ar9170: load firmware asynchronously
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / blackfin / kernel / bfin_dma_5xx.c
blob924c00286bab84d87611bc8896df9ba85806fd09
1 /*
2 * bfin_dma_5xx.c - Blackfin DMA implementation
4 * Copyright 2004-2008 Analog Devices Inc.
6 * Licensed under the GPL-2 or later.
7 */
9 #include <linux/errno.h>
10 #include <linux/interrupt.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/param.h>
14 #include <linux/proc_fs.h>
15 #include <linux/sched.h>
16 #include <linux/seq_file.h>
17 #include <linux/spinlock.h>
19 #include <asm/blackfin.h>
20 #include <asm/cacheflush.h>
21 #include <asm/dma.h>
22 #include <asm/uaccess.h>
23 #include <asm/early_printk.h>
26 * To make sure we work around 05000119 - we always check DMA_DONE bit,
27 * never the DMA_RUN bit
30 struct dma_channel dma_ch[MAX_DMA_CHANNELS];
31 EXPORT_SYMBOL(dma_ch);
33 static int __init blackfin_dma_init(void)
35 int i;
37 printk(KERN_INFO "Blackfin DMA Controller\n");
39 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
40 atomic_set(&dma_ch[i].chan_status, 0);
41 dma_ch[i].regs = dma_io_base_addr[i];
43 /* Mark MEMDMA Channel 0 as requested since we're using it internally */
44 request_dma(CH_MEM_STREAM0_DEST, "Blackfin dma_memcpy");
45 request_dma(CH_MEM_STREAM0_SRC, "Blackfin dma_memcpy");
47 #if defined(CONFIG_DEB_DMA_URGENT)
48 bfin_write_EBIU_DDRQUE(bfin_read_EBIU_DDRQUE()
49 | DEB1_URGENT | DEB2_URGENT | DEB3_URGENT);
50 #endif
52 return 0;
54 arch_initcall(blackfin_dma_init);
56 #ifdef CONFIG_PROC_FS
57 static int proc_dma_show(struct seq_file *m, void *v)
59 int i;
61 for (i = 0; i < MAX_DMA_CHANNELS; ++i)
62 if (dma_channel_active(i))
63 seq_printf(m, "%2d: %s\n", i, dma_ch[i].device_id);
65 return 0;
68 static int proc_dma_open(struct inode *inode, struct file *file)
70 return single_open(file, proc_dma_show, NULL);
73 static const struct file_operations proc_dma_operations = {
74 .open = proc_dma_open,
75 .read = seq_read,
76 .llseek = seq_lseek,
77 .release = single_release,
80 static int __init proc_dma_init(void)
82 return proc_create("dma", 0, NULL, &proc_dma_operations) != NULL;
84 late_initcall(proc_dma_init);
85 #endif
87 /**
88 * request_dma - request a DMA channel
90 * Request the specific DMA channel from the system if it's available.
92 int request_dma(unsigned int channel, const char *device_id)
94 pr_debug("request_dma() : BEGIN \n");
96 if (device_id == NULL)
97 printk(KERN_WARNING "request_dma(%u): no device_id given\n", channel);
99 #if defined(CONFIG_BF561) && ANOMALY_05000182
100 if (channel >= CH_IMEM_STREAM0_DEST && channel <= CH_IMEM_STREAM1_DEST) {
101 if (get_cclk() > 500000000) {
102 printk(KERN_WARNING
103 "Request IMDMA failed due to ANOMALY 05000182\n");
104 return -EFAULT;
107 #endif
109 if (atomic_cmpxchg(&dma_ch[channel].chan_status, 0, 1)) {
110 pr_debug("DMA CHANNEL IN USE \n");
111 return -EBUSY;
114 #ifdef CONFIG_BF54x
115 if (channel >= CH_UART2_RX && channel <= CH_UART3_TX) {
116 unsigned int per_map;
117 per_map = dma_ch[channel].regs->peripheral_map & 0xFFF;
118 if (strncmp(device_id, "BFIN_UART", 9) == 0)
119 dma_ch[channel].regs->peripheral_map = per_map |
120 ((channel - CH_UART2_RX + 0xC)<<12);
121 else
122 dma_ch[channel].regs->peripheral_map = per_map |
123 ((channel - CH_UART2_RX + 0x6)<<12);
125 #endif
127 dma_ch[channel].device_id = device_id;
128 dma_ch[channel].irq = 0;
130 /* This is to be enabled by putting a restriction -
131 * you have to request DMA, before doing any operations on
132 * descriptor/channel
134 pr_debug("request_dma() : END \n");
135 return 0;
137 EXPORT_SYMBOL(request_dma);
139 int set_dma_callback(unsigned int channel, irq_handler_t callback, void *data)
141 int ret;
142 unsigned int irq;
144 BUG_ON(channel >= MAX_DMA_CHANNELS || !callback ||
145 !atomic_read(&dma_ch[channel].chan_status));
147 irq = channel2irq(channel);
148 ret = request_irq(irq, callback, 0, dma_ch[channel].device_id, data);
149 if (ret)
150 return ret;
152 dma_ch[channel].irq = irq;
153 dma_ch[channel].data = data;
155 return 0;
157 EXPORT_SYMBOL(set_dma_callback);
160 * clear_dma_buffer - clear DMA fifos for specified channel
162 * Set the Buffer Clear bit in the Configuration register of specific DMA
163 * channel. This will stop the descriptor based DMA operation.
