2 /* ns83820.c by Benjamin LaHaise with contributions.
4 * Questions/comments/discussion to linux-ns83820@kvack.org.
6 * $Revision: 1.34.2.23 $
8 * Copyright 2001 Benjamin LaHaise.
9 * Copyright 2001, 2002 Red Hat.
11 * Mmmm, chocolate vanilla mocha...
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, write to the Free Software
26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 * 20010414 0.1 - created
32 * 20010622 0.2 - basic rx and tx.
33 * 20010711 0.3 - added duplex and link state detection support.
34 * 20010713 0.4 - zero copy, no hangs.
35 * 0.5 - 64 bit dma support (davem will hate me for this)
36 * - disable jumbo frames to avoid tx hangs
37 * - work around tx deadlocks on my 1.02 card via
39 * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
40 * 20010816 0.7 - misc cleanups
41 * 20010826 0.8 - fix critical zero copy bugs
42 * 0.9 - internal experiment
43 * 20010827 0.10 - fix ia64 unaligned access.
44 * 20010906 0.11 - accept all packets with checksum errors as
45 * otherwise fragments get lost
47 * 0.12 - add statistics counters
48 * - add allmulti/promisc support
49 * 20011009 0.13 - hotplug support, other smaller pci api cleanups
50 * 20011204 0.13a - optical transceiver support added
51 * by Michael Clark <michael@metaparadigm.com>
52 * 20011205 0.13b - call register_netdev earlier in initialization
53 * suppress duplicate link status messages
54 * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55 * 20011204 0.15 get ppc (big endian) working
56 * 20011218 0.16 various cleanups
57 * 20020310 0.17 speedups
58 * 20020610 0.18 - actually use the pci dma api for highmem
59 * - remove pci latency register fiddling
60 * 0.19 - better bist support
61 * - add ihr and reset_phy parameters
63 * - fix missed txok introduced during performance
65 * 0.20 - fix stupid RFEN thinko. i am such a smurf.
66 * 20040828 0.21 - add hardware vlan accleration
67 * by Neil Horman <nhorman@redhat.com>
68 * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
69 * - removal of dead code from Adrian Bunk
70 * - fix half duplex collision behaviour
74 * This driver was originally written for the National Semiconductor
75 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
76 * this code will turn out to be a) clean, b) correct, and c) fast.
77 * With that in mind, I'm aiming to split the code up as much as
78 * reasonably possible. At present there are X major sections that
79 * break down into a) packet receive, b) packet transmit, c) link
80 * management, d) initialization and configuration. Where possible,
81 * these code paths are designed to run in parallel.
83 * This driver has been tested and found to work with the following
84 * cards (in no particular order):
86 * Cameo SOHO-GA2000T SOHO-GA2500T
88 * PureData PDP8023Z-TG
89 * SMC SMC9452TX SMC9462TX
92 * Special thanks to SMC for providing hardware to test this driver on.
94 * Reports of success or failure would be greatly appreciated.
96 //#define dprintk printk
97 #define dprintk(x...) do { } while (0)
99 #include <linux/config.h>
100 #include <linux/module.h>
101 #include <linux/moduleparam.h>
102 #include <linux/types.h>
103 #include <linux/pci.h>
104 #include <linux/dma-mapping.h>
105 #include <linux/netdevice.h>
106 #include <linux/etherdevice.h>
107 #include <linux/delay.h>
108 #include <linux/smp_lock.h>
109 #include <linux/workqueue.h>
110 #include <linux/init.h>
111 #include <linux/ip.h> /* for iph */
112 #include <linux/in.h> /* for IPPROTO_... */
113 #include <linux/compiler.h>
114 #include <linux/prefetch.h>
115 #include <linux/ethtool.h>
116 #include <linux/timer.h>
117 #include <linux/if_vlan.h>
118 #include <linux/rtnetlink.h>
121 #include <asm/uaccess.h>
122 #include <asm/system.h>
124 #define DRV_NAME "ns83820"
126 /* Global parameters. See module_param near the bottom. */
128 static int reset_phy
= 0;
129 static int lnksts
= 0; /* CFG_LNKSTS bit polarity */
131 /* Dprintk is used for more interesting debug events */
133 #define Dprintk dprintk
136 #define RX_BUF_SIZE 1500 /* 8192 */
137 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
138 #define NS83820_VLAN_ACCEL_SUPPORT
141 /* Must not exceed ~65000. */
142 #define NR_RX_DESC 64
143 #define NR_TX_DESC 128
146 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
148 #define MIN_TX_DESC_FREE 8
150 /* register defines */
153 #define CR_TXE 0x00000001
154 #define CR_TXD 0x00000002
155 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
156 * The Receive engine skips one descriptor and moves
157 * onto the next one!! */
158 #define CR_RXE 0x00000004
159 #define CR_RXD 0x00000008
160 #define CR_TXR 0x00000010
161 #define CR_RXR 0x00000020
162 #define CR_SWI 0x00000080
163 #define CR_RST 0x00000100
165 #define PTSCR_EEBIST_FAIL 0x00000001
166 #define PTSCR_EEBIST_EN 0x00000002
167 #define PTSCR_EELOAD_EN 0x00000004
168 #define PTSCR_RBIST_FAIL 0x000001b8
169 #define PTSCR_RBIST_DONE 0x00000200
170 #define PTSCR_RBIST_EN 0x00000400
171 #define PTSCR_RBIST_RST 0x00002000
173 #define MEAR_EEDI 0x00000001
174 #define MEAR_EEDO 0x00000002
175 #define MEAR_EECLK 0x00000004
176 #define MEAR_EESEL 0x00000008
177 #define MEAR_MDIO 0x00000010
178 #define MEAR_MDDIR 0x00000020
179 #define MEAR_MDC 0x00000040
181 #define ISR_TXDESC3 0x40000000
182 #define ISR_TXDESC2 0x20000000
183 #define ISR_TXDESC1 0x10000000
184 #define ISR_TXDESC0 0x08000000
185 #define ISR_RXDESC3 0x04000000
186 #define ISR_RXDESC2 0x02000000
187 #define ISR_RXDESC1 0x01000000
188 #define ISR_RXDESC0 0x00800000
189 #define ISR_TXRCMP 0x00400000
190 #define ISR_RXRCMP 0x00200000
191 #define ISR_DPERR 0x00100000
192 #define ISR_SSERR 0x00080000
193 #define ISR_RMABT 0x00040000
194 #define ISR_RTABT 0x00020000
195 #define ISR_RXSOVR 0x00010000
196 #define ISR_HIBINT 0x00008000
197 #define ISR_PHY 0x00004000
198 #define ISR_PME 0x00002000
199 #define ISR_SWI 0x00001000
200 #define ISR_MIB 0x00000800
201 #define ISR_TXURN 0x00000400
202 #define ISR_TXIDLE 0x00000200
203 #define ISR_TXERR 0x00000100
204 #define ISR_TXDESC 0x00000080
205 #define ISR_TXOK 0x00000040
206 #define ISR_RXORN 0x00000020
207 #define ISR_RXIDLE 0x00000010
208 #define ISR_RXEARLY 0x00000008
209 #define ISR_RXERR 0x00000004
210 #define ISR_RXDESC 0x00000002
211 #define ISR_RXOK 0x00000001
213 #define TXCFG_CSI 0x80000000
214 #define TXCFG_HBI 0x40000000
215 #define TXCFG_MLB 0x20000000
216 #define TXCFG_ATP 0x10000000
217 #define TXCFG_ECRETRY 0x00800000
218 #define TXCFG_BRST_DIS 0x00080000
219 #define TXCFG_MXDMA1024 0x00000000
220 #define TXCFG_MXDMA512 0x00700000
221 #define TXCFG_MXDMA256 0x00600000
222 #define TXCFG_MXDMA128 0x00500000
223 #define TXCFG_MXDMA64 0x00400000
224 #define TXCFG_MXDMA32 0x00300000
225 #define TXCFG_MXDMA16 0x00200000
226 #define TXCFG_MXDMA8 0x00100000
228 #define CFG_LNKSTS 0x80000000
229 #define CFG_SPDSTS 0x60000000
