ar9170: load firmware asynchronously
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / blackfin / kernel / setup.c
blob95448ae9c43a79ff442fc67cb9a5bdf14a901316
1 /*
2 * Copyright 2004-2009 Analog Devices Inc.
4 * Licensed under the GPL-2 or later.
5 */
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
22 #endif
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/cpu.h>
30 #include <asm/fixed_code.h>
31 #include <asm/early_printk.h>
33 u16 _bfin_swrst;
34 EXPORT_SYMBOL(_bfin_swrst);
36 unsigned long memory_start, memory_end, physical_mem_end;
37 unsigned long _rambase, _ramstart, _ramend;
38 unsigned long reserved_mem_dcache_on;
39 unsigned long reserved_mem_icache_on;
40 EXPORT_SYMBOL(memory_start);
41 EXPORT_SYMBOL(memory_end);
42 EXPORT_SYMBOL(physical_mem_end);
43 EXPORT_SYMBOL(_ramend);
44 EXPORT_SYMBOL(reserved_mem_dcache_on);
46 #ifdef CONFIG_MTD_UCLINUX
47 extern struct map_info uclinux_ram_map;
48 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
49 unsigned long _ebss;
50 EXPORT_SYMBOL(memory_mtd_end);
51 EXPORT_SYMBOL(memory_mtd_start);
52 EXPORT_SYMBOL(mtd_size);
53 #endif
55 char __initdata command_line[COMMAND_LINE_SIZE];
56 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
57 *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
59 /* boot memmap, for parsing "memmap=" */
60 #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
61 #define BFIN_MEMMAP_RAM 1
62 #define BFIN_MEMMAP_RESERVED 2
63 static struct bfin_memmap {
64 int nr_map;
65 struct bfin_memmap_entry {
66 unsigned long long addr; /* start of memory segment */
67 unsigned long long size;
68 unsigned long type;
69 } map[BFIN_MEMMAP_MAX];
70 } bfin_memmap __initdata;
72 /* for memmap sanitization */
73 struct change_member {
74 struct bfin_memmap_entry *pentry; /* pointer to original entry */
75 unsigned long long addr; /* address for this change point */
77 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
78 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
82 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
84 static int early_init_clkin_hz(char *buf);
86 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
87 void __init generate_cplb_tables(void)
89 unsigned int cpu;
91 generate_cplb_tables_all();
92 /* Generate per-CPU I&D CPLB tables */
93 for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
94 generate_cplb_tables_cpu(cpu);
96 #endif
98 void __cpuinit bfin_setup_caches(unsigned int cpu)
100 #ifdef CONFIG_BFIN_ICACHE
101 bfin_icache_init(icplb_tbl[cpu]);
102 #endif
104 #ifdef CONFIG_BFIN_DCACHE
105 bfin_dcache_init(dcplb_tbl[cpu]);
106 #endif
109 * In cache coherence emulation mode, we need to have the
110 * D-cache enabled before running any atomic operation which
111 * might involve cache invalidation (i.e. spinlock, rwlock).
112 * So printk's are deferred until then.
114 #ifdef CONFIG_BFIN_ICACHE
115 printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
116 printk(KERN_INFO " External memory:"
117 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
118 " cacheable"
119 # else
120 " uncacheable"
121 # endif
122 " in instruction cache\n");
123 if (L2_LENGTH)
124 printk(KERN_INFO " L2 SRAM :"
125 # ifdef CONFIG_BFIN_L2_ICACHEABLE
126 " cacheable"
127 # else
128 " uncacheable"
129 # endif
130 " in instruction cache\n");
132 #else
133 printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
134 #endif
136 #ifdef CONFIG_BFIN_DCACHE
137 printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
138 printk(KERN_INFO " External memory:"
139 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
140 " cacheable (write-back)"
141 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
142 " cacheable (write-through)"
143 # else
144 " uncacheable"
145 # endif
146 " in data cache\n");
147 if (L2_LENGTH)
148 printk(KERN_INFO " L2 SRAM :"
149 # if defined CONFIG_BFIN_L2_WRITEBACK
150 " cacheable (write-back)"
151 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
152 " cacheable (write-through)"
153 # else
154 " uncacheable"
155 # endif
156 " in data cache\n");
157 #else
158 printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
159 #endif
162 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
164 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
166 cpudata->idle = current;
167 cpudata->imemctl = bfin_read_IMEM_CONTROL();
168 cpudata->dmemctl = bfin_read_DMEM_CONTROL();
171 void __init bfin_cache_init(void)
173 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
174 generate_cplb_tables();
175 #endif
176 bfin_setup_caches(0);
179 void __init bfin_relocate_l1_mem(void)
181 unsigned long text_l1_len = (unsigned long)_text_l1_len;
182 unsigned long data_l1_len = (unsigned long)_data_l1_len;
183 unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
184 unsigned long l2_len = (unsigned long)_l2_len;
186 early_shadow_stamp();
189 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
190 * we know that everything about l1 text/data is nice and aligned,
191 * so copy by 4 byte chunks, and don't worry about overlapping
192 * src/dest.
