2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/nl80211.h>
40 #include <linux/platform_device.h>
41 #include <net/cfg80211.h>
47 #ifdef CONFIG_CFG80211_REG_DEBUG
48 #define REG_DBG_PRINT(format, args...) \
50 printk(KERN_DEBUG format , ## args); \
53 #define REG_DBG_PRINT(args...)
56 /* Receipt of information from last regulatory request */
57 static struct regulatory_request
*last_request
;
59 /* To trigger userspace events */
60 static struct platform_device
*reg_pdev
;
63 * Central wireless core regulatory domains, we only need two,
64 * the current one and a world regulatory domain in case we have no
65 * information to give us an alpha2
67 const struct ieee80211_regdomain
*cfg80211_regdomain
;
70 * We use this as a place for the rd structure built from the
71 * last parsed country IE to rest until CRDA gets back to us with
72 * what it thinks should apply for the same country
74 static const struct ieee80211_regdomain
*country_ie_regdomain
;
77 * Protects static reg.c components:
78 * - cfg80211_world_regdom
80 * - country_ie_regdomain
83 DEFINE_MUTEX(reg_mutex
);
84 #define assert_reg_lock() WARN_ON(!mutex_is_locked(®_mutex))
86 /* Used to queue up regulatory hints */
87 static LIST_HEAD(reg_requests_list
);
88 static spinlock_t reg_requests_lock
;
90 /* Used to queue up beacon hints for review */
91 static LIST_HEAD(reg_pending_beacons
);
92 static spinlock_t reg_pending_beacons_lock
;
94 /* Used to keep track of processed beacon hints */
95 static LIST_HEAD(reg_beacon_list
);
98 struct list_head list
;
99 struct ieee80211_channel chan
;
102 /* We keep a static world regulatory domain in case of the absence of CRDA */
103 static const struct ieee80211_regdomain world_regdom
= {
107 /* IEEE 802.11b/g, channels 1..11 */
108 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
109 /* IEEE 802.11b/g, channels 12..13. No HT40
110 * channel fits here. */
111 REG_RULE(2467-10, 2472+10, 20, 6, 20,
112 NL80211_RRF_PASSIVE_SCAN
|
113 NL80211_RRF_NO_IBSS
),
114 /* IEEE 802.11 channel 14 - Only JP enables
115 * this and for 802.11b only */
116 REG_RULE(2484-10, 2484+10, 20, 6, 20,
117 NL80211_RRF_PASSIVE_SCAN
|
118 NL80211_RRF_NO_IBSS
|
119 NL80211_RRF_NO_OFDM
),
120 /* IEEE 802.11a, channel 36..48 */
121 REG_RULE(5180-10, 5240+10, 40, 6, 20,
122 NL80211_RRF_PASSIVE_SCAN
|
123 NL80211_RRF_NO_IBSS
),
125 /* NB: 5260 MHz - 5700 MHz requies DFS */
127 /* IEEE 802.11a, channel 149..165 */
128 REG_RULE(5745-10, 5825+10, 40, 6, 20,
129 NL80211_RRF_PASSIVE_SCAN
|
130 NL80211_RRF_NO_IBSS
),
134 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
137 static char *ieee80211_regdom
= "00";
138 static char user_alpha2
[2];
140 module_param(ieee80211_regdom
, charp
, 0444);
141 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
143 static void reset_regdomains(void)
145 /* avoid freeing static information or freeing something twice */
146 if (cfg80211_regdomain
== cfg80211_world_regdom
)
147 cfg80211_regdomain
= NULL
;
148 if (cfg80211_world_regdom
== &world_regdom
)
149 cfg80211_world_regdom
= NULL
;
150 if (cfg80211_regdomain
== &world_regdom
)
151 cfg80211_regdomain
= NULL
;
153 kfree(cfg80211_regdomain
);
154 kfree(cfg80211_world_regdom
);
156 cfg80211_world_regdom
= &world_regdom
;
157 cfg80211_regdomain
= NULL
;
161 * Dynamic world regulatory domain requested by the wireless
162 * core upon initialization
164 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
166 BUG_ON(!last_request
);
170 cfg80211_world_regdom
= rd
;
171 cfg80211_regdomain
= rd
;
174 bool is_world_regdom(const char *alpha2
)
178 if (alpha2
[0] == '0' && alpha2
[1] == '0')
183 static bool is_alpha2_set(const char *alpha2
)
187 if (alpha2
[0] != 0 && alpha2
[1] != 0)
192 static bool is_alpha_upper(char letter
)
195 if (letter
>= 65 && letter
<= 90)
200 static bool is_unknown_alpha2(const char *alpha2
)
205 * Special case where regulatory domain was built by driver
206 * but a specific alpha2 cannot be determined
208 if (alpha2
[0] == '9' && alpha2
[1] == '9')
213 static bool is_intersected_alpha2(const char *alpha2
)
218 * Special case where regulatory domain is the
219 * result of an intersection between two regulatory domain
222 if (alpha2
[0] == '9' && alpha2
[1] == '8')
227 static bool is_an_alpha2(const char *alpha2
)
231 if (is_alpha_upper(alpha2
[0]) && is_alpha_upper(alpha2
[1]))
236 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
238 if (!alpha2_x
|| !alpha2_y
)
240 if (alpha2_x
[0] == alpha2_y
[0] &&
241 alpha2_x
[1] == alpha2_y
[1])
246 static bool regdom_changes(const char *alpha2
)
248 assert_cfg80211_lock();
250 if (!cfg80211_regdomain
)
252 if (alpha2_equal(cfg80211_regdomain
->alpha2
, alpha2
))
258 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
259 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
260 * has ever been issued.
262 static bool is_user_regdom_saved(void)
264 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
267 /* This would indicate a mistake on the design */
268 if (WARN((!is_world_regdom(user_alpha2
) &&
269 !is_an_alpha2(user_alpha2
)),
270 "Unexpected user alpha2: %c%c\n",
279 * country_ie_integrity_changes - tells us if the country IE has changed
280 * @checksum: checksum of country IE of fields we are interested in
282 * If the country IE has not changed you can ignore it safely. This is
283 * useful to determine if two devices are seeing two different country IEs
284 * even on the same alpha2. Note that this will return false if no IE has
285 * been set on the wireless core yet.
287 static bool country_ie_integrity_changes(u32 checksum
)
289 /* If no IE has been set then the checksum doesn't change */
290 if (unlikely(!last_request
->country_ie_checksum
))
292 if (unlikely(last_request
->country_ie_checksum
!= checksum
))
297 static int reg_copy_regd(const struct ieee80211_regdomain
**dst_regd
,
298 const struct ieee80211_regdomain
*src_regd
)
300 struct ieee80211_regdomain
*regd
;
301 int size_of_regd
= 0;
304 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
305 ((src_regd
->n_reg_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
307 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
311 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
313 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
314 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
315 sizeof(struct ieee80211_reg_rule
));
321 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
322 struct reg_regdb_search_request
{
324 struct list_head list
;
327 static LIST_HEAD(reg_regdb_search_list
);
328 static DEFINE_MUTEX(reg_regdb_search_mutex
);
330 static void reg_regdb_search(struct work_struct
*work
)
332 struct reg_regdb_search_request
*request
;
333 const struct ieee80211_regdomain
*curdom
, *regdom
;
336 mutex_lock(®_regdb_search_mutex
);
337 while (!list_empty(®_regdb_search_list
)) {
338 request
= list_first_entry(®_regdb_search_list
,
339 struct reg_regdb_search_request
,
341 list_del(&request
->list
);
343 for (i
=0; i
<reg_regdb_size
; i
++) {
344 curdom
= reg_regdb
[i
];
346 if (!memcmp(request
->alpha2
, curdom
->alpha2
, 2)) {
347 r
= reg_copy_regd(®dom
, curdom
);
350 mutex_lock(&cfg80211_mutex
);
352 mutex_unlock(&cfg80211_mutex
);
359 mutex_unlock(®_regdb_search_mutex
);
362 static DECLARE_WORK(reg_regdb_work
, reg_regdb_search
);
364 static void reg_regdb_query(const char *alpha2
)
366 struct reg_regdb_search_request
*request
;
371 request
= kzalloc(sizeof(struct reg_regdb_search_request
), GFP_KERNEL
);
375 memcpy(request
->alpha2
, alpha2
, 2);
377 mutex_lock(®_regdb_search_mutex
);
378 list_add_tail(&request
->list
, ®_regdb_search_list
);
379 mutex_unlock(®_regdb_search_mutex
);
381 schedule_work(®_regdb_work
);
384 static inline void reg_regdb_query(const char *alpha2
) {}
385 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
388 * This lets us keep regulatory code which is updated on a regulatory
389 * basis in userspace.