230 #define CFG_SPDSTS1 0x40000000
231 #define CFG_SPDSTS0 0x20000000
232 #define CFG_DUPSTS 0x10000000
233 #define CFG_TBI_EN 0x01000000
234 #define CFG_MODE_1000 0x00400000
235 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
236 * Read the Phy response and then configure the MAC accordingly */
237 #define CFG_AUTO_1000 0x00200000
238 #define CFG_PINT_CTL 0x001c0000
239 #define CFG_PINT_DUPSTS 0x00100000
240 #define CFG_PINT_LNKSTS 0x00080000
241 #define CFG_PINT_SPDSTS 0x00040000
242 #define CFG_TMRTEST 0x00020000
243 #define CFG_MRM_DIS 0x00010000
244 #define CFG_MWI_DIS 0x00008000
245 #define CFG_T64ADDR 0x00004000
246 #define CFG_PCI64_DET 0x00002000
247 #define CFG_DATA64_EN 0x00001000
248 #define CFG_M64ADDR 0x00000800
249 #define CFG_PHY_RST 0x00000400
250 #define CFG_PHY_DIS 0x00000200
251 #define CFG_EXTSTS_EN 0x00000100
252 #define CFG_REQALG 0x00000080
253 #define CFG_SB 0x00000040
254 #define CFG_POW 0x00000020
255 #define CFG_EXD 0x00000010
256 #define CFG_PESEL 0x00000008
257 #define CFG_BROM_DIS 0x00000004
258 #define CFG_EXT_125 0x00000002
259 #define CFG_BEM 0x00000001
261 #define EXTSTS_UDPPKT 0x00200000
262 #define EXTSTS_TCPPKT 0x00080000
263 #define EXTSTS_IPPKT 0x00020000
264 #define EXTSTS_VPKT 0x00010000
265 #define EXTSTS_VTG_MASK 0x0000ffff
267 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
269 #define MIBC_MIBS 0x00000008
270 #define MIBC_ACLR 0x00000004
271 #define MIBC_FRZ 0x00000002
272 #define MIBC_WRN 0x00000001
274 #define PCR_PSEN (1 << 31)
275 #define PCR_PS_MCAST (1 << 30)
276 #define PCR_PS_DA (1 << 29)
277 #define PCR_STHI_8 (3 << 23)
278 #define PCR_STLO_4 (1 << 23)
279 #define PCR_FFHI_8K (3 << 21)
280 #define PCR_FFLO_4K (1 << 21)
281 #define PCR_PAUSE_CNT 0xFFFE
283 #define RXCFG_AEP 0x80000000
284 #define RXCFG_ARP 0x40000000
285 #define RXCFG_STRIPCRC 0x20000000
286 #define RXCFG_RX_FD 0x10000000
287 #define RXCFG_ALP 0x08000000
288 #define RXCFG_AIRL 0x04000000
289 #define RXCFG_MXDMA512 0x00700000
290 #define RXCFG_DRTH 0x0000003e
291 #define RXCFG_DRTH0 0x00000002
293 #define RFCR_RFEN 0x80000000
294 #define RFCR_AAB 0x40000000
295 #define RFCR_AAM 0x20000000
296 #define RFCR_AAU 0x10000000
297 #define RFCR_APM 0x08000000
298 #define RFCR_APAT 0x07800000
299 #define RFCR_APAT3 0x04000000
300 #define RFCR_APAT2 0x02000000
301 #define RFCR_APAT1 0x01000000
302 #define RFCR_APAT0 0x00800000
303 #define RFCR_AARP 0x00400000
304 #define RFCR_MHEN 0x00200000
305 #define RFCR_UHEN 0x00100000
306 #define RFCR_ULM 0x00080000
308 #define VRCR_RUDPE 0x00000080
309 #define VRCR_RTCPE 0x00000040
310 #define VRCR_RIPE 0x00000020
311 #define VRCR_IPEN 0x00000010
312 #define VRCR_DUTF 0x00000008
313 #define VRCR_DVTF 0x00000004
314 #define VRCR_VTREN 0x00000002
315 #define VRCR_VTDEN 0x00000001
317 #define VTCR_PPCHK 0x00000008
318 #define VTCR_GCHK 0x00000004
319 #define VTCR_VPPTI 0x00000002
320 #define VTCR_VGTI 0x00000001
357 #define TBICR_MR_AN_ENABLE 0x00001000
358 #define TBICR_MR_RESTART_AN 0x00000200
360 #define TBISR_MR_LINK_STATUS 0x00000020
361 #define TBISR_MR_AN_COMPLETE 0x00000004
363 #define TANAR_PS2 0x00000100
364 #define TANAR_PS1 0x00000080
365 #define TANAR_HALF_DUP 0x00000040
366 #define TANAR_FULL_DUP 0x00000020
368 #define GPIOR_GP5_OE 0x00000200
369 #define GPIOR_GP4_OE 0x00000100
370 #define GPIOR_GP3_OE 0x00000080
371 #define GPIOR_GP2_OE 0x00000040
372 #define GPIOR_GP1_OE 0x00000020
373 #define GPIOR_GP3_OUT 0x00000004
374 #define GPIOR_GP1_OUT 0x00000001
376 #define LINK_AUTONEGOTIATE 0x01
377 #define LINK_DOWN 0x02
380 #define HW_ADDR_LEN sizeof(dma_addr_t)
381 #define desc_addr_set(desc, addr) \
383 ((desc)[0] = cpu_to_le32(addr)); \
384 if (HW_ADDR_LEN == 8) \
385 (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
387 #define desc_addr_get(desc) \
388 (le32_to_cpu((desc)[0]) | \
389 (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
392 #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
393 #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
394 #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
396 #define CMDSTS_OWN 0x80000000
397 #define CMDSTS_MORE 0x40000000
398 #define CMDSTS_INTR 0x20000000
399 #define CMDSTS_ERR 0x10000000
400 #define CMDSTS_OK 0x08000000
401 #define CMDSTS_RUNT 0x00200000
402 #define CMDSTS_LEN_MASK 0x0000ffff
404 #define CMDSTS_DEST_MASK 0x01800000
405 #define CMDSTS_DEST_SELF 0x00800000
406 #define CMDSTS_DEST_MULTI 0x01000000
408 #define DESC_SIZE 8 /* Should be cache line sized */
415 struct sk_buff
*skbs
[NR_RX_DESC
];
418 u16 next_rx
, next_empty
;
421 dma_addr_t phy_descs
;
426 struct net_device_stats stats
;
429 struct pci_dev
*pci_dev
;
431 #ifdef NS83820_VLAN_ACCEL_SUPPORT
432 struct vlan_group
*vlgrp
;
435 struct rx_info rx_info
;
436 struct tasklet_struct rx_tasklet
;
439 struct work_struct tq_refill
;
441 /* protects everything below. irqsave when using. */
442 spinlock_t misc_lock
;
455 volatile u16 tx_free_idx
; /* idx of free desc chain */
459 struct sk_buff
*tx_skbs
[NR_TX_DESC
];
461 char pad
[16] __attribute__((aligned(16)));
463 dma_addr_t tx_phy_descs
;
465 struct timer_list tx_watchdog
;
468 static inline struct ns83820
*PRIV(struct net_device
*dev
)
470 return netdev_priv(dev
);
473 #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
475 static inline void kick_rx(struct net_device
*ndev
)
477 struct ns83820
*dev
= PRIV(ndev
);
478 dprintk("kick_rx: maybe kicking\n");
479 if (test_and_clear_bit(0, &dev
->rx_info
.idle
)) {
480 dprintk("actually kicking\n");
481 writel(dev
->rx_info
.phy_descs
+
482 (4 * DESC_SIZE
* dev
->rx_info
.next_rx
),
484 if (dev
->rx_info
.next_rx
== dev
->rx_info
.next_empty
)
485 printk(KERN_DEBUG
"%s: uh-oh: next_rx == next_empty???\n",
491 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
492 #define start_tx_okay(dev) \
493 (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
496 #ifdef NS83820_VLAN_ACCEL_SUPPORT
497 static void ns83820_vlan_rx_register(struct net_device
*ndev
, struct vlan_group
*grp
)
499 struct ns83820
*dev
= PRIV(ndev
);
501 spin_lock_irq(&dev
->misc_lock
);
502 spin_lock(&dev
->tx_lock
);
506 spin_unlock(&dev
->tx_lock
);
507 spin_unlock_irq(&dev
->misc_lock
);
510 static void ns83820_vlan_rx_kill_vid(struct net_device
*ndev
, unsigned short vid
)
512 struct ns83820
*dev
= PRIV(ndev
);
514 spin_lock_irq(&dev
->misc_lock
);
515 spin_lock(&dev
->tx_lock
);
517 dev
->vlgrp
->vlan_devices
[vid
] = NULL
;
518 spin_unlock(&dev
->tx_lock
);
519 spin_unlock_irq(&dev
->misc_lock
);
525 * The hardware supports linked lists of receive descriptors for
526 * which ownership is transfered back and forth by means of an
527 * ownership bit. While the hardware does support the use of a
528 * ring for receive descriptors, we only make use of a chain in
529 * an attempt to reduce bus traffic under heavy load scenarios.
