630 s1
= blk_rq_pos(rq1
);
631 s2
= blk_rq_pos(rq2
);
634 * by definition, 1KiB is 2 sectors
636 back_max
= cfqd
->cfq_back_max
* 2;
639 * Strict one way elevator _except_ in the case where we allow
640 * short backward seeks which are biased as twice the cost of a
641 * similar forward seek.
645 else if (s1
+ back_max
>= last
)
646 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
648 wrap
|= CFQ_RQ1_WRAP
;
652 else if (s2
+ back_max
>= last
)
653 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
655 wrap
|= CFQ_RQ2_WRAP
;
657 /* Found required data */
660 * By doing switch() on the bit mask "wrap" we avoid having to
661 * check two variables for all permutations: --> faster!
664 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
680 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
683 * Since both rqs are wrapped,
684 * start with the one that's further behind head
685 * (--> only *one* back seek required),
686 * since back seek takes more time than forward.
696 * The below is leftmost cache rbtree addon
698 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
700 /* Service tree is empty */
705 root
->left
= rb_first(&root
->rb
);
708 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
713 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
716 root
->left
= rb_first(&root
->rb
);
719 return rb_entry_cfqg(root
->left
);
724 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
730 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
734 rb_erase_init(n
, &root
->rb
);
739 * would be nice to take fifo expire time into account as well
741 static struct request
*
742 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
743 struct request
*last
)
745 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
746 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
747 struct request
*next
= NULL
, *prev
= NULL
;
749 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
752 prev
= rb_entry_rq(rbprev
);
755 next
= rb_entry_rq(rbnext
);
757 rbnext
= rb_first(&cfqq
->sort_list
);
758 if (rbnext
&& rbnext
!= &last
->rb_node
)
759 next
= rb_entry_rq(rbnext
);
762 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
765 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
766 struct cfq_queue
*cfqq
)
769 * just an approximation, should be ok.
771 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
772 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
776 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
778 return cfqg
->vdisktime
- st
->min_vdisktime
;
782 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
784 struct rb_node
**node
= &st
->rb
.rb_node
;
785 struct rb_node
*parent
= NULL
;
786 struct cfq_group
*__cfqg
;
787 s64 key
= cfqg_key(st
, cfqg
);
790 while (*node
!= NULL
) {
792 __cfqg
= rb_entry_cfqg(parent
);
794 if (key
< cfqg_key(st
, __cfqg
))
795 node
= &parent
->rb_left
;
797 node
= &parent
->rb_right
;
803 st
->left
= &cfqg
->rb_node
;
805 rb_link_node(&cfqg
->rb_node
, parent
, node
);
806 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
810 cfq_group_service_tree_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
812 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
813 struct cfq_group
*__cfqg
;
821 * Currently put the group at the end. Later implement something
822 * so that groups get lesser vtime based on their weights, so that
823 * if group does not loose all if it was not continously backlogged.
825 n
= rb_last(&st
->rb
);
827 __cfqg
= rb_entry_cfqg(n
);
828 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
830 cfqg
->vdisktime
= st
->min_vdisktime
;
832 __cfq_group_service_tree_add(st
, cfqg
);
834 st
->total_weight
+= cfqg
->weight
;
838 cfq_group_service_tree_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
840 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
842 if (st
->active
== &cfqg
->rb_node
)
845 BUG_ON(cfqg
->nr_cfqq
< 1);
848 /* If there are other cfq queues under this group, don't delete it */
852 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
854 st
->total_weight
-= cfqg
->weight
;
855 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
856 cfq_rb_erase(&cfqg
->rb_node
, st
);
857 cfqg
->saved_workload_slice
= 0;
858 blkiocg_update_blkio_group_dequeue_stats(&cfqg
->blkg
, 1);
861 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
)
863 unsigned int slice_used
;
866 * Queue got expired before even a single request completed or
867 * got expired immediately after first request completion.
869 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
871 * Also charge the seek time incurred to the group, otherwise
872 * if there are mutiple queues in the group, each can dispatch
873 * a single request on seeky media and cause lots of seek time
874 * and group will never know it.
876 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
879 slice_used
= jiffies
- cfqq
->slice_start
;
880 if (slice_used
> cfqq
->allocated_slice
)
881 slice_used
= cfqq
->allocated_slice
;
884 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "sl_used=%u sect=%lu", slice_used
,
889 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
890 struct cfq_queue
*cfqq
)
892 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
893 unsigned int used_sl
, charge_sl
;
894 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
895 - cfqg
->service_tree_idle
.count
;
898 used_sl
= charge_sl
= cfq_cfqq_slice_usage(cfqq
);
900 if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
901 charge_sl
= cfqq
->allocated_slice
;
903 /* Can't update vdisktime while group is on service tree */
904 cfq_rb_erase(&cfqg
->rb_node
, st
);
905 cfqg
->vdisktime
+= cfq_scale_slice(charge_sl
, cfqg
);
906 __cfq_group_service_tree_add(st
, cfqg
);
908 /* This group is being expired. Save the context */
909 if (time_after(cfqd
->workload_expires
, jiffies
)) {
910 cfqg
->saved_workload_slice
= cfqd
->workload_expires
912 cfqg
->saved_workload
= cfqd
->serving_type
;
913 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
915 cfqg
->saved_workload_slice
= 0;
917 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
919 blkiocg_update_blkio_group_stats(&cfqg
->blkg
, used_sl
,
923 #ifdef CONFIG_CFQ_GROUP_IOSCHED
924 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
927 return container_of(blkg
, struct cfq_group
, blkg
);
932 cfq_update_blkio_group_weight(struct blkio_group
*blkg
, unsigned int weight
)
934 cfqg_of_blkg(blkg
)->weight
= weight
;
937 static struct cfq_group
*
938 cfq_find_alloc_cfqg(struct cfq_data
*cfqd
, struct cgroup
*cgroup
, int create
)
940 struct blkio_cgroup
*blkcg
= cgroup_to_blkio_cgroup(cgroup
);
941 struct cfq_group
*cfqg
= NULL
;
944 struct cfq_rb_root
*st
;
945 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
946 unsigned int major
, minor
;
948 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
952 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
956 cfqg
->weight
= blkcg
->weight
;
957 for_each_cfqg_st(cfqg
, i
, j
, st
)
959 RB_CLEAR_NODE(&cfqg
->rb_node
);
962 * Take the initial reference that will be released on destroy
963 * This can be thought of a joint reference by cgroup and
964 * elevator which will be dropped by either elevator exit
965 * or cgroup deletion path depending on who is exiting first.
967 atomic_set(&cfqg
->ref
, 1);
969 /* Add group onto cgroup list */
970 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
971 blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
972 MKDEV(major
, minor
));
974 /* Add group on cfqd list */
975 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
982 * Search for the cfq group current task belongs to. If create = 1, then also
983 * create the cfq group if it does not exist. request_queue lock must be held.
985 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
987 struct cgroup
*cgroup
;
988 struct cfq_group
*cfqg
= NULL
;
991 cgroup
= task_cgroup(current
, blkio_subsys_id
);
992 cfqg
= cfq_find_alloc_cfqg(cfqd
, cgroup
, create
);
994 cfqg
= &cfqd
->root_group
;
999 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1001 /* Currently, all async queues are mapped to root group */
1002 if (!cfq_cfqq_sync(cfqq
))
1003 cfqg
= &cfqq
->cfqd
->root_group
;
1006 /* cfqq reference on cfqg */
1007 atomic_inc(&cfqq
->cfqg
->ref
);
1010 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1012 struct cfq_rb_root
*st
;
1015 BUG_ON(atomic_read(&cfqg
->ref
) <= 0);
1016 if (!atomic_dec_and_test(&cfqg
->ref
))
1018 for_each_cfqg_st(cfqg
, i
, j
, st
)
1019 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
) || st
->active
!= NULL
);
1023 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1025 /* Something wrong if we are trying to remove same group twice */
1026 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1028 hlist_del_init(&cfqg
->cfqd_node
);
1031 * Put the reference taken at the time of creation so that when all
1032 * queues are gone, group can be destroyed.
1037 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1039 struct hlist_node
*pos
, *n
;
1040 struct cfq_group
*cfqg
;
1042 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1044 * If cgroup removal path got to blk_group first and removed
1045 * it from cgroup list, then it will take care of destroying
1048 if (!blkiocg_del_blkio_group(&cfqg
->blkg
))
1049 cfq_destroy_cfqg(cfqd
, cfqg
);
1054 * Blk cgroup controller notification saying that blkio_group object is being
1055 * delinked as associated cgroup object is going away. That also means that
1056 * no new IO will come in this group. So get rid of this group as soon as
1057 * any pending IO in the group is finished.