194 * We can't use the dma_memcpy functions, since they can call
195 * scheduler functions which might be in L1 :( and core writes
196 * into L1 instruction cause bad access errors, so we are stuck,
197 * we are required to use DMA, but can't use the common dma
198 * functions. We can't use memcpy either - since that might be
199 * going to be in the relocated L1
202 blackfin_dma_early_init();
204 /* if necessary, copy L1 text to L1 instruction SRAM */
205 if (L1_CODE_LENGTH && text_l1_len)
206 early_dma_memcpy(_stext_l1, _text_l1_lma, text_l1_len);
208 /* if necessary, copy L1 data to L1 data bank A SRAM */
209 if (L1_DATA_A_LENGTH && data_l1_len)
210 early_dma_memcpy(_sdata_l1, _data_l1_lma, data_l1_len);
212 /* if necessary, copy L1 data B to L1 data bank B SRAM */
213 if (L1_DATA_B_LENGTH && data_b_l1_len)
214 early_dma_memcpy(_sdata_b_l1, _data_b_l1_lma, data_b_l1_len);
216 early_dma_memcpy_done();
218 /* if necessary, copy L2 text/data to L2 SRAM */
219 if (L2_LENGTH && l2_len)
220 memcpy(_stext_l2, _l2_lma, l2_len);
223 /* add_memory_region to memmap */
224 static void __init add_memory_region(unsigned long long start,
225 unsigned long long size, int type)
227 int i;
229 i = bfin_memmap.nr_map;
231 if (i == BFIN_MEMMAP_MAX) {
232 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
233 return;
236 bfin_memmap.map[i].addr = start;
237 bfin_memmap.map[i].size = size;
238 bfin_memmap.map[i].type = type;
239 bfin_memmap.nr_map++;
243 * Sanitize the boot memmap, removing overlaps.
245 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
247 struct change_member *change_tmp;
248 unsigned long current_type, last_type;
249 unsigned long long last_addr;
250 int chgidx, still_changing;
251 int overlap_entries;
252 int new_entry;
253 int old_nr, new_nr, chg_nr;
254 int i;
257 Visually we're performing the following (1,2,3,4 = memory types)
259 Sample memory map (w/overlaps):
260 ____22__________________
261 ______________________4_
262 ____1111________________
263 _44_____________________
264 11111111________________
265 ____________________33__
266 ___________44___________
267 __________33333_________
268 ______________22________
269 ___________________2222_
270 _________111111111______
271 _____________________11_
272 _________________4______
274 Sanitized equivalent (no overlap):
275 1_______________________
276 _44_____________________
277 ___1____________________
278 ____22__________________
279 ______11________________
280 _________1______________
281 __________3_____________
282 ___________44___________
283 _____________33_________
284 _______________2________
285 ________________1_______
286 _________________4______
287 ___________________2____
288 ____________________33__
289 ______________________4_
291 /* if there's only one memory region, don't bother */
292 if (*pnr_map < 2)
293 return -1;
295 old_nr = *pnr_map;
297 /* bail out if we find any unreasonable addresses in memmap */
298 for (i = 0; i < old_nr; i++)
299 if (map[i].addr + map[i].size < map[i].addr)
300 return -1;
302 /* create pointers for initial change-point information (for sorting) */
303 for (i = 0; i < 2*old_nr; i++)
304 change_point[i] = &change_point_list[i];
306 /* record all known change-points (starting and ending addresses),
307 omitting those that are for empty memory regions */
308 chgidx = 0;
309 for (i = 0; i < old_nr; i++) {
310 if (map[i].size != 0) {
311 change_point[chgidx]->addr = map[i].addr;
312 change_point[chgidx++]->pentry = &map[i];
313 change_point[chgidx]->addr = map[i].addr + map[i].size;
314 change_point[chgidx++]->pentry = &map[i];
317 chg_nr = chgidx; /* true number of change-points */
319 /* sort change-point list by memory addresses (low -> high) */
320 still_changing = 1;
321 while (still_changing) {
322 still_changing = 0;
323 for (i = 1; i < chg_nr; i++) {
324 /* if <current_addr> > <last_addr>, swap */
325 /* or, if current=<start_addr> & last=<end_addr>, swap */
326 if ((change_point[i]->addr < change_point[i-1]->addr) ||
327 ((change_point[i]->addr == change_point[i-1]->addr) &&
328 (change_point[i]->addr == change_point[i]->pentry->addr) &&
329 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
331 change_tmp = change_point[i];
332 change_point[i] = change_point[i-1];
333 change_point[i-1] = change_tmp;
334 still_changing = 1;
339 /* create a new memmap, removing overlaps */
