2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
3 * Copyright (c) 2001 Intel Corp.
4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5 * Copyright (c) 2002 NEC Corp.
6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7 * Copyright (c) 2004 Silicon Graphics, Inc
8 * Russ Anderson <rja@sgi.com>
9 * Jesse Barnes <jbarnes@sgi.com>
10 * Jack Steiner <steiner@sgi.com>
14 * Platform initialization for Discontig Memory
17 #include <linux/kernel.h>
19 #include <linux/nmi.h>
20 #include <linux/swap.h>
21 #include <linux/bootmem.h>
22 #include <linux/acpi.h>
23 #include <linux/efi.h>
24 #include <linux/nodemask.h>
25 #include <asm/pgalloc.h>
27 #include <asm/meminit.h>
29 #include <asm/sections.h>
32 * Track per-node information needed to setup the boot memory allocator, the
33 * per-node areas, and the real VM.
35 struct early_node_data
{
36 struct ia64_node_data
*node_data
;
37 unsigned long pernode_addr
;
38 unsigned long pernode_size
;
39 unsigned long num_physpages
;
40 #ifdef CONFIG_ZONE_DMA
41 unsigned long num_dma_physpages
;
43 unsigned long min_pfn
;
44 unsigned long max_pfn
;
47 static struct early_node_data mem_data
[MAX_NUMNODES
] __initdata
;
48 static nodemask_t memory_less_mask __initdata
;
50 pg_data_t
*pgdat_list
[MAX_NUMNODES
];
53 * To prevent cache aliasing effects, align per-node structures so that they
54 * start at addresses that are strided by node number.
56 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
57 #define NODEDATA_ALIGN(addr, node) \
58 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
59 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
62 * build_node_maps - callback to setup bootmem structs for each node
63 * @start: physical start of range
64 * @len: length of range
65 * @node: node where this range resides
67 * We allocate a struct bootmem_data for each piece of memory that we wish to
68 * treat as a virtually contiguous block (i.e. each node). Each such block
69 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
70 * if necessary. Any non-existent pages will simply be part of the virtual
71 * memmap. We also update min_low_pfn and max_low_pfn here as we receive
72 * memory ranges from the caller.
74 static int __init
build_node_maps(unsigned long start
, unsigned long len
,
77 unsigned long spfn
, epfn
, end
= start
+ len
;
78 struct bootmem_data
*bdp
= &bootmem_node_data
[node
];
80 epfn
= GRANULEROUNDUP(end
) >> PAGE_SHIFT
;
81 spfn
= GRANULEROUNDDOWN(start
) >> PAGE_SHIFT
;
83 if (!bdp
->node_low_pfn
) {
84 bdp
->node_min_pfn
= spfn
;
85 bdp
->node_low_pfn
= epfn
;
87 bdp
->node_min_pfn
= min(spfn
, bdp
->node_min_pfn
);
88 bdp
->node_low_pfn
= max(epfn
, bdp
->node_low_pfn
);
95 * early_nr_cpus_node - return number of cpus on a given node
96 * @node: node to check
98 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
99 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
100 * called yet. Note that node 0 will also count all non-existent cpus.
102 static int __meminit
early_nr_cpus_node(int node
)
106 for_each_possible_early_cpu(cpu
)
107 if (node
== node_cpuid
[cpu
].nid
)
114 * compute_pernodesize - compute size of pernode data
115 * @node: the node id.
117 static unsigned long __meminit
compute_pernodesize(int node
)
119 unsigned long pernodesize
= 0, cpus
;
121 cpus
= early_nr_cpus_node(node
);
122 pernodesize
+= PERCPU_PAGE_SIZE
* cpus
;
123 pernodesize
+= node
* L1_CACHE_BYTES
;
124 pernodesize
+= L1_CACHE_ALIGN(sizeof(pg_data_t
));
125 pernodesize
+= L1_CACHE_ALIGN(sizeof(struct ia64_node_data
));
126 pernodesize
+= L1_CACHE_ALIGN(sizeof(pg_data_t
));
127 pernodesize
= PAGE_ALIGN(pernodesize
);
132 * per_cpu_node_setup - setup per-cpu areas on each node
133 * @cpu_data: per-cpu area on this node
134 * @node: node to setup
136 * Copy the static per-cpu data into the region we just set aside and then
137 * setup __per_cpu_offset for each CPU on this node. Return a pointer to
138 * the end of the area.
