RDMA/nes: Make unnecessarily global functions static
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / pnode.c
blob5cc564a83149a5fc311b57d87793febbdcfd4f27
1 /*
2 * linux/fs/pnode.c
4 * (C) Copyright IBM Corporation 2005.
5 * Released under GPL v2.
6 * Author : Ram Pai (linuxram@us.ibm.com)
8 */
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
11 #include <linux/fs.h>
12 #include "internal.h"
13 #include "pnode.h"
15 /* return the next shared peer mount of @p */
16 static inline struct vfsmount *next_peer(struct vfsmount *p)
18 return list_entry(p->mnt_share.next, struct vfsmount, mnt_share);
21 static inline struct vfsmount *first_slave(struct vfsmount *p)
23 return list_entry(p->mnt_slave_list.next, struct vfsmount, mnt_slave);
26 static inline struct vfsmount *next_slave(struct vfsmount *p)
28 return list_entry(p->mnt_slave.next, struct vfsmount, mnt_slave);
32 * Return true if path is reachable from root
34 * namespace_sem is held, and mnt is attached
36 static bool is_path_reachable(struct vfsmount *mnt, struct dentry *dentry,
37 const struct path *root)
39 while (mnt != root->mnt && mnt->mnt_parent != mnt) {
40 dentry = mnt->mnt_mountpoint;
41 mnt = mnt->mnt_parent;
43 return mnt == root->mnt && is_subdir(dentry, root->dentry);
46 static struct vfsmount *get_peer_under_root(struct vfsmount *mnt,
47 struct mnt_namespace *ns,
48 const struct path *root)
50 struct vfsmount *m = mnt;
52 do {
53 /* Check the namespace first for optimization */
54 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt_root, root))
55 return m;
57 m = next_peer(m);
58 } while (m != mnt);
60 return NULL;
64 * Get ID of closest dominating peer group having a representative
65 * under the given root.
67 * Caller must hold namespace_sem
69 int get_dominating_id(struct vfsmount *mnt, const struct path *root)
71 struct vfsmount *m;
73 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
74 struct vfsmount *d = get_peer_under_root(m, mnt->mnt_ns, root);
75 if (d)
76 return d->mnt_group_id;
79 return 0;
82 static int do_make_slave(struct vfsmount *mnt)
84 struct vfsmount *peer_mnt = mnt, *master = mnt->mnt_master;
85 struct vfsmount *slave_mnt;
88 * slave 'mnt' to a peer mount that has the
89 * same root dentry. If none is available then
90 * slave it to anything that is available.
92 while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
93 peer_mnt->mnt_root != mnt->mnt_root) ;
95 if (peer_mnt == mnt) {
96 peer_mnt = next_peer(mnt);
97 if (peer_mnt == mnt)
98 peer_mnt = NULL;
100 if (IS_MNT_SHARED(mnt) && list_empty(&mnt->mnt_share))
101 mnt_release_group_id(mnt);
103 list_del_init(&mnt->mnt_share);
104 mnt->mnt_group_id = 0;
106 if (peer_mnt)
107 master = peer_mnt;
109 if (master) {
110 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
111 slave_mnt->mnt_master = master;
112 list_move(&mnt->mnt_slave, &master->mnt_slave_list);
113 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
114 INIT_LIST_HEAD(&mnt->mnt_slave_list);
115 } else {
116 struct list_head *p = &mnt->mnt_slave_list;
117 while (!list_empty(p)) {
118 slave_mnt = list_first_entry(p,
119 struct vfsmount, mnt_slave);
120 list_del_init(&slave_mnt->mnt_slave);
121 slave_mnt->mnt_master = NULL;
124 mnt->mnt_master = master;
125 CLEAR_MNT_SHARED(mnt);
126 return 0;
129 void change_mnt_propagation(struct vfsmount *mnt, int type)
131 if (type == MS_SHARED) {
132 set_mnt_shared(mnt);
133 return;
135 do_make_slave(mnt);
136 if (type != MS_SLAVE) {
137 list_del_init(&mnt->mnt_slave);
138 mnt->mnt_master = NULL;
139 if (type == MS_UNBINDABLE)
140 mnt->mnt_flags |= MNT_UNBINDABLE;
141 else
142 mnt->mnt_flags &= ~MNT_UNBINDABLE;
147 * get the next mount in the propagation tree.
148 * @m: the mount seen last
149 * @origin: the original mount from where the tree walk initiated
151 * Note that peer groups form contiguous segments of slave lists.
152 * We rely on that in get_source() to be able to find out if
153 * vfsmount found while iterating with propagation_next() is
154 * a peer of one we'd found earlier.
156 static struct vfsmount *propagation_next(struct vfsmount *m,
157 struct vfsmount *origin)
159 /* are there any slaves of this mount? */
160 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
161 return first_slave(m);
163 while (1) {
164 struct vfsmount *next;
165 struct vfsmount *master = m->mnt_master;
167 if (master == origin->mnt_master) {
168 next = next_peer(m);
169 return ((next == origin) ? NULL : next);
170 } else if (m->mnt_slave.next != &master->mnt_slave_list)
171 return next_slave(m);
173 /* back at master */
174 m = master;
179 * return the source mount to be used for cloning
181 * @dest the current destination mount
182 * @last_dest the last seen destination mount
183 * @last_src the last seen source mount
184 * @type return CL_SLAVE if the new mount has to be
185 * cloned as a slave.