530 * This will also make bugs a bit more obvious. The current code
531 * only makes use of a single rx chain; I hope to implement
532 * priority based rx for version 1.0. Goal: even under overload
533 * conditions, still route realtime traffic with as low jitter as
536 static inline void build_rx_desc(struct ns83820
*dev
, u32
*desc
, dma_addr_t link
, dma_addr_t buf
, u32 cmdsts
, u32 extsts
)
538 desc_addr_set(desc
+ DESC_LINK
, link
);
539 desc_addr_set(desc
+ DESC_BUFPTR
, buf
);
540 desc
[DESC_EXTSTS
] = cpu_to_le32(extsts
);
542 desc
[DESC_CMDSTS
] = cpu_to_le32(cmdsts
);
545 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
546 static inline int ns83820_add_rx_skb(struct ns83820
*dev
, struct sk_buff
*skb
)
553 next_empty
= dev
->rx_info
.next_empty
;
555 /* don't overrun last rx marker */
556 if (unlikely(nr_rx_empty(dev
) <= 2)) {
562 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
563 dev
->rx_info
.next_empty
,
564 dev
->rx_info
.nr_used
,
569 sg
= dev
->rx_info
.descs
+ (next_empty
* DESC_SIZE
);
570 if (unlikely(NULL
!= dev
->rx_info
.skbs
[next_empty
]))
572 dev
->rx_info
.skbs
[next_empty
] = skb
;
574 dev
->rx_info
.next_empty
= (next_empty
+ 1) % NR_RX_DESC
;
575 cmdsts
= REAL_RX_BUF_SIZE
| CMDSTS_INTR
;
576 buf
= pci_map_single(dev
->pci_dev
, skb
->data
,
577 REAL_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
578 build_rx_desc(dev
, sg
, 0, buf
, cmdsts
, 0);
579 /* update link of previous rx */
580 if (likely(next_empty
!= dev
->rx_info
.next_rx
))
581 dev
->rx_info
.descs
[((NR_RX_DESC
+ next_empty
- 1) % NR_RX_DESC
) * DESC_SIZE
] = cpu_to_le32(dev
->rx_info
.phy_descs
+ (next_empty
* DESC_SIZE
* 4));
586 static inline int rx_refill(struct net_device
*ndev
, gfp_t gfp
)
588 struct ns83820
*dev
= PRIV(ndev
);
590 unsigned long flags
= 0;
592 if (unlikely(nr_rx_empty(dev
) <= 2))
595 dprintk("rx_refill(%p)\n", ndev
);
596 if (gfp
== GFP_ATOMIC
)
597 spin_lock_irqsave(&dev
->rx_info
.lock
, flags
);
598 for (i
=0; i
<NR_RX_DESC
; i
++) {
601 /* extra 16 bytes for alignment */
602 skb
= __dev_alloc_skb(REAL_RX_BUF_SIZE
+16, gfp
);
606 res
= (long)skb
->data
& 0xf;
609 skb_reserve(skb
, res
);
612 if (gfp
!= GFP_ATOMIC
)
613 spin_lock_irqsave(&dev
->rx_info
.lock
, flags
);
614 res
= ns83820_add_rx_skb(dev
, skb
);
615 if (gfp
!= GFP_ATOMIC
)
616 spin_unlock_irqrestore(&dev
->rx_info
.lock
, flags
);
622 if (gfp
== GFP_ATOMIC
)
623 spin_unlock_irqrestore(&dev
->rx_info
.lock
, flags
);
625 return i
? 0 : -ENOMEM
;
628 static void FASTCALL(rx_refill_atomic(struct net_device
*ndev
));
629 static void fastcall
rx_refill_atomic(struct net_device
*ndev
)
631 rx_refill(ndev
, GFP_ATOMIC
);
635 static inline void queue_refill(void *_dev
)
637 struct net_device
*ndev
= _dev
;
638 struct ns83820
*dev
= PRIV(ndev
);
640 rx_refill(ndev
, GFP_KERNEL
);
645 static inline void clear_rx_desc(struct ns83820
*dev
, unsigned i
)
647 build_rx_desc(dev
, dev
->rx_info
.descs
+ (DESC_SIZE
* i
), 0, 0, CMDSTS_OWN
, 0);
650 static void FASTCALL(phy_intr(struct net_device
*ndev
));
651 static void fastcall
phy_intr(struct net_device
*ndev
)
653 struct ns83820
*dev
= PRIV(ndev
);
654 static char *speeds
[] = { "10", "100", "1000", "1000(?)", "1000F" };
656 u32 tbisr
, tanar
, tanlpar
;
657 int speed
, fullduplex
, newlinkstate
;
659 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
661 if (dev
->CFG_cache
& CFG_TBI_EN
) {
662 /* we have an optical transceiver */
663 tbisr
= readl(dev
->base
+ TBISR
);
664 tanar
= readl(dev
->base
+ TANAR
);
665 tanlpar
= readl(dev
->base
+ TANLPAR
);
666 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
667 tbisr
, tanar
, tanlpar
);
669 if ( (fullduplex
= (tanlpar
& TANAR_FULL_DUP
)
670 && (tanar
& TANAR_FULL_DUP
)) ) {
672 /* both of us are full duplex */
673 writel(readl(dev
->base
+ TXCFG
)
674 | TXCFG_CSI
| TXCFG_HBI
| TXCFG_ATP
,
676 writel(readl(dev
->base
+ RXCFG
) | RXCFG_RX_FD
,
678 /* Light up full duplex LED */
679 writel(readl(dev
->base
+ GPIOR
) | GPIOR_GP1_OUT
,
682 } else if(((tanlpar
& TANAR_HALF_DUP
)
683 && (tanar
& TANAR_HALF_DUP
))
684 || ((tanlpar
& TANAR_FULL_DUP
)
685 && (tanar
& TANAR_HALF_DUP
))
686 || ((tanlpar
& TANAR_HALF_DUP
)
687 && (tanar
& TANAR_FULL_DUP
))) {
689 /* one or both of us are half duplex */
690 writel((readl(dev
->base
+ TXCFG
)
691 & ~(TXCFG_CSI
| TXCFG_HBI
)) | TXCFG_ATP
,
693 writel(readl(dev
->base
+ RXCFG
) & ~RXCFG_RX_FD
,
695 /* Turn off full duplex LED */
696 writel(readl(dev
->base
+ GPIOR
) & ~GPIOR_GP1_OUT
,
700 speed
= 4; /* 1000F */
703 /* we have a copper transceiver */
704 new_cfg
= dev
->CFG_cache
& ~(CFG_SB
| CFG_MODE_1000
| CFG_SPDSTS
);
706 if (cfg
& CFG_SPDSTS1
)
707 new_cfg
|= CFG_MODE_1000
;
709 new_cfg
&= ~CFG_MODE_1000
;
711 speed
= ((cfg
/ CFG_SPDSTS0
) & 3);
712 fullduplex
= (cfg
& CFG_DUPSTS
);
716 writel(readl(dev
->base
+ TXCFG
)
717 | TXCFG_CSI
| TXCFG_HBI
,
719 writel(readl(dev
->base
+ RXCFG
) | RXCFG_RX_FD
,
722 writel(readl(dev
->base
+ TXCFG
)
723 & ~(TXCFG_CSI
| TXCFG_HBI
),
725 writel(readl(dev
->base
+ RXCFG
) & ~(RXCFG_RX_FD
),
729 if ((cfg
& CFG_LNKSTS
) &&
730 ((new_cfg
^ dev
->CFG_cache
) != 0)) {
731 writel(new_cfg
, dev
->base
+ CFG
);
732 dev
->CFG_cache
= new_cfg
;
735 dev
->CFG_cache
&= ~CFG_SPDSTS
;
736 dev
->CFG_cache
|= cfg
& CFG_SPDSTS
;
739 newlinkstate
= (cfg
& CFG_LNKSTS
) ? LINK_UP
: LINK_DOWN
;
741 if (newlinkstate
& LINK_UP
742 && dev
->linkstate
!= newlinkstate
) {
743 netif_start_queue(ndev
);
744 netif_wake_queue(ndev
);
745 printk(KERN_INFO
"%s: link now %s mbps, %s duplex and up.\n",
748 fullduplex
? "full" : "half");
749 } else if (newlinkstate
& LINK_DOWN
750 && dev
->linkstate
!= newlinkstate
) {
751 netif_stop_queue(ndev
);
752 printk(KERN_INFO
"%s: link now down.\n", ndev
->name
);
755 dev
->linkstate
= newlinkstate
;
758 static int ns83820_setup_rx(struct net_device
*ndev
)
760 struct ns83820
*dev
= PRIV(ndev
);
764 dprintk("ns83820_setup_rx(%p)\n", ndev
);
766 dev
->rx_info
.idle
= 1;
767 dev
->rx_info
.next_rx
= 0;
768 dev
->rx_info
.next_rx_desc
= dev
->rx_info
.descs
;
769 dev
->rx_info
.next_empty
= 0;
771 for (i
=0; i
<NR_RX_DESC
; i
++)
772 clear_rx_desc(dev
, i
);
774 writel(0, dev
->base
+ RXDP_HI
);
775 writel(dev
->rx_info
.phy_descs
, dev
->base
+ RXDP
);
777 ret
= rx_refill(ndev
, GFP_KERNEL
);
779 dprintk("starting receiver\n");
780 /* prevent the interrupt handler from stomping on us */
781 spin_lock_irq(&dev
->rx_info
.lock
);
783 writel(0x0001, dev
->base
+ CCSR
);
784 writel(0, dev
->base
+ RFCR
);
785 writel(0x7fc00000, dev
->base
+ RFCR
);
786 writel(0xffc00000, dev
->base
+ RFCR
);
792 /* Okay, let it rip */
793 spin_lock_irq(&dev
->misc_lock
);
794 dev
->IMR_cache
|= ISR_PHY
;
795 dev
->IMR_cache
|= ISR_RXRCMP
;
796 //dev->IMR_cache |= ISR_RXERR;
797 //dev->IMR_cache |= ISR_RXOK;
798 dev
->IMR_cache
|= ISR_RXORN
;
799 dev
->IMR_cache
|= ISR_RXSOVR
;
800 dev
->IMR_cache
|= ISR_RXDESC
;
801 dev
->IMR_cache
|= ISR_RXIDLE
;
802 dev
->IMR_cache
|= ISR_TXDESC
;
803 dev
->IMR_cache
|= ISR_TXIDLE
;
805 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
806 writel(1, dev
->base
+ IER
);
807 spin_unlock_irq(&dev
->misc_lock
);
811 spin_unlock_irq(&dev
->rx_info
.lock
);
816 static void ns83820_cleanup_rx(struct ns83820
*dev
)
821 dprintk("ns83820_cleanup_rx(%p)\n", dev
);
823 /* disable receive interrupts */
824 spin_lock_irqsave(&dev
->misc_lock
, flags
);
825 dev
->IMR_cache