1059 * This function is called under rcu_read_lock(). key is the rcu protected
1060 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1063 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1064 * it should not be NULL as even if elevator was exiting, cgroup deltion
1065 * path got to it first.
1067 void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1069 unsigned long flags
;
1070 struct cfq_data
*cfqd
= key
;
1072 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1073 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1074 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1077 #else /* GROUP_IOSCHED */
1078 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1080 return &cfqd
->root_group
;
1083 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1087 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1088 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1090 #endif /* GROUP_IOSCHED */
1093 * The cfqd->service_trees holds all pending cfq_queue's that have
1094 * requests waiting to be processed. It is sorted in the order that
1095 * we will service the queues.
1097 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1100 struct rb_node
**p
, *parent
;
1101 struct cfq_queue
*__cfqq
;
1102 unsigned long rb_key
;
1103 struct cfq_rb_root
*service_tree
;
1106 int group_changed
= 0;
1108 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1109 if (!cfqd
->cfq_group_isolation
1110 && cfqq_type(cfqq
) == SYNC_NOIDLE_WORKLOAD
1111 && cfqq
->cfqg
&& cfqq
->cfqg
!= &cfqd
->root_group
) {
1112 /* Move this cfq to root group */
1113 cfq_log_cfqq(cfqd
, cfqq
, "moving to root group");
1114 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1115 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1116 cfqq
->orig_cfqg
= cfqq
->cfqg
;
1117 cfqq
->cfqg
= &cfqd
->root_group
;
1118 atomic_inc(&cfqd
->root_group
.ref
);
1120 } else if (!cfqd
->cfq_group_isolation
1121 && cfqq_type(cfqq
) == SYNC_WORKLOAD
&& cfqq
->orig_cfqg
) {
1122 /* cfqq is sequential now needs to go to its original group */
1123 BUG_ON(cfqq
->cfqg
!= &cfqd
->root_group
);
1124 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1125 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1126 cfq_put_cfqg(cfqq
->cfqg
);
1127 cfqq
->cfqg
= cfqq
->orig_cfqg
;
1128 cfqq
->orig_cfqg
= NULL
;
1130 cfq_log_cfqq(cfqd
, cfqq
, "moved to origin group");
1134 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1136 if (cfq_class_idle(cfqq
)) {
1137 rb_key
= CFQ_IDLE_DELAY
;
1138 parent
= rb_last(&service_tree
->rb
);
1139 if (parent
&& parent
!= &cfqq
->rb_node
) {
1140 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1141 rb_key
+= __cfqq
->rb_key
;
1144 } else if (!add_front
) {
1146 * Get our rb key offset. Subtract any residual slice
1147 * value carried from last service. A negative resid
1148 * count indicates slice overrun, and this should position
1149 * the next service time further away in the tree.
1151 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1152 rb_key
-= cfqq
->slice_resid
;
1153 cfqq
->slice_resid
= 0;
1156 __cfqq
= cfq_rb_first(service_tree
);
1157 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1160 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1163 * same position, nothing more to do
1165 if (rb_key
== cfqq
->rb_key
&&
1166 cfqq
->service_tree
== service_tree
)
1169 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1170 cfqq
->service_tree
= NULL
;
1175 cfqq
->service_tree
= service_tree
;
1176 p
= &service_tree
->rb
.rb_node
;
1181 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1184 * sort by key, that represents service time.
1186 if (time_before(rb_key
, __cfqq
->rb_key
))
1189 n
= &(*p
)->rb_right
;
1197 service_tree
->left
= &cfqq
->rb_node
;
1199 cfqq
->rb_key
= rb_key
;
1200 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1201 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1202 service_tree
->count
++;
1203 if ((add_front
|| !new_cfqq
) && !group_changed
)
1205 cfq_group_service_tree_add(cfqd
, cfqq
->cfqg
);
1208 static struct cfq_queue
*
1209 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1210 sector_t sector
, struct rb_node
**ret_parent
,
1211 struct rb_node
***rb_link
)
1213 struct rb_node
**p
, *parent
;
1214 struct cfq_queue
*cfqq
= NULL
;
1222 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1225 * Sort strictly based on sector. Smallest to the left,
1226 * largest to the right.
1228 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1229 n
= &(*p
)->rb_right
;
1230 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1238 *ret_parent
= parent
;
1244 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1246 struct rb_node
**p
, *parent
;
1247 struct cfq_queue
*__cfqq
;
1250 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1251 cfqq
->p_root
= NULL
;
1254 if (cfq_class_idle(cfqq
))
1259 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1260 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1261 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1263 rb_link_node(&cfqq
->p_node
, parent
, p
);
1264 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1266 cfqq
->p_root
= NULL
;
1270 * Update cfqq's position in the service tree.
1272 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1275 * Resorting requires the cfqq to be on the RR list already.
1277 if (cfq_cfqq_on_rr(cfqq
)) {
1278 cfq_service_tree_add(cfqd
, cfqq
, 0);
1279 cfq_prio_tree_add(cfqd
, cfqq
);
1284 * add to busy list of queues for service, trying to be fair in ordering
1285 * the pending list according to last request service
1287 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1289 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1290 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1291 cfq_mark_cfqq_on_rr(cfqq
);
1292 cfqd
->busy_queues
++;
1294 cfq_resort_rr_list(cfqd
, cfqq
);
1298 * Called when the cfqq no longer has requests pending, remove it from
1301 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1303 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1304 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1305 cfq_clear_cfqq_on_rr(cfqq
);
1307 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1308 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1309 cfqq
->service_tree
= NULL
;
1312 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1313 cfqq
->p_root
= NULL
;
1316 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1317 BUG_ON(!cfqd
->busy_queues
);
1318 cfqd
->busy_queues
--;
1322 * rb tree support functions
1324 static void cfq_del_rq_rb(struct request
*rq
)
1326 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1327 const int sync
= rq_is_sync(rq
);
1329 BUG_ON(!cfqq
->queued
[sync
]);
1330 cfqq
->queued
[sync
]--;
1332 elv_rb_del(&cfqq
->sort_list
, rq
);
1334 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1336 * Queue will be deleted from service tree when we actually
1337 * expire it later. Right now just remove it from prio tree
1341 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1342 cfqq
->p_root
= NULL
;
1347 static void cfq_add_rq_rb(struct request
*rq
)
1349 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1350 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1351 struct request
*__alias
, *prev
;
1353 cfqq
->queued
[rq_is_sync(rq
)]++;
1356 * looks a little odd, but the first insert might return an alias.
1357 * if that happens, put the alias on the dispatch list
1359 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
1360 cfq_dispatch_insert(cfqd
->queue
, __alias
);
1362 if (!cfq_cfqq_on_rr(cfqq
))
1363 cfq_add_cfqq_rr(cfqd
, cfqq
);
1366 * check if this request is a better next-serve candidate
1368 prev
= cfqq
->next_rq
;
1369 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1372 * adjust priority tree position, if ->next_rq changes
1374 if (prev
!= cfqq
->next_rq
)
1375 cfq_prio_tree_add(cfqd
, cfqq
);
1377 BUG_ON(!cfqq
->next_rq
);
1380 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1382 elv_rb_del(&cfqq
->sort_list
, rq
);
1383 cfqq
->queued
[rq_is_sync(rq
)]--;
1387 static struct request
*
1388 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1390 struct task_struct
*tsk
= current
;
1391 struct cfq_io_context
*cic
;
1392 struct cfq_queue
*cfqq
;
1394 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1398 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1400 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1402 return elv_rb_find(&cfqq
->sort_list
, sector
);
1408 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1410 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1412 cfqd
->rq_in_driver
++;
1413 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1414 cfqd
->rq_in_driver
);
1416 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1419 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1421 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1423 WARN_ON(!cfqd
->rq_in_driver
);
1424 cfqd
->rq_in_driver
--;
1425 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1426 cfqd
->rq_in_driver
);
1429 static void cfq_remove_request(struct request
*rq
)
1431 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1433 if (cfqq
->next_rq
== rq
)
1434 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1436 list_del_init(&rq
->queuelist
);
1439 cfqq
->cfqd
->rq_queued
--;
1440 if (rq_is_meta(rq
)) {
1441 WARN_ON(!cfqq
->meta_pending
);
1442 cfqq
->meta_pending
--;
1446 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1449 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1450 struct request
*__rq
;
1452 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1453 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1455 return ELEVATOR_FRONT_MERGE
;
1458 return ELEVATOR_NO_MERGE
;
1461 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1464 if (type
== ELEVATOR_FRONT_MERGE
) {
1465 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1467 cfq_reposition_rq_rb(cfqq
, req
);
1472 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1473 struct request
*next
)
1475 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1477 * reposition in fifo if next is older than rq
1479 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1480 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1481 list_move(&rq
->queuelist
, &next
->queuelist
);
1482 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1485 if (cfqq
->next_rq
== next
)
1487 cfq_remove_request(next
);
1490 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1493 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1494 struct cfq_io_context
*cic
;
1495 struct cfq_queue
*cfqq
;
1498 * Disallow merge of a sync bio into an async request.