340 overlap_entries = 0; /* number of entries in the overlap table */
341 new_entry = 0; /* index for creating new memmap entries */
342 last_type = 0; /* start with undefined memory type */
343 last_addr = 0; /* start with 0 as last starting address */
344 /* loop through change-points, determining affect on the new memmap */
345 for (chgidx = 0; chgidx < chg_nr; chgidx++) {
346 /* keep track of all overlapping memmap entries */
347 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
348 /* add map entry to overlap list (> 1 entry implies an overlap) */
349 overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
350 } else {
351 /* remove entry from list (order independent, so swap with last) */
352 for (i = 0; i < overlap_entries; i++) {
353 if (overlap_list[i] == change_point[chgidx]->pentry)
354 overlap_list[i] = overlap_list[overlap_entries-1];
356 overlap_entries--;
358 /* if there are overlapping entries, decide which "type" to use */
359 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
360 current_type = 0;
361 for (i = 0; i < overlap_entries; i++)
362 if (overlap_list[i]->type > current_type)
363 current_type = overlap_list[i]->type;
364 /* continue building up new memmap based on this information */
365 if (current_type != last_type) {
366 if (last_type != 0) {
367 new_map[new_entry].size =
368 change_point[chgidx]->addr - last_addr;
369 /* move forward only if the new size was non-zero */
370 if (new_map[new_entry].size != 0)
371 if (++new_entry >= BFIN_MEMMAP_MAX)
372 break; /* no more space left for new entries */
374 if (current_type != 0) {
375 new_map[new_entry].addr = change_point[chgidx]->addr;
376 new_map[new_entry].type = current_type;
377 last_addr = change_point[chgidx]->addr;
379 last_type = current_type;
382 new_nr = new_entry; /* retain count for new entries */
384 /* copy new mapping into original location */
385 memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
386 *pnr_map = new_nr;
388 return 0;
391 static void __init print_memory_map(char *who)
393 int i;
395 for (i = 0; i < bfin_memmap.nr_map; i++) {
396 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
397 bfin_memmap.map[i].addr,
398 bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
399 switch (bfin_memmap.map[i].type) {
400 case BFIN_MEMMAP_RAM:
401 printk(KERN_CONT "(usable)\n");
402 break;
403 case BFIN_MEMMAP_RESERVED:
404 printk(KERN_CONT "(reserved)\n");
405 break;
406 default:
407 printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
408 break;
413 static __init int parse_memmap(char *arg)
415 unsigned long long start_at, mem_size;
417 if (!arg)
418 return -EINVAL;
420 mem_size = memparse(arg, &arg);
421 if (*arg == '@') {
422 start_at = memparse(arg+1, &arg);
423 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
424 } else if (*arg == '$') {
425 start_at = memparse(arg+1, &arg);
426 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
429 return 0;
433 * Initial parsing of the command line. Currently, we support:
434 * - Controlling the linux memory size: mem=xxx[KMG]
435 * - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
436 * $ -> reserved memory is dcacheable
437 * # -> reserved memory is icacheable
438 * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
439 * @ from <start> to <start>+<mem>, type RAM
440 * $ from <start> to <start>+<mem>, type RESERVED
442 static __init void parse_cmdline_early(char *cmdline_p)
444 char c = ' ', *to = cmdline_p;
445 unsigned int memsize;
446 for (;;) {
447 if (c == ' ') {
448 if (!memcmp(to, "mem=", 4)) {
449 to += 4;
450 memsize = memparse(to, &to);
451 if (memsize)
452 _ramend = memsize;
454 } else if (!memcmp(to, "max_mem=", 8)) {
455 to += 8;
456 memsize = memparse(to, &to);
457 if (memsize) {
458 physical_mem_end = memsize;
459 if (*to != ' ') {
460 if (*to == '$'
461 || *(to + 1) == '$')
462 reserved_mem_dcache_on = 1;
463 if (*to == '#'
464 || *(to + 1) == '#')
465 reserved_mem_icache_on = 1;
468 } else if (!memcmp(to, "clkin_hz=", 9)) {
469 to += 9;
470 early_init_clkin_hz(to);
471 #ifdef CONFIG_EARLY_PRINTK
472 } else if (!memcmp(to, "earlyprintk=", 12)) {
473 to += 12;
474 setup_early_printk(to);
475 #endif
476 } else if (!memcmp(to, "memmap=", 7)) {
477 to += 7;
478 parse_memmap(to);
481 c = *(to++);
482 if (!c)
483 break;
488 * Setup memory defaults from user config.