391 static int call_crda(const char *alpha2
)
393 char country_env
[9 + 2] = "COUNTRY=";
399 if (!is_world_regdom((char *) alpha2
))
400 printk(KERN_INFO
"cfg80211: Calling CRDA for country: %c%c\n",
401 alpha2
[0], alpha2
[1]);
403 printk(KERN_INFO
"cfg80211: Calling CRDA to update world "
404 "regulatory domain\n");
406 /* query internal regulatory database (if it exists) */
407 reg_regdb_query(alpha2
);
409 country_env
[8] = alpha2
[0];
410 country_env
[9] = alpha2
[1];
412 return kobject_uevent_env(®_pdev
->dev
.kobj
, KOBJ_CHANGE
, envp
);
415 /* Used by nl80211 before kmalloc'ing our regulatory domain */
416 bool reg_is_valid_request(const char *alpha2
)
418 assert_cfg80211_lock();
423 return alpha2_equal(last_request
->alpha2
, alpha2
);
426 /* Sanity check on a regulatory rule */
427 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
429 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
432 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
435 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
438 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
440 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
441 freq_range
->max_bandwidth_khz
> freq_diff
)
447 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
449 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
452 if (!rd
->n_reg_rules
)
455 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
458 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
459 reg_rule
= &rd
->reg_rules
[i
];
460 if (!is_valid_reg_rule(reg_rule
))
467 static bool reg_does_bw_fit(const struct ieee80211_freq_range
*freq_range
,
471 u32 start_freq_khz
, end_freq_khz
;
473 start_freq_khz
= center_freq_khz
- (bw_khz
/2);
474 end_freq_khz
= center_freq_khz
+ (bw_khz
/2);
476 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
477 end_freq_khz
<= freq_range
->end_freq_khz
)
484 * freq_in_rule_band - tells us if a frequency is in a frequency band
485 * @freq_range: frequency rule we want to query
486 * @freq_khz: frequency we are inquiring about
488 * This lets us know if a specific frequency rule is or is not relevant to
489 * a specific frequency's band. Bands are device specific and artificial
490 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
491 * safe for now to assume that a frequency rule should not be part of a
492 * frequency's band if the start freq or end freq are off by more than 2 GHz.
493 * This resolution can be lowered and should be considered as we add
494 * regulatory rule support for other "bands".
496 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
499 #define ONE_GHZ_IN_KHZ 1000000
500 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
502 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
505 #undef ONE_GHZ_IN_KHZ
509 * This is a work around for sanity checking ieee80211_channel_to_frequency()'s
510 * work. ieee80211_channel_to_frequency() can for example currently provide a
511 * 2 GHz channel when in fact a 5 GHz channel was desired. An example would be
512 * an AP providing channel 8 on a country IE triplet when it sent this on the
513 * 5 GHz band, that channel is designed to be channel 8 on 5 GHz, not a 2 GHz
516 * This can be removed once ieee80211_channel_to_frequency() takes in a band.
518 static bool chan_in_band(int chan
, enum ieee80211_band band
)
520 int center_freq
= ieee80211_channel_to_frequency(chan
);
523 case IEEE80211_BAND_2GHZ
:
524 if (center_freq
<= 2484)
527 case IEEE80211_BAND_5GHZ
:
528 if (center_freq
>= 5005)
537 * Some APs may send a country IE triplet for each channel they
538 * support and while this is completely overkill and silly we still
539 * need to support it. We avoid making a single rule for each channel
540 * though and to help us with this we use this helper to find the
541 * actual subband end channel. These type of country IE triplet
542 * scenerios are handled then, all yielding two regulaotry rules from
543 * parsing a country IE:
581 * Returns 0 if the IE has been found to be invalid in the middle
584 static int max_subband_chan(enum ieee80211_band band
,
586 int orig_end_channel
,
591 u8
*triplets_start
= *country_ie
;
592 u8 len_at_triplet
= *country_ie_len
;
593 int end_subband_chan
= orig_end_channel
;
596 * We'll deal with padding for the caller unless
597 * its not immediate and we don't process any channels
599 if (*country_ie_len
== 1) {
601 *country_ie_len
-= 1;
602 return orig_end_channel
;
605 /* Move to the next triplet and then start search */
607 *country_ie_len
-= 3;
609 if (!chan_in_band(orig_cur_chan
, band
))
612 while (*country_ie_len
>= 3) {
614 struct ieee80211_country_ie_triplet
*triplet
=
615 (struct ieee80211_country_ie_triplet
*) *country_ie
;
616 int cur_channel
= 0, next_expected_chan
;
618 /* means last triplet is completely unrelated to this one */
619 if (triplet
->ext
.reg_extension_id
>=
620 IEEE80211_COUNTRY_EXTENSION_ID
) {
622 *country_ie_len
+= 3;
626 if (triplet
->chans
.first_channel
== 0) {
628 *country_ie_len
-= 1;
629 if (*country_ie_len
!= 0)
634 if (triplet
->chans
.num_channels
== 0)
637 /* Monitonically increasing channel order */
638 if (triplet
->chans
.first_channel
<= end_subband_chan
)
641 if (!chan_in_band(triplet
->chans
.first_channel
, band
))
645 if (triplet
->chans
.first_channel
<= 14) {
646 end_channel
= triplet
->chans
.first_channel
+
647 triplet
->chans
.num_channels
- 1;
650 end_channel
= triplet
->chans
.first_channel
+
651 (4 * (triplet
->chans
.num_channels
- 1));
654 if (!chan_in_band(end_channel
, band
))
657 if (orig_max_power
!= triplet
->chans
.max_power
) {
659 *country_ie_len
+= 3;
663 cur_channel
= triplet
->chans
.first_channel
;
665 /* The key is finding the right next expected channel */
666 if (band
== IEEE80211_BAND_2GHZ
)
667 next_expected_chan
= end_subband_chan
+ 1;
669 next_expected_chan
= end_subband_chan
+ 4;
671 if (cur_channel
!= next_expected_chan
) {
673 *country_ie_len
+= 3;
677 end_subband_chan
= end_channel
;
679 /* Move to the next one */
681 *country_ie_len
-= 3;
684 * Padding needs to be dealt with if we processed
687 if (*country_ie_len
== 1) {
689 *country_ie_len
-= 1;
693 /* If seen, the IE is invalid */
694 if (*country_ie_len
== 2)
698 if (end_subband_chan
== orig_end_channel
) {
699 *country_ie
= triplets_start
;
700 *country_ie_len
= len_at_triplet
;
701 return orig_end_channel
;
704 return end_subband_chan
;
708 * Converts a country IE to a regulatory domain. A regulatory domain
709 * structure has a lot of information which the IE doesn't yet have,
710 * so for the other values we use upper max values as we will intersect
711 * with our userspace regulatory agent to get lower bounds.
713 static struct ieee80211_regdomain
*country_ie_2_rd(
714 enum ieee80211_band band
,
719 struct ieee80211_regdomain
*rd
= NULL
;
723 u32 num_rules
= 0, size_of_regd
= 0;
724 u8
*triplets_start
= NULL
;
725 u8 len_at_triplet
= 0;
726 /* the last channel we have registered in a subband (triplet) */
727 int last_sub_max_channel
= 0;
729 *checksum
= 0xDEADBEEF;
731 /* Country IE requirements */
732 BUG_ON(country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
||
733 country_ie_len
& 0x01);
735 alpha2
[0] = country_ie
[0];
736 alpha2
[1] = country_ie
[1];
739 * Third octet can be:
743 * anything else we assume is no restrictions
745 if (country_ie
[2] == 'I')
746 flags
= NL80211_RRF_NO_OUTDOOR
;
747 else if (country_ie
[2] == 'O')
748 flags
= NL80211_RRF_NO_INDOOR
;
753 triplets_start
= country_ie
;
754 len_at_triplet
= country_ie_len
;
756 *checksum
^= ((flags
^ alpha2
[0] ^ alpha2
[1]) << 8);
759 * We need to build a reg rule for each triplet, but first we must
760 * calculate the number of reg rules we will need. We will need one
761 * for each channel subband
763 while (country_ie_len
>= 3) {
765 struct ieee80211_country_ie_triplet
*triplet
=
766 (struct ieee80211_country_ie_triplet
*) country_ie
;
767 int cur_sub_max_channel
= 0, cur_channel
= 0;
769 if (triplet
->ext
.reg_extension_id
>=
770 IEEE80211_COUNTRY_EXTENSION_ID
) {
777 * APs can add padding to make length divisible
778 * by two, required by the spec.