&= ~(ISR_RXOK
| ISR_RXDESC
| ISR_RXERR
| ISR_RXEARLY
| ISR_RXIDLE
);
826 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
827 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
829 /* synchronize with the interrupt handler and kill it */
831 synchronize_irq(dev
->pci_dev
->irq
);
833 /* touch the pci bus... */
834 readl(dev
->base
+ IMR
);
836 /* assumes the transmitter is already disabled and reset */
837 writel(0, dev
->base
+ RXDP_HI
);
838 writel(0, dev
->base
+ RXDP
);
840 for (i
=0; i
<NR_RX_DESC
; i
++) {
841 struct sk_buff
*skb
= dev
->rx_info
.skbs
[i
];
842 dev
->rx_info
.skbs
[i
] = NULL
;
843 clear_rx_desc(dev
, i
);
849 static void FASTCALL(ns83820_rx_kick(struct net_device
*ndev
));
850 static void fastcall
ns83820_rx_kick(struct net_device
*ndev
)
852 struct ns83820
*dev
= PRIV(ndev
);
853 /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
854 if (dev
->rx_info
.up
) {
855 rx_refill_atomic(ndev
);
860 if (dev
->rx_info
.up
&& nr_rx_empty(dev
) > NR_RX_DESC
*3/4)
861 schedule_work(&dev
->tq_refill
);
864 if (dev
->rx_info
.idle
)
865 printk(KERN_DEBUG
"%s: BAD\n", ndev
->name
);
871 static void FASTCALL(rx_irq(struct net_device
*ndev
));
872 static void fastcall
rx_irq(struct net_device
*ndev
)
874 struct ns83820
*dev
= PRIV(ndev
);
875 struct rx_info
*info
= &dev
->rx_info
;
882 dprintk("rx_irq(%p)\n", ndev
);
883 dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
884 readl(dev
->base
+ RXDP
),
885 (long)(dev
->rx_info
.phy_descs
),
886 (int)dev
->rx_info
.next_rx
,
887 (dev
->rx_info
.descs
+ (DESC_SIZE
* dev
->rx_info
.next_rx
)),
888 (int)dev
->rx_info
.next_empty
,
889 (dev
->rx_info
.descs
+ (DESC_SIZE
* dev
->rx_info
.next_empty
))
892 spin_lock_irqsave(&info
->lock
, flags
);
896 dprintk("walking descs\n");
897 next_rx
= info
->next_rx
;
898 desc
= info
->next_rx_desc
;
899 while ((CMDSTS_OWN
& (cmdsts
= le32_to_cpu(desc
[DESC_CMDSTS
]))) &&
900 (cmdsts
!= CMDSTS_OWN
)) {
902 u32 extsts
= le32_to_cpu(desc
[DESC_EXTSTS
]);
903 dma_addr_t bufptr
= desc_addr_get(desc
+ DESC_BUFPTR
);
905 dprintk("cmdsts: %08x\n", cmdsts
);
906 dprintk("link: %08x\n", cpu_to_le32(desc
[DESC_LINK
]));
907 dprintk("extsts: %08x\n", extsts
);
909 skb
= info
->skbs
[next_rx
];
910 info
->skbs
[next_rx
] = NULL
;
911 info
->next_rx
= (next_rx
+ 1) % NR_RX_DESC
;
914 clear_rx_desc(dev
, next_rx
);
916 pci_unmap_single(dev
->pci_dev
, bufptr
,
917 RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
918 len
= cmdsts
& CMDSTS_LEN_MASK
;
919 #ifdef NS83820_VLAN_ACCEL_SUPPORT
920 /* NH: As was mentioned below, this chip is kinda
921 * brain dead about vlan tag stripping. Frames
922 * that are 64 bytes with a vlan header appended
923 * like arp frames, or pings, are flagged as Runts
924 * when the tag is stripped and hardware. This
925 * also means that the OK bit in the descriptor
926 * is cleared when the frame comes in so we have
927 * to do a specific length check here to make sure
928 * the frame would have been ok, had we not stripped
931 if (likely((CMDSTS_OK
& cmdsts
) ||
932 ((cmdsts
& CMDSTS_RUNT
) && len
>= 56))) {
934 if (likely(CMDSTS_OK
& cmdsts
)) {
938 goto netdev_mangle_me_harder_failed
;
939 if (cmdsts
& CMDSTS_DEST_MULTI
)
940 dev
->stats
.multicast
++;
941 dev
->stats
.rx_packets
++;
942 dev
->stats
.rx_bytes
+= len
;
943 if ((extsts
& 0x002a0000) && !(extsts
& 0x00540000)) {
944 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
946 skb
->ip_summed
= CHECKSUM_NONE
;
948 skb
->protocol
= eth_type_trans(skb
, ndev
);
949 #ifdef NS83820_VLAN_ACCEL_SUPPORT
950 if(extsts
& EXTSTS_VPKT
) {
952 tag
= ntohs(extsts
& EXTSTS_VTG_MASK
);
953 rx_rc
= vlan_hwaccel_rx(skb
,dev
->vlgrp
,tag
);
955 rx_rc
= netif_rx(skb
);
958 rx_rc
= netif_rx(skb
);
960 if (NET_RX_DROP
== rx_rc
) {
961 netdev_mangle_me_harder_failed
:
962 dev
->stats
.rx_dropped
++;
969 next_rx
= info
->next_rx
;
970 desc
= info
->descs
+ (DESC_SIZE
* next_rx
);
972 info
->next_rx
= next_rx
;
973 info
->next_rx_desc
= info
->descs
+ (DESC_SIZE
* next_rx
);
977 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts
);
980 spin_unlock_irqrestore(&info
->lock
, flags
);
983 static void rx_action(unsigned long _dev
)
985 struct net_device
*ndev
= (void *)_dev
;
986 struct ns83820
*dev
= PRIV(ndev
);
988 writel(ihr
, dev
->base
+ IHR
);
990 spin_lock_irq(&dev
->misc_lock
);
991 dev
->IMR_cache
|= ISR_RXDESC
;
992 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
993 spin_unlock_irq(&dev
->misc_lock
);
996 ns83820_rx_kick(ndev
);
999 /* Packet Transmit code
1001 static inline void kick_tx(struct ns83820
*dev
)
1003 dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
1004 dev
, dev
->tx_idx
, dev
->tx_free_idx
);
1005 writel(CR_TXE
, dev
->base
+ CR
);
1008 /* No spinlock needed on the transmit irq path as the interrupt handler is
1011 static void do_tx_done(struct net_device
*ndev
)
1013 struct ns83820
*dev
= PRIV(ndev
);
1014 u32 cmdsts
, tx_done_idx
, *desc
;
1016 spin_lock_irq(&dev
->tx_lock
);
1018 dprintk("do_tx_done(%p)\n", ndev
);
1019 tx_done_idx
= dev
->tx_done_idx
;
1020 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1022 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1023 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
1024 while ((tx_done_idx
!= dev
->tx_free_idx
) &&
1025 !(CMDSTS_OWN
& (cmdsts
= le32_to_cpu(desc
[DESC_CMDSTS
]))) ) {
1026 struct sk_buff
*skb
;
1030 if (cmdsts
& CMDSTS_ERR
)
1031 dev
->stats
.tx_errors
++;
1032 if (cmdsts
& CMDSTS_OK
)
1033 dev
->stats
.tx_packets
++;
1034 if (cmdsts
& CMDSTS_OK
)
1035 dev
->stats
.tx_bytes
+= cmdsts
& 0xffff;
1037 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1038 tx_done_idx
, dev
->tx_free_idx
, cmdsts
);
1039 skb
= dev
->tx_skbs
[tx_done_idx
];
1040 dev
->tx_skbs
[tx_done_idx
] = NULL
;
1041 dprintk("done(%p)\n", skb
);
1043 len
= cmdsts
& CMDSTS_LEN_MASK
;
1044 addr
= desc_addr_get(desc
+ DESC_BUFPTR
);
1046 pci_unmap_single(dev
->pci_dev
,
1050 dev_kfree_skb_irq(skb
);
1051 atomic_dec(&dev
->nr_tx_skbs
);
1053 pci_unmap_page(dev
->pci_dev
,
1058 tx_done_idx
= (tx_done_idx
+ 1) % NR_TX_DESC
;
1059 dev
->tx_done_idx
= tx_done_idx
;
1060 desc
[DESC_CMDSTS
] = cpu_to_le32(0);
1062 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1065 /* Allow network stack to resume queueing packets after we've
1066 * finished transmitting at least 1/4 of the packets in the queue.
1068 if (netif_queue_stopped(ndev
) && start_tx_okay(dev
)) {
1069 dprintk("start_queue(%p)\n", ndev
);
1070 netif_start_queue(ndev
);
1071 netif_wake_queue(ndev
);
1073 spin_unlock_irq(&dev
->tx_lock
);
1076 static void ns83820_cleanup_tx(struct ns83820
*dev
)
1080 for (i
=0; i
<NR_TX_DESC
; i
++) {
1081 struct sk_buff
*skb
= dev
->tx_skbs
[i
];
1082 dev
->tx_skbs
[i
] = NULL
;
1084 u32
*desc
= dev
->tx_descs
+ (i
* DESC_SIZE
);
1085 pci_unmap_single(dev
->pci_dev
,
1086 desc_addr_get(desc
+ DESC_BUFPTR
),
1087 le32_to_cpu(desc
[DESC_CMDSTS
]) & CMDSTS_LEN_MASK
,
1089 dev_kfree_skb_irq(skb
);
1090 atomic_dec(&dev
->nr_tx_skbs
);
1094 memset(dev
->tx_descs
, 0, NR_TX_DESC
* DESC_SIZE
* 4);
1097 /* transmit routine. This code relies on the network layer serializing
1098 * its calls in, but will run happily in parallel with the interrupt
1099 * handler. This code currently has provisions for fragmenting tx buffers
1100 * while trying to track down a bug in either the zero copy code or
1101 * the tx fifo (hence the MAX_FRAG_LEN).