489 * The physical memory layout looks like:
491 * [_rambase, _ramstart]: kernel image
492 * [memory_start, memory_end]: dynamic memory managed by kernel
493 * [memory_end, _ramend]: reserved memory
494 * [memory_mtd_start(memory_end),
495 * memory_mtd_start + mtd_size]: rootfs (if any)
496 * [_ramend - DMA_UNCACHED_REGION,
497 * _ramend]: uncached DMA region
498 * [_ramend, physical_mem_end]: memory not managed by kernel
500 static __init void memory_setup(void)
502 #ifdef CONFIG_MTD_UCLINUX
503 unsigned long mtd_phys = 0;
504 #endif
505 unsigned long max_mem;
507 _rambase = (unsigned long)_stext;
508 _ramstart = (unsigned long)_end;
510 if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
511 console_init();
512 panic("DMA region exceeds memory limit: %lu.",
513 _ramend - _ramstart);
515 max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
517 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
518 /* Due to a Hardware Anomaly we need to limit the size of usable
519 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
520 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
522 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
523 if (max_mem >= 56 * 1024 * 1024)
524 max_mem = 56 * 1024 * 1024;
525 # else
526 if (max_mem >= 60 * 1024 * 1024)
527 max_mem = 60 * 1024 * 1024;
528 # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
529 #endif /* ANOMALY_05000263 */
532 #ifdef CONFIG_MPU
533 /* Round up to multiple of 4MB */
534 memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
535 #else
536 memory_start = PAGE_ALIGN(_ramstart);
537 #endif
539 #if defined(CONFIG_MTD_UCLINUX)
540 /* generic memory mapped MTD driver */
541 memory_mtd_end = memory_end;
543 mtd_phys = _ramstart;
544 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
546 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
547 if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
548 mtd_size =
549 PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
550 # endif
552 # if defined(CONFIG_CRAMFS)
553 if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
554 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
555 # endif
557 # if defined(CONFIG_ROMFS_FS)
558 if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
559 && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
560 mtd_size =
561 PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
563 /* ROM_FS is XIP, so if we found it, we need to limit memory */
564 if (memory_end > max_mem) {
565 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
566 memory_end = max_mem;
569 # endif /* CONFIG_ROMFS_FS */
571 /* Since the default MTD_UCLINUX has no magic number, we just blindly
572 * read 8 past the end of the kernel's image, and look at it.
573 * When no image is attached, mtd_size is set to a random number
574 * Do some basic sanity checks before operating on things
576 if (mtd_size == 0 || memory_end <= mtd_size) {
577 pr_emerg("Could not find valid ram mtd attached.\n");
578 } else {
579 memory_end -= mtd_size;
581 /* Relocate MTD image to the top of memory after the uncached memory area */
582 uclinux_ram_map.phys = memory_mtd_start = memory_end;
583 uclinux_ram_map.size = mtd_size;
584 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
585 _end, mtd_size, (void *)memory_mtd_start);
586 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
588 #endif /* CONFIG_MTD_UCLINUX */
590 /* We need lo limit memory, since everything could have a text section
591 * of userspace in it, and expose anomaly 05000263. If the anomaly
592 * doesn't exist, or we don't need to - then dont.
594 if (memory_end > max_mem) {
595 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
596 memory_end = max_mem;
599 #ifdef CONFIG_MPU
600 page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
601 page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
602 #endif
604 init_mm.start_code = (unsigned long)_stext;
605 init_mm.end_code = (unsigned long)_etext;
606 init_mm.end_data = (unsigned long)_edata;
607 init_mm.brk = (unsigned long)0;
609 printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
610 printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
612 printk(KERN_INFO "Memory map:\n"
613 " fixedcode = 0x%p-0x%p\n"
614 " text = 0x%p-0x%p\n"
615 " rodata = 0x%p-0x%p\n"
616 " bss = 0x%p-0x%p\n"
617 " data = 0x%p-0x%p\n"
618 " stack = 0x%p-0x%p\n"
619 " init = 0x%p-0x%p\n"
620 " available = 0x%p-0x%p\n"
621 #ifdef CONFIG_MTD_UCLINUX
622 " rootfs = 0x%p-0x%p\n"
623 #endif