780 if (triplet
->chans
.first_channel
== 0) {
783 /* This is expected to be at the very end only */
784 if (country_ie_len
!= 0)
789 if (triplet
->chans
.num_channels
== 0)
792 if (!chan_in_band(triplet
->chans
.first_channel
, band
))
796 if (band
== IEEE80211_BAND_2GHZ
)
797 end_channel
= triplet
->chans
.first_channel
+
798 triplet
->chans
.num_channels
- 1;
801 * 5 GHz -- For example in country IEs if the first
802 * channel given is 36 and the number of channels is 4
803 * then the individual channel numbers defined for the
804 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
805 * and not 36, 37, 38, 39.
807 * See: http://tinyurl.com/11d-clarification
809 end_channel
= triplet
->chans
.first_channel
+
810 (4 * (triplet
->chans
.num_channels
- 1));
812 cur_channel
= triplet
->chans
.first_channel
;
815 * Enhancement for APs that send a triplet for every channel
816 * or for whatever reason sends triplets with multiple channels
817 * separated when in fact they should be together.
819 end_channel
= max_subband_chan(band
,
822 triplet
->chans
.max_power
,
828 if (!chan_in_band(end_channel
, band
))
831 cur_sub_max_channel
= end_channel
;
833 /* Basic sanity check */
834 if (cur_sub_max_channel
< cur_channel
)
838 * Do not allow overlapping channels. Also channels
839 * passed in each subband must be monotonically
842 if (last_sub_max_channel
) {
843 if (cur_channel
<= last_sub_max_channel
)
845 if (cur_sub_max_channel
<= last_sub_max_channel
)
850 * When dot11RegulatoryClassesRequired is supported
851 * we can throw ext triplets as part of this soup,
852 * for now we don't care when those change as we
855 *checksum
^= ((cur_channel
^ cur_sub_max_channel
) << 8) |
856 ((cur_sub_max_channel
^ cur_sub_max_channel
) << 16) |
857 ((triplet
->chans
.max_power
^ cur_sub_max_channel
) << 24);
859 last_sub_max_channel
= cur_sub_max_channel
;
863 if (country_ie_len
>= 3) {
869 * Note: this is not a IEEE requirement but
870 * simply a memory requirement
872 if (num_rules
> NL80211_MAX_SUPP_REG_RULES
)
876 country_ie
= triplets_start
;
877 country_ie_len
= len_at_triplet
;
879 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
880 (num_rules
* sizeof(struct ieee80211_reg_rule
));
882 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
886 rd
->n_reg_rules
= num_rules
;
887 rd
->alpha2
[0] = alpha2
[0];
888 rd
->alpha2
[1] = alpha2
[1];
890 /* This time around we fill in the rd */
891 while (country_ie_len
>= 3) {
893 struct ieee80211_country_ie_triplet
*triplet
=
894 (struct ieee80211_country_ie_triplet
*) country_ie
;
895 struct ieee80211_reg_rule
*reg_rule
= NULL
;
896 struct ieee80211_freq_range
*freq_range
= NULL
;
897 struct ieee80211_power_rule
*power_rule
= NULL
;
900 * Must parse if dot11RegulatoryClassesRequired is true,
901 * we don't support this yet
903 if (triplet
->ext
.reg_extension_id
>=
904 IEEE80211_COUNTRY_EXTENSION_ID
) {
910 if (triplet
->chans
.first_channel
== 0) {
916 reg_rule
= &rd
->reg_rules
[i
];
917 freq_range
= ®_rule
->freq_range
;
918 power_rule
= ®_rule
->power_rule
;
920 reg_rule
->flags
= flags
;
923 if (band
== IEEE80211_BAND_2GHZ
)
924 end_channel
= triplet
->chans
.first_channel
+
925 triplet
->chans
.num_channels
-1;
927 end_channel
= triplet
->chans
.first_channel
+
928 (4 * (triplet
->chans
.num_channels
- 1));
930 end_channel
= max_subband_chan(band
,
931 triplet
->chans
.first_channel
,
933 triplet
->chans
.max_power
,
938 * The +10 is since the regulatory domain expects
939 * the actual band edge, not the center of freq for
940 * its start and end freqs, assuming 20 MHz bandwidth on
941 * the channels passed
943 freq_range
->start_freq_khz
=
944 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
945 triplet
->chans
.first_channel
) - 10);
946 freq_range
->end_freq_khz
=
947 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
951 * These are large arbitrary values we use to intersect later.
952 * Increment this if we ever support >= 40 MHz channels
955 freq_range
->max_bandwidth_khz
= MHZ_TO_KHZ(40);
956 power_rule
->max_antenna_gain
= DBI_TO_MBI(100);
957 power_rule
->max_eirp
= DBM_TO_MBM(triplet
->chans
.max_power
);
961 if (country_ie_len
>= 3) {
966 BUG_ON(i
> NL80211_MAX_SUPP_REG_RULES
);
974 * Helper for regdom_intersect(), this does the real
975 * mathematical intersection fun
977 static int reg_rules_intersect(
978 const struct ieee80211_reg_rule
*rule1
,
979 const struct ieee80211_reg_rule
*rule2
,
980 struct ieee80211_reg_rule
*intersected_rule
)
982 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
983 struct ieee80211_freq_range
*freq_range
;
984 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
985 struct ieee80211_power_rule
*power_rule
;
988 freq_range1
= &rule1
->freq_range
;
989 freq_range2
= &rule2
->freq_range
;
990 freq_range
= &intersected_rule
->freq_range
;
992 power_rule1
= &rule1
->power_rule
;
993 power_rule2
= &rule2
->power_rule
;
994 power_rule
= &intersected_rule
->power_rule
;
996 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
997 freq_range2
->start_freq_khz
);
998 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
999 freq_range2
->end_freq_khz
);
1000 freq_range
->max_bandwidth_khz
= min(freq_range1
->max_bandwidth_khz
,
1001 freq_range2
->max_bandwidth_khz
);
1003 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
1004 if (freq_range
->max_bandwidth_khz
> freq_diff
)
1005 freq_range
->max_bandwidth_khz
= freq_diff
;
1007 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
1008 power_rule2
->max_eirp
);
1009 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
1010 power_rule2
->max_antenna_gain
);
1012 intersected_rule
->flags
= (rule1
->flags
| rule2
->flags
);
1014 if (!is_valid_reg_rule(intersected_rule
))
1021 * regdom_intersect - do the intersection between two regulatory domains
1022 * @rd1: first regulatory domain
1023 * @rd2: second regulatory domain
1025 * Use this function to get the intersection between two regulatory domains.
1026 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1027 * as no one single alpha2 can represent this regulatory domain.
1029 * Returns a pointer to the regulatory domain structure which will hold the
1030 * resulting intersection of rules between rd1 and rd2. We will
1031 * kzalloc() this structure for you.
1033 static struct ieee80211_regdomain
*regdom_intersect(
1034 const struct ieee80211_regdomain
*rd1
,
1035 const struct ieee80211_regdomain
*rd2
)
1037 int r
, size_of_regd
;
1039 unsigned int num_rules
= 0, rule_idx
= 0;
1040 const struct ieee80211_reg_rule
*rule1
, *rule2
;
1041 struct ieee80211_reg_rule
*intersected_rule
;
1042 struct ieee80211_regdomain
*rd
;
1043 /* This is just a dummy holder to help us count */
1044 struct ieee80211_reg_rule irule
;
1046 /* Uses the stack temporarily for counter arithmetic */
1047 intersected_rule
= &irule
;
1049 memset(intersected_rule
, 0, sizeof(struct ieee80211_reg_rule
));
1055 * First we get a count of the rules we'll need, then we actually
1056 * build them. This is to so we can malloc() and free() a
1057 * regdomain once. The reason we use reg_rules_intersect() here
1058 * is it will return -EINVAL if the rule computed makes no sense.
1059 * All rules that do check out OK are valid.
