ar9170: load firmware asynchronously
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / blackfin / kernel / process.c
blobb56b0e485e0bb3e8cb5e0ad79575d8e5eefad6de
1 /*
2 * Blackfin architecture-dependent process handling
4 * Copyright 2004-2009 Analog Devices Inc.
6 * Licensed under the GPL-2 or later
7 */
9 #include <linux/module.h>
10 #include <linux/smp_lock.h>
11 #include <linux/unistd.h>
12 #include <linux/user.h>
13 #include <linux/uaccess.h>
14 #include <linux/sched.h>
15 #include <linux/tick.h>
16 #include <linux/fs.h>
17 #include <linux/err.h>
19 #include <asm/blackfin.h>
20 #include <asm/fixed_code.h>
21 #include <asm/mem_map.h>
23 asmlinkage void ret_from_fork(void);
25 /* Points to the SDRAM backup memory for the stack that is currently in
26 * L1 scratchpad memory.
28 void *current_l1_stack_save;
30 /* The number of tasks currently using a L1 stack area. The SRAM is
31 * allocated/deallocated whenever this changes from/to zero.
33 int nr_l1stack_tasks;
35 /* Start and length of the area in L1 scratchpad memory which we've allocated
36 * for process stacks.
38 void *l1_stack_base;
39 unsigned long l1_stack_len;
42 * Powermanagement idle function, if any..
44 void (*pm_idle)(void) = NULL;
45 EXPORT_SYMBOL(pm_idle);
47 void (*pm_power_off)(void) = NULL;
48 EXPORT_SYMBOL(pm_power_off);
51 * The idle loop on BFIN
53 #ifdef CONFIG_IDLE_L1
54 static void default_idle(void)__attribute__((l1_text));
55 void cpu_idle(void)__attribute__((l1_text));
56 #endif
59 * This is our default idle handler. We need to disable
60 * interrupts here to ensure we don't miss a wakeup call.
62 static void default_idle(void)
64 #ifdef CONFIG_IPIPE
65 ipipe_suspend_domain();
66 #endif
67 local_irq_disable_hw();
68 if (!need_resched())
69 idle_with_irq_disabled();
71 local_irq_enable_hw();
75 * The idle thread. We try to conserve power, while trying to keep
76 * overall latency low. The architecture specific idle is passed
77 * a value to indicate the level of "idleness" of the system.
79 void cpu_idle(void)
81 /* endless idle loop with no priority at all */
82 while (1) {
83 void (*idle)(void) = pm_idle;
85 #ifdef CONFIG_HOTPLUG_CPU
86 if (cpu_is_offline(smp_processor_id()))
87 cpu_die();
88 #endif
89 if (!idle)
90 idle = default_idle;
91 tick_nohz_stop_sched_tick(1);
92 while (!need_resched())
93 idle();
94 tick_nohz_restart_sched_tick();
95 preempt_enable_no_resched();
96 schedule();
97 preempt_disable();
101 /* Fill in the fpu structure for a core dump. */
103 int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpregs)
105 return 1;
109 * This gets run with P1 containing the
110 * function to call, and R1 containing
111 * the "args". Note P0 is clobbered on the way here.
113 void kernel_thread_helper(void);
114 __asm__(".section .text\n"
115 ".align 4\n"
116 "_kernel_thread_helper:\n\t"
117 "\tsp += -12;\n\t"
118 "\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous");
121 * Create a kernel thread.
123 pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
125 struct pt_regs regs;
127 memset(&regs, 0, sizeof(regs));
129 regs.r1 = (unsigned long)arg;
130 regs.p1 = (unsigned long)fn;
131 regs.pc = (unsigned long)kernel_thread_helper;
132 regs.orig_p0 = -1;
133 /* Set bit 2 to tell ret_from_fork we should be returning to kernel
134 mode. */
135 regs.ipend = 0x8002;
136 __asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):);
137 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL,
138 NULL);
140 EXPORT_SYMBOL(kernel_thread);
143 * Do necessary setup to start up a newly executed thread.