1500 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1504 * Lookup the cfqq that this bio will be queued with. Allow
1505 * merge only if rq is queued there.
1507 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1511 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1512 return cfqq
== RQ_CFQQ(rq
);
1515 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1516 struct cfq_queue
*cfqq
)
1519 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
1520 cfqq
->slice_start
= 0;
1521 cfqq
->dispatch_start
= jiffies
;
1522 cfqq
->allocated_slice
= 0;
1523 cfqq
->slice_end
= 0;
1524 cfqq
->slice_dispatch
= 0;
1525 cfqq
->nr_sectors
= 0;
1527 cfq_clear_cfqq_wait_request(cfqq
);
1528 cfq_clear_cfqq_must_dispatch(cfqq
);
1529 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1530 cfq_clear_cfqq_fifo_expire(cfqq
);
1531 cfq_mark_cfqq_slice_new(cfqq
);
1533 del_timer(&cfqd
->idle_slice_timer
);
1536 cfqd
->active_queue
= cfqq
;
1540 * current cfqq expired its slice (or was too idle), select new one
1543 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1546 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1548 if (cfq_cfqq_wait_request(cfqq
))
1549 del_timer(&cfqd
->idle_slice_timer
);
1551 cfq_clear_cfqq_wait_request(cfqq
);
1552 cfq_clear_cfqq_wait_busy(cfqq
);
1555 * If this cfqq is shared between multiple processes, check to
1556 * make sure that those processes are still issuing I/Os within
1557 * the mean seek distance. If not, it may be time to break the
1558 * queues apart again.
1560 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
1561 cfq_mark_cfqq_split_coop(cfqq
);
1564 * store what was left of this slice, if the queue idled/timed out
1566 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
1567 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1568 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1571 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1573 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1574 cfq_del_cfqq_rr(cfqd
, cfqq
);
1576 cfq_resort_rr_list(cfqd
, cfqq
);
1578 if (cfqq
== cfqd
->active_queue
)
1579 cfqd
->active_queue
= NULL
;
1581 if (&cfqq
->cfqg
->rb_node
== cfqd
->grp_service_tree
.active
)
1582 cfqd
->grp_service_tree
.active
= NULL
;
1584 if (cfqd
->active_cic
) {
1585 put_io_context(cfqd
->active_cic
->ioc
);
1586 cfqd
->active_cic
= NULL
;
1590 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1592 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1595 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1599 * Get next queue for service. Unless we have a queue preemption,
1600 * we'll simply select the first cfqq in the service tree.
1602 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1604 struct cfq_rb_root
*service_tree
=
1605 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1606 cfqd
->serving_type
);
1608 if (!cfqd
->rq_queued
)
1611 /* There is nothing to dispatch */
1614 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1616 return cfq_rb_first(service_tree
);
1619 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1621 struct cfq_group
*cfqg
;
1622 struct cfq_queue
*cfqq
;
1624 struct cfq_rb_root
*st
;
1626 if (!cfqd
->rq_queued
)
1629 cfqg
= cfq_get_next_cfqg(cfqd
);
1633 for_each_cfqg_st(cfqg
, i
, j
, st
)
1634 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1640 * Get and set a new active queue for service.
1642 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1643 struct cfq_queue
*cfqq
)
1646 cfqq
= cfq_get_next_queue(cfqd
);
1648 __cfq_set_active_queue(cfqd
, cfqq
);
1652 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1655 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1656 return blk_rq_pos(rq
) - cfqd
->last_position
;
1658 return cfqd
->last_position
- blk_rq_pos(rq
);
1661 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1662 struct request
*rq
, bool for_preempt
)
1664 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_SEEK_THR
;
1667 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1668 struct cfq_queue
*cur_cfqq
)
1670 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1671 struct rb_node
*parent
, *node
;
1672 struct cfq_queue
*__cfqq
;
1673 sector_t sector
= cfqd
->last_position
;
1675 if (RB_EMPTY_ROOT(root
))
1679 * First, if we find a request starting at the end of the last
1680 * request, choose it.
1682 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1687 * If the exact sector wasn't found, the parent of the NULL leaf
1688 * will contain the closest sector.
1690 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1691 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
, false))
1694 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1695 node
= rb_next(&__cfqq
->p_node
);
1697 node
= rb_prev(&__cfqq
->p_node
);
1701 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1702 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
, false))
1710 * cur_cfqq - passed in so that we don't decide that the current queue is
1711 * closely cooperating with itself.
1713 * So, basically we're assuming that that cur_cfqq has dispatched at least
1714 * one request, and that cfqd->last_position reflects a position on the disk
1715 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1718 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1719 struct cfq_queue
*cur_cfqq
)
1721 struct cfq_queue
*cfqq
;
1723 if (!cfq_cfqq_sync(cur_cfqq
))
1725 if (CFQQ_SEEKY(cur_cfqq
))
1729 * Don't search priority tree if it's the only queue in the group.
1731 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1735 * We should notice if some of the queues are cooperating, eg
1736 * working closely on the same area of the disk. In that case,
1737 * we can group them together and don't waste time idling.
1739 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1743 /* If new queue belongs to different cfq_group, don't choose it */
1744 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1748 * It only makes sense to merge sync queues.
1750 if (!cfq_cfqq_sync(cfqq
))
1752 if (CFQQ_SEEKY(cfqq
))
1756 * Do not merge queues of different priority classes
1758 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1765 * Determine whether we should enforce idle window for this queue.
1768 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1770 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1771 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1773 BUG_ON(!service_tree
);
1774 BUG_ON(!service_tree
->count
);
1776 /* We never do for idle class queues. */
1777 if (prio
== IDLE_WORKLOAD
)
1780 /* We do for queues that were marked with idle window flag. */
1781 if (cfq_cfqq_idle_window(cfqq
) &&
1782 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1786 * Otherwise, we do only if they are the last ones
1787 * in their service tree.
1789 return service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
);
1792 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1794 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1795 struct cfq_io_context
*cic
;
1799 * SSD device without seek penalty, disable idling. But only do so
1800 * for devices that support queuing, otherwise we still have a problem
1801 * with sync vs async workloads.
1803 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1806 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1807 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1810 * idle is disabled, either manually or by past process history
1812 if (!cfqd
->cfq_slice_idle
|| !cfq_should_idle(cfqd
, cfqq
))
1816 * still active requests from this queue, don't idle
1818 if (cfqq
->dispatched
)
1822 * task has exited, don't wait
1824 cic
= cfqd
->active_cic
;
1825 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1829 * If our average think time is larger than the remaining time
1830 * slice, then don't idle. This avoids overrunning the allotted
1833 if (sample_valid(cic
->ttime_samples
) &&
1834 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
1837 cfq_mark_cfqq_wait_request(cfqq
);
1839 sl
= cfqd
->cfq_slice_idle
;
1841 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1842 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1846 * Move request from internal lists to the request queue dispatch list.
1848 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1850 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1851 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1853 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1855 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1856 cfq_remove_request(rq
);
1858 elv_dispatch_sort(q
, rq
);
1860 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
1861 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
1865 * return expired entry, or NULL to just start from scratch in rbtree
1867 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1869 struct request
*rq
= NULL
;
1871 if (cfq_cfqq_fifo_expire(cfqq
))
1874 cfq_mark_cfqq_fifo_expire(cfqq
);
1876 if (list_empty(&cfqq
->fifo
))
1879 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1880 if (time_before(jiffies
, rq_fifo_time(rq
)))
1883 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
1888 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1890 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1892 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1894 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1898 * Must be called with the queue_lock held.