1062 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
1063 rule1
= &rd1
->reg_rules
[x
];
1064 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
1065 rule2
= &rd2
->reg_rules
[y
];
1066 if (!reg_rules_intersect(rule1
, rule2
,
1069 memset(intersected_rule
, 0,
1070 sizeof(struct ieee80211_reg_rule
));
1077 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
1078 ((num_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
1080 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
1084 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
1085 rule1
= &rd1
->reg_rules
[x
];
1086 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
1087 rule2
= &rd2
->reg_rules
[y
];
1089 * This time around instead of using the stack lets
1090 * write to the target rule directly saving ourselves
1093 intersected_rule
= &rd
->reg_rules
[rule_idx
];
1094 r
= reg_rules_intersect(rule1
, rule2
,
1097 * No need to memset here the intersected rule here as
1098 * we're not using the stack anymore
1106 if (rule_idx
!= num_rules
) {
1111 rd
->n_reg_rules
= num_rules
;
1112 rd
->alpha2
[0] = '9';
1113 rd
->alpha2
[1] = '8';
1119 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1120 * want to just have the channel structure use these
1122 static u32
map_regdom_flags(u32 rd_flags
)
1124 u32 channel_flags
= 0;
1125 if (rd_flags
& NL80211_RRF_PASSIVE_SCAN
)
1126 channel_flags
|= IEEE80211_CHAN_PASSIVE_SCAN
;
1127 if (rd_flags
& NL80211_RRF_NO_IBSS
)
1128 channel_flags
|= IEEE80211_CHAN_NO_IBSS
;
1129 if (rd_flags
& NL80211_RRF_DFS
)
1130 channel_flags
|= IEEE80211_CHAN_RADAR
;
1131 return channel_flags
;
1134 static int freq_reg_info_regd(struct wiphy
*wiphy
,
1137 const struct ieee80211_reg_rule
**reg_rule
,
1138 const struct ieee80211_regdomain
*custom_regd
)
1141 bool band_rule_found
= false;
1142 const struct ieee80211_regdomain
*regd
;
1143 bool bw_fits
= false;
1145 if (!desired_bw_khz
)
1146 desired_bw_khz
= MHZ_TO_KHZ(20);
1148 regd
= custom_regd
? custom_regd
: cfg80211_regdomain
;
1151 * Follow the driver's regulatory domain, if present, unless a country
1152 * IE has been processed or a user wants to help complaince further
1154 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1155 last_request
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
1162 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
1163 const struct ieee80211_reg_rule
*rr
;
1164 const struct ieee80211_freq_range
*fr
= NULL
;
1165 const struct ieee80211_power_rule
*pr
= NULL
;
1167 rr
= ®d
->reg_rules
[i
];
1168 fr
= &rr
->freq_range
;
1169 pr
= &rr
->power_rule
;
1172 * We only need to know if one frequency rule was
1173 * was in center_freq's band, that's enough, so lets
1174 * not overwrite it once found
1176 if (!band_rule_found
)
1177 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
1179 bw_fits
= reg_does_bw_fit(fr
,
1183 if (band_rule_found
&& bw_fits
) {
1189 if (!band_rule_found
)
1194 EXPORT_SYMBOL(freq_reg_info
);
1196 int freq_reg_info(struct wiphy
*wiphy
,
1199 const struct ieee80211_reg_rule
**reg_rule
)
1201 assert_cfg80211_lock();
1202 return freq_reg_info_regd(wiphy
,
1210 * Note that right now we assume the desired channel bandwidth
1211 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1212 * per channel, the primary and the extension channel). To support
1213 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
1214 * new ieee80211_channel.target_bw and re run the regulatory check
1215 * on the wiphy with the target_bw specified. Then we can simply use
1216 * that below for the desired_bw_khz below.
1218 static void handle_channel(struct wiphy
*wiphy
, enum ieee80211_band band
,
1219 unsigned int chan_idx
)
1222 u32 flags
, bw_flags
= 0;
1223 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
1224 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1225 const struct ieee80211_power_rule
*power_rule
= NULL
;
1226 const struct ieee80211_freq_range
*freq_range
= NULL
;
1227 struct ieee80211_supported_band
*sband
;
1228 struct ieee80211_channel
*chan
;
1229 struct wiphy
*request_wiphy
= NULL
;
1231 assert_cfg80211_lock();
1233 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1235 sband
= wiphy
->bands
[band
];
1236 BUG_ON(chan_idx
>= sband
->n_channels
);
1237 chan
= &sband
->channels
[chan_idx
];
1239 flags
= chan
->orig_flags
;
1241 r
= freq_reg_info(wiphy
,
1242 MHZ_TO_KHZ(chan
->center_freq
),
1248 * This means no regulatory rule was found in the country IE
1249 * with a frequency range on the center_freq's band, since
1250 * IEEE-802.11 allows for a country IE to have a subset of the
1251 * regulatory information provided in a country we ignore
1252 * disabling the channel unless at least one reg rule was
1253 * found on the center_freq's band. For details see this
1256 * http://tinyurl.com/11d-clarification
1259 last_request
->initiator
==
1260 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1261 REG_DBG_PRINT("cfg80211: Leaving channel %d MHz "
1262 "intact on %s - no rule found in band on "
1264 chan
->center_freq
, wiphy_name(wiphy
));
1267 * In this case we know the country IE has at least one reg rule
1268 * for the band so we respect its band definitions
1270 if (last_request
->initiator
==
1271 NL80211_REGDOM_SET_BY_COUNTRY_IE
)
1272 REG_DBG_PRINT("cfg80211: Disabling "
1273 "channel %d MHz on %s due to "
1275 chan
->center_freq
, wiphy_name(wiphy
));
1276 flags
|= IEEE80211_CHAN_DISABLED
;
1277 chan
->flags
= flags
;
1282 power_rule
= ®_rule
->power_rule
;
1283 freq_range
= ®_rule
->freq_range
;
1285 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
1286 bw_flags
= IEEE80211_CHAN_NO_HT40
;
1288 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1289 request_wiphy
&& request_wiphy
== wiphy
&&
1290 request_wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
) {
1292 * This gaurantees the driver's requested regulatory domain
1293 * will always be used as a base for further regulatory
1296 chan
->flags
= chan
->orig_flags
=
1297 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1298 chan
->max_antenna_gain
= chan
->orig_mag
=
1299 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1300 chan
->max_power
= chan
->orig_mpwr
=
1301 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1305 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
1306 chan
->max_antenna_gain
= min(chan
->orig_mag
,
1307 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
));
1308 if (chan
->orig_mpwr
)
1309 chan
->max_power
= min(chan
->orig_mpwr
,
1310 (int) MBM_TO_DBM(power_rule
->max_eirp
));
1312 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1315 static void handle_band(struct wiphy
*wiphy
, enum ieee80211_band band
)
1318 struct ieee80211_supported_band
*sband
;
1320 BUG_ON(!wiphy
->bands
[band
]);
1321 sband
= wiphy
->bands
[band
];
1323 for (i
= 0; i
< sband
->n_channels
; i
++)
1324 handle_channel(wiphy
, band
, i
);
1327 static bool ignore_reg_update(struct wiphy
*wiphy
,
1328 enum nl80211_reg_initiator initiator
)
1332 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1333 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
)
1336 * wiphy->regd will be set once the device has its own
1337 * desired regulatory domain set
1339 if (wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
&& !wiphy
->regd
&&
1340 !is_world_regdom(last_request
->alpha2
))
1345 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
1347 struct cfg80211_registered_device
*rdev
;
1349 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
1350 wiphy_update_regulatory(&rdev
->wiphy
, initiator
);
1353 static void handle_reg_beacon(struct wiphy
*wiphy
,
1354 unsigned int chan_idx
,
1355 struct reg_beacon
*reg_beacon
)
1357 struct ieee80211_supported_band
*sband
;
1358 struct ieee80211_channel
*chan
;
1359 bool channel_changed
= false;
1360 struct ieee80211_channel chan_before
;
1362 assert_cfg80211_lock();
1364 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1365 chan
= &sband
->channels
[chan_idx
];
1367 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
1370 if (chan
->beacon_found
)
1373 chan
->beacon_found
= true;
1375 if (wiphy
->flags
& WIPHY_FLAG_DISABLE_BEACON_HINTS
)
1378 chan_before
.center_freq
= chan
->center_freq
;
1379 chan_before
.flags
= chan
->flags
;
1381 if (chan
->flags
& IEEE80211_CHAN_PASSIVE_SCAN
) {
1382 chan
->flags
&= ~IEEE80211_CHAN_PASSIVE_SCAN
;
1383 channel_changed
= true;
1386 if (chan
->flags
& IEEE80211_CHAN_NO_IBSS
) {
1387 chan
->flags
&= ~IEEE80211_CHAN_NO_IBSS
;
1388 channel_changed
= true;
1391 if (channel_changed
)
1392 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
1396 * Called when a scan on a wiphy finds a beacon on
1399 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
1400 struct reg_beacon
*reg_beacon
)
1403 struct ieee80211_supported_band
*sband
;
1405 assert_cfg80211_lock();
1407 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1410 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1412 for (i
= 0; i
< sband
->n_channels
; i
++)
1413 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1417 * Called upon reg changes or a new wiphy is added
1419 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
1422 struct ieee80211_supported_band
*sband
;
1423 struct reg_beacon
*reg_beacon
;
1425 assert_cfg80211_lock();
1427 if (list_empty(®_beacon_list
))
1430 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
1431 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1433 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1434 for (i
= 0; i
< sband
->n_channels
; i
++)
1435 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1439 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
1441 if (is_world_regdom(cfg80211_regdomain
->alpha2
) ||
1442 (wiphy
->regd
&& is_world_regdom(wiphy
->regd
->alpha2
)))
1445 last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1446 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
)
1451 /* Reap the advantages of previously found beacons */
1452 static void reg_process_beacons(struct wiphy
*wiphy
)
1455 * Means we are just firing up cfg80211, so no beacons would
1456 * have been processed yet.