140 static void *per_cpu_node_setup(void *cpu_data
, int node
)
145 for_each_possible_early_cpu(cpu
) {
146 void *src
= cpu
== 0 ? __cpu0_per_cpu
: __phys_per_cpu_start
;
148 if (node
!= node_cpuid
[cpu
].nid
)
151 memcpy(__va(cpu_data
), src
, __per_cpu_end
- __per_cpu_start
);
152 __per_cpu_offset
[cpu
] = (char *)__va(cpu_data
) -
156 * percpu area for cpu0 is moved from the __init area
157 * which is setup by head.S and used till this point.
158 * Update ar.k3. This move is ensures that percpu
159 * area for cpu0 is on the correct node and its
160 * virtual address isn't insanely far from other
161 * percpu areas which is important for congruent
165 ia64_set_kr(IA64_KR_PER_CPU_DATA
,
166 (unsigned long)cpu_data
-
167 (unsigned long)__per_cpu_start
);
169 cpu_data
+= PERCPU_PAGE_SIZE
;
177 * setup_per_cpu_areas - setup percpu areas
179 * Arch code has already allocated and initialized percpu areas. All
180 * this function has to do is to teach the determined layout to the
181 * dynamic percpu allocator, which happens to be more complex than
182 * creating whole new ones using helpers.
184 void __init
setup_per_cpu_areas(void)
186 struct pcpu_alloc_info
*ai
;
187 struct pcpu_group_info
*uninitialized_var(gi
);
188 unsigned int *cpu_map
;
190 unsigned long base_offset
;
192 ssize_t static_size
, reserved_size
, dyn_size
;
193 int node
, prev_node
, unit
, nr_units
, rc
;
195 ai
= pcpu_alloc_alloc_info(MAX_NUMNODES
, nr_cpu_ids
);
197 panic("failed to allocate pcpu_alloc_info");
198 cpu_map
= ai
->groups
[0].cpu_map
;
201 base
= (void *)ULONG_MAX
;
202 for_each_possible_cpu(cpu
)
204 (void *)(__per_cpu_offset
[cpu
] + __per_cpu_start
));
205 base_offset
= (void *)__per_cpu_start
- base
;
207 /* build cpu_map, units are grouped by node */
210 for_each_possible_cpu(cpu
)
211 if (node
== node_cpuid
[cpu
].nid
)
212 cpu_map
[unit
++] = cpu
;
215 /* set basic parameters */
216 static_size
= __per_cpu_end
- __per_cpu_start
;
217 reserved_size
= PERCPU_MODULE_RESERVE
;
218 dyn_size
= PERCPU_PAGE_SIZE
- static_size
- reserved_size
;
220 panic("percpu area overflow static=%zd reserved=%zd\n",
221 static_size
, reserved_size
);
223 ai
->static_size
= static_size
;
224 ai
->reserved_size
= reserved_size
;
225 ai
->dyn_size
= dyn_size
;
226 ai
->unit_size
= PERCPU_PAGE_SIZE
;
227 ai
->atom_size
= PAGE_SIZE
;
228 ai
->alloc_size
= PERCPU_PAGE_SIZE
;
231 * CPUs are put into groups according to node. Walk cpu_map
232 * and create new groups at node boundaries.
236 for (unit
= 0; unit
< nr_units
; unit
++) {
238 node
= node_cpuid
[cpu
].nid
;
240 if (node
== prev_node
) {
246 gi
= &ai
->groups
[ai
->nr_groups
++];
248 gi
->base_offset
= __per_cpu_offset
[cpu
] + base_offset
;
249 gi
->cpu_map
= &cpu_map
[unit
];
252 rc
= pcpu_setup_first_chunk(ai
, base
);
254 panic("failed to setup percpu area (err=%d)", rc
);
256 pcpu_free_alloc_info(ai
);
261 * fill_pernode - initialize pernode data.
262 * @node: the node id.