1900 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
1902 int process_refs
, io_refs
;
1904 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
1905 process_refs
= atomic_read(&cfqq
->ref
) - io_refs
;
1906 BUG_ON(process_refs
< 0);
1907 return process_refs
;
1910 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
1912 int process_refs
, new_process_refs
;
1913 struct cfq_queue
*__cfqq
;
1915 /* Avoid a circular list and skip interim queue merges */
1916 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
1922 process_refs
= cfqq_process_refs(cfqq
);
1924 * If the process for the cfqq has gone away, there is no
1925 * sense in merging the queues.
1927 if (process_refs
== 0)
1931 * Merge in the direction of the lesser amount of work.
1933 new_process_refs
= cfqq_process_refs(new_cfqq
);
1934 if (new_process_refs
>= process_refs
) {
1935 cfqq
->new_cfqq
= new_cfqq
;
1936 atomic_add(process_refs
, &new_cfqq
->ref
);
1938 new_cfqq
->new_cfqq
= cfqq
;
1939 atomic_add(new_process_refs
, &cfqq
->ref
);
1943 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
1944 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
1946 struct cfq_queue
*queue
;
1948 bool key_valid
= false;
1949 unsigned long lowest_key
= 0;
1950 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
1952 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
1953 /* select the one with lowest rb_key */
1954 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
1956 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
1957 lowest_key
= queue
->rb_key
;
1966 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1970 struct cfq_rb_root
*st
;
1971 unsigned group_slice
;
1974 cfqd
->serving_prio
= IDLE_WORKLOAD
;
1975 cfqd
->workload_expires
= jiffies
+ 1;
1979 /* Choose next priority. RT > BE > IDLE */
1980 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
1981 cfqd
->serving_prio
= RT_WORKLOAD
;
1982 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
1983 cfqd
->serving_prio
= BE_WORKLOAD
;
1985 cfqd
->serving_prio
= IDLE_WORKLOAD
;
1986 cfqd
->workload_expires
= jiffies
+ 1;
1991 * For RT and BE, we have to choose also the type
1992 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1995 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
1999 * check workload expiration, and that we still have other queues ready
2001 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2004 /* otherwise select new workload type */
2005 cfqd
->serving_type
=
2006 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2007 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2011 * the workload slice is computed as a fraction of target latency
2012 * proportional to the number of queues in that workload, over
2013 * all the queues in the same priority class
2015 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2017 slice
= group_slice
* count
/
2018 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2019 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2021 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2025 * Async queues are currently system wide. Just taking
2026 * proportion of queues with-in same group will lead to higher
2027 * async ratio system wide as generally root group is going
2028 * to have higher weight. A more accurate thing would be to
2029 * calculate system wide asnc/sync ratio.
2031 tmp
= cfq_target_latency
* cfqg_busy_async_queues(cfqd
, cfqg
);
2032 tmp
= tmp
/cfqd
->busy_queues
;
2033 slice
= min_t(unsigned, slice
, tmp
);
2035 /* async workload slice is scaled down according to
2036 * the sync/async slice ratio. */
2037 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2039 /* sync workload slice is at least 2 * cfq_slice_idle */
2040 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2042 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2043 cfqd
->workload_expires
= jiffies
+ slice
;
2044 cfqd
->noidle_tree_requires_idle
= false;
2047 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2049 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2050 struct cfq_group
*cfqg
;
2052 if (RB_EMPTY_ROOT(&st
->rb
))
2054 cfqg
= cfq_rb_first_group(st
);
2055 st
->active
= &cfqg
->rb_node
;
2056 update_min_vdisktime(st
);
2060 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2062 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2064 cfqd
->serving_group
= cfqg
;
2066 /* Restore the workload type data */
2067 if (cfqg
->saved_workload_slice
) {
2068 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2069 cfqd
->serving_type
= cfqg
->saved_workload
;
2070 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2072 cfqd
->workload_expires
= jiffies
- 1;
2074 choose_service_tree(cfqd
, cfqg
);
2078 * Select a queue for service. If we have a current active queue,
2079 * check whether to continue servicing it, or retrieve and set a new one.
2081 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2083 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2085 cfqq
= cfqd
->active_queue
;
2089 if (!cfqd
->rq_queued
)
2093 * We were waiting for group to get backlogged. Expire the queue
2095 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2099 * The active queue has run out of time, expire it and select new.
2101 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2103 * If slice had not expired at the completion of last request
2104 * we might not have turned on wait_busy flag. Don't expire
2105 * the queue yet. Allow the group to get backlogged.
2107 * The very fact that we have used the slice, that means we
2108 * have been idling all along on this queue and it should be
2109 * ok to wait for this request to complete.
2111 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2112 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2120 * The active queue has requests and isn't expired, allow it to
2123 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2127 * If another queue has a request waiting within our mean seek
2128 * distance, let it run. The expire code will check for close
2129 * cooperators and put the close queue at the front of the service
2130 * tree. If possible, merge the expiring queue with the new cfqq.
2132 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2134 if (!cfqq
->new_cfqq
)
2135 cfq_setup_merge(cfqq
, new_cfqq
);
2140 * No requests pending. If the active queue still has requests in
2141 * flight or is idling for a new request, allow either of these
2142 * conditions to happen (or time out) before selecting a new queue.
2144 if (timer_pending(&cfqd
->idle_slice_timer
) ||
2145 (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
))) {
2151 cfq_slice_expired(cfqd
, 0);
2154 * Current queue expired. Check if we have to switch to a new
2158 cfq_choose_cfqg(cfqd
);
2160 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2165 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2169 while (cfqq
->next_rq
) {
2170 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2174 BUG_ON(!list_empty(&cfqq
->fifo
));
2176 /* By default cfqq is not expired if it is empty. Do it explicitly */
2177 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2182 * Drain our current requests. Used for barriers and when switching
2183 * io schedulers on-the-fly.
2185 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2187 struct cfq_queue
*cfqq
;
2190 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
)
2191 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2193 cfq_slice_expired(cfqd
, 0);
2194 BUG_ON(cfqd
->busy_queues
);
2196 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2200 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2202 unsigned int max_dispatch
;
2205 * Drain async requests before we start sync IO
2207 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
2211 * If this is an async queue and we have sync IO in flight, let it wait
2213 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
2216 max_dispatch
= cfqd
->cfq_quantum
;
2217 if (cfq_class_idle(cfqq
))
2221 * Does this cfqq already have too much IO in flight?
2223 if (cfqq
->dispatched
>= max_dispatch
) {
2225 * idle queue must always only have a single IO in flight
2227 if (cfq_class_idle(cfqq
))
2231 * We have other queues, don't allow more IO from this one
2233 if (cfqd
->busy_queues
> 1)
2237 * Sole queue user, no limit
2243 * Async queues must wait a bit before being allowed dispatch.
2244 * We also ramp up the dispatch depth gradually for async IO,
2245 * based on the last sync IO we serviced
2247 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2248 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2251 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2252 if (!depth
&& !cfqq
->dispatched
)
2254 if (depth
< max_dispatch
)
2255 max_dispatch
= depth
;
2259 * If we're below the current max, allow a dispatch
2261 return cfqq
->dispatched
< max_dispatch
;
2265 * Dispatch a request from cfqq, moving them to the request queue
2268 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2272 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2274 if (!cfq_may_dispatch(cfqd
, cfqq
))
2278 * follow expired path, else get first next available
2280 rq
= cfq_check_fifo(cfqq
);
2285 * insert request into driver dispatch list
2287 cfq_dispatch_insert(cfqd
->queue
, rq
);
2289 if (!cfqd
->active_cic
) {
2290 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2292 atomic_long_inc(&cic
->ioc
->refcount
);
2293 cfqd
->active_cic
= cic
;
2300 * Find the cfqq that we need to service and move a request from that to the
2303 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2305 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2306 struct cfq_queue
*cfqq
;
2308 if (!cfqd
->busy_queues
)
2311 if (unlikely(force
))
2312 return cfq_forced_dispatch(cfqd
);
2314 cfqq
= cfq_select_queue(cfqd
);
2319 * Dispatch a request from this cfqq, if it is allowed
2321 if (!cfq_dispatch_request(cfqd
, cfqq
))
2324 cfqq
->slice_dispatch
++;
2325 cfq_clear_cfqq_must_dispatch(cfqq
);
2328 * expire an async queue immediately if it has used up its slice. idle
2329 * queue always expire after 1 dispatch round.