1103 static int ns83820_hard_start_xmit(struct sk_buff
*skb
, struct net_device
*ndev
)
1105 struct ns83820
*dev
= PRIV(ndev
);
1106 u32 free_idx
, cmdsts
, extsts
;
1107 int nr_free
, nr_frags
;
1108 unsigned tx_done_idx
, last_idx
;
1114 volatile u32
*first_desc
;
1116 dprintk("ns83820_hard_start_xmit\n");
1118 nr_frags
= skb_shinfo(skb
)->nr_frags
;
1120 if (unlikely(dev
->CFG_cache
& CFG_LNKSTS
)) {
1121 netif_stop_queue(ndev
);
1122 if (unlikely(dev
->CFG_cache
& CFG_LNKSTS
))
1124 netif_start_queue(ndev
);
1127 last_idx
= free_idx
= dev
->tx_free_idx
;
1128 tx_done_idx
= dev
->tx_done_idx
;
1129 nr_free
= (tx_done_idx
+ NR_TX_DESC
-2 - free_idx
) % NR_TX_DESC
;
1131 if (nr_free
<= nr_frags
) {
1132 dprintk("stop_queue - not enough(%p)\n", ndev
);
1133 netif_stop_queue(ndev
);
1135 /* Check again: we may have raced with a tx done irq */
1136 if (dev
->tx_done_idx
!= tx_done_idx
) {
1137 dprintk("restart queue(%p)\n", ndev
);
1138 netif_start_queue(ndev
);
1144 if (free_idx
== dev
->tx_intr_idx
) {
1146 dev
->tx_intr_idx
= (dev
->tx_intr_idx
+ NR_TX_DESC
/4) % NR_TX_DESC
;
1149 nr_free
-= nr_frags
;
1150 if (nr_free
< MIN_TX_DESC_FREE
) {
1151 dprintk("stop_queue - last entry(%p)\n", ndev
);
1152 netif_stop_queue(ndev
);
1156 frag
= skb_shinfo(skb
)->frags
;
1160 if (skb
->ip_summed
== CHECKSUM_HW
) {
1161 extsts
|= EXTSTS_IPPKT
;
1162 if (IPPROTO_TCP
== skb
->nh
.iph
->protocol
)
1163 extsts
|= EXTSTS_TCPPKT
;
1164 else if (IPPROTO_UDP
== skb
->nh
.iph
->protocol
)
1165 extsts
|= EXTSTS_UDPPKT
;
1168 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1169 if(vlan_tx_tag_present(skb
)) {
1170 /* fetch the vlan tag info out of the
1171 * ancilliary data if the vlan code
1172 * is using hw vlan acceleration
1174 short tag
= vlan_tx_tag_get(skb
);
1175 extsts
|= (EXTSTS_VPKT
| htons(tag
));
1181 len
-= skb
->data_len
;
1182 buf
= pci_map_single(dev
->pci_dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
1184 first_desc
= dev
->tx_descs
+ (free_idx
* DESC_SIZE
);
1187 volatile u32
*desc
= dev
->tx_descs
+ (free_idx
* DESC_SIZE
);
1189 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx
, len
,
1190 (unsigned long long)buf
);
1191 last_idx
= free_idx
;
1192 free_idx
= (free_idx
+ 1) % NR_TX_DESC
;
1193 desc
[DESC_LINK
] = cpu_to_le32(dev
->tx_phy_descs
+ (free_idx
* DESC_SIZE
* 4));
1194 desc_addr_set(desc
+ DESC_BUFPTR
, buf
);
1195 desc
[DESC_EXTSTS
] = cpu_to_le32(extsts
);
1197 cmdsts
= ((nr_frags
) ? CMDSTS_MORE
: do_intr
? CMDSTS_INTR
: 0);
1198 cmdsts
|= (desc
== first_desc
) ? 0 : CMDSTS_OWN
;
1200 desc
[DESC_CMDSTS
] = cpu_to_le32(cmdsts
);
1205 buf
= pci_map_page(dev
->pci_dev
, frag
->page
,
1207 frag
->size
, PCI_DMA_TODEVICE
);
1208 dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
1209 (long long)buf
, (long) page_to_pfn(frag
->page
),
1215 dprintk("done pkt\n");
1217 spin_lock_irq(&dev
->tx_lock
);
1218 dev
->tx_skbs
[last_idx
] = skb
;
1219 first_desc
[DESC_CMDSTS
] |= cpu_to_le32(CMDSTS_OWN
);
1220 dev
->tx_free_idx
= free_idx
;
1221 atomic_inc(&dev
->nr_tx_skbs
);
1222 spin_unlock_irq(&dev
->tx_lock
);
1226 /* Check again: we may have raced with a tx done irq */
1227 if (stopped
&& (dev
->tx_done_idx
!= tx_done_idx
) && start_tx_okay(dev
))
1228 netif_start_queue(ndev
);
1230 /* set the transmit start time to catch transmit timeouts */
1231 ndev
->trans_start
= jiffies
;
1235 static void ns83820_update_stats(struct ns83820
*dev
)
1237 u8 __iomem
*base
= dev
->base
;
1239 /* the DP83820 will freeze counters, so we need to read all of them */
1240 dev
->stats
.rx_errors
+= readl(base
+ 0x60) & 0xffff;
1241 dev
->stats
.rx_crc_errors
+= readl(base
+ 0x64) & 0xffff;
1242 dev
->stats
.rx_missed_errors
+= readl(base
+ 0x68) & 0xffff;
1243 dev
->stats
.rx_frame_errors
+= readl(base
+ 0x6c) & 0xffff;
1244 /*dev->stats.rx_symbol_errors +=*/ readl(base
+ 0x70);
1245 dev
->stats
.rx_length_errors
+= readl(base
+ 0x74) & 0xffff;
1246 dev
->stats
.rx_length_errors
+= readl(base
+ 0x78) & 0xffff;
1247 /*dev->stats.rx_badopcode_errors += */ readl(base
+ 0x7c);
1248 /*dev->stats.rx_pause_count += */ readl(base
+ 0x80);
1249 /*dev->stats.tx_pause_count += */ readl(base
+ 0x84);
1250 dev
->stats
.tx_carrier_errors
+= readl(base
+ 0x88) & 0xff;
1253 static struct net_device_stats
*ns83820_get_stats(struct net_device
*ndev
)
1255 struct ns83820
*dev
= PRIV(ndev
);
1257 /* somewhat overkill */
1258 spin_lock_irq(&dev
->misc_lock
);
1259 ns83820_update_stats(dev
);
1260 spin_unlock_irq(&dev
->misc_lock
);
1265 static void ns83820_get_drvinfo(struct net_device
*ndev
, struct ethtool_drvinfo
*info
)
1267 struct ns83820
*dev
= PRIV(ndev
);
1268 strcpy(info
->driver
, "ns83820");
1269 strcpy(info
->version
, VERSION
);
1270 strcpy(info
->bus_info
, pci_name(dev
->pci_dev
));
1273 static u32
ns83820_get_link(struct net_device
*ndev
)
1275 struct ns83820
*dev
= PRIV(ndev
);
1276 u32 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
1277 return cfg
& CFG_LNKSTS
? 1 : 0;
1280 static struct ethtool_ops ops
= {
1281 .get_drvinfo
= ns83820_get_drvinfo
,
1282 .get_link
= ns83820_get_link
1285 static void ns83820_mib_isr(struct ns83820
*dev
)
1287 spin_lock(&dev
->misc_lock
);
1288 ns83820_update_stats(dev
);
1289 spin_unlock(&dev
->misc_lock
);
1292 static void ns83820_do_isr(struct net_device
*ndev
, u32 isr
);
1293 static irqreturn_t
ns83820_irq(int foo
, void *data
, struct pt_regs
*regs
)
1295 struct net_device
*ndev
= data
;
1296 struct ns83820
*dev
= PRIV(ndev
);
1298 dprintk("ns83820_irq(%p)\n", ndev
);
1302 isr
= readl(dev
->base
+ ISR
);
1303 dprintk("irq: %08x\n", isr
);
1304 ns83820_do_isr(ndev
, isr
);
1308 static void ns83820_do_isr(struct net_device
*ndev
, u32 isr
)
1310 struct ns83820
*dev
= PRIV(ndev
);
1312 if (isr
& ~(ISR_PHY
| ISR_RXDESC
| ISR_RXEARLY
| ISR_RXOK
| ISR_RXERR
| ISR_TXIDLE
| ISR_TXOK
| ISR_TXDESC
))
1313 Dprintk("odd isr? 0x%08x\n", isr
);
1316 if (ISR_RXIDLE
& isr
) {
1317 dev
->rx_info
.idle
= 1;
1318 Dprintk("oh dear, we are idle\n");
1319 ns83820_rx_kick(ndev
);
1322 if ((ISR_RXDESC
| ISR_RXOK
) & isr
) {
1323 prefetch(dev
->rx_info
.next_rx_desc
);
1325 spin_lock_irq(&dev
->misc_lock
);
1326 dev
->IMR_cache
&= ~(ISR_RXDESC
| ISR_RXOK
);
1327 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1328 spin_unlock_irq(&dev
->misc_lock
);
1330 tasklet_schedule(&dev
->rx_tasklet
);
1332 //writel(4, dev->base + IHR);
1335 if ((ISR_RXIDLE
| ISR_RXORN
| ISR_RXDESC
| ISR_RXOK
| ISR_RXERR
) & isr
)
1336 ns83820_rx_kick(ndev
);
1338 if (unlikely(ISR_RXSOVR
& isr
)) {
1339 //printk("overrun: rxsovr\n");
1340 dev
->stats
.rx_fifo_errors
++;
1343 if (unlikely(ISR_RXORN
& isr
)) {
1344 //printk("overrun: rxorn\n");
1345 dev
->stats
.rx_fifo_errors
++;
1348 if ((ISR_RXRCMP
& isr
) && dev
->rx_info
.up
)
1349 writel(CR_RXE
, dev
->base
+ CR
);
1351 if (ISR_TXIDLE
& isr
) {
1353 txdp
= readl(dev
->base
+ TXDP
);
1354 dprintk("txdp: %08x\n", txdp
);
1355 txdp
-= dev
->tx_phy_descs
;
1356 dev
->tx_idx
= txdp
/ (DESC_SIZE
* 4);
1357 if (dev
->tx_idx
>= NR_TX_DESC
) {
1358 printk(KERN_ALERT
"%s: BUG -- txdp out of range\n", ndev
->name
);
1361 /* The may have been a race between a pci originated read
1362 * and the descriptor update from the cpu. Just in case,
1363 * kick the transmitter if the hardware thinks it is on a
1364 * different descriptor than we are.
1366 if (dev
->tx_idx
!= dev
->tx_free_idx
)
1370 /* Defer tx ring processing until more than a minimum amount of
1371 * work has accumulated
1373 if ((ISR_TXDESC
| ISR_TXIDLE
| ISR_TXOK
| ISR_TXERR
) & isr
) {
1376 /* Disable TxOk if there are no outstanding tx packets.