263 * @pernode: physical address of pernode data
264 * @pernodesize: size of the pernode data
266 static void __init
fill_pernode(int node
, unsigned long pernode
,
267 unsigned long pernodesize
)
270 int cpus
= early_nr_cpus_node(node
);
271 struct bootmem_data
*bdp
= &bootmem_node_data
[node
];
273 mem_data
[node
].pernode_addr
= pernode
;
274 mem_data
[node
].pernode_size
= pernodesize
;
275 memset(__va(pernode
), 0, pernodesize
);
277 cpu_data
= (void *)pernode
;
278 pernode
+= PERCPU_PAGE_SIZE
* cpus
;
279 pernode
+= node
* L1_CACHE_BYTES
;
281 pgdat_list
[node
] = __va(pernode
);
282 pernode
+= L1_CACHE_ALIGN(sizeof(pg_data_t
));
284 mem_data
[node
].node_data
= __va(pernode
);
285 pernode
+= L1_CACHE_ALIGN(sizeof(struct ia64_node_data
));
287 pgdat_list
[node
]->bdata
= bdp
;
288 pernode
+= L1_CACHE_ALIGN(sizeof(pg_data_t
));
290 cpu_data
= per_cpu_node_setup(cpu_data
, node
);
296 * find_pernode_space - allocate memory for memory map and per-node structures
297 * @start: physical start of range
298 * @len: length of range
299 * @node: node where this range resides
301 * This routine reserves space for the per-cpu data struct, the list of
302 * pg_data_ts and the per-node data struct. Each node will have something like
303 * the following in the first chunk of addr. space large enough to hold it.
305 * ________________________
307 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
308 * | PERCPU_PAGE_SIZE * | start and length big enough
309 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
310 * |------------------------|
311 * | local pg_data_t * |
312 * |------------------------|
313 * | local ia64_node_data |
314 * |------------------------|
316 * |________________________|
318 * Once this space has been set aside, the bootmem maps are initialized. We
319 * could probably move the allocation of the per-cpu and ia64_node_data space
320 * outside of this function and use alloc_bootmem_node(), but doing it here
321 * is straightforward and we get the alignments we want so...
323 static int __init
find_pernode_space(unsigned long start
, unsigned long len
,
326 unsigned long spfn
, epfn
;
327 unsigned long pernodesize
= 0, pernode
, pages
, mapsize
;
328 struct bootmem_data
*bdp
= &bootmem_node_data
[node
];
330 spfn
= start
>> PAGE_SHIFT
;
331 epfn
= (start
+ len
) >> PAGE_SHIFT
;
333 pages
= bdp
->node_low_pfn
- bdp
->node_min_pfn
;
334 mapsize
= bootmem_bootmap_pages(pages
) << PAGE_SHIFT
;
337 * Make sure this memory falls within this node's usable memory
338 * since we may have thrown some away in build_maps().
340 if (spfn
< bdp
->node_min_pfn
|| epfn
> bdp
->node_low_pfn
)
343 /* Don't setup this node's local space twice... */
344 if (mem_data
[node
].pernode_addr
)
348 * Calculate total size needed, incl. what's necessary
349 * for good alignment and alias prevention.
351 pernodesize
= compute_pernodesize(node
);
352 pernode
= NODEDATA_ALIGN(start
, node
);
354 /* Is this range big enough for what we want to store here? */
355 if (start
+ len
> (pernode
+ pernodesize
+ mapsize
))
356 fill_pernode(node
, pernode
, pernodesize
);
362 * free_node_bootmem - free bootmem allocator memory for use
363 * @start: physical start of range
364 * @len: length of range
365 * @node: node where this range resides
367 * Simply calls the bootmem allocator to free the specified ranged from
368 * the given pg_data_t's bdata struct. After this function has been called
369 * for all the entries in the EFI memory map, the bootmem allocator will
370 * be ready to service allocation requests.
372 static int __init
free_node_bootmem(unsigned long start
, unsigned long len
,
375 free_bootmem_node(pgdat_list
[node
], start
, len
);
381 * reserve_pernode_space - reserve memory for per-node space
383 * Reserve the space used by the bootmem maps & per-node space in the boot
384 * allocator so that when we actually create the real mem maps we don't
387 static void __init
reserve_pernode_space(void)
389 unsigned long base
, size
, pages
;
390 struct bootmem_data
*bdp
;
393 for_each_online_node(node
) {
394 pg_data_t
*pdp
= pgdat_list
[node
];
396 if (node_isset(node
, memory_less_mask
))
401 /* First the bootmem_map itself */
402 pages
= bdp
->node_low_pfn
- bdp
->node_min_pfn
;
403 size
= bootmem_bootmap_pages(pages
) << PAGE_SHIFT
;
404 base
= __pa(bdp
->node_bootmem_map
);
405 reserve_bootmem_node(pdp
, base
, size
, BOOTMEM_DEFAULT
);
407 /* Now the per-node space */
408 size
= mem_data
[node
].pernode_size
;
409 base
= __pa(mem_data
[node
].pernode_addr
);
410 reserve_bootmem_node(pdp
, base
, size
, BOOTMEM_DEFAULT
);
414 static void __meminit
scatter_node_data(void)
420 * for_each_online_node() can't be used at here.