624 #if DMA_UNCACHED_REGION > 0
625 " DMA Zone = 0x%p-0x%p\n"
626 #endif
627 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
628 _stext, _etext,
629 __start_rodata, __end_rodata,
630 __bss_start, __bss_stop,
631 _sdata, _edata,
632 (void *)&init_thread_union,
633 (void *)((int)(&init_thread_union) + 0x2000),
634 __init_begin, __init_end,
635 (void *)_ramstart, (void *)memory_end
636 #ifdef CONFIG_MTD_UCLINUX
637 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
638 #endif
639 #if DMA_UNCACHED_REGION > 0
640 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
641 #endif
646 * Find the lowest, highest page frame number we have available
648 void __init find_min_max_pfn(void)
650 int i;
652 max_pfn = 0;
653 min_low_pfn = memory_end;
655 for (i = 0; i < bfin_memmap.nr_map; i++) {
656 unsigned long start, end;
657 /* RAM? */
658 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
659 continue;
660 start = PFN_UP(bfin_memmap.map[i].addr);
661 end = PFN_DOWN(bfin_memmap.map[i].addr +
662 bfin_memmap.map[i].size);
663 if (start >= end)
664 continue;
665 if (end > max_pfn)
666 max_pfn = end;
667 if (start < min_low_pfn)
668 min_low_pfn = start;
672 static __init void setup_bootmem_allocator(void)
674 int bootmap_size;
675 int i;
676 unsigned long start_pfn, end_pfn;
677 unsigned long curr_pfn, last_pfn, size;
679 /* mark memory between memory_start and memory_end usable */
680 add_memory_region(memory_start,
681 memory_end - memory_start, BFIN_MEMMAP_RAM);
682 /* sanity check for overlap */
683 sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
684 print_memory_map("boot memmap");
686 /* initialize globals in linux/bootmem.h */
687 find_min_max_pfn();
688 /* pfn of the last usable page frame */
689 if (max_pfn > memory_end >> PAGE_SHIFT)
690 max_pfn = memory_end >> PAGE_SHIFT;
691 /* pfn of last page frame directly mapped by kernel */
692 max_low_pfn = max_pfn;
693 /* pfn of the first usable page frame after kernel image*/
694 if (min_low_pfn < memory_start >> PAGE_SHIFT)
695 min_low_pfn = memory_start >> PAGE_SHIFT;
697 start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
698 end_pfn = memory_end >> PAGE_SHIFT;
701 * give all the memory to the bootmap allocator, tell it to put the
702 * boot mem_map at the start of memory.
704 bootmap_size = init_bootmem_node(NODE_DATA(0),
705 memory_start >> PAGE_SHIFT, /* map goes here */
706 start_pfn, end_pfn);
708 /* register the memmap regions with the bootmem allocator */
709 for (i = 0; i < bfin_memmap.nr_map; i++) {
711 * Reserve usable memory
713 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
714 continue;
716 * We are rounding up the start address of usable memory:
718 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
719 if (curr_pfn >= end_pfn)
720 continue;
722 * ... and at the end of the usable range downwards:
724 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
725 bfin_memmap.map[i].size);
727 if (last_pfn > end_pfn)
728 last_pfn = end_pfn;
731 * .. finally, did all the rounding and playing
732 * around just make the area go away?
734 if (last_pfn <= curr_pfn)
735 continue;
737 size = last_pfn - curr_pfn;
738 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
741 /* reserve memory before memory_start, including bootmap */
742 reserve_bootmem(PAGE_OFFSET,
743 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
744 BOOTMEM_DEFAULT);
747 #define EBSZ_TO_MEG(ebsz) \
748 ({ \
749 int meg = 0; \
750 switch (ebsz & 0xf) { \
751 case 0x1: meg = 16; break; \
752 case 0x3: meg = 32; break; \
753 case 0x5: meg = 64; break; \
754 case 0x7: meg = 128; break; \
755 case 0x9: meg = 256; break; \
756 case 0xb: meg = 512; break; \
758 meg; \
760 static inline int __init get_mem_size(void)
762 #if defined(EBIU_SDBCTL)
763 # if defined(BF561_FAMILY)
764 int ret = 0;
765 u32 sdbctl = bfin_read_EBIU_SDBCTL();
766 ret += EBSZ_TO_MEG(sdbctl >> 0);
767 ret += EBSZ_TO_MEG(sdbctl >> 8);
768 ret += EBSZ_TO_MEG(sdbctl >> 16);
769 ret += EBSZ_TO_MEG(sdbctl >> 24);
770 return ret;
771 # else
772 return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
773 # endif
774 #elif defined(EBIU_DDRCTL1)
775 u32 ddrctl = bfin_read_EBIU_DDRCTL1();
776 int ret = 0;
777 switch (ddrctl & 0xc0000) {
778 case DEVSZ_64: ret = 64 / 8;
779 case DEVSZ_128: ret = 128 / 8;
780 case DEVSZ_256: ret = 256 / 8;
781 case DEVSZ_512: ret = 512 / 8;
783 switch (ddrctl & 0x30000) {
784 case DEVWD_4: ret *= 2;
785 case DEVWD_8: ret *= 2;
786 case DEVWD_16: break;
788 if ((ddrctl & 0xc000) == 0x4000)