1460 if (!reg_is_world_roaming(wiphy
))
1462 wiphy_update_beacon_reg(wiphy
);
1465 static bool is_ht40_not_allowed(struct ieee80211_channel
*chan
)
1469 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
1471 /* This would happen when regulatory rules disallow HT40 completely */
1472 if (IEEE80211_CHAN_NO_HT40
== (chan
->flags
& (IEEE80211_CHAN_NO_HT40
)))
1477 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
1478 enum ieee80211_band band
,
1479 unsigned int chan_idx
)
1481 struct ieee80211_supported_band
*sband
;
1482 struct ieee80211_channel
*channel
;
1483 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
1486 assert_cfg80211_lock();
1488 sband
= wiphy
->bands
[band
];
1489 BUG_ON(chan_idx
>= sband
->n_channels
);
1490 channel
= &sband
->channels
[chan_idx
];
1492 if (is_ht40_not_allowed(channel
)) {
1493 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
1498 * We need to ensure the extension channels exist to
1499 * be able to use HT40- or HT40+, this finds them (or not)
1501 for (i
= 0; i
< sband
->n_channels
; i
++) {
1502 struct ieee80211_channel
*c
= &sband
->channels
[i
];
1503 if (c
->center_freq
== (channel
->center_freq
- 20))
1505 if (c
->center_freq
== (channel
->center_freq
+ 20))
1510 * Please note that this assumes target bandwidth is 20 MHz,
1511 * if that ever changes we also need to change the below logic
1512 * to include that as well.
1514 if (is_ht40_not_allowed(channel_before
))
1515 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1517 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
1519 if (is_ht40_not_allowed(channel_after
))
1520 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1522 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
1525 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
1526 enum ieee80211_band band
)
1529 struct ieee80211_supported_band
*sband
;
1531 BUG_ON(!wiphy
->bands
[band
]);
1532 sband
= wiphy
->bands
[band
];
1534 for (i
= 0; i
< sband
->n_channels
; i
++)
1535 reg_process_ht_flags_channel(wiphy
, band
, i
);
1538 static void reg_process_ht_flags(struct wiphy
*wiphy
)
1540 enum ieee80211_band band
;
1545 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1546 if (wiphy
->bands
[band
])
1547 reg_process_ht_flags_band(wiphy
, band
);
1552 void wiphy_update_regulatory(struct wiphy
*wiphy
,
1553 enum nl80211_reg_initiator initiator
)
1555 enum ieee80211_band band
;
1557 if (ignore_reg_update(wiphy
, initiator
))
1559 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1560 if (wiphy
->bands
[band
])
1561 handle_band(wiphy
, band
);
1564 reg_process_beacons(wiphy
);
1565 reg_process_ht_flags(wiphy
);
1566 if (wiphy
->reg_notifier
)
1567 wiphy
->reg_notifier(wiphy
, last_request
);
1570 static void handle_channel_custom(struct wiphy
*wiphy
,
1571 enum ieee80211_band band
,
1572 unsigned int chan_idx
,
1573 const struct ieee80211_regdomain
*regd
)
1576 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
1578 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1579 const struct ieee80211_power_rule
*power_rule
= NULL
;
1580 const struct ieee80211_freq_range
*freq_range
= NULL
;
1581 struct ieee80211_supported_band
*sband
;
1582 struct ieee80211_channel
*chan
;
1586 sband
= wiphy
->bands
[band
];
1587 BUG_ON(chan_idx
>= sband
->n_channels
);
1588 chan
= &sband
->channels
[chan_idx
];
1590 r
= freq_reg_info_regd(wiphy
,
1591 MHZ_TO_KHZ(chan
->center_freq
),
1597 chan
->flags
= IEEE80211_CHAN_DISABLED
;
1601 power_rule
= ®_rule
->power_rule
;
1602 freq_range
= ®_rule
->freq_range
;
1604 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
1605 bw_flags
= IEEE80211_CHAN_NO_HT40
;
1607 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1608 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1609 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1612 static void handle_band_custom(struct wiphy
*wiphy
, enum ieee80211_band band
,
1613 const struct ieee80211_regdomain
*regd
)
1616 struct ieee80211_supported_band
*sband
;
1618 BUG_ON(!wiphy
->bands
[band
]);
1619 sband
= wiphy
->bands
[band
];
1621 for (i
= 0; i
< sband
->n_channels
; i
++)
1622 handle_channel_custom(wiphy
, band
, i
, regd
);
1625 /* Used by drivers prior to wiphy registration */
1626 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
1627 const struct ieee80211_regdomain
*regd
)
1629 enum ieee80211_band band
;
1630 unsigned int bands_set
= 0;
1632 mutex_lock(®_mutex
);
1633 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1634 if (!wiphy
->bands
[band
])
1636 handle_band_custom(wiphy
, band
, regd
);
1639 mutex_unlock(®_mutex
);
1642 * no point in calling this if it won't have any effect
1643 * on your device's supportd bands.
1645 WARN_ON(!bands_set
);
1647 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
1650 * Return value which can be used by ignore_request() to indicate
1651 * it has been determined we should intersect two regulatory domains
1653 #define REG_INTERSECT 1
1655 /* This has the logic which determines when a new request
1656 * should be ignored. */
1657 static int ignore_request(struct wiphy
*wiphy
,
1658 struct regulatory_request
*pending_request
)
1660 struct wiphy
*last_wiphy
= NULL
;
1662 assert_cfg80211_lock();
1664 /* All initial requests are respected */
1668 switch (pending_request
->initiator
) {
1669 case NL80211_REGDOM_SET_BY_CORE
:
1671 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1673 last_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1675 if (unlikely(!is_an_alpha2(pending_request
->alpha2
)))
1677 if (last_request
->initiator
==
1678 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1679 if (last_wiphy
!= wiphy
) {
1681 * Two cards with two APs claiming different
1682 * Country IE alpha2s. We could
1683 * intersect them, but that seems unlikely
1684 * to be correct. Reject second one for now.
1686 if (regdom_changes(pending_request
->alpha2
))
1691 * Two consecutive Country IE hints on the same wiphy.
1692 * This should be picked up early by the driver/stack
1694 if (WARN_ON(regdom_changes(pending_request
->alpha2
)))
1698 return REG_INTERSECT
;
1699 case NL80211_REGDOM_SET_BY_DRIVER
:
1700 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
1701 if (regdom_changes(pending_request
->alpha2
))
1707 * This would happen if you unplug and plug your card
1708 * back in or if you add a new device for which the previously
1709 * loaded card also agrees on the regulatory domain.
1711 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1712 !regdom_changes(pending_request
->alpha2
))
1715 return REG_INTERSECT
;
1716 case NL80211_REGDOM_SET_BY_USER
:
1717 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
1718 return REG_INTERSECT
;
1720 * If the user knows better the user should set the regdom
1721 * to their country before the IE is picked up
1723 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
1724 last_request
->intersect
)
1727 * Process user requests only after previous user/driver/core
1728 * requests have been processed
1730 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
1731 last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
1732 last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1733 if (regdom_changes(last_request
->alpha2
))
1737 if (!regdom_changes(pending_request
->alpha2
))
1747 * __regulatory_hint - hint to the wireless core a regulatory domain
1748 * @wiphy: if the hint comes from country information from an AP, this
1749 * is required to be set to the wiphy that received the information
1750 * @pending_request: the regulatory request currently being processed
1752 * The Wireless subsystem can use this function to hint to the wireless core
1753 * what it believes should be the current regulatory domain.