2331 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2332 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2333 cfq_class_idle(cfqq
))) {
2334 cfqq
->slice_end
= jiffies
+ 1;
2335 cfq_slice_expired(cfqd
, 0);
2338 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2343 * task holds one reference to the queue, dropped when task exits. each rq
2344 * in-flight on this queue also holds a reference, dropped when rq is freed.
2346 * Each cfq queue took a reference on the parent group. Drop it now.
2347 * queue lock must be held here.
2349 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2351 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2352 struct cfq_group
*cfqg
, *orig_cfqg
;
2354 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
2356 if (!atomic_dec_and_test(&cfqq
->ref
))
2359 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2360 BUG_ON(rb_first(&cfqq
->sort_list
));
2361 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2363 orig_cfqg
= cfqq
->orig_cfqg
;
2365 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2366 __cfq_slice_expired(cfqd
, cfqq
, 0);
2367 cfq_schedule_dispatch(cfqd
);
2370 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2371 kmem_cache_free(cfq_pool
, cfqq
);
2374 cfq_put_cfqg(orig_cfqg
);
2378 * Must always be called with the rcu_read_lock() held
2381 __call_for_each_cic(struct io_context
*ioc
,
2382 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2384 struct cfq_io_context
*cic
;
2385 struct hlist_node
*n
;
2387 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
2392 * Call func for each cic attached to this ioc.
2395 call_for_each_cic(struct io_context
*ioc
,
2396 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2399 __call_for_each_cic(ioc
, func
);
2403 static void cfq_cic_free_rcu(struct rcu_head
*head
)
2405 struct cfq_io_context
*cic
;
2407 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
2409 kmem_cache_free(cfq_ioc_pool
, cic
);
2410 elv_ioc_count_dec(cfq_ioc_count
);
2414 * CFQ scheduler is exiting, grab exit lock and check
2415 * the pending io context count. If it hits zero,
2416 * complete ioc_gone and set it back to NULL
2418 spin_lock(&ioc_gone_lock
);
2419 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
2423 spin_unlock(&ioc_gone_lock
);
2427 static void cfq_cic_free(struct cfq_io_context
*cic
)
2429 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
2432 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2434 unsigned long flags
;
2436 BUG_ON(!cic
->dead_key
);
2438 spin_lock_irqsave(&ioc
->lock
, flags
);
2439 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
2440 hlist_del_rcu(&cic
->cic_list
);
2441 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2447 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2448 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2449 * and ->trim() which is called with the task lock held
2451 static void cfq_free_io_context(struct io_context
*ioc
)
2454 * ioc->refcount is zero here, or we are called from elv_unregister(),
2455 * so no more cic's are allowed to be linked into this ioc. So it
2456 * should be ok to iterate over the known list, we will see all cic's
2457 * since no new ones are added.
2459 __call_for_each_cic(ioc
, cic_free_func
);
2462 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2464 struct cfq_queue
*__cfqq
, *next
;
2466 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2467 __cfq_slice_expired(cfqd
, cfqq
, 0);
2468 cfq_schedule_dispatch(cfqd
);
2472 * If this queue was scheduled to merge with another queue, be
2473 * sure to drop the reference taken on that queue (and others in
2474 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2476 __cfqq
= cfqq
->new_cfqq
;
2478 if (__cfqq
== cfqq
) {
2479 WARN(1, "cfqq->new_cfqq loop detected\n");
2482 next
= __cfqq
->new_cfqq
;
2483 cfq_put_queue(__cfqq
);
2487 cfq_put_queue(cfqq
);
2490 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
2491 struct cfq_io_context
*cic
)
2493 struct io_context
*ioc
= cic
->ioc
;
2495 list_del_init(&cic
->queue_list
);
2498 * Make sure key == NULL is seen for dead queues
2501 cic
->dead_key
= (unsigned long) cic
->key
;
2504 if (ioc
->ioc_data
== cic
)
2505 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
2507 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2508 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2509 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2512 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2513 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2514 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2518 static void cfq_exit_single_io_context(struct io_context
*ioc
,
2519 struct cfq_io_context
*cic
)
2521 struct cfq_data
*cfqd
= cic
->key
;
2524 struct request_queue
*q
= cfqd
->queue
;
2525 unsigned long flags
;
2527 spin_lock_irqsave(q
->queue_lock
, flags
);
2530 * Ensure we get a fresh copy of the ->key to prevent
2531 * race between exiting task and queue
2533 smp_read_barrier_depends();
2535 __cfq_exit_single_io_context(cfqd
, cic
);
2537 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2542 * The process that ioc belongs to has exited, we need to clean up
2543 * and put the internal structures we have that belongs to that process.
2545 static void cfq_exit_io_context(struct io_context
*ioc
)
2547 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
2550 static struct cfq_io_context
*
2551 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2553 struct cfq_io_context
*cic
;
2555 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
2558 cic
->last_end_request
= jiffies
;
2559 INIT_LIST_HEAD(&cic
->queue_list
);
2560 INIT_HLIST_NODE(&cic
->cic_list
);
2561 cic
->dtor
= cfq_free_io_context
;
2562 cic
->exit
= cfq_exit_io_context
;
2563 elv_ioc_count_inc(cfq_ioc_count
);
2569 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2571 struct task_struct
*tsk
= current
;
2574 if (!cfq_cfqq_prio_changed(cfqq
))
2577 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2578 switch (ioprio_class
) {
2580 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2581 case IOPRIO_CLASS_NONE
:
2583 * no prio set, inherit CPU scheduling settings
2585 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2586 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2588 case IOPRIO_CLASS_RT
:
2589 cfqq
->ioprio
= task_ioprio(ioc
);
2590 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2592 case IOPRIO_CLASS_BE
:
2593 cfqq
->ioprio
= task_ioprio(ioc
);
2594 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2596 case IOPRIO_CLASS_IDLE
:
2597 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2599 cfq_clear_cfqq_idle_window(cfqq
);
2604 * keep track of original prio settings in case we have to temporarily
2605 * elevate the priority of this queue
2607 cfqq
->org_ioprio
= cfqq
->ioprio
;
2608 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
2609 cfq_clear_cfqq_prio_changed(cfqq
);
2612 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2614 struct cfq_data
*cfqd
= cic
->key
;
2615 struct cfq_queue
*cfqq
;
2616 unsigned long flags
;
2618 if (unlikely(!cfqd
))
2621 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2623 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2625 struct cfq_queue
*new_cfqq
;
2626 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2629 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2630 cfq_put_queue(cfqq
);
2634 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2636 cfq_mark_cfqq_prio_changed(cfqq
);
2638 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2641 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2643 call_for_each_cic(ioc
, changed_ioprio
);
2644 ioc
->ioprio_changed
= 0;
2647 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2648 pid_t pid
, bool is_sync
)
2650 RB_CLEAR_NODE(&cfqq
->rb_node
);
2651 RB_CLEAR_NODE(&cfqq
->p_node
);
2652 INIT_LIST_HEAD(&cfqq
->fifo
);
2654 atomic_set(&cfqq
->ref
, 0);
2657 cfq_mark_cfqq_prio_changed(cfqq
);
2660 if (!cfq_class_idle(cfqq
))
2661 cfq_mark_cfqq_idle_window(cfqq
);
2662 cfq_mark_cfqq_sync(cfqq
);
2667 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2668 static void changed_cgroup(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2670 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2671 struct cfq_data
*cfqd
= cic
->key
;
2672 unsigned long flags
;
2673 struct request_queue
*q
;
2675 if (unlikely(!cfqd
))
2680 spin_lock_irqsave(q
->queue_lock
, flags
);
2684 * Drop reference to sync queue. A new sync queue will be
2685 * assigned in new group upon arrival of a fresh request.
2687 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2688 cic_set_cfqq(cic
, NULL
, 1);
2689 cfq_put_queue(sync_cfqq
);
2692 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2695 static void cfq_ioc_set_cgroup(struct io_context
*ioc
)
2697 call_for_each_cic(ioc
, changed_cgroup
);
2698 ioc
->cgroup_changed
= 0;
2700 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2702 static struct cfq_queue
*
2703 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2704 struct io_context
*ioc
, gfp_t gfp_mask
)
2706 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2707 struct cfq_io_context
*cic
;
2708 struct cfq_group
*cfqg
;
2711 cfqg
= cfq_get_cfqg(cfqd
, 1);
2712 cic
= cfq_cic_lookup(cfqd
, ioc
);
2713 /* cic always exists here */
2714 cfqq
= cic_to_cfqq(cic
, is_sync
);
2717 * Always try a new alloc if we fell back to the OOM cfqq
2718 * originally, since it should just be a temporary situation.