165 static void clear_dma_buffer(unsigned int channel)
167 dma_ch[channel].regs->cfg |= RESTART;
168 SSYNC();
169 dma_ch[channel].regs->cfg &= ~RESTART;
172 void free_dma(unsigned int channel)
174 pr_debug("freedma() : BEGIN \n");
175 BUG_ON(channel >= MAX_DMA_CHANNELS ||
176 !atomic_read(&dma_ch[channel].chan_status));
178 /* Halt the DMA */
179 disable_dma(channel);
180 clear_dma_buffer(channel);
182 if (dma_ch[channel].irq)
183 free_irq(dma_ch[channel].irq, dma_ch[channel].data);
185 /* Clear the DMA Variable in the Channel */
186 atomic_set(&dma_ch[channel].chan_status, 0);
188 pr_debug("freedma() : END \n");
190 EXPORT_SYMBOL(free_dma);
192 #ifdef CONFIG_PM
193 # ifndef MAX_DMA_SUSPEND_CHANNELS
194 # define MAX_DMA_SUSPEND_CHANNELS MAX_DMA_CHANNELS
195 # endif
196 int blackfin_dma_suspend(void)
198 int i;
200 for (i = 0; i < MAX_DMA_CHANNELS; ++i) {
201 if (dma_ch[i].regs->cfg & DMAEN) {
202 printk(KERN_ERR "DMA Channel %d failed to suspend\n", i);
203 return -EBUSY;
206 if (i < MAX_DMA_SUSPEND_CHANNELS)
207 dma_ch[i].saved_peripheral_map = dma_ch[i].regs->peripheral_map;
210 return 0;
213 void blackfin_dma_resume(void)
215 int i;
217 for (i = 0; i < MAX_DMA_CHANNELS; ++i) {
218 dma_ch[i].regs->cfg = 0;
220 if (i < MAX_DMA_SUSPEND_CHANNELS)
221 dma_ch[i].regs->peripheral_map = dma_ch[i].saved_peripheral_map;
224 #endif
227 * blackfin_dma_early_init - minimal DMA init
229 * Setup a few DMA registers so we can safely do DMA transfers early on in
230 * the kernel booting process. Really this just means using dma_memcpy().
232 void __init blackfin_dma_early_init(void)
234 early_shadow_stamp();
235 bfin_write_MDMA_S0_CONFIG(0);
236 bfin_write_MDMA_S1_CONFIG(0);
239 void __init early_dma_memcpy(void *pdst, const void *psrc, size_t size)
241 unsigned long dst = (unsigned long)pdst;
242 unsigned long src = (unsigned long)psrc;
243 struct dma_register *dst_ch, *src_ch;
245 early_shadow_stamp();
247 /* We assume that everything is 4 byte aligned, so include
248 * a basic sanity check
250 BUG_ON(dst % 4);
251 BUG_ON(src % 4);
252 BUG_ON(size % 4);
254 src_ch = 0;
255 /* Find an avalible memDMA channel */
256 while (1) {
257 if (src_ch == (struct dma_register *)MDMA_S0_NEXT_DESC_PTR) {
258 dst_ch = (struct dma_register *)MDMA_D1_NEXT_DESC_PTR;
259 src_ch = (struct dma_register *)MDMA_S1_NEXT_DESC_PTR;
260 } else {
261 dst_ch = (struct dma_register *)MDMA_D0_NEXT_DESC_PTR;
262 src_ch = (struct dma_register *)MDMA_S0_NEXT_DESC_PTR;
265 if (!bfin_read16(&src_ch->cfg))
266 break;
267 else if (bfin_read16(&dst_ch->irq_status) & DMA_DONE) {
268 bfin_write16(&src_ch->cfg, 0);
269 break;
273 /* Force a sync in case a previous config reset on this channel
274 * occurred. This is needed so subsequent writes to DMA registers
275 * are not spuriously lost/corrupted.