1755 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1756 * already been set or other standard error codes.
1758 * Caller must hold &cfg80211_mutex and ®_mutex
1760 static int __regulatory_hint(struct wiphy
*wiphy
,
1761 struct regulatory_request
*pending_request
)
1763 bool intersect
= false;
1766 assert_cfg80211_lock();
1768 r
= ignore_request(wiphy
, pending_request
);
1770 if (r
== REG_INTERSECT
) {
1771 if (pending_request
->initiator
==
1772 NL80211_REGDOM_SET_BY_DRIVER
) {
1773 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1775 kfree(pending_request
);
1782 * If the regulatory domain being requested by the
1783 * driver has already been set just copy it to the
1786 if (r
== -EALREADY
&&
1787 pending_request
->initiator
==
1788 NL80211_REGDOM_SET_BY_DRIVER
) {
1789 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1791 kfree(pending_request
);
1797 kfree(pending_request
);
1802 kfree(last_request
);
1804 last_request
= pending_request
;
1805 last_request
->intersect
= intersect
;
1807 pending_request
= NULL
;
1809 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1810 user_alpha2
[0] = last_request
->alpha2
[0];
1811 user_alpha2
[1] = last_request
->alpha2
[1];
1814 /* When r == REG_INTERSECT we do need to call CRDA */
1817 * Since CRDA will not be called in this case as we already
1818 * have applied the requested regulatory domain before we just
1819 * inform userspace we have processed the request
1822 nl80211_send_reg_change_event(last_request
);
1826 return call_crda(last_request
->alpha2
);
1829 /* This processes *all* regulatory hints */
1830 static void reg_process_hint(struct regulatory_request
*reg_request
)
1833 struct wiphy
*wiphy
= NULL
;
1835 BUG_ON(!reg_request
->alpha2
);
1837 mutex_lock(&cfg80211_mutex
);
1838 mutex_lock(®_mutex
);
1840 if (wiphy_idx_valid(reg_request
->wiphy_idx
))
1841 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
1843 if (reg_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1849 r
= __regulatory_hint(wiphy
, reg_request
);
1850 /* This is required so that the orig_* parameters are saved */
1851 if (r
== -EALREADY
&& wiphy
&&
1852 wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
)
1853 wiphy_update_regulatory(wiphy
, reg_request
->initiator
);
1855 mutex_unlock(®_mutex
);
1856 mutex_unlock(&cfg80211_mutex
);
1859 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1860 static void reg_process_pending_hints(void)
1862 struct regulatory_request
*reg_request
;
1864 spin_lock(®_requests_lock
);
1865 while (!list_empty(®_requests_list
)) {
1866 reg_request
= list_first_entry(®_requests_list
,
1867 struct regulatory_request
,
1869 list_del_init(®_request
->list
);
1871 spin_unlock(®_requests_lock
);
1872 reg_process_hint(reg_request
);
1873 spin_lock(®_requests_lock
);
1875 spin_unlock(®_requests_lock
);
1878 /* Processes beacon hints -- this has nothing to do with country IEs */
1879 static void reg_process_pending_beacon_hints(void)
1881 struct cfg80211_registered_device
*rdev
;
1882 struct reg_beacon
*pending_beacon
, *tmp
;
1885 * No need to hold the reg_mutex here as we just touch wiphys
1886 * and do not read or access regulatory variables.
1888 mutex_lock(&cfg80211_mutex
);
1890 /* This goes through the _pending_ beacon list */
1891 spin_lock_bh(®_pending_beacons_lock
);
1893 if (list_empty(®_pending_beacons
)) {
1894 spin_unlock_bh(®_pending_beacons_lock
);
1898 list_for_each_entry_safe(pending_beacon
, tmp
,
1899 ®_pending_beacons
, list
) {
1901 list_del_init(&pending_beacon
->list
);
1903 /* Applies the beacon hint to current wiphys */
1904 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
1905 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
1907 /* Remembers the beacon hint for new wiphys or reg changes */
1908 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
1911 spin_unlock_bh(®_pending_beacons_lock
);
1913 mutex_unlock(&cfg80211_mutex
);
1916 static void reg_todo(struct work_struct
*work
)
1918 reg_process_pending_hints();
1919 reg_process_pending_beacon_hints();
1922 static DECLARE_WORK(reg_work
, reg_todo
);
1924 static void queue_regulatory_request(struct regulatory_request
*request
)
1926 spin_lock(®_requests_lock
);
1927 list_add_tail(&request
->list
, ®_requests_list
);
1928 spin_unlock(®_requests_lock
);
1930 schedule_work(®_work
);
1934 * Core regulatory hint -- happens during cfg80211_init()
1935 * and when we restore regulatory settings.
1937 static int regulatory_hint_core(const char *alpha2
)
1939 struct regulatory_request
*request
;
1941 kfree(last_request
);
1942 last_request
= NULL
;
1944 request
= kzalloc(sizeof(struct regulatory_request
),
1949 request
->alpha2
[0] = alpha2
[0];
1950 request
->alpha2
[1] = alpha2
[1];
1951 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
1954 * This ensures last_request is populated once modules
1955 * come swinging in and calling regulatory hints and
1956 * wiphy_apply_custom_regulatory().
1958 reg_process_hint(request
);
1964 int regulatory_hint_user(const char *alpha2
)
1966 struct regulatory_request
*request
;
1970 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1974 request
->wiphy_idx
= WIPHY_IDX_STALE
;
1975 request
->alpha2
[0] = alpha2
[0];
1976 request
->alpha2
[1] = alpha2
[1];
1977 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
1979 queue_regulatory_request(request
);
1985 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
1987 struct regulatory_request
*request
;
1992 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1996 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1998 /* Must have registered wiphy first */
1999 BUG_ON(!wiphy_idx_valid(request
->wiphy_idx
));
2001 request
->alpha2
[0] = alpha2
[0];
2002 request
->alpha2
[1] = alpha2
[1];
2003 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
2005 queue_regulatory_request(request
);
2009 EXPORT_SYMBOL(regulatory_hint
);
2011 /* Caller must hold reg_mutex */
2012 static bool reg_same_country_ie_hint(struct wiphy
*wiphy
,
2013 u32 country_ie_checksum
)
2015 struct wiphy
*request_wiphy
;
2019 if (unlikely(last_request
->initiator
!=
2020 NL80211_REGDOM_SET_BY_COUNTRY_IE
))
2023 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
2028 if (likely(request_wiphy
!= wiphy
))
2029 return !country_ie_integrity_changes(country_ie_checksum
);
2031 * We should not have let these through at this point, they
2032 * should have been picked up earlier by the first alpha2 check
2035 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum
)))
2041 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
2042 * therefore cannot iterate over the rdev list here.
2044 void regulatory_hint_11d(struct wiphy
*wiphy
,
2045 enum ieee80211_band band
,
2049 struct ieee80211_regdomain
*rd
= NULL
;
2052 enum environment_cap env
= ENVIRON_ANY
;
2053 struct regulatory_request
*request
;
2055 mutex_lock(®_mutex
);
2057 if (unlikely(!last_request
))
2060 /* IE len must be evenly divisible by 2 */
2061 if (country_ie_len
& 0x01)
2064 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
2068 * Pending country IE processing, this can happen after we
2069 * call CRDA and wait for a response if a beacon was received before
2070 * we were able to process the last regulatory_hint_11d() call
2072 if (country_ie_regdomain
)
2075 alpha2
[0] = country_ie
[0];
2076 alpha2
[1] = country_ie
[1];
2078 if (country_ie
[2] == 'I')
2079 env
= ENVIRON_INDOOR
;
2080 else if (country_ie
[2] == 'O')
2081 env
= ENVIRON_OUTDOOR
;
2084 * We will run this only upon a successful connection on cfg80211.
2085 * We leave conflict resolution to the workqueue, where can hold
2088 if (likely(last_request
->initiator
==
2089 NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
2090 wiphy_idx_valid(last_request
->wiphy_idx
)))
2093 rd
= country_ie_2_rd(band
, country_ie
, country_ie_len
, &checksum
);
2095 REG_DBG_PRINT("cfg80211: Ignoring bogus country IE\n");
2100 * This will not happen right now but we leave it here for the
2101 * the future when we want to add suspend/resume support and having
2102 * the user move to another country after doing so, or having the user
2103 * move to another AP. Right now we just trust the first AP.