1378 if ((dev
->tx_done_idx
== dev
->tx_free_idx
) &&
1379 (dev
->IMR_cache
& ISR_TXOK
)) {
1380 spin_lock_irq(&dev
->misc_lock
);
1381 dev
->IMR_cache
&= ~ISR_TXOK
;
1382 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1383 spin_unlock_irq(&dev
->misc_lock
);
1387 /* The TxIdle interrupt can come in before the transmit has
1388 * completed. Normally we reap packets off of the combination
1389 * of TxDesc and TxIdle and leave TxOk disabled (since it
1390 * occurs on every packet), but when no further irqs of this
1391 * nature are expected, we must enable TxOk.
1393 if ((ISR_TXIDLE
& isr
) && (dev
->tx_done_idx
!= dev
->tx_free_idx
)) {
1394 spin_lock_irq(&dev
->misc_lock
);
1395 dev
->IMR_cache
|= ISR_TXOK
;
1396 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1397 spin_unlock_irq(&dev
->misc_lock
);
1400 /* MIB interrupt: one of the statistics counters is about to overflow */
1401 if (unlikely(ISR_MIB
& isr
))
1402 ns83820_mib_isr(dev
);
1404 /* PHY: Link up/down/negotiation state change */
1405 if (unlikely(ISR_PHY
& isr
))
1408 #if 0 /* Still working on the interrupt mitigation strategy */
1410 writel(dev
->ihr
, dev
->base
+ IHR
);
1414 static void ns83820_do_reset(struct ns83820
*dev
, u32 which
)
1416 Dprintk("resetting chip...\n");
1417 writel(which
, dev
->base
+ CR
);
1420 } while (readl(dev
->base
+ CR
) & which
);
1424 static int ns83820_stop(struct net_device
*ndev
)
1426 struct ns83820
*dev
= PRIV(ndev
);
1428 /* FIXME: protect against interrupt handler? */
1429 del_timer_sync(&dev
->tx_watchdog
);
1431 /* disable interrupts */
1432 writel(0, dev
->base
+ IMR
);
1433 writel(0, dev
->base
+ IER
);
1434 readl(dev
->base
+ IER
);
1436 dev
->rx_info
.up
= 0;
1437 synchronize_irq(dev
->pci_dev
->irq
);
1439 ns83820_do_reset(dev
, CR_RST
);
1441 synchronize_irq(dev
->pci_dev
->irq
);
1443 spin_lock_irq(&dev
->misc_lock
);
1444 dev
->IMR_cache
&= ~(ISR_TXURN
| ISR_TXIDLE
| ISR_TXERR
| ISR_TXDESC
| ISR_TXOK
);
1445 spin_unlock_irq(&dev
->misc_lock
);
1447 ns83820_cleanup_rx(dev
);
1448 ns83820_cleanup_tx(dev
);
1453 static void ns83820_tx_timeout(struct net_device
*ndev
)
1455 struct ns83820
*dev
= PRIV(ndev
);
1456 u32 tx_done_idx
, *desc
;
1457 unsigned long flags
;
1459 local_irq_save(flags
);
1461 tx_done_idx
= dev
->tx_done_idx
;
1462 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1464 printk(KERN_INFO
"%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1466 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
1471 isr
= readl(dev
->base
+ ISR
);
1472 printk("irq: %08x imr: %08x\n", isr
, dev
->IMR_cache
);
1473 ns83820_do_isr(ndev
, isr
);
1479 tx_done_idx
= dev
->tx_done_idx
;
1480 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1482 printk(KERN_INFO
"%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1484 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
1486 local_irq_restore(flags
);
1489 static void ns83820_tx_watch(unsigned long data
)
1491 struct net_device
*ndev
= (void *)data
;
1492 struct ns83820
*dev
= PRIV(ndev
);
1495 printk("ns83820_tx_watch: %u %u %d\n",
1496 dev
->tx_done_idx
, dev
->tx_free_idx
, atomic_read(&dev
->nr_tx_skbs
)
1500 if (time_after(jiffies
, ndev
->trans_start
+ 1*HZ
) &&
1501 dev
->tx_done_idx
!= dev
->tx_free_idx
) {
1502 printk(KERN_DEBUG
"%s: ns83820_tx_watch: %u %u %d\n",
1504 dev
->tx_done_idx
, dev
->tx_free_idx
,
1505 atomic_read(&dev
->nr_tx_skbs
));
1506 ns83820_tx_timeout(ndev
);
1509 mod_timer(&dev
->tx_watchdog
, jiffies
+ 2*HZ
);
1512 static int ns83820_open(struct net_device
*ndev
)
1514 struct ns83820
*dev
= PRIV(ndev
);
1519 dprintk("ns83820_open\n");
1521 writel(0, dev
->base
+ PQCR
);
1523 ret
= ns83820_setup_rx(ndev
);
1527 memset(dev
->tx_descs
, 0, 4 * NR_TX_DESC
* DESC_SIZE
);
1528 for (i
=0; i
<NR_TX_DESC
; i
++) {
1529 dev
->tx_descs
[(i
* DESC_SIZE
) + DESC_LINK
]
1532 + ((i
+1) % NR_TX_DESC
) * DESC_SIZE
* 4);
1536 dev
->tx_done_idx
= 0;
1537 desc
= dev
->tx_phy_descs
;
1538 writel(0, dev
->base
+ TXDP_HI
);
1539 writel(desc
, dev
->base
+ TXDP
);
1541 init_timer(&dev
->tx_watchdog
);
1542 dev
->tx_watchdog
.data
= (unsigned long)ndev
;
1543 dev
->tx_watchdog
.function
= ns83820_tx_watch
;
1544 mod_timer(&dev
->tx_watchdog
, jiffies
+ 2*HZ
);
1546 netif_start_queue(ndev
); /* FIXME: wait for phy to come up */
1555 static void ns83820_getmac(struct ns83820
*dev
, u8
*mac
)
1558 for (i
=0; i
<3; i
++) {
1561 /* Read from the perfect match memory: this is loaded by
1562 * the chip from the EEPROM via the EELOAD self test.
1564 writel(i
*2, dev
->base
+ RFCR
);
1565 data
= readl(dev
->base
+ RFDR
);
1572 static int ns83820_change_mtu(struct net_device
*ndev
, int new_mtu
)
1574 if (new_mtu
> RX_BUF_SIZE
)
1576 ndev
->mtu
= new_mtu
;
1580 static void ns83820_set_multicast(struct net_device
*ndev
)
1582 struct ns83820
*dev
= PRIV(ndev
);
1583 u8 __iomem
*rfcr
= dev
->base
+ RFCR
;
1584 u32 and_mask
= 0xffffffff;
1588 if (ndev
->flags
& IFF_PROMISC
)
1589 or_mask
|= RFCR_AAU
| RFCR_AAM
;
1591 and_mask
&= ~(RFCR_AAU
| RFCR_AAM
);
1593 if (ndev
->flags
& IFF_ALLMULTI
)
1594 or_mask
|= RFCR_AAM
;
1596 and_mask
&= ~RFCR_AAM
;
1598 spin_lock_irq(&dev
->misc_lock
);
1599 val
= (readl(rfcr
) & and_mask
) | or_mask
;
1600 /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1601 writel(val
& ~RFCR_RFEN
, rfcr
);
1603 spin_unlock_irq(&dev
->misc_lock
);
1606 static void ns83820_run_bist(struct net_device
*ndev
, const char *name
, u32 enable
, u32 done
, u32 fail
)
1608 struct ns83820
*dev
= PRIV(ndev
);
1614 dprintk("%s: start %s\n", ndev
->name
, name
);
1618 writel(enable
, dev
->base
+ PTSCR
);
1621 status
= readl(dev
->base
+ PTSCR
);
1622 if (!(status
& enable
))
1628 if ((jiffies
- start
) >= HZ
) {
1632 schedule_timeout_uninterruptible(1);
1636 printk(KERN_INFO
"%s: %s failed! (0x%08x & 0x%08x)\n",
1637 ndev
->name
, name
, status
, fail
);
1639 printk(KERN_INFO
"%s: run_bist %s timed out! (%08x)\n",
1640 ndev
->name
, name
, status
);
1642 dprintk("%s: done %s in %d loops\n", ndev
->name
, name
, loops
);
1645 #ifdef PHY_CODE_IS_FINISHED
1646 static void ns83820_mii_write_bit(struct ns83820
*dev
, int bit
)
1649 dev
->MEAR_cache
&= ~MEAR_MDC
;
1650 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1651 readl(dev
->base
+ MEAR
);
1653 /* enable output, set bit */
1654 dev
->MEAR_cache
|= MEAR_MDDIR
;
1656 dev
->MEAR_cache
|= MEAR_MDIO
;
1658 dev
->MEAR_cache
&= ~MEAR_MDIO
;
1660 /* set the output bit */
1661 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1662 readl(dev
->base
+ MEAR
);
1664 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1667 /* drive MDC high causing the data bit to be latched */
1668 dev
->MEAR_cache
|= MEAR_MDC
;
1669 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1670 readl(dev
->base
+ MEAR
);
1676 static int ns83820_mii_read_bit(struct ns83820
*dev
)
1680 /* drive MDC low, disable output */
1681 dev
->MEAR_cache
&= ~MEAR_MDC
;
1682 dev
->MEAR_cache
&= ~MEAR_MDDIR
;
1683 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1684 readl(dev
->base
+ MEAR
);
1686 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1689 /* drive MDC high causing the data bit to be latched */
1690 bit
= (readl(dev
->base
+ MEAR
) & MEAR_MDIO
) ? 1 : 0;