145 * pass the data segment into user programs if it exists,
146 * it can't hurt anything as far as I can tell
148 void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
150 set_fs(USER_DS);
151 regs->pc = new_ip;
152 if (current->mm)
153 regs->p5 = current->mm->start_data;
154 #ifndef CONFIG_SMP
155 task_thread_info(current)->l1_task_info.stack_start =
156 (void *)current->mm->context.stack_start;
157 task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
158 memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
159 sizeof(*L1_SCRATCH_TASK_INFO));
160 #endif
161 wrusp(new_sp);
163 EXPORT_SYMBOL_GPL(start_thread);
165 void flush_thread(void)
169 asmlinkage int bfin_vfork(struct pt_regs *regs)
171 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL,
172 NULL);
175 asmlinkage int bfin_clone(struct pt_regs *regs)
177 unsigned long clone_flags;
178 unsigned long newsp;
180 #ifdef __ARCH_SYNC_CORE_DCACHE
181 if (current->rt.nr_cpus_allowed == num_possible_cpus()) {
182 current->cpus_allowed = cpumask_of_cpu(smp_processor_id());
183 current->rt.nr_cpus_allowed = 1;
185 #endif
187 /* syscall2 puts clone_flags in r0 and usp in r1 */
188 clone_flags = regs->r0;
189 newsp = regs->r1;
190 if (!newsp)
191 newsp = rdusp();
192 else
193 newsp -= 12;
194 return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
198 copy_thread(unsigned long clone_flags,
199 unsigned long usp, unsigned long topstk,
200 struct task_struct *p, struct pt_regs *regs)
202 struct pt_regs *childregs;
204 childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
205 *childregs = *regs;
206 childregs->r0 = 0;
208 p->thread.usp = usp;
209 p->thread.ksp = (unsigned long)childregs;
210 p->thread.pc = (unsigned long)ret_from_fork;
212 return 0;
216 * sys_execve() executes a new program.
218 asmlinkage int sys_execve(char __user *name, char __user * __user *argv, char __user * __user *envp)
220 int error;
221 char *filename;
222 struct pt_regs *regs = (struct pt_regs *)((&name) + 6);
224 filename = getname(name);
225 error = PTR_ERR(filename);
226 if (IS_ERR(filename))
227 return error;
228 error = do_execve(filename, argv, envp, regs);
229 putname(filename);
230 return error;
233 unsigned long get_wchan(struct task_struct *p)
235 unsigned long fp, pc;
236 unsigned long stack_page;
237 int count = 0;
238 if (!p || p == current || p->state == TASK_RUNNING)
239 return 0;
241 stack_page = (unsigned long)p;
242 fp = p->thread.usp;
243 do {
244 if (fp < stack_page + sizeof(struct thread_info) ||
245 fp >= 8184 + stack_page)
246 return 0;
247 pc = ((unsigned long *)fp)[1];
248 if (!in_sched_functions(pc))
249 return pc;
250 fp = *(unsigned long *)fp;
252 while (count++ < 16);
253 return 0;
256 void finish_atomic_sections (struct pt_regs *regs)
258 int __user *up0 = (int __user *)regs->p0;
260 switch (regs->pc) {
261 default:
262 /* not in middle of an atomic step, so resume like normal */
263 return;
265 case ATOMIC_XCHG32 + 2:
266 put_user(regs->r1, up0);
267 break;
269 case ATOMIC_CAS32 + 2:
270 case ATOMIC_CAS32 + 4:
271 if (regs->r0 == regs->r1)
272 case ATOMIC_CAS32 + 6:
273 put_user(regs->r2, up0);
274 break;
276 case ATOMIC_ADD32 + 2:
277 regs->r0 = regs->r1 + regs->r0;
278 /* fall through */
279 case ATOMIC_ADD32 + 4:
280 put_user(regs->r0, up0);
281 break;
283 case ATOMIC_SUB32 + 2:
284 regs->r0 = regs->r1 - regs->r0;
285 /* fall through */
286 case ATOMIC_SUB32 + 4:
287 put_user(regs->r0, up0);
288 break;
290 case ATOMIC_IOR32 + 2:
291 regs->r0 = regs->r1 | regs->r0;
292 /* fall through */
293 case ATOMIC_IOR32 + 4:
294 put_user(regs->r0, up0);
295 break;
297 case ATOMIC_AND32 + 2:
298 regs->r0 = regs->r1 & regs->r0;
299 /* fall through */
300 case ATOMIC_AND32 + 4:
301 put_user(regs->r0, up0);
302 break;
304 case ATOMIC_XOR32 + 2:
305 regs->r0 = regs->r1 ^ regs->r0;
306 /* fall through */
307 case ATOMIC_XOR32 + 4:
308 put_user(regs->r0, up0);
309 break;
313 * We've finished the atomic section, and the only thing left for
314 * userspace is to do a RTS, so we might as well handle that too
315 * since we need to update the PC anyways.