2105 * If we hit this before we add this support we want to be informed of
2106 * it as it would indicate a mistake in the current design
2108 if (WARN_ON(reg_same_country_ie_hint(wiphy
, checksum
)))
2111 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2116 * We keep this around for when CRDA comes back with a response so
2117 * we can intersect with that
2119 country_ie_regdomain
= rd
;
2121 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
2122 request
->alpha2
[0] = rd
->alpha2
[0];
2123 request
->alpha2
[1] = rd
->alpha2
[1];
2124 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
2125 request
->country_ie_checksum
= checksum
;
2126 request
->country_ie_env
= env
;
2128 mutex_unlock(®_mutex
);
2130 queue_regulatory_request(request
);
2137 mutex_unlock(®_mutex
);
2140 static void restore_alpha2(char *alpha2
, bool reset_user
)
2142 /* indicates there is no alpha2 to consider for restoration */
2146 /* The user setting has precedence over the module parameter */
2147 if (is_user_regdom_saved()) {
2148 /* Unless we're asked to ignore it and reset it */
2150 REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
2151 "including user preference\n");
2152 user_alpha2
[0] = '9';
2153 user_alpha2
[1] = '7';
2156 * If we're ignoring user settings, we still need to
2157 * check the module parameter to ensure we put things
2158 * back as they were for a full restore.
2160 if (!is_world_regdom(ieee80211_regdom
)) {
2161 REG_DBG_PRINT("cfg80211: Keeping preference on "
2162 "module parameter ieee80211_regdom: %c%c\n",
2163 ieee80211_regdom
[0],
2164 ieee80211_regdom
[1]);
2165 alpha2
[0] = ieee80211_regdom
[0];
2166 alpha2
[1] = ieee80211_regdom
[1];
2169 REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
2170 "while preserving user preference for: %c%c\n",
2173 alpha2
[0] = user_alpha2
[0];
2174 alpha2
[1] = user_alpha2
[1];
2176 } else if (!is_world_regdom(ieee80211_regdom
)) {
2177 REG_DBG_PRINT("cfg80211: Keeping preference on "
2178 "module parameter ieee80211_regdom: %c%c\n",
2179 ieee80211_regdom
[0],
2180 ieee80211_regdom
[1]);
2181 alpha2
[0] = ieee80211_regdom
[0];
2182 alpha2
[1] = ieee80211_regdom
[1];
2184 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
2188 * Restoring regulatory settings involves ingoring any
2189 * possibly stale country IE information and user regulatory
2190 * settings if so desired, this includes any beacon hints
2191 * learned as we could have traveled outside to another country
2192 * after disconnection. To restore regulatory settings we do
2193 * exactly what we did at bootup:
2195 * - send a core regulatory hint
2196 * - send a user regulatory hint if applicable
2198 * Device drivers that send a regulatory hint for a specific country
2199 * keep their own regulatory domain on wiphy->regd so that does does
2200 * not need to be remembered.
2202 static void restore_regulatory_settings(bool reset_user
)
2205 struct reg_beacon
*reg_beacon
, *btmp
;
2207 mutex_lock(&cfg80211_mutex
);
2208 mutex_lock(®_mutex
);
2211 restore_alpha2(alpha2
, reset_user
);
2213 /* Clear beacon hints */
2214 spin_lock_bh(®_pending_beacons_lock
);
2215 if (!list_empty(®_pending_beacons
)) {
2216 list_for_each_entry_safe(reg_beacon
, btmp
,
2217 ®_pending_beacons
, list
) {
2218 list_del(®_beacon
->list
);
2222 spin_unlock_bh(®_pending_beacons_lock
);
2224 if (!list_empty(®_beacon_list
)) {
2225 list_for_each_entry_safe(reg_beacon
, btmp
,
2226 ®_beacon_list
, list
) {
2227 list_del(®_beacon
->list
);
2232 /* First restore to the basic regulatory settings */
2233 cfg80211_regdomain
= cfg80211_world_regdom
;
2235 mutex_unlock(®_mutex
);
2236 mutex_unlock(&cfg80211_mutex
);
2238 regulatory_hint_core(cfg80211_regdomain
->alpha2
);
2241 * This restores the ieee80211_regdom module parameter
2242 * preference or the last user requested regulatory
2243 * settings, user regulatory settings takes precedence.
2245 if (is_an_alpha2(alpha2
))
2246 regulatory_hint_user(user_alpha2
);
2250 void regulatory_hint_disconnect(void)
2252 REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
2253 "restore regulatory settings\n");
2254 restore_regulatory_settings(false);
2257 static bool freq_is_chan_12_13_14(u16 freq
)
2259 if (freq
== ieee80211_channel_to_frequency(12) ||
2260 freq
== ieee80211_channel_to_frequency(13) ||
2261 freq
== ieee80211_channel_to_frequency(14))
2266 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
2267 struct ieee80211_channel
*beacon_chan
,
2270 struct reg_beacon
*reg_beacon
;
2272 if (likely((beacon_chan
->beacon_found
||
2273 (beacon_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
2274 (beacon_chan
->band
== IEEE80211_BAND_2GHZ
&&
2275 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))))
2278 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
2282 REG_DBG_PRINT("cfg80211: Found new beacon on "
2283 "frequency: %d MHz (Ch %d) on %s\n",
2284 beacon_chan
->center_freq
,
2285 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
2288 memcpy(®_beacon
->chan
, beacon_chan
,
2289 sizeof(struct ieee80211_channel
));
2293 * Since we can be called from BH or and non-BH context
2294 * we must use spin_lock_bh()
2296 spin_lock_bh(®_pending_beacons_lock
);
2297 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
2298 spin_unlock_bh(®_pending_beacons_lock
);
2300 schedule_work(®_work
);
2305 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
2308 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
2309 const struct ieee80211_freq_range
*freq_range
= NULL
;
2310 const struct ieee80211_power_rule
*power_rule
= NULL
;
2312 printk(KERN_INFO
" (start_freq - end_freq @ bandwidth), "
2313 "(max_antenna_gain, max_eirp)\n");
2315 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
2316 reg_rule
= &rd
->reg_rules
[i
];
2317 freq_range
= ®_rule
->freq_range
;
2318 power_rule
= ®_rule
->power_rule
;
2321 * There may not be documentation for max antenna gain
2322 * in certain regions
2324 if (power_rule
->max_antenna_gain
)
2325 printk(KERN_INFO
" (%d KHz - %d KHz @ %d KHz), "
2326 "(%d mBi, %d mBm)\n",
2327 freq_range
->start_freq_khz
,
2328 freq_range
->end_freq_khz
,
2329 freq_range
->max_bandwidth_khz
,
2330 power_rule
->max_antenna_gain
,
2331 power_rule
->max_eirp
);
2333 printk(KERN_INFO
" (%d KHz - %d KHz @ %d KHz), "
2335 freq_range
->start_freq_khz
,
2336 freq_range
->end_freq_khz
,
2337 freq_range
->max_bandwidth_khz
,
2338 power_rule
->max_eirp
);
2342 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
2345 if (is_intersected_alpha2(rd
->alpha2
)) {
2347 if (last_request
->initiator
==
2348 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2349 struct cfg80211_registered_device
*rdev
;
2350 rdev
= cfg80211_rdev_by_wiphy_idx(
2351 last_request
->wiphy_idx
);
2353 printk(KERN_INFO
"cfg80211: Current regulatory "
2354 "domain updated by AP to: %c%c\n",
2355 rdev
->country_ie_alpha2
[0],
2356 rdev
->country_ie_alpha2
[1]);
2358 printk(KERN_INFO
"cfg80211: Current regulatory "
2359 "domain intersected: \n");
2361 printk(KERN_INFO
"cfg80211: Current regulatory "
2362 "domain intersected: \n");
2363 } else if (is_world_regdom(rd
->alpha2
))
2364 printk(KERN_INFO
"cfg80211: World regulatory "
2365 "domain updated:\n");
2367 if (is_unknown_alpha2(rd
->alpha2
))
2368 printk(KERN_INFO
"cfg80211: Regulatory domain "
2369 "changed to driver built-in settings "
2370 "(unknown country)\n");
2372 printk(KERN_INFO
"cfg80211: Regulatory domain "
2373 "changed to country: %c%c\n",
2374 rd
->alpha2
[0], rd
->alpha2
[1]);
2379 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
2381 printk(KERN_INFO
"cfg80211: Regulatory domain: %c%c\n",
2382 rd
->alpha2
[0], rd
->alpha2
[1]);
2386 #ifdef CONFIG_CFG80211_REG_DEBUG
2387 static void reg_country_ie_process_debug(
2388 const struct ieee80211_regdomain
*rd
,
2389 const struct ieee80211_regdomain
*country_ie_regdomain
,
2390 const struct ieee80211_regdomain
*intersected_rd
)
2392 printk(KERN_DEBUG
"cfg80211: Received country IE:\n");
2393 print_regdomain_info(country_ie_regdomain
);
2394 printk(KERN_DEBUG
"cfg80211: CRDA thinks this should applied:\n");
2395 print_regdomain_info(rd
);
2396 if (intersected_rd
) {
2397 printk(KERN_DEBUG
"cfg80211: We intersect both of these "
2399 print_regdomain_info(intersected_rd
);
2402 printk(KERN_DEBUG
"cfg80211: Intersection between both failed\n");
2405 static inline void reg_country_ie_process_debug(
2406 const struct ieee80211_regdomain
*rd
,
2407 const struct ieee80211_regdomain
*country_ie_regdomain
,
2408 const struct ieee80211_regdomain
*intersected_rd
)
2413 /* Takes ownership of rd only if it doesn't fail */
2414 static int __set_regdom(const struct ieee80211_regdomain
*rd
)
2416 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
2417 struct cfg80211_registered_device
*rdev
= NULL
;
2418 struct wiphy
*request_wiphy
;
2419 /* Some basic sanity checks first */
2421 if (is_world_regdom(rd
->alpha2
)) {
2422 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
2424 update_world_regdomain(rd
);
2428 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
2429 !is_unknown_alpha2(rd
->alpha2
))
2436 * Lets only bother proceeding on the same alpha2 if the current
2437 * rd is non static (it means CRDA was present and was used last)
2438 * and the pending request came in from a country IE
2440 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2442 * If someone else asked us to change the rd lets only bother
2443 * checking if the alpha2 changes if CRDA was already called
2445 if (!regdom_changes(rd
->alpha2
))
2450 * Now lets set the regulatory domain, update all driver channels
2451 * and finally inform them of what we have done, in case they want
2452 * to review or adjust their own settings based on their own
2453 * internal EEPROM data
2456 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
2459 if (!is_valid_rd(rd
)) {
2460 printk(KERN_ERR
"cfg80211: Invalid "
2461 "regulatory domain detected:\n");
2462 print_regdomain_info(rd
);
2466 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
2468 if (!last_request
->intersect
) {
2471 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_DRIVER
) {
2473 cfg80211_regdomain
= rd
;
2478 * For a driver hint, lets copy the regulatory domain the
2479 * driver wanted to the wiphy to deal with conflicts
2483 * Userspace could have sent two replies with only
2484 * one kernel request.