2720 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2725 } else if (gfp_mask
& __GFP_WAIT
) {
2726 spin_unlock_irq(cfqd
->queue
->queue_lock
);
2727 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
2728 gfp_mask
| __GFP_ZERO
,
2730 spin_lock_irq(cfqd
->queue
->queue_lock
);
2734 cfqq
= kmem_cache_alloc_node(cfq_pool
,
2735 gfp_mask
| __GFP_ZERO
,
2740 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
2741 cfq_init_prio_data(cfqq
, ioc
);
2742 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
2743 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
2745 cfqq
= &cfqd
->oom_cfqq
;
2749 kmem_cache_free(cfq_pool
, new_cfqq
);
2754 static struct cfq_queue
**
2755 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
2757 switch (ioprio_class
) {
2758 case IOPRIO_CLASS_RT
:
2759 return &cfqd
->async_cfqq
[0][ioprio
];
2760 case IOPRIO_CLASS_BE
:
2761 return &cfqd
->async_cfqq
[1][ioprio
];
2762 case IOPRIO_CLASS_IDLE
:
2763 return &cfqd
->async_idle_cfqq
;
2769 static struct cfq_queue
*
2770 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
2773 const int ioprio
= task_ioprio(ioc
);
2774 const int ioprio_class
= task_ioprio_class(ioc
);
2775 struct cfq_queue
**async_cfqq
= NULL
;
2776 struct cfq_queue
*cfqq
= NULL
;
2779 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
2784 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
2787 * pin the queue now that it's allocated, scheduler exit will prune it
2789 if (!is_sync
&& !(*async_cfqq
)) {
2790 atomic_inc(&cfqq
->ref
);
2794 atomic_inc(&cfqq
->ref
);
2799 * We drop cfq io contexts lazily, so we may find a dead one.
2802 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2803 struct cfq_io_context
*cic
)
2805 unsigned long flags
;
2807 WARN_ON(!list_empty(&cic
->queue_list
));
2809 spin_lock_irqsave(&ioc
->lock
, flags
);
2811 BUG_ON(ioc
->ioc_data
== cic
);
2813 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
2814 hlist_del_rcu(&cic
->cic_list
);
2815 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2820 static struct cfq_io_context
*
2821 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
2823 struct cfq_io_context
*cic
;
2824 unsigned long flags
;
2833 * we maintain a last-hit cache, to avoid browsing over the tree
2835 cic
= rcu_dereference(ioc
->ioc_data
);
2836 if (cic
&& cic
->key
== cfqd
) {
2842 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
2846 /* ->key must be copied to avoid race with cfq_exit_queue() */
2849 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
2854 spin_lock_irqsave(&ioc
->lock
, flags
);
2855 rcu_assign_pointer(ioc
->ioc_data
, cic
);
2856 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2864 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2865 * the process specific cfq io context when entered from the block layer.
2866 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2868 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2869 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
2871 unsigned long flags
;
2874 ret
= radix_tree_preload(gfp_mask
);
2879 spin_lock_irqsave(&ioc
->lock
, flags
);
2880 ret
= radix_tree_insert(&ioc
->radix_root
,
2881 (unsigned long) cfqd
, cic
);
2883 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
2884 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2886 radix_tree_preload_end();
2889 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2890 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
2891 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2896 printk(KERN_ERR
"cfq: cic link failed!\n");
2902 * Setup general io context and cfq io context. There can be several cfq
2903 * io contexts per general io context, if this process is doing io to more
2904 * than one device managed by cfq.
2906 static struct cfq_io_context
*
2907 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2909 struct io_context
*ioc
= NULL
;
2910 struct cfq_io_context
*cic
;
2912 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2914 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
2918 cic
= cfq_cic_lookup(cfqd
, ioc
);
2922 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
2926 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
2930 smp_read_barrier_depends();
2931 if (unlikely(ioc
->ioprio_changed
))
2932 cfq_ioc_set_ioprio(ioc
);
2934 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2935 if (unlikely(ioc
->cgroup_changed
))
2936 cfq_ioc_set_cgroup(ioc
);
2942 put_io_context(ioc
);
2947 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
2949 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
2950 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
2952 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
2953 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
2954 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
2958 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2962 sector_t n_sec
= blk_rq_sectors(rq
);
2963 if (cfqq
->last_request_pos
) {
2964 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
2965 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
2967 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
2970 cfqq
->seek_history
<<= 1;
2971 if (blk_queue_nonrot(cfqd
->queue
))
2972 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
2974 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
2978 * Disable idle window if the process thinks too long or seeks so much that
2982 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2983 struct cfq_io_context
*cic
)
2985 int old_idle
, enable_idle
;
2988 * Don't idle for async or idle io prio class
2990 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
2993 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
2995 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
2996 cfq_mark_cfqq_deep(cfqq
);
2998 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
2999 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3001 else if (sample_valid(cic
->ttime_samples
)) {
3002 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
3008 if (old_idle
!= enable_idle
) {
3009 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3011 cfq_mark_cfqq_idle_window(cfqq
);
3013 cfq_clear_cfqq_idle_window(cfqq
);
3018 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3019 * no or if we aren't sure, a 1 will cause a preempt.
3022 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3025 struct cfq_queue
*cfqq
;
3027 cfqq
= cfqd
->active_queue
;
3031 if (cfq_class_idle(new_cfqq
))
3034 if (cfq_class_idle(cfqq
))
3038 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3040 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3044 * if the new request is sync, but the currently running queue is
3045 * not, let the sync request have priority.
3047 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3050 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3053 if (cfq_slice_used(cfqq
))
3056 /* Allow preemption only if we are idling on sync-noidle tree */
3057 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3058 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3059 new_cfqq
->service_tree
->count
== 2 &&
3060 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3064 * So both queues are sync. Let the new request get disk time if
3065 * it's a metadata request and the current queue is doing regular IO.
3067 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
3071 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3073 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3076 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3080 * if this request is as-good as one we would expect from the
3081 * current cfqq, let it preempt
3083 if (cfq_rq_close(cfqd
, cfqq
, rq
, true))
3090 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3091 * let it have half of its nominal slice.
3093 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3095 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3096 cfq_slice_expired(cfqd
, 1);
3099 * Put the new queue at the front of the of the current list,
3100 * so we know that it will be selected next.
3102 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3104 cfq_service_tree_add(cfqd
, cfqq
, 1);
3106 cfqq
->slice_end
= 0;
3107 cfq_mark_cfqq_slice_new(cfqq
);
3111 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3112 * something we should do about it
3115 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3118 struct cfq_io_context
*cic
= RQ_CIC(rq
);
3122 cfqq
->meta_pending
++;
3124 cfq_update_io_thinktime(cfqd
, cic
);
3125 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3126 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3128 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3130 if (cfqq
== cfqd
->active_queue
) {
3132 * Remember that we saw a request from this process, but
3133 * don't start queuing just yet. Otherwise we risk seeing lots
3134 * of tiny requests, because we disrupt the normal plugging
3135 * and merging. If the request is already larger than a single
3136 * page, let it rip immediately. For that case we assume that
3137 * merging is already done. Ditto for a busy system that
3138 * has other work pending, don't risk delaying until the
3139 * idle timer unplug to continue working.
3141 if (cfq_cfqq_wait_request(cfqq
)) {
3142 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3143 cfqd
->busy_queues
> 1) {
3144 del_timer(&cfqd
->idle_slice_timer
);
3145 cfq_clear_cfqq_wait_request(cfqq
);
3146 __blk_run_queue(cfqd
->queue
);
3148 cfq_mark_cfqq_must_dispatch(cfqq
);
3150 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3152 * not the active queue - expire current slice if it is
3153 * idle and has expired it's mean thinktime or this new queue
3154 * has some old slice time left and is of higher priority or
3155 * this new queue is RT and the current one is BE
3157 cfq_preempt_queue(cfqd
, cfqq
);
3158 __blk_run_queue(cfqd
->queue
);
3162 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3164 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3165 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3167 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3168 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
3170 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3171 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3174 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3178 * Update hw_tag based on peak queue depth over 50 samples under
3181 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3183 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3185 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
3186 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
3188 if (cfqd
->hw_tag
== 1)
3191 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3192 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
3196 * If active queue hasn't enough requests and can idle, cfq might not
3197 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3200 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3201 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3202 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
3205 if (cfqd
->hw_tag_samples
++ < 50)
3208 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3214 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3216 struct cfq_io_context
*cic
= cfqd
->active_cic
;
3218 /* If there are other queues in the group, don't wait */
3219 if (cfqq
->cfqg
->nr_cfqq
> 1)
3222 if (cfq_slice_used(cfqq
))
3225 /* if slice left is less than think time, wait busy */
3226 if (cic
&& sample_valid(cic
->ttime_samples
)
3227 && (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
3231 * If think times is less than a jiffy than ttime_mean=0 and above
3232 * will not be true. It might happen that slice has not expired yet
3233 * but will expire soon (4-5 ns) during select_queue(). To cover the
3234 * case where think time is less than a jiffy, mark the queue wait
3235 * busy if only 1 jiffy is left in the slice.