317 regs->pc = regs->rets;
320 static inline
321 int in_mem(unsigned long addr, unsigned long size,
322 unsigned long start, unsigned long end)
324 return addr >= start && addr + size <= end;
326 static inline
327 int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
328 unsigned long const_addr, unsigned long const_size)
330 return const_size &&
331 in_mem(addr, size, const_addr + off, const_addr + const_size);
333 static inline
334 int in_mem_const(unsigned long addr, unsigned long size,
335 unsigned long const_addr, unsigned long const_size)
337 return in_mem_const_off(addr, size, 0, const_addr, const_size);
339 #define ASYNC_ENABLED(bnum, bctlnum) \
340 ({ \
341 (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
342 bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
343 1; \
346 * We can't read EBIU banks that aren't enabled or we end up hanging
347 * on the access to the async space. Make sure we validate accesses
348 * that cross async banks too.
349 * 0 - found, but unusable
350 * 1 - found & usable
351 * 2 - not found
353 static
354 int in_async(unsigned long addr, unsigned long size)
356 if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
357 if (!ASYNC_ENABLED(0, 0))
358 return 0;
359 if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
360 return 1;
361 size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
362 addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
364 if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
365 if (!ASYNC_ENABLED(1, 0))
366 return 0;
367 if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
368 return 1;
369 size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
370 addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
372 if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
373 if (!ASYNC_ENABLED(2, 1))
374 return 0;
375 if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
376 return 1;
377 size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
378 addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
380 if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
381 if (ASYNC_ENABLED(3, 1))
382 return 0;
383 if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
384 return 1;
385 return 0;
388 /* not within async bounds */
389 return 2;
392 int bfin_mem_access_type(unsigned long addr, unsigned long size)
394 int cpu = raw_smp_processor_id();
396 /* Check that things do not wrap around */
397 if (addr > ULONG_MAX - size)
398 return -EFAULT;
400 if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
401 return BFIN_MEM_ACCESS_CORE;
403 if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
404 return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
405 if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
406 return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
407 if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
408 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
409 if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
410 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
411 #ifdef COREB_L1_CODE_START
412 if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
413 return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
414 if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
415 return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
416 if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
417 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
418 if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
419 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
420 #endif
421 if (in_mem_const(addr, size, L2_START, L2_LENGTH))
422 return BFIN_MEM_ACCESS_CORE;
424 if (addr >= SYSMMR_BASE)
425 return BFIN_MEM_ACCESS_CORE_ONLY;
427 switch (in_async(addr, size)) {
428 case 0: return -EFAULT;
429 case 1: return BFIN_MEM_ACCESS_CORE;
430 case 2: /* fall through */;
433 if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
434 return BFIN_MEM_ACCESS_CORE;
435 if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
436 return BFIN_MEM_ACCESS_DMA;
438 return -EFAULT;
441 #if defined(CONFIG_ACCESS_CHECK)
442 #ifdef CONFIG_ACCESS_OK_L1
443 __attribute__((l1_text))
444 #endif
445 /* Return 1 if access to memory range is OK, 0 otherwise */
446 int _access_ok(unsigned long addr, unsigned long size)
448 int aret;
450 if (size == 0)
451 return 1;
452 /* Check that things do not wrap around */
453 if (addr > ULONG_MAX - size)
454 return 0;
455 if (segment_eq(get_fs(), KERNEL_DS))
456 return 1;
457 #ifdef CONFIG_MTD_UCLINUX
458 if (1)
459 #else
460 if (0)
461 #endif
463 if (in_mem(addr, size, memory_start, memory_end))
464 return 1;
465 if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
466 return 1;
467 # ifndef CONFIG_ROMFS_ON_MTD
468 if (0)
469 # endif
470 /* For XIP, allow user space to use pointers within the ROMFS. */
471 if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
472 return 1;
473 } else {
474 if (in_mem(addr, size, memory_start, physical_mem_end))
475 return 1;
478 if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
479 return 1;
481 if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
482 return 1;
483 if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
484 return 1;
485 if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
486 return 1;
487 if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
488 return 1;
489 #ifdef COREB_L1_CODE_START
490 if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
491 return 1;
492 if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
493 return 1;
494 if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
495 return 1;
496 if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
497 return 1;
498 #endif
500 aret = in_async(addr, size);
501 if (aret < 2)
502 return aret;
504 if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
505 return 1;
507 if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
508 return 1;
509 if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
510 return 1;
512 return 0;
514 EXPORT_SYMBOL(_access_ok);
515 #endif /* CONFIG_ACCESS_CHECK */