2486 if (request_wiphy
->regd
)
2489 r
= reg_copy_regd(&request_wiphy
->regd
, rd
);
2494 cfg80211_regdomain
= rd
;
2498 /* Intersection requires a bit more work */
2500 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2502 intersected_rd
= regdom_intersect(rd
, cfg80211_regdomain
);
2503 if (!intersected_rd
)
2507 * We can trash what CRDA provided now.
2508 * However if a driver requested this specific regulatory
2509 * domain we keep it for its private use
2511 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
)
2512 request_wiphy
->regd
= rd
;
2519 cfg80211_regdomain
= intersected_rd
;
2525 * Country IE requests are handled a bit differently, we intersect
2526 * the country IE rd with what CRDA believes that country should have
2530 * Userspace could have sent two replies with only
2531 * one kernel request. By the second reply we would have
2532 * already processed and consumed the country_ie_regdomain.
2534 if (!country_ie_regdomain
)
2536 BUG_ON(rd
== country_ie_regdomain
);
2539 * Intersect what CRDA returned and our what we
2540 * had built from the Country IE received
2543 intersected_rd
= regdom_intersect(rd
, country_ie_regdomain
);
2545 reg_country_ie_process_debug(rd
,
2546 country_ie_regdomain
,
2549 kfree(country_ie_regdomain
);
2550 country_ie_regdomain
= NULL
;
2552 if (!intersected_rd
)
2555 rdev
= wiphy_to_dev(request_wiphy
);
2557 rdev
->country_ie_alpha2
[0] = rd
->alpha2
[0];
2558 rdev
->country_ie_alpha2
[1] = rd
->alpha2
[1];
2559 rdev
->env
= last_request
->country_ie_env
;
2561 BUG_ON(intersected_rd
== rd
);
2567 cfg80211_regdomain
= intersected_rd
;
2574 * Use this call to set the current regulatory domain. Conflicts with
2575 * multiple drivers can be ironed out later. Caller must've already
2576 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2578 int set_regdom(const struct ieee80211_regdomain
*rd
)
2582 assert_cfg80211_lock();
2584 mutex_lock(®_mutex
);
2586 /* Note that this doesn't update the wiphys, this is done below */
2587 r
= __set_regdom(rd
);
2590 mutex_unlock(®_mutex
);
2594 /* This would make this whole thing pointless */
2595 if (!last_request
->intersect
)
2596 BUG_ON(rd
!= cfg80211_regdomain
);
2598 /* update all wiphys now with the new established regulatory domain */
2599 update_all_wiphy_regulatory(last_request
->initiator
);
2601 print_regdomain(cfg80211_regdomain
);
2603 nl80211_send_reg_change_event(last_request
);
2605 mutex_unlock(®_mutex
);
2610 /* Caller must hold cfg80211_mutex */
2611 void reg_device_remove(struct wiphy
*wiphy
)
2613 struct wiphy
*request_wiphy
= NULL
;
2615 assert_cfg80211_lock();
2617 mutex_lock(®_mutex
);
2622 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
2624 if (!request_wiphy
|| request_wiphy
!= wiphy
)
2627 last_request
->wiphy_idx
= WIPHY_IDX_STALE
;
2628 last_request
->country_ie_env
= ENVIRON_ANY
;
2630 mutex_unlock(®_mutex
);
2633 int regulatory_init(void)
2637 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
2638 if (IS_ERR(reg_pdev
))
2639 return PTR_ERR(reg_pdev
);
2641 spin_lock_init(®_requests_lock
);
2642 spin_lock_init(®_pending_beacons_lock
);
2644 cfg80211_regdomain
= cfg80211_world_regdom
;
2646 user_alpha2
[0] = '9';
2647 user_alpha2
[1] = '7';
2649 /* We always try to get an update for the static regdomain */
2650 err
= regulatory_hint_core(cfg80211_regdomain
->alpha2
);
2655 * N.B. kobject_uevent_env() can fail mainly for when we're out
2656 * memory which is handled and propagated appropriately above
2657 * but it can also fail during a netlink_broadcast() or during
2658 * early boot for call_usermodehelper(). For now treat these
2659 * errors as non-fatal.
2661 printk(KERN_ERR
"cfg80211: kobject_uevent_env() was unable "
2662 "to call CRDA during init");
2663 #ifdef CONFIG_CFG80211_REG_DEBUG
2664 /* We want to find out exactly why when debugging */
2670 * Finally, if the user set the module parameter treat it
2673 if (!is_world_regdom(ieee80211_regdom
))
2674 regulatory_hint_user(ieee80211_regdom
);
2679 void regulatory_exit(void)
2681 struct regulatory_request
*reg_request
, *tmp
;
2682 struct reg_beacon
*reg_beacon
, *btmp
;
2684 cancel_work_sync(®_work
);
2686 mutex_lock(&cfg80211_mutex
);
2687 mutex_lock(®_mutex
);
2691 kfree(country_ie_regdomain
);
2692 country_ie_regdomain
= NULL
;
2694 kfree(last_request
);
2696 platform_device_unregister(reg_pdev
);
2698 spin_lock_bh(®_pending_beacons_lock
);
2699 if (!list_empty(®_pending_beacons
)) {
2700 list_for_each_entry_safe(reg_beacon
, btmp
,
2701 ®_pending_beacons
, list
) {
2702 list_del(®_beacon
->list
);
2706 spin_unlock_bh(®_pending_beacons_lock
);
2708 if (!list_empty(®_beacon_list
)) {
2709 list_for_each_entry_safe(reg_beacon
, btmp
,
2710 ®_beacon_list
, list
) {
2711 list_del(®_beacon
->list
);
2716 spin_lock(®_requests_lock
);
2717 if (!list_empty(®_requests_list
)) {
2718 list_for_each_entry_safe(reg_request
, tmp
,
2719 ®_requests_list
, list
) {
2720 list_del(®_request
->list
);
2724 spin_unlock(®_requests_lock
);
2726 mutex_unlock(®_mutex
);
2727 mutex_unlock(&cfg80211_mutex
);