3237 if (cfqq
->slice_end
- jiffies
== 1)
3243 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3245 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3246 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3247 const int sync
= rq_is_sync(rq
);
3251 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d", !!rq_noidle(rq
));
3253 cfq_update_hw_tag(cfqd
);
3255 WARN_ON(!cfqd
->rq_in_driver
);
3256 WARN_ON(!cfqq
->dispatched
);
3257 cfqd
->rq_in_driver
--;
3260 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
3263 RQ_CIC(rq
)->last_end_request
= now
;
3264 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3265 cfqd
->last_delayed_sync
= now
;
3269 * If this is the active queue, check if it needs to be expired,
3270 * or if we want to idle in case it has no pending requests.
3272 if (cfqd
->active_queue
== cfqq
) {
3273 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3275 if (cfq_cfqq_slice_new(cfqq
)) {
3276 cfq_set_prio_slice(cfqd
, cfqq
);
3277 cfq_clear_cfqq_slice_new(cfqq
);
3281 * Should we wait for next request to come in before we expire
3284 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3285 cfqq
->slice_end
= jiffies
+ cfqd
->cfq_slice_idle
;
3286 cfq_mark_cfqq_wait_busy(cfqq
);
3290 * Idling is not enabled on:
3292 * - idle-priority queues
3294 * - queues with still some requests queued
3295 * - when there is a close cooperator
3297 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3298 cfq_slice_expired(cfqd
, 1);
3299 else if (sync
&& cfqq_empty
&&
3300 !cfq_close_cooperator(cfqd
, cfqq
)) {
3301 cfqd
->noidle_tree_requires_idle
|= !rq_noidle(rq
);
3303 * Idling is enabled for SYNC_WORKLOAD.
3304 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3305 * only if we processed at least one !rq_noidle request
3307 if (cfqd
->serving_type
== SYNC_WORKLOAD
3308 || cfqd
->noidle_tree_requires_idle
3309 || cfqq
->cfqg
->nr_cfqq
== 1)
3310 cfq_arm_slice_timer(cfqd
);
3314 if (!cfqd
->rq_in_driver
)
3315 cfq_schedule_dispatch(cfqd
);
3319 * we temporarily boost lower priority queues if they are holding fs exclusive
3320 * resources. they are boosted to normal prio (CLASS_BE/4)
3322 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
3324 if (has_fs_excl()) {
3326 * boost idle prio on transactions that would lock out other
3327 * users of the filesystem
3329 if (cfq_class_idle(cfqq
))
3330 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3331 if (cfqq
->ioprio
> IOPRIO_NORM
)
3332 cfqq
->ioprio
= IOPRIO_NORM
;
3335 * unboost the queue (if needed)
3337 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
3338 cfqq
->ioprio
= cfqq
->org_ioprio
;
3342 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3344 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3345 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3346 return ELV_MQUEUE_MUST
;
3349 return ELV_MQUEUE_MAY
;
3352 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3354 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3355 struct task_struct
*tsk
= current
;
3356 struct cfq_io_context
*cic
;
3357 struct cfq_queue
*cfqq
;
3360 * don't force setup of a queue from here, as a call to may_queue
3361 * does not necessarily imply that a request actually will be queued.
3362 * so just lookup a possibly existing queue, or return 'may queue'
3365 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3367 return ELV_MQUEUE_MAY
;
3369 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3371 cfq_init_prio_data(cfqq
, cic
->ioc
);
3372 cfq_prio_boost(cfqq
);
3374 return __cfq_may_queue(cfqq
);
3377 return ELV_MQUEUE_MAY
;
3381 * queue lock held here
3383 static void cfq_put_request(struct request
*rq
)
3385 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3388 const int rw
= rq_data_dir(rq
);
3390 BUG_ON(!cfqq
->allocated
[rw
]);
3391 cfqq
->allocated
[rw
]--;
3393 put_io_context(RQ_CIC(rq
)->ioc
);
3395 rq
->elevator_private
= NULL
;
3396 rq
->elevator_private2
= NULL
;
3398 cfq_put_queue(cfqq
);
3402 static struct cfq_queue
*
3403 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
3404 struct cfq_queue
*cfqq
)
3406 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3407 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3408 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3409 cfq_put_queue(cfqq
);
3410 return cic_to_cfqq(cic
, 1);
3414 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3415 * was the last process referring to said cfqq.
3417 static struct cfq_queue
*
3418 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
3420 if (cfqq_process_refs(cfqq
) == 1) {
3421 cfqq
->pid
= current
->pid
;
3422 cfq_clear_cfqq_coop(cfqq
);
3423 cfq_clear_cfqq_split_coop(cfqq
);
3427 cic_set_cfqq(cic
, NULL
, 1);
3428 cfq_put_queue(cfqq
);
3432 * Allocate cfq data structures associated with this request.
3435 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3437 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3438 struct cfq_io_context
*cic
;
3439 const int rw
= rq_data_dir(rq
);
3440 const bool is_sync
= rq_is_sync(rq
);
3441 struct cfq_queue
*cfqq
;
3442 unsigned long flags
;
3444 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3446 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
3448 spin_lock_irqsave(q
->queue_lock
, flags
);
3454 cfqq
= cic_to_cfqq(cic
, is_sync
);
3455 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3456 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
3457 cic_set_cfqq(cic
, cfqq
, is_sync
);
3460 * If the queue was seeky for too long, break it apart.
3462 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3463 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3464 cfqq
= split_cfqq(cic
, cfqq
);
3470 * Check to see if this queue is scheduled to merge with
3471 * another, closely cooperating queue. The merging of
3472 * queues happens here as it must be done in process context.
3473 * The reference on new_cfqq was taken in merge_cfqqs.