789 ret *= 2;
790 return ret;
791 #endif
792 BUG();
795 void __init setup_arch(char **cmdline_p)
797 unsigned long sclk, cclk;
799 enable_shadow_console();
801 /* Check to make sure we are running on the right processor */
802 if (unlikely(CPUID != bfin_cpuid()))
803 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
804 CPU, bfin_cpuid(), bfin_revid());
806 #ifdef CONFIG_DUMMY_CONSOLE
807 conswitchp = &dummy_con;
808 #endif
810 #if defined(CONFIG_CMDLINE_BOOL)
811 strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
812 command_line[sizeof(command_line) - 1] = 0;
813 #endif
815 /* Keep a copy of command line */
816 *cmdline_p = &command_line[0];
817 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
818 boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
820 memset(&bfin_memmap, 0, sizeof(bfin_memmap));
822 /* If the user does not specify things on the command line, use
823 * what the bootloader set things up as
825 physical_mem_end = 0;
826 parse_cmdline_early(&command_line[0]);
828 if (_ramend == 0)
829 _ramend = get_mem_size() * 1024 * 1024;
831 if (physical_mem_end == 0)
832 physical_mem_end = _ramend;
834 memory_setup();
836 /* Initialize Async memory banks */
837 bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
838 bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
839 bfin_write_EBIU_AMGCTL(AMGCTLVAL);
840 #ifdef CONFIG_EBIU_MBSCTLVAL
841 bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
842 bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
843 bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
844 #endif
846 cclk = get_cclk();
847 sclk = get_sclk();
849 if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
850 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
852 #ifdef BF561_FAMILY
853 if (ANOMALY_05000266) {
854 bfin_read_IMDMA_D0_IRQ_STATUS();
855 bfin_read_IMDMA_D1_IRQ_STATUS();
857 #endif
858 printk(KERN_INFO "Hardware Trace ");
859 if (bfin_read_TBUFCTL() & 0x1)
860 printk(KERN_CONT "Active ");
861 else
862 printk(KERN_CONT "Off ");
863 if (bfin_read_TBUFCTL() & 0x2)
864 printk(KERN_CONT "and Enabled\n");
865 else
866 printk(KERN_CONT "and Disabled\n");
868 printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
870 /* Newer parts mirror SWRST bits in SYSCR */
871 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
872 defined(CONFIG_BF538) || defined(CONFIG_BF539)
873 _bfin_swrst = bfin_read_SWRST();
874 #else
875 /* Clear boot mode field */
876 _bfin_swrst = bfin_read_SYSCR() & ~0xf;
877 #endif
879 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
880 bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
881 #endif
882 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
883 bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
884 #endif
886 #ifdef CONFIG_SMP
887 if (_bfin_swrst & SWRST_DBL_FAULT_A) {
888 #else
889 if (_bfin_swrst & RESET_DOUBLE) {
890 #endif
891 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
892 #ifdef CONFIG_DEBUG_DOUBLEFAULT
893 /* We assume the crashing kernel, and the current symbol table match */
894 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
895 (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
896 printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
897 printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
898 #endif
899 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
900 init_retx);
901 } else if (_bfin_swrst & RESET_WDOG)
902 printk(KERN_INFO "Recovering from Watchdog event\n");
903 else if (_bfin_swrst & RESET_SOFTWARE)
904 printk(KERN_NOTICE "Reset caused by Software reset\n");
906 printk(KERN_INFO "Blackfin support (C) 2004-2009 Analog Devices, Inc.\n");
907 if (bfin_compiled_revid() == 0xffff)
908 printk(KERN_INFO "Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU, bfin_revid());
909 else if (bfin_compiled_revid() == -1)
910 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
911 else
912 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
914 if (likely(CPUID == bfin_cpuid())) {
915 if (bfin_revid() != bfin_compiled_revid()) {
916 if (bfin_compiled_revid() == -1)
917 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
918 bfin_revid());
919 else if (bfin_compiled_revid() != 0xffff) {
920 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
921 bfin_compiled_revid(), bfin_revid());
922 if (bfin_compiled_revid() > bfin_revid())
923 panic("Error: you are missing anomaly workarounds for this rev");
926 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