421 * node_online_map is not set for hot-added nodes at this time,
422 * because we are halfway through initialization of the new node's
423 * structures. If for_each_online_node() is used, a new node's
424 * pg_data_ptrs will be not initialized. Instead of using it,
425 * pgdat_list[] is checked.
427 for_each_node(node
) {
428 if (pgdat_list
[node
]) {
429 dst
= LOCAL_DATA_ADDR(pgdat_list
[node
])->pg_data_ptrs
;
430 memcpy(dst
, pgdat_list
, sizeof(pgdat_list
));
436 * initialize_pernode_data - fixup per-cpu & per-node pointers
438 * Each node's per-node area has a copy of the global pg_data_t list, so
439 * we copy that to each node here, as well as setting the per-cpu pointer
440 * to the local node data structure. The active_cpus field of the per-node
441 * structure gets setup by the platform_cpu_init() function later.
443 static void __init
initialize_pernode_data(void)
450 /* Set the node_data pointer for each per-cpu struct */
451 for_each_possible_early_cpu(cpu
) {
452 node
= node_cpuid
[cpu
].nid
;
453 per_cpu(ia64_cpu_info
, cpu
).node_data
=
454 mem_data
[node
].node_data
;
458 struct cpuinfo_ia64
*cpu0_cpu_info
;
460 node
= node_cpuid
[cpu
].nid
;
461 cpu0_cpu_info
= (struct cpuinfo_ia64
*)(__phys_per_cpu_start
+
462 ((char *)&per_cpu__ia64_cpu_info
- __per_cpu_start
));
463 cpu0_cpu_info
->node_data
= mem_data
[node
].node_data
;
465 #endif /* CONFIG_SMP */
469 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
470 * node but fall back to any other node when __alloc_bootmem_node fails
473 * @pernodesize: size of this node's pernode data
475 static void __init
*memory_less_node_alloc(int nid
, unsigned long pernodesize
)
479 int bestnode
= -1, node
, anynode
= 0;
481 for_each_online_node(node
) {
482 if (node_isset(node
, memory_less_mask
))
484 else if (node_distance(nid
, node
) < best
) {
485 best
= node_distance(nid
, node
);
494 ptr
= __alloc_bootmem_node(pgdat_list
[bestnode
], pernodesize
,
495 PERCPU_PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
));
501 * memory_less_nodes - allocate and initialize CPU only nodes pernode
504 static void __init
memory_less_nodes(void)
506 unsigned long pernodesize
;
510 for_each_node_mask(node
, memory_less_mask
) {
511 pernodesize
= compute_pernodesize(node
);
512 pernode
= memory_less_node_alloc(node
, pernodesize
);
513 fill_pernode(node
, __pa(pernode
), pernodesize
);
520 * find_memory - walk the EFI memory map and setup the bootmem allocator
522 * Called early in boot to setup the bootmem allocator, and to
523 * allocate the per-cpu and per-node structures.