3476 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3479 cfqq
->allocated
[rw
]++;
3480 atomic_inc(&cfqq
->ref
);
3482 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3484 rq
->elevator_private
= cic
;
3485 rq
->elevator_private2
= cfqq
;
3490 put_io_context(cic
->ioc
);
3492 cfq_schedule_dispatch(cfqd
);
3493 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3494 cfq_log(cfqd
, "set_request fail");
3498 static void cfq_kick_queue(struct work_struct
*work
)
3500 struct cfq_data
*cfqd
=
3501 container_of(work
, struct cfq_data
, unplug_work
);
3502 struct request_queue
*q
= cfqd
->queue
;
3504 spin_lock_irq(q
->queue_lock
);
3505 __blk_run_queue(cfqd
->queue
);
3506 spin_unlock_irq(q
->queue_lock
);
3510 * Timer running if the active_queue is currently idling inside its time slice
3512 static void cfq_idle_slice_timer(unsigned long data
)
3514 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3515 struct cfq_queue
*cfqq
;
3516 unsigned long flags
;
3519 cfq_log(cfqd
, "idle timer fired");
3521 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3523 cfqq
= cfqd
->active_queue
;
3528 * We saw a request before the queue expired, let it through
3530 if (cfq_cfqq_must_dispatch(cfqq
))
3536 if (cfq_slice_used(cfqq
))
3540 * only expire and reinvoke request handler, if there are
3541 * other queues with pending requests
3543 if (!cfqd
->busy_queues
)
3547 * not expired and it has a request pending, let it dispatch
3549 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3553 * Queue depth flag is reset only when the idle didn't succeed
3555 cfq_clear_cfqq_deep(cfqq
);
3558 cfq_slice_expired(cfqd
, timed_out
);
3560 cfq_schedule_dispatch(cfqd
);
3562 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3565 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3567 del_timer_sync(&cfqd
->idle_slice_timer
);
3568 cancel_work_sync(&cfqd
->unplug_work
);
3571 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3575 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3576 if (cfqd
->async_cfqq
[0][i
])
3577 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3578 if (cfqd
->async_cfqq
[1][i
])
3579 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3582 if (cfqd
->async_idle_cfqq
)
3583 cfq_put_queue(cfqd
->async_idle_cfqq
);
3586 static void cfq_cfqd_free(struct rcu_head
*head
)
3588 kfree(container_of(head
, struct cfq_data
, rcu
));
3591 static void cfq_exit_queue(struct elevator_queue
*e
)
3593 struct cfq_data
*cfqd
= e
->elevator_data
;
3594 struct request_queue
*q
= cfqd
->queue
;
3596 cfq_shutdown_timer_wq(cfqd
);
3598 spin_lock_irq(q
->queue_lock
);
3600 if (cfqd
->active_queue
)
3601 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3603 while (!list_empty(&cfqd
->cic_list
)) {
3604 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
3605 struct cfq_io_context
,
3608 __cfq_exit_single_io_context(cfqd
, cic
);
3611 cfq_put_async_queues(cfqd
);
3612 cfq_release_cfq_groups(cfqd
);
3613 blkiocg_del_blkio_group(&cfqd
->root_group
.blkg
);
3615 spin_unlock_irq(q
->queue_lock
);
3617 cfq_shutdown_timer_wq(cfqd
);
3619 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3620 call_rcu(&cfqd
->rcu
, cfq_cfqd_free
);
3623 static void *cfq_init_queue(struct request_queue
*q
)
3625 struct cfq_data
*cfqd
;
3627 struct cfq_group
*cfqg
;
3628 struct cfq_rb_root
*st
;
3630 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3634 /* Init root service tree */
3635 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3637 /* Init root group */
3638 cfqg
= &cfqd
->root_group
;
3639 for_each_cfqg_st(cfqg
, i
, j
, st
)
3641 RB_CLEAR_NODE(&cfqg
->rb_node
);
3643 /* Give preference to root group over other groups */
3644 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
3646 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3648 * Take a reference to root group which we never drop. This is just
3649 * to make sure that cfq_put_cfqg() does not try to kfree root group
3651 atomic_set(&cfqg
->ref
, 1);
3652 blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
, (void *)cfqd
,
3656 * Not strictly needed (since RB_ROOT just clears the node and we
3657 * zeroed cfqd on alloc), but better be safe in case someone decides
3658 * to add magic to the rb code
3660 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
3661 cfqd
->prio_trees
[i
] = RB_ROOT
;
3664 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3665 * Grab a permanent reference to it, so that the normal code flow
3666 * will not attempt to free it.
3668 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
3669 atomic_inc(&cfqd
->oom_cfqq
.ref
);
3670 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
3672 INIT_LIST_HEAD(&cfqd
->cic_list
);
3676 init_timer(&cfqd
->idle_slice_timer
);
3677 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
3678 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
3680 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
3682 cfqd
->cfq_quantum
= cfq_quantum
;
3683 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
3684 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
3685 cfqd
->cfq_back_max
= cfq_back_max
;
3686 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
3687 cfqd
->cfq_slice
[0] = cfq_slice_async
;
3688 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
3689 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
3690 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
3691 cfqd
->cfq_latency
= 1;
3692 cfqd
->cfq_group_isolation
= 0;
3695 * we optimistically start assuming sync ops weren't delayed in last
3696 * second, in order to have larger depth for async operations.
3698 cfqd
->last_delayed_sync
= jiffies
- HZ
;
3699 INIT_RCU_HEAD(&cfqd
->rcu
);
3703 static void cfq_slab_kill(void)
3706 * Caller already ensured that pending RCU callbacks are completed,
3707 * so we should have no busy allocations at this point.
3710 kmem_cache_destroy(cfq_pool
);
3712 kmem_cache_destroy(cfq_ioc_pool
);
3715 static int __init
cfq_slab_setup(void)
3717 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
3721 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
3732 * sysfs parts below -->
3735 cfq_var_show(unsigned int var
, char *page
)
3737 return sprintf(page
, "%d\n", var
);
3741 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
3743 char *p
= (char *) page
;
3745 *var
= simple_strtoul(p
, &p
, 10);
3749 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3750 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3752 struct cfq_data *cfqd = e->elevator_data; \
3753 unsigned int __data = __VAR; \
3755 __data = jiffies_to_msecs(__data); \
3756 return cfq_var_show(__data, (page)); \
3758 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
3759 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
3760 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
3761 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
3762 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
3763 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
3764 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
3765 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
3766 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
3767 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
3768 SHOW_FUNCTION(cfq_group_isolation_show
, cfqd
->cfq_group_isolation
, 0);
3769 #undef SHOW_FUNCTION
3771 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3772 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3774 struct cfq_data *cfqd = e->elevator_data; \
3775 unsigned int __data; \
3776 int ret = cfq_var_store(&__data, (page), count); \
3777 if (__data < (MIN)) \
3779 else if (__data > (MAX)) \
3782 *(__PTR) = msecs_to_jiffies(__data); \
3784 *(__PTR) = __data; \
3787 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
3788 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
3790 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
3792 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
3793 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
3795 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
3796 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
3797 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
3798 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
3800 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
3801 STORE_FUNCTION(cfq_group_isolation_store
, &cfqd
->cfq_group_isolation
, 0, 1, 0);
3802 #undef STORE_FUNCTION
3804 #define CFQ_ATTR(name) \
3805 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3807 static struct elv_fs_entry cfq_attrs
[] = {
3809 CFQ_ATTR(fifo_expire_sync
),
3810 CFQ_ATTR(fifo_expire_async
),
3811 CFQ_ATTR(back_seek_max
),
3812 CFQ_ATTR(back_seek_penalty
),
3813 CFQ_ATTR(slice_sync
),
3814 CFQ_ATTR(slice_async
),
3815 CFQ_ATTR(slice_async_rq
),
3816 CFQ_ATTR(slice_idle
),
3817 CFQ_ATTR(low_latency
),
3818 CFQ_ATTR(group_isolation
),
3822 static struct elevator_type iosched_cfq
= {
3824 .elevator_merge_fn
= cfq_merge
,
3825 .elevator_merged_fn
= cfq_merged_request
,
3826 .elevator_merge_req_fn
= cfq_merged_requests
,
3827 .elevator_allow_merge_fn
= cfq_allow_merge
,
3828 .elevator_dispatch_fn
= cfq_dispatch_requests
,
3829 .elevator_add_req_fn
= cfq_insert_request
,
3830 .elevator_activate_req_fn
= cfq_activate_request
,
3831 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
3832 .elevator_queue_empty_fn
= cfq_queue_empty
,
3833 .elevator_completed_req_fn
= cfq_completed_request
,
3834 .elevator_former_req_fn
= elv_rb_former_request
,
3835 .elevator_latter_req_fn
= elv_rb_latter_request
,
3836 .elevator_set_req_fn
= cfq_set_request
,
3837 .elevator_put_req_fn
= cfq_put_request
,
3838 .elevator_may_queue_fn
= cfq_may_queue
,
3839 .elevator_init_fn
= cfq_init_queue
,
3840 .elevator_exit_fn
= cfq_exit_queue
,
3841 .trim
= cfq_free_io_context
,
3843 .elevator_attrs
= cfq_attrs
,
3844 .elevator_name
= "cfq",
3845 .elevator_owner
= THIS_MODULE
,
3848 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3849 static struct blkio_policy_type blkio_policy_cfq
= {
3851 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
3852 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
3856 static struct blkio_policy_type blkio_policy_cfq
;
3859 static int __init
cfq_init(void)
3862 * could be 0 on HZ < 1000 setups
3864 if (!cfq_slice_async
)
3865 cfq_slice_async
= 1;
3866 if (!cfq_slice_idle
)
3869 if (cfq_slab_setup())
3872 elv_register(&iosched_cfq
);
3873 blkio_policy_register(&blkio_policy_cfq
);
3878 static void __exit
cfq_exit(void)
3880 DECLARE_COMPLETION_ONSTACK(all_gone
);
3881 blkio_policy_unregister(&blkio_policy_cfq
);
3882 elv_unregister(&iosched_cfq
);
3883 ioc_gone
= &all_gone
;
3884 /* ioc_gone's update must be visible before reading ioc_count */
3888 * this also protects us from entering cfq_slab_kill() with
3889 * pending RCU callbacks
3891 if (elv_ioc_count_read(cfq_ioc_count
))
3892 wait_for_completion(&all_gone
);
3896 module_init(cfq_init
);
3897 module_exit(cfq_exit
);
3899 MODULE_AUTHOR("Jens Axboe");
3900 MODULE_LICENSE("GPL");
3901 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");