1691 dev
->MEAR_cache
|= MEAR_MDC
;
1692 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1700 static unsigned ns83820_mii_read_reg(struct ns83820
*dev
, unsigned phy
, unsigned reg
)
1705 /* read some garbage so that we eventually sync up */
1706 for (i
=0; i
<64; i
++)
1707 ns83820_mii_read_bit(dev
);
1709 ns83820_mii_write_bit(dev
, 0); /* start */
1710 ns83820_mii_write_bit(dev
, 1);
1711 ns83820_mii_write_bit(dev
, 1); /* opcode read */
1712 ns83820_mii_write_bit(dev
, 0);
1714 /* write out the phy address: 5 bits, msb first */
1716 ns83820_mii_write_bit(dev
, phy
& (0x10 >> i
));
1718 /* write out the register address, 5 bits, msb first */
1720 ns83820_mii_write_bit(dev
, reg
& (0x10 >> i
));
1722 ns83820_mii_read_bit(dev
); /* turn around cycles */
1723 ns83820_mii_read_bit(dev
);
1725 /* read in the register data, 16 bits msb first */
1726 for (i
=0; i
<16; i
++) {
1728 data
|= ns83820_mii_read_bit(dev
);
1734 static unsigned ns83820_mii_write_reg(struct ns83820
*dev
, unsigned phy
, unsigned reg
, unsigned data
)
1738 /* read some garbage so that we eventually sync up */
1739 for (i
=0; i
<64; i
++)
1740 ns83820_mii_read_bit(dev
);
1742 ns83820_mii_write_bit(dev
, 0); /* start */
1743 ns83820_mii_write_bit(dev
, 1);
1744 ns83820_mii_write_bit(dev
, 0); /* opcode read */
1745 ns83820_mii_write_bit(dev
, 1);
1747 /* write out the phy address: 5 bits, msb first */
1749 ns83820_mii_write_bit(dev
, phy
& (0x10 >> i
));
1751 /* write out the register address, 5 bits, msb first */
1753 ns83820_mii_write_bit(dev
, reg
& (0x10 >> i
));
1755 ns83820_mii_read_bit(dev
); /* turn around cycles */
1756 ns83820_mii_read_bit(dev
);
1758 /* read in the register data, 16 bits msb first */
1759 for (i
=0; i
<16; i
++)
1760 ns83820_mii_write_bit(dev
, (data
>> (15 - i
)) & 1);
1765 static void ns83820_probe_phy(struct net_device
*ndev
)
1767 struct ns83820
*dev
= PRIV(ndev
);
1770 #define MII_PHYIDR1 0x02
1771 #define MII_PHYIDR2 0x03
1776 ns83820_mii_read_reg(dev
, 1, 0x09);
1777 ns83820_mii_write_reg(dev
, 1, 0x10, 0x0d3e);
1779 tmp
= ns83820_mii_read_reg(dev
, 1, 0x00);
1780 ns83820_mii_write_reg(dev
, 1, 0x00, tmp
| 0x8000);
1782 ns83820_mii_read_reg(dev
, 1, 0x09);
1787 for (i
=1; i
<2; i
++) {
1790 a
= ns83820_mii_read_reg(dev
, i
, MII_PHYIDR1
);
1791 b
= ns83820_mii_read_reg(dev
, i
, MII_PHYIDR2
);
1793 //printk("%s: phy %d: 0x%04x 0x%04x\n",
1794 // ndev->name, i, a, b);
1796 for (j
=0; j
<0x16; j
+=4) {
1797 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1799 ns83820_mii_read_reg(dev
, i
, 0 + j
),
1800 ns83820_mii_read_reg(dev
, i
, 1 + j
),
1801 ns83820_mii_read_reg(dev
, i
, 2 + j
),
1802 ns83820_mii_read_reg(dev
, i
, 3 + j
)
1808 /* read firmware version: memory addr is 0x8402 and 0x8403 */
1809 ns83820_mii_write_reg(dev
, 1, 0x16, 0x000d);
1810 ns83820_mii_write_reg(dev
, 1, 0x1e, 0x810e);
1811 a
= ns83820_mii_read_reg(dev
, 1, 0x1d);
1813 ns83820_mii_write_reg(dev
, 1, 0x16, 0x000d);
1814 ns83820_mii_write_reg(dev
, 1, 0x1e, 0x810e);
1815 b
= ns83820_mii_read_reg(dev
, 1, 0x1d);
1816 dprintk("version: 0x%04x 0x%04x\n", a
, b
);
1821 static int __devinit
ns83820_init_one(struct pci_dev
*pci_dev
, const struct pci_device_id
*id
)
1823 struct net_device
*ndev
;
1824 struct ns83820
*dev
;
1829 /* See if we can set the dma mask early on; failure is fatal. */
1830 if (sizeof(dma_addr_t
) == 8 &&
1831 !pci_set_dma_mask(pci_dev
, 0xffffffffffffffffULL
)) {
1833 } else if (!pci_set_dma_mask(pci_dev
, 0xffffffff)) {
1836 printk(KERN_WARNING
"ns83820.c: pci_set_dma_mask failed!\n");
1840 ndev
= alloc_etherdev(sizeof(struct ns83820
));
1846 spin_lock_init(&dev
->rx_info
.lock
);
1847 spin_lock_init(&dev
->tx_lock
);
1848 spin_lock_init(&dev
->misc_lock
);
1849 dev
->pci_dev
= pci_dev
;
1851 SET_MODULE_OWNER(ndev
);
1852 SET_NETDEV_DEV(ndev
, &pci_dev
->dev
);
1854 INIT_WORK(&dev
->tq_refill
, queue_refill
, ndev
);
1855 tasklet_init(&dev
->rx_tasklet
, rx_action
, (unsigned long)ndev
);
1857 err
= pci_enable_device(pci_dev
);
1859 printk(KERN_INFO
"ns83820: pci_enable_dev failed: %d\n", err
);
1863 pci_set_master(pci_dev
);
1864 addr
= pci_resource_start(pci_dev
, 1);
1865 dev
->base
= ioremap_nocache(addr
, PAGE_SIZE
);
1866 dev
->tx_descs
= pci_alloc_consistent(pci_dev
,
1867 4 * DESC_SIZE
* NR_TX_DESC
, &dev
->tx_phy_descs
);
1868 dev
->rx_info
.descs
= pci_alloc_consistent(pci_dev
,
1869 4 * DESC_SIZE
* NR_RX_DESC
, &dev
->rx_info
.phy_descs
);
1871 if (!dev
->base
|| !dev
->tx_descs
|| !dev
->rx_info
.descs
)
1874 dprintk("%p: %08lx %p: %08lx\n",
1875 dev
->tx_descs
, (long)dev
->tx_phy_descs
,
1876 dev
->rx_info
.descs
, (long)dev
->rx_info
.phy_descs
);
1878 /* disable interrupts */
1879 writel(0, dev
->base
+ IMR
);
1880 writel(0, dev
->base
+ IER
);
1881 readl(dev
->base
+ IER
);
1885 err
= request_irq(pci_dev
->irq
, ns83820_irq
, SA_SHIRQ
,
1888 printk(KERN_INFO
"ns83820: unable to register irq %d\n",
1894 * FIXME: we are holding rtnl_lock() over obscenely long area only
1895 * because some of the setup code uses dev->name. It's Wrong(tm) -
1896 * we should be using driver-specific names for all that stuff.
1897 * For now that will do, but we really need to come back and kill
1898 * most of the dev_alloc_name() users later.
1901 err
= dev_alloc_name(ndev
, ndev
->name
);
1903 printk(KERN_INFO
"ns83820: unable to get netdev name: %d\n", err
);
1907 printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
1908 ndev
->name
, le32_to_cpu(readl(dev
->base
+ 0x22c)),
1909 pci_dev
->subsystem_vendor
, pci_dev
->subsystem_device
);
1911 ndev
->open
= ns83820_open
;
1912 ndev
->stop
= ns83820_stop
;
1913 ndev
->hard_start_xmit
= ns83820_hard_start_xmit
;
1914 ndev
->get_stats
= ns83820_get_stats
;
1915 ndev
->change_mtu
= ns83820_change_mtu
;
1916 ndev
->set_multicast_list
= ns83820_set_multicast
;
1917 SET_ETHTOOL_OPS(ndev
, &ops
);
1918 ndev
->tx_timeout
= ns83820_tx_timeout
;
1919 ndev
->watchdog_timeo
= 5 * HZ
;
1920 pci_set_drvdata(pci_dev
, ndev
);
1922 ns83820_do_reset(dev
, CR_RST
);
1924 /* Must reset the ram bist before running it */
1925 writel(PTSCR_RBIST_RST
, dev
->base
+ PTSCR
);
1926 ns83820_run_bist(ndev
, "sram bist", PTSCR_RBIST_EN
,
1927 PTSCR_RBIST_DONE
, PTSCR_RBIST_FAIL
);
1928 ns83820_run_bist(ndev
, "eeprom bist", PTSCR_EEBIST_EN
, 0,
1930 ns83820_run_bist(ndev
, "eeprom load", PTSCR_EELOAD_EN
, 0, 0);
1932 /* I love config registers */
1933 dev
->CFG_cache
= readl(dev
->base
+ CFG
);
1935 if ((dev
->CFG_cache
& CFG_PCI64_DET
)) {
1936 printk(KERN_INFO
"%s: detected 64 bit PCI data bus.\n",
1938 /*dev->CFG_cache |= CFG_DATA64_EN;*/
1939 if (!(dev
->CFG_cache
& CFG_DATA64_EN
))
1940 printk(KERN_INFO
"%s: EEPROM did not enable 64 bit bus. Disabled.\n",
1943 dev
->CFG_cache
&= ~(CFG_DATA64_EN
);
1945 dev
->CFG_cache
&= (CFG_TBI_EN
| CFG_MRM_DIS
| CFG_MWI_DIS
|
1946 CFG_T64ADDR
| CFG_DATA64_EN
| CFG_EXT_125
|
1948 dev
->CFG_cache
|= CFG_PINT_DUPSTS
| CFG_PINT_LNKSTS
| CFG_PINT_SPDSTS
|
1949 CFG_EXTSTS_EN
| CFG_EXD
| CFG_PESEL
;
1950 dev
->CFG_cache
|= CFG_REQALG
;
1951 dev
->CFG_cache
|= CFG_POW
;
1952 dev
->CFG_cache
|= CFG_TMRTEST
;
1954 /* When compiled with 64 bit addressing, we must always enable
1955 * the 64 bit descriptor format.