525 void __init
find_memory(void)
531 if (num_online_nodes() == 0) {
532 printk(KERN_ERR
"node info missing!\n");
536 nodes_or(memory_less_mask
, memory_less_mask
, node_online_map
);
540 /* These actually end up getting called by call_pernode_memory() */
541 efi_memmap_walk(filter_rsvd_memory
, build_node_maps
);
542 efi_memmap_walk(filter_rsvd_memory
, find_pernode_space
);
543 efi_memmap_walk(find_max_min_low_pfn
, NULL
);
545 for_each_online_node(node
)
546 if (bootmem_node_data
[node
].node_low_pfn
) {
547 node_clear(node
, memory_less_mask
);
548 mem_data
[node
].min_pfn
= ~0UL;
551 efi_memmap_walk(filter_memory
, register_active_ranges
);
554 * Initialize the boot memory maps in reverse order since that's
555 * what the bootmem allocator expects
557 for (node
= MAX_NUMNODES
- 1; node
>= 0; node
--) {
558 unsigned long pernode
, pernodesize
, map
;
559 struct bootmem_data
*bdp
;
561 if (!node_online(node
))
563 else if (node_isset(node
, memory_less_mask
))
566 bdp
= &bootmem_node_data
[node
];
567 pernode
= mem_data
[node
].pernode_addr
;
568 pernodesize
= mem_data
[node
].pernode_size
;
569 map
= pernode
+ pernodesize
;
571 init_bootmem_node(pgdat_list
[node
],
577 efi_memmap_walk(filter_rsvd_memory
, free_node_bootmem
);
579 reserve_pernode_space();
581 initialize_pernode_data();
583 max_pfn
= max_low_pfn
;
590 * per_cpu_init - setup per-cpu variables
592 * find_pernode_space() does most of this already, we just need to set
593 * local_per_cpu_offset
595 void __cpuinit
*per_cpu_init(void)
598 static int first_time
= 1;
602 for_each_possible_early_cpu(cpu
)
603 per_cpu(local_per_cpu_offset
, cpu
) = __per_cpu_offset
[cpu
];
606 return __per_cpu_start
+ __per_cpu_offset
[smp_processor_id()];
608 #endif /* CONFIG_SMP */
611 * show_mem - give short summary of memory stats
613 * Shows a simple page count of reserved and used pages in the system.
614 * For discontig machines, it does this on a per-pgdat basis.
618 int i
, total_reserved
= 0;
619 int total_shared
= 0, total_cached
= 0;
620 unsigned long total_present
= 0;
623 printk(KERN_INFO
"Mem-info:\n");
625 printk(KERN_INFO
"Node memory in pages:\n");
626 for_each_online_pgdat(pgdat
) {
627 unsigned long present
;
629 int shared
= 0, cached
= 0, reserved
= 0;
631 pgdat_resize_lock(pgdat
, &flags
);
632 present
= pgdat
->node_present_pages
;
633 for(i
= 0; i
< pgdat
->node_spanned_pages
; i
++) {
635 if (unlikely(i
% MAX_ORDER_NR_PAGES
== 0))
636 touch_nmi_watchdog();
637 if (pfn_valid(pgdat
->node_start_pfn
+ i
))
638 page
= pfn_to_page(pgdat
->node_start_pfn
+ i
);
640 i
= vmemmap_find_next_valid_pfn(pgdat
->node_id
,
644 if (PageReserved(page
))
646 else if (PageSwapCache(page
))
648 else if (page_count(page
))
649 shared
+= page_count(page
)-1;
651 pgdat_resize_unlock(pgdat
, &flags
);
652 total_present
+= present
;
653 total_reserved
+= reserved
;
654 total_cached
+= cached
;
655 total_shared
+= shared
;
656 printk(KERN_INFO
"Node %4d: RAM: %11ld, rsvd: %8d, "
657 "shrd: %10d, swpd: %10d\n", pgdat
->node_id
,
658 present
, reserved
, shared
, cached
);
660 printk(KERN_INFO
"%ld pages of RAM\n", total_present
);
661 printk(KERN_INFO
"%d reserved pages\n", total_reserved
);
662 printk(KERN_INFO
"%d pages shared\n", total_shared
);
663 printk(KERN_INFO
"%d pages swap cached\n", total_cached
);
664 printk(KERN_INFO
"Total of %ld pages in page table cache\n",
665 quicklist_total_size());
666 printk(KERN_INFO
"%d free buffer pages\n", nr_free_buffer_pages());
670 * call_pernode_memory - use SRAT to call callback functions with node info
671 * @start: physical start of range
672 * @len: length of range
673 * @arg: function to call for each range
675 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
676 * out to which node a block of memory belongs. Ignore memory that we cannot
677 * identify, and split blocks that run across multiple nodes.
679 * Take this opportunity to round the start address up and the end address
680 * down to page boundaries.