187 static struct vfsmount *get_source(struct vfsmount *dest,
188 struct vfsmount *last_dest,
189 struct vfsmount *last_src,
190 int *type)
192 struct vfsmount *p_last_src = NULL;
193 struct vfsmount *p_last_dest = NULL;
195 while (last_dest != dest->mnt_master) {
196 p_last_dest = last_dest;
197 p_last_src = last_src;
198 last_dest = last_dest->mnt_master;
199 last_src = last_src->mnt_master;
202 if (p_last_dest) {
203 do {
204 p_last_dest = next_peer(p_last_dest);
205 } while (IS_MNT_NEW(p_last_dest));
206 /* is that a peer of the earlier? */
207 if (dest == p_last_dest) {
208 *type = CL_MAKE_SHARED;
209 return p_last_src;
212 /* slave of the earlier, then */
213 *type = CL_SLAVE;
214 /* beginning of peer group among the slaves? */
215 if (IS_MNT_SHARED(dest))
216 *type |= CL_MAKE_SHARED;
217 return last_src;
221 * mount 'source_mnt' under the destination 'dest_mnt' at
222 * dentry 'dest_dentry'. And propagate that mount to
223 * all the peer and slave mounts of 'dest_mnt'.
224 * Link all the new mounts into a propagation tree headed at
225 * source_mnt. Also link all the new mounts using ->mnt_list
226 * headed at source_mnt's ->mnt_list
228 * @dest_mnt: destination mount.
229 * @dest_dentry: destination dentry.
230 * @source_mnt: source mount.
231 * @tree_list : list of heads of trees to be attached.
233 int propagate_mnt(struct vfsmount *dest_mnt, struct dentry *dest_dentry,
234 struct vfsmount *source_mnt, struct list_head *tree_list)
236 struct vfsmount *m, *child;
237 int ret = 0;
238 struct vfsmount *prev_dest_mnt = dest_mnt;
239 struct vfsmount *prev_src_mnt = source_mnt;
240 LIST_HEAD(tmp_list);
241 LIST_HEAD(umount_list);
243 for (m = propagation_next(dest_mnt, dest_mnt); m;
244 m = propagation_next(m, dest_mnt)) {
245 int type;
246 struct vfsmount *source;
248 if (IS_MNT_NEW(m))
249 continue;
251 source = get_source(m, prev_dest_mnt, prev_src_mnt, &type);
253 if (!(child = copy_tree(source, source->mnt_root, type))) {
254 ret = -ENOMEM;
255 list_splice(tree_list, tmp_list.prev);
256 goto out;
259 if (is_subdir(dest_dentry, m->mnt_root)) {
260 mnt_set_mountpoint(m, dest_dentry, child);
261 list_add_tail(&child->mnt_hash, tree_list);
262 } else {
264 * This can happen if the parent mount was bind mounted
265 * on some subdirectory of a shared/slave mount.
267 list_add_tail(&child->mnt_hash, &tmp_list);
269 prev_dest_mnt = m;
270 prev_src_mnt = child;
272 out:
273 spin_lock(&vfsmount_lock);
274 while (!list_empty(&tmp_list)) {
275 child = list_first_entry(&tmp_list, struct vfsmount, mnt_hash);
276 umount_tree(child, 0, &umount_list);
278 spin_unlock(&vfsmount_lock);
279 release_mounts(&umount_list);
280 return ret;
284 * return true if the refcount is greater than count
286 static inline int do_refcount_check(struct vfsmount *mnt, int count)
288 int mycount = atomic_read(&mnt->mnt_count) - mnt->mnt_ghosts;
289 return (mycount > count);
293 * check if the mount 'mnt' can be unmounted successfully.
294 * @mnt: the mount to be checked for unmount
295 * NOTE: unmounting 'mnt' would naturally propagate to all
296 * other mounts its parent propagates to.
297 * Check if any of these mounts that **do not have submounts**
298 * have more references than 'refcnt'. If so return busy.
300 int propagate_mount_busy(struct vfsmount *mnt, int refcnt)
302 struct vfsmount *m, *child;
303 struct vfsmount *parent = mnt->mnt_parent;
304 int ret = 0;
306 if (mnt == parent)
307 return do_refcount_check(mnt, refcnt);
310 * quickly check if the current mount can be unmounted.
311 * If not, we don't have to go checking for all other
312 * mounts
314 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
315 return 1;
317 for (m = propagation_next(parent, parent); m;
318 m = propagation_next(m, parent)) {
319 child = __lookup_mnt(m, mnt->mnt_mountpoint, 0);
320 if (child && list_empty(&child->mnt_mounts) &&
321 (ret = do_refcount_check(child, 1)))
322 break;
324 return ret;
328 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
329 * parent propagates to.
331 static void __propagate_umount(struct vfsmount *mnt)
333 struct vfsmount *parent = mnt->mnt_parent;
334 struct vfsmount *m;
336 BUG_ON(parent == mnt);
338 for (m = propagation_next(parent, parent); m;
339 m = propagation_next(m, parent)) {
341 struct vfsmount *child = __lookup_mnt(m,
342 mnt->mnt_mountpoint, 0);
344 * umount the child only if the child has no
345 * other children
347 if (child && list_empty(&child->mnt_mounts))
348 list_move_tail(&child->mnt_hash, &mnt->mnt_hash);
353 * collect all mounts that receive propagation from the mount in @list,
354 * and return these additional mounts in the same list.
355 * @list: the list of mounts to be unmounted.
357 int propagate_umount(struct list_head *list)
359 struct vfsmount *mnt;
361 list_for_each_entry(mnt, list, mnt_hash)
362 __propagate_umount(mnt);
363 return 0;