1957 if (sizeof(dma_addr_t
) == 8)
1958 dev
->CFG_cache
|= CFG_M64ADDR
;
1960 dev
->CFG_cache
|= CFG_T64ADDR
;
1962 /* Big endian mode does not seem to do what the docs suggest */
1963 dev
->CFG_cache
&= ~CFG_BEM
;
1965 /* setup optical transceiver if we have one */
1966 if (dev
->CFG_cache
& CFG_TBI_EN
) {
1967 printk(KERN_INFO
"%s: enabling optical transceiver\n",
1969 writel(readl(dev
->base
+ GPIOR
) | 0x3e8, dev
->base
+ GPIOR
);
1971 /* setup auto negotiation feature advertisement */
1972 writel(readl(dev
->base
+ TANAR
)
1973 | TANAR_HALF_DUP
| TANAR_FULL_DUP
,
1976 /* start auto negotiation */
1977 writel(TBICR_MR_AN_ENABLE
| TBICR_MR_RESTART_AN
,
1979 writel(TBICR_MR_AN_ENABLE
, dev
->base
+ TBICR
);
1980 dev
->linkstate
= LINK_AUTONEGOTIATE
;
1982 dev
->CFG_cache
|= CFG_MODE_1000
;
1985 writel(dev
->CFG_cache
, dev
->base
+ CFG
);
1986 dprintk("CFG: %08x\n", dev
->CFG_cache
);
1989 printk(KERN_INFO
"%s: resetting phy\n", ndev
->name
);
1990 writel(dev
->CFG_cache
| CFG_PHY_RST
, dev
->base
+ CFG
);
1992 writel(dev
->CFG_cache
, dev
->base
+ CFG
);
1995 #if 0 /* Huh? This sets the PCI latency register. Should be done via
1996 * the PCI layer. FIXME.
1998 if (readl(dev
->base
+ SRR
))
1999 writel(readl(dev
->base
+0x20c) | 0xfe00, dev
->base
+ 0x20c);
2002 /* Note! The DMA burst size interacts with packet
2003 * transmission, such that the largest packet that
2004 * can be transmitted is 8192 - FLTH - burst size.
2005 * If only the transmit fifo was larger...
2007 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2008 * some DELL and COMPAQ SMP systems */
2009 writel(TXCFG_CSI
| TXCFG_HBI
| TXCFG_ATP
| TXCFG_MXDMA512
2010 | ((1600 / 32) * 0x100),
2013 /* Flush the interrupt holdoff timer */
2014 writel(0x000, dev
->base
+ IHR
);
2015 writel(0x100, dev
->base
+ IHR
);
2016 writel(0x000, dev
->base
+ IHR
);
2018 /* Set Rx to full duplex, don't accept runt, errored, long or length
2019 * range errored packets. Use 512 byte DMA.
2021 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2022 * some DELL and COMPAQ SMP systems
2023 * Turn on ALP, only we are accpeting Jumbo Packets */
2024 writel(RXCFG_AEP
| RXCFG_ARP
| RXCFG_AIRL
| RXCFG_RX_FD
2027 | (RXCFG_MXDMA512
) | 0, dev
->base
+ RXCFG
);
2029 /* Disable priority queueing */
2030 writel(0, dev
->base
+ PQCR
);
2032 /* Enable IP checksum validation and detetion of VLAN headers.
2033 * Note: do not set the reject options as at least the 0x102
2034 * revision of the chip does not properly accept IP fragments
2037 /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2038 * the MAC it calculates the packetsize AFTER stripping the VLAN
2039 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2040 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2041 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2042 * it discrards it!. These guys......
2043 * also turn on tag stripping if hardware acceleration is enabled
2045 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2046 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2048 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2050 writel(VRCR_INIT_VALUE
, dev
->base
+ VRCR
);
2052 /* Enable per-packet TCP/UDP/IP checksumming
2053 * and per packet vlan tag insertion if
2054 * vlan hardware acceleration is enabled
2056 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2057 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2059 #define VTCR_INIT_VALUE VTCR_PPCHK
2061 writel(VTCR_INIT_VALUE
, dev
->base
+ VTCR
);
2063 /* Ramit : Enable async and sync pause frames */
2064 /* writel(0, dev->base + PCR); */
2065 writel((PCR_PS_MCAST
| PCR_PS_DA
| PCR_PSEN
| PCR_FFLO_4K
|
2066 PCR_FFHI_8K
| PCR_STLO_4
| PCR_STHI_8
| PCR_PAUSE_CNT
),
2069 /* Disable Wake On Lan */
2070 writel(0, dev
->base
+ WCSR
);
2072 ns83820_getmac(dev
, ndev
->dev_addr
);
2074 /* Yes, we support dumb IP checksum on transmit */
2075 ndev
->features
|= NETIF_F_SG
;
2076 ndev
->features
|= NETIF_F_IP_CSUM
;
2078 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2079 /* We also support hardware vlan acceleration */
2080 ndev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
2081 ndev
->vlan_rx_register
= ns83820_vlan_rx_register
;
2082 ndev
->vlan_rx_kill_vid
= ns83820_vlan_rx_kill_vid
;
2086 printk(KERN_INFO
"%s: using 64 bit addressing.\n",
2088 ndev
->features
|= NETIF_F_HIGHDMA
;
2091 printk(KERN_INFO
"%s: ns83820 v" VERSION
": DP83820 v%u.%u: %02x:%02x:%02x:%02x:%02x:%02x io=0x%08lx irq=%d f=%s\n",
2093 (unsigned)readl(dev
->base
+ SRR
) >> 8,
2094 (unsigned)readl(dev
->base
+ SRR
) & 0xff,
2095 ndev
->dev_addr
[0], ndev
->dev_addr
[1],
2096 ndev
->dev_addr
[2], ndev
->dev_addr
[3],
2097 ndev
->dev_addr
[4], ndev
->dev_addr
[5],
2099 (ndev
->features
& NETIF_F_HIGHDMA
) ? "h,sg" : "sg"
2102 #ifdef PHY_CODE_IS_FINISHED
2103 ns83820_probe_phy(ndev
);
2106 err
= register_netdevice(ndev
);
2108 printk(KERN_INFO
"ns83820: unable to register netdev: %d\n", err
);
2116 writel(0, dev
->base
+ IMR
); /* paranoia */
2117 writel(0, dev
->base
+ IER
);
2118 readl(dev
->base
+ IER
);
2121 free_irq(pci_dev
->irq
, ndev
);
2125 pci_free_consistent(pci_dev
, 4 * DESC_SIZE
* NR_TX_DESC
, dev
->tx_descs
, dev
->tx_phy_descs
);
2126 pci_free_consistent(pci_dev
, 4 * DESC_SIZE
* NR_RX_DESC
, dev
->rx_info
.descs
, dev
->rx_info
.phy_descs
);
2127 pci_disable_device(pci_dev
);
2130 pci_set_drvdata(pci_dev
, NULL
);
2135 static void __devexit
ns83820_remove_one(struct pci_dev
*pci_dev
)
2137 struct net_device
*ndev
= pci_get_drvdata(pci_dev
);
2138 struct ns83820
*dev
= PRIV(ndev
); /* ok even if NULL */
2140 if (!ndev
) /* paranoia */
2143 writel(0, dev
->base
+ IMR
); /* paranoia */
2144 writel(0, dev
->base
+ IER
);
2145 readl(dev
->base
+ IER
);
2147 unregister_netdev(ndev
);
2148 free_irq(dev
->pci_dev
->irq
, ndev
);
2150 pci_free_consistent(dev
->pci_dev
, 4 * DESC_SIZE
* NR_TX_DESC
,
2151 dev
->tx_descs
, dev
->tx_phy_descs
);
2152 pci_free_consistent(dev
->pci_dev
, 4 * DESC_SIZE
* NR_RX_DESC
,
2153 dev
->rx_info
.descs
, dev
->rx_info
.phy_descs
);
2154 pci_disable_device(dev
->pci_dev
);
2156 pci_set_drvdata(pci_dev
, NULL
);
2159 static struct pci_device_id ns83820_pci_tbl
[] = {
2160 { 0x100b, 0x0022, PCI_ANY_ID
, PCI_ANY_ID
, 0, .driver_data
= 0, },
2164 static struct pci_driver driver
= {
2166 .id_table
= ns83820_pci_tbl
,
2167 .probe
= ns83820_init_one
,
2168 .remove
= __devexit_p(ns83820_remove_one
),
2169 #if 0 /* FIXME: implement */
2176 static int __init
ns83820_init(void)
2178 printk(KERN_INFO
"ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2179 return pci_module_init(&driver
);
2182 static void __exit
ns83820_exit(void)
2184 pci_unregister_driver(&driver
);
2187 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2188 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2189 MODULE_LICENSE("GPL");
2191 MODULE_DEVICE_TABLE(pci
, ns83820_pci_tbl
);
2193 module_param(lnksts
, int, 0);
2194 MODULE_PARM_DESC(lnksts
, "Polarity of LNKSTS bit");
2196 module_param(ihr
, int, 0);
2197 MODULE_PARM_DESC(ihr
, "Time in 100 us increments to delay interrupts (range 0-127)");
2199 module_param(reset_phy
, int, 0);
2200 MODULE_PARM_DESC(reset_phy
, "Set to 1 to reset the PHY on startup");
2202 module_init(ns83820_init
);
2203 module_exit(ns83820_exit
);