277 __builtin_bfin_ssync();
279 /* Destination */
280 bfin_write32(&dst_ch->start_addr, dst);
281 bfin_write16(&dst_ch->x_count, size >> 2);
282 bfin_write16(&dst_ch->x_modify, 1 << 2);
283 bfin_write16(&dst_ch->irq_status, DMA_DONE | DMA_ERR);
285 /* Source */
286 bfin_write32(&src_ch->start_addr, src);
287 bfin_write16(&src_ch->x_count, size >> 2);
288 bfin_write16(&src_ch->x_modify, 1 << 2);
289 bfin_write16(&src_ch->irq_status, DMA_DONE | DMA_ERR);
291 /* Enable */
292 bfin_write16(&src_ch->cfg, DMAEN | WDSIZE_32);
293 bfin_write16(&dst_ch->cfg, WNR | DI_EN | DMAEN | WDSIZE_32);
295 /* Since we are atomic now, don't use the workaround ssync */
296 __builtin_bfin_ssync();
299 void __init early_dma_memcpy_done(void)
301 early_shadow_stamp();
303 while ((bfin_read_MDMA_S0_CONFIG() && !(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE)) ||
304 (bfin_read_MDMA_S1_CONFIG() && !(bfin_read_MDMA_D1_IRQ_STATUS() & DMA_DONE)))
305 continue;
307 bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
308 bfin_write_MDMA_D1_IRQ_STATUS(DMA_DONE | DMA_ERR);
310 * Now that DMA is done, we would normally flush cache, but
311 * i/d cache isn't running this early, so we don't bother,
312 * and just clear out the DMA channel for next time
314 bfin_write_MDMA_S0_CONFIG(0);
315 bfin_write_MDMA_S1_CONFIG(0);
316 bfin_write_MDMA_D0_CONFIG(0);
317 bfin_write_MDMA_D1_CONFIG(0);
319 __builtin_bfin_ssync();
323 * __dma_memcpy - program the MDMA registers
325 * Actually program MDMA0 and wait for the transfer to finish. Disable IRQs
326 * while programming registers so that everything is fully configured. Wait
327 * for DMA to finish with IRQs enabled. If interrupted, the initial DMA_DONE
328 * check will make sure we don't clobber any existing transfer.
330 static void __dma_memcpy(u32 daddr, s16 dmod, u32 saddr, s16 smod, size_t cnt, u32 conf)
332 static DEFINE_SPINLOCK(mdma_lock);
333 unsigned long flags;
335 spin_lock_irqsave(&mdma_lock, flags);
337 /* Force a sync in case a previous config reset on this channel
338 * occurred. This is needed so subsequent writes to DMA registers
339 * are not spuriously lost/corrupted. Do it under irq lock and
340 * without the anomaly version (because we are atomic already).
342 __builtin_bfin_ssync();
344 if (bfin_read_MDMA_S0_CONFIG())
345 while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE))
346 continue;
348 if (conf & DMA2D) {
349 /* For larger bit sizes, we've already divided down cnt so it
350 * is no longer a multiple of 64k. So we have to break down
351 * the limit here so it is a multiple of the incoming size.
352 * There is no limitation here in terms of total size other
353 * than the hardware though as the bits lost in the shift are
354 * made up by MODIFY (== we can hit the whole address space).
355 * X: (2^(16 - 0)) * 1 == (2^(16 - 1)) * 2 == (2^(16 - 2)) * 4
357 u32 shift = abs(dmod) >> 1;
358 size_t ycnt = cnt >> (16 - shift);
359 cnt = 1 << (16 - shift);
360 bfin_write_MDMA_D0_Y_COUNT(ycnt);
361 bfin_write_MDMA_S0_Y_COUNT(ycnt);
362 bfin_write_MDMA_D0_Y_MODIFY(dmod);
363 bfin_write_MDMA_S0_Y_MODIFY(smod);
366 bfin_write_MDMA_D0_START_ADDR(daddr);
367 bfin_write_MDMA_D0_X_COUNT(cnt);
368 bfin_write_MDMA_D0_X_MODIFY(dmod);
369 bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
371 bfin_write_MDMA_S0_START_ADDR(saddr);
372 bfin_write_MDMA_S0_X_COUNT(cnt);
373 bfin_write_MDMA_S0_X_MODIFY(smod);
374 bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
376 bfin_write_MDMA_S0_CONFIG(DMAEN | conf);
377 bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | conf);
379 spin_unlock_irqrestore(&mdma_lock, flags);
381 SSYNC();
383 while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE))
384 if (bfin_read_MDMA_S0_CONFIG())
385 continue;
386 else
387 return;
389 bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
391 bfin_write_MDMA_S0_CONFIG(0);
392 bfin_write_MDMA_D0_CONFIG(0);
396 * _dma_memcpy - translate C memcpy settings into MDMA settings
398 * Handle all the high level steps before we touch the MDMA registers. So
399 * handle direction, tweaking of sizes, and formatting of addresses.