927 printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
928 CPU, bfin_revid());
931 printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
933 printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
934 cclk / 1000000, sclk / 1000000);
936 setup_bootmem_allocator();
938 paging_init();
940 /* Copy atomic sequences to their fixed location, and sanity check that
941 these locations are the ones that we advertise to userspace. */
942 memcpy((void *)FIXED_CODE_START, &fixed_code_start,
943 FIXED_CODE_END - FIXED_CODE_START);
944 BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
945 != SIGRETURN_STUB - FIXED_CODE_START);
946 BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
947 != ATOMIC_XCHG32 - FIXED_CODE_START);
948 BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
949 != ATOMIC_CAS32 - FIXED_CODE_START);
950 BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
951 != ATOMIC_ADD32 - FIXED_CODE_START);
952 BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
953 != ATOMIC_SUB32 - FIXED_CODE_START);
954 BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
955 != ATOMIC_IOR32 - FIXED_CODE_START);
956 BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
957 != ATOMIC_AND32 - FIXED_CODE_START);
958 BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
959 != ATOMIC_XOR32 - FIXED_CODE_START);
960 BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
961 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
963 #ifdef CONFIG_SMP
964 platform_init_cpus();
965 #endif
966 init_exception_vectors();
967 bfin_cache_init(); /* Initialize caches for the boot CPU */
970 static int __init topology_init(void)
972 unsigned int cpu;
973 /* Record CPU-private information for the boot processor. */
974 bfin_setup_cpudata(0);
976 for_each_possible_cpu(cpu) {
977 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
980 return 0;
983 subsys_initcall(topology_init);
985 /* Get the input clock frequency */
986 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
987 static u_long get_clkin_hz(void)
989 return cached_clkin_hz;
991 static int __init early_init_clkin_hz(char *buf)
993 cached_clkin_hz = simple_strtoul(buf, NULL, 0);
994 #ifdef BFIN_KERNEL_CLOCK
995 if (cached_clkin_hz != CONFIG_CLKIN_HZ)
996 panic("cannot change clkin_hz when reprogramming clocks");
997 #endif
998 return 1;
1000 early_param("clkin_hz=", early_init_clkin_hz);
1002 /* Get the voltage input multiplier */
1003 static u_long get_vco(void)
1005 static u_long cached_vco;
1006 u_long msel, pll_ctl;
1008 /* The assumption here is that VCO never changes at runtime.
1009 * If, someday, we support that, then we'll have to change this.
1011 if (cached_vco)
1012 return cached_vco;
1014 pll_ctl = bfin_read_PLL_CTL();
1015 msel = (pll_ctl >> 9) & 0x3F;
1016 if (0 == msel)
1017 msel = 64;
1019 cached_vco = get_clkin_hz();
1020 cached_vco >>= (1 & pll_ctl); /* DF bit */
1021 cached_vco *= msel;
1022 return cached_vco;
1025 /* Get the Core clock */
1026 u_long get_cclk(void)
1028 static u_long cached_cclk_pll_div, cached_cclk;
1029 u_long csel, ssel;
1031 if (bfin_read_PLL_STAT() & 0x1)
1032 return get_clkin_hz();
1034 ssel = bfin_read_PLL_DIV();
1035 if (ssel == cached_cclk_pll_div)
1036 return cached_cclk;
1037 else
1038 cached_cclk_pll_div = ssel;
1040 csel = ((ssel >> 4) & 0x03);
1041 ssel &= 0xf;
1042 if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1043 cached_cclk = get_vco() / ssel;
1044 else
1045 cached_cclk = get_vco() >> csel;
1046 return cached_cclk;
1048 EXPORT_SYMBOL(get_cclk);
1050 /* Get the System clock */
1051 u_long get_sclk(void)
1053 static u_long cached_sclk;
1054 u_long ssel;
1056 /* The assumption here is that SCLK never changes at runtime.
1057 * If, someday, we support that, then we'll have to change this.
1059 if (cached_sclk)
1060 return cached_sclk;
1062 if (bfin_read_PLL_STAT() & 0x1)
1063 return get_clkin_hz();
1065 ssel = bfin_read_PLL_DIV() & 0xf;
1066 if (0 == ssel) {
1067 printk(KERN_WARNING "Invalid System Clock\n");
1068 ssel = 1;
1071 cached_sclk = get_vco() / ssel;
1072 return cached_sclk;
1074 EXPORT_SYMBOL(get_sclk);
1076 unsigned long sclk_to_usecs(unsigned long sclk)
1078 u64 tmp = USEC_PER_SEC * (u64)sclk;
1079 do_div(tmp, get_sclk());
1080 return tmp;
1082 EXPORT_SYMBOL(sclk_to_usecs);
1084 unsigned long usecs_to_sclk(unsigned long usecs)
1086 u64 tmp = get_sclk() * (u64)usecs;
1087 do_div(tmp, USEC_PER_SEC);
1088 return tmp;
1090 EXPORT_SYMBOL(usecs_to_sclk);
1093 * Get CPU information for use by the procfs.