682 void call_pernode_memory(unsigned long start
, unsigned long len
, void *arg
)
684 unsigned long rs
, re
, end
= start
+ len
;
685 void (*func
)(unsigned long, unsigned long, int);
688 start
= PAGE_ALIGN(start
);
695 if (!num_node_memblks
) {
696 /* No SRAT table, so assume one node (node 0) */
698 (*func
)(start
, end
- start
, 0);
702 for (i
= 0; i
< num_node_memblks
; i
++) {
703 rs
= max(start
, node_memblk
[i
].start_paddr
);
704 re
= min(end
, node_memblk
[i
].start_paddr
+
705 node_memblk
[i
].size
);
708 (*func
)(rs
, re
- rs
, node_memblk
[i
].nid
);
716 * count_node_pages - callback to build per-node memory info structures
717 * @start: physical start of range
718 * @len: length of range
719 * @node: node where this range resides
721 * Each node has it's own number of physical pages, DMAable pages, start, and
722 * end page frame number. This routine will be called by call_pernode_memory()
723 * for each piece of usable memory and will setup these values for each node.
724 * Very similar to build_maps().
726 static __init
int count_node_pages(unsigned long start
, unsigned long len
, int node
)
728 unsigned long end
= start
+ len
;
730 mem_data
[node
].num_physpages
+= len
>> PAGE_SHIFT
;
731 #ifdef CONFIG_ZONE_DMA
732 if (start
<= __pa(MAX_DMA_ADDRESS
))
733 mem_data
[node
].num_dma_physpages
+=
734 (min(end
, __pa(MAX_DMA_ADDRESS
)) - start
) >>PAGE_SHIFT
;
736 start
= GRANULEROUNDDOWN(start
);
737 end
= GRANULEROUNDUP(end
);
738 mem_data
[node
].max_pfn
= max(mem_data
[node
].max_pfn
,
740 mem_data
[node
].min_pfn
= min(mem_data
[node
].min_pfn
,
741 start
>> PAGE_SHIFT
);
747 * paging_init - setup page tables
749 * paging_init() sets up the page tables for each node of the system and frees
750 * the bootmem allocator memory for general use.
752 void __init
paging_init(void)
754 unsigned long max_dma
;
755 unsigned long pfn_offset
= 0;
756 unsigned long max_pfn
= 0;
758 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
760 max_dma
= virt_to_phys((void *) MAX_DMA_ADDRESS
) >> PAGE_SHIFT
;
762 efi_memmap_walk(filter_rsvd_memory
, count_node_pages
);
764 sparse_memory_present_with_active_regions(MAX_NUMNODES
);
767 #ifdef CONFIG_VIRTUAL_MEM_MAP
768 VMALLOC_END
-= PAGE_ALIGN(ALIGN(max_low_pfn
, MAX_ORDER_NR_PAGES
) *
769 sizeof(struct page
));
770 vmem_map
= (struct page
*) VMALLOC_END
;
771 efi_memmap_walk(create_mem_map_page_table
, NULL
);
772 printk("Virtual mem_map starts at 0x%p\n", vmem_map
);
775 for_each_online_node(node
) {
776 num_physpages
+= mem_data
[node
].num_physpages
;
777 pfn_offset
= mem_data
[node
].min_pfn
;
779 #ifdef CONFIG_VIRTUAL_MEM_MAP
780 NODE_DATA(node
)->node_mem_map
= vmem_map
+ pfn_offset
;
782 if (mem_data
[node
].max_pfn
> max_pfn
)
783 max_pfn
= mem_data
[node
].max_pfn
;
786 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
787 #ifdef CONFIG_ZONE_DMA
788 max_zone_pfns
[ZONE_DMA
] = max_dma
;
790 max_zone_pfns
[ZONE_NORMAL
] = max_pfn
;
791 free_area_init_nodes(max_zone_pfns
);
793 zero_page_memmap_ptr
= virt_to_page(ia64_imva(empty_zero_page
));
796 #ifdef CONFIG_MEMORY_HOTPLUG
797 pg_data_t
*arch_alloc_nodedata(int nid
)
799 unsigned long size
= compute_pernodesize(nid
);
801 return kzalloc(size
, GFP_KERNEL
);
804 void arch_free_nodedata(pg_data_t
*pgdat
)
809 void arch_refresh_nodedata(int update_node
, pg_data_t
*update_pgdat
)
811 pgdat_list
[update_node
] = update_pgdat
;
816 #ifdef CONFIG_SPARSEMEM_VMEMMAP
817 int __meminit
vmemmap_populate(struct page
*start_page
,
818 unsigned long size
, int node
)
820 return vmemmap_populate_basepages(start_page
, size
, node
);