401 static void *_dma_memcpy(void *pdst, const void *psrc, size_t size)
403 u32 conf, shift;
404 s16 mod;
405 unsigned long dst = (unsigned long)pdst;
406 unsigned long src = (unsigned long)psrc;
408 if (size == 0)
409 return NULL;
411 if (dst % 4 == 0 && src % 4 == 0 && size % 4 == 0) {
412 conf = WDSIZE_32;
413 shift = 2;
414 } else if (dst % 2 == 0 && src % 2 == 0 && size % 2 == 0) {
415 conf = WDSIZE_16;
416 shift = 1;
417 } else {
418 conf = WDSIZE_8;
419 shift = 0;
422 /* If the two memory regions have a chance of overlapping, make
423 * sure the memcpy still works as expected. Do this by having the
424 * copy run backwards instead.
426 mod = 1 << shift;
427 if (src < dst) {
428 mod *= -1;
429 dst += size + mod;
430 src += size + mod;
432 size >>= shift;
434 if (size > 0x10000)
435 conf |= DMA2D;
437 __dma_memcpy(dst, mod, src, mod, size, conf);
439 return pdst;
443 * dma_memcpy - DMA memcpy under mutex lock
445 * Do not check arguments before starting the DMA memcpy. Break the transfer
446 * up into two pieces. The first transfer is in multiples of 64k and the
447 * second transfer is the piece smaller than 64k.
449 void *dma_memcpy(void *pdst, const void *psrc, size_t size)
451 unsigned long dst = (unsigned long)pdst;
452 unsigned long src = (unsigned long)psrc;
453 size_t bulk, rest;
455 if (bfin_addr_dcacheable(src))
456 blackfin_dcache_flush_range(src, src + size);
458 if (bfin_addr_dcacheable(dst))
459 blackfin_dcache_invalidate_range(dst, dst + size);
461 bulk = size & ~0xffff;
462 rest = size - bulk;
463 if (bulk)
464 _dma_memcpy(pdst, psrc, bulk);
465 _dma_memcpy(pdst + bulk, psrc + bulk, rest);
466 return pdst;
468 EXPORT_SYMBOL(dma_memcpy);
471 * safe_dma_memcpy - DMA memcpy w/argument checking
473 * Verify arguments are safe before heading to dma_memcpy().
475 void *safe_dma_memcpy(void *dst, const void *src, size_t size)
477 if (!access_ok(VERIFY_WRITE, dst, size))
478 return NULL;
479 if (!access_ok(VERIFY_READ, src, size))
480 return NULL;
481 return dma_memcpy(dst, src, size);
483 EXPORT_SYMBOL(safe_dma_memcpy);
485 static void _dma_out(unsigned long addr, unsigned long buf, unsigned short len,
486 u16 size, u16 dma_size)
488 blackfin_dcache_flush_range(buf, buf + len * size);
489 __dma_memcpy(addr, 0, buf, size, len, dma_size);
492 static void _dma_in(unsigned long addr, unsigned long buf, unsigned short len,
493 u16 size, u16 dma_size)
495 blackfin_dcache_invalidate_range(buf, buf + len * size);
496 __dma_memcpy(buf, size, addr, 0, len, dma_size);
499 #define MAKE_DMA_IO(io, bwl, isize, dmasize, cnst) \
500 void dma_##io##s##bwl(unsigned long addr, cnst void *buf, unsigned short len) \
502 _dma_##io(addr, (unsigned long)buf, len, isize, WDSIZE_##dmasize); \
504 EXPORT_SYMBOL(dma_##io##s##bwl)
505 MAKE_DMA_IO(out, b, 1, 8, const);
506 MAKE_DMA_IO(in, b, 1, 8, );
507 MAKE_DMA_IO(out, w, 2, 16, const);
508 MAKE_DMA_IO(in, w, 2, 16, );
509 MAKE_DMA_IO(out, l, 4, 32, const);
510 MAKE_DMA_IO(in, l, 4, 32, );