1095 static int show_cpuinfo(struct seq_file *m, void *v)
1097 char *cpu, *mmu, *fpu, *vendor, *cache;
1098 uint32_t revid;
1099 int cpu_num = *(unsigned int *)v;
1100 u_long sclk, cclk;
1101 u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1102 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1104 cpu = CPU;
1105 mmu = "none";
1106 fpu = "none";
1107 revid = bfin_revid();
1109 sclk = get_sclk();
1110 cclk = get_cclk();
1112 switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1113 case 0xca:
1114 vendor = "Analog Devices";
1115 break;
1116 default:
1117 vendor = "unknown";
1118 break;
1121 seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1123 if (CPUID == bfin_cpuid())
1124 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1125 else
1126 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1127 CPUID, bfin_cpuid());
1129 seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1130 "stepping\t: %d ",
1131 cpu, cclk/1000000, sclk/1000000,
1132 #ifdef CONFIG_MPU
1133 "mpu on",
1134 #else
1135 "mpu off",
1136 #endif
1137 revid);
1139 if (bfin_revid() != bfin_compiled_revid()) {
1140 if (bfin_compiled_revid() == -1)
1141 seq_printf(m, "(Compiled for Rev none)");
1142 else if (bfin_compiled_revid() == 0xffff)
1143 seq_printf(m, "(Compiled for Rev any)");
1144 else
1145 seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1148 seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1149 cclk/1000000, cclk%1000000,
1150 sclk/1000000, sclk%1000000);
1151 seq_printf(m, "bogomips\t: %lu.%02lu\n"
1152 "Calibration\t: %lu loops\n",
1153 (loops_per_jiffy * HZ) / 500000,
1154 ((loops_per_jiffy * HZ) / 5000) % 100,
1155 (loops_per_jiffy * HZ));
1157 /* Check Cache configutation */
1158 switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1159 case ACACHE_BSRAM:
1160 cache = "dbank-A/B\t: cache/sram";
1161 dcache_size = 16;
1162 dsup_banks = 1;
1163 break;
1164 case ACACHE_BCACHE:
1165 cache = "dbank-A/B\t: cache/cache";
1166 dcache_size = 32;
1167 dsup_banks = 2;
1168 break;
1169 case ASRAM_BSRAM:
1170 cache = "dbank-A/B\t: sram/sram";
1171 dcache_size = 0;
1172 dsup_banks = 0;
1173 break;
1174 default:
1175 cache = "unknown";
1176 dcache_size = 0;
1177 dsup_banks = 0;
1178 break;
1181 /* Is it turned on? */
1182 if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1183 dcache_size = 0;
1185 if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1186 icache_size = 0;
1188 seq_printf(m, "cache size\t: %d KB(L1 icache) "
1189 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1190 icache_size, dcache_size, 0);
1191 seq_printf(m, "%s\n", cache);
1192 seq_printf(m, "external memory\t: "
1193 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1194 "cacheable"
1195 #else
1196 "uncacheable"
1197 #endif
1198 " in instruction cache\n");
1199 seq_printf(m, "external memory\t: "
1200 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1201 "cacheable (write-back)"
1202 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1203 "cacheable (write-through)"
1204 #else
1205 "uncacheable"
1206 #endif
1207 " in data cache\n");
1209 if (icache_size)
1210 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1211 BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1212 else
1213 seq_printf(m, "icache setup\t: off\n");
1215 seq_printf(m,
1216 "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1217 dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1218 BFIN_DLINES);
1219 #ifdef __ARCH_SYNC_CORE_DCACHE
1220 seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count);
1221 #endif
1222 #ifdef __ARCH_SYNC_CORE_ICACHE
1223 seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", cpudata->icache_invld_count);
1224 #endif
1226 if (cpu_num != num_possible_cpus() - 1)
1227 return 0;
1229 if (L2_LENGTH) {
1230 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1231 seq_printf(m, "L2 SRAM\t\t: "
1232 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1233 "cacheable"
1234 #else
1235 "uncacheable"
1236 #endif
1237 " in instruction cache\n");
1238 seq_printf(m, "L2 SRAM\t\t: "
1239 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1240 "cacheable (write-back)"
1241 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1242 "cacheable (write-through)"
1243 #else
1244 "uncacheable"
1245 #endif
1246 " in data cache\n");
1248 seq_printf(m, "board name\t: %s\n", bfin_board_name);
1249 seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1250 physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1251 seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1252 ((int)memory_end - (int)_stext) >> 10,
1253 _stext,
1254 (void *)memory_end);
1255 seq_printf(m, "\n");
1257 return 0;
1260 static void *c_start(struct seq_file *m, loff_t *pos)
1262 if (*pos == 0)
1263 *pos = first_cpu(cpu_online_map);
1264 if (*pos >= num_online_cpus())
1265 return NULL;
1267 return pos;
1270 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1272 *pos = next_cpu(*pos, cpu_online_map);
1274 return c_start(m, pos);
1277 static void c_stop(struct seq_file *m, void *v)
1281 const struct seq_operations cpuinfo_op = {
1282 .start = c_start,
1283 .next = c_next,
1284 .stop = c_stop,
1285 .show = show_cpuinfo,
1288 void __init cmdline_init(const char *r0)
1290 early_shadow_stamp();
1291 if (r0)
1292 strncpy(command_line, r0, COMMAND_LINE_SIZE);