xfs: convert xfs_fs_cmn_err to new error logging API
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_inode.c
blobd820ada49b18288e6e1d0f8d66528b62e66d6f99
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_btree_trace.h"
41 #include "xfs_alloc.h"
42 #include "xfs_ialloc.h"
43 #include "xfs_bmap.h"
44 #include "xfs_error.h"
45 #include "xfs_utils.h"
46 #include "xfs_quota.h"
47 #include "xfs_filestream.h"
48 #include "xfs_vnodeops.h"
49 #include "xfs_trace.h"
51 kmem_zone_t *xfs_ifork_zone;
52 kmem_zone_t *xfs_inode_zone;
55 * Used in xfs_itruncate(). This is the maximum number of extents
56 * freed from a file in a single transaction.
58 #define XFS_ITRUNC_MAX_EXTENTS 2
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
62 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
63 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
65 #ifdef DEBUG
67 * Make sure that the extents in the given memory buffer
68 * are valid.
70 STATIC void
71 xfs_validate_extents(
72 xfs_ifork_t *ifp,
73 int nrecs,
74 xfs_exntfmt_t fmt)
76 xfs_bmbt_irec_t irec;
77 xfs_bmbt_rec_host_t rec;
78 int i;
80 for (i = 0; i < nrecs; i++) {
81 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
82 rec.l0 = get_unaligned(&ep->l0);
83 rec.l1 = get_unaligned(&ep->l1);
84 xfs_bmbt_get_all(&rec, &irec);
85 if (fmt == XFS_EXTFMT_NOSTATE)
86 ASSERT(irec.br_state == XFS_EXT_NORM);
89 #else /* DEBUG */
90 #define xfs_validate_extents(ifp, nrecs, fmt)
91 #endif /* DEBUG */
94 * Check that none of the inode's in the buffer have a next
95 * unlinked field of 0.
97 #if defined(DEBUG)
98 void
99 xfs_inobp_check(
100 xfs_mount_t *mp,
101 xfs_buf_t *bp)
103 int i;
104 int j;
105 xfs_dinode_t *dip;
107 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
109 for (i = 0; i < j; i++) {
110 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
111 i * mp->m_sb.sb_inodesize);
112 if (!dip->di_next_unlinked) {
113 xfs_alert(mp,
114 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
115 bp);
116 ASSERT(dip->di_next_unlinked);
120 #endif
123 * Find the buffer associated with the given inode map
124 * We do basic validation checks on the buffer once it has been
125 * retrieved from disk.
127 STATIC int
128 xfs_imap_to_bp(
129 xfs_mount_t *mp,
130 xfs_trans_t *tp,
131 struct xfs_imap *imap,
132 xfs_buf_t **bpp,
133 uint buf_flags,
134 uint iget_flags)
136 int error;
137 int i;
138 int ni;
139 xfs_buf_t *bp;
141 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
142 (int)imap->im_len, buf_flags, &bp);
143 if (error) {
144 if (error != EAGAIN) {
145 cmn_err(CE_WARN,
146 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
147 "an error %d on %s. Returning error.",
148 error, mp->m_fsname);
149 } else {
150 ASSERT(buf_flags & XBF_TRYLOCK);
152 return error;
156 * Validate the magic number and version of every inode in the buffer
157 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
159 #ifdef DEBUG
160 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
161 #else /* usual case */
162 ni = 1;
163 #endif
165 for (i = 0; i < ni; i++) {
166 int di_ok;
167 xfs_dinode_t *dip;
169 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
170 (i << mp->m_sb.sb_inodelog));
171 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
172 XFS_DINODE_GOOD_VERSION(dip->di_version);
173 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
174 XFS_ERRTAG_ITOBP_INOTOBP,
175 XFS_RANDOM_ITOBP_INOTOBP))) {
176 if (iget_flags & XFS_IGET_UNTRUSTED) {
177 xfs_trans_brelse(tp, bp);
178 return XFS_ERROR(EINVAL);
180 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
181 XFS_ERRLEVEL_HIGH, mp, dip);
182 #ifdef DEBUG
183 cmn_err(CE_PANIC,
184 "Device %s - bad inode magic/vsn "
185 "daddr %lld #%d (magic=%x)",
186 XFS_BUFTARG_NAME(mp->m_ddev_targp),
187 (unsigned long long)imap->im_blkno, i,
188 be16_to_cpu(dip->di_magic));
189 #endif
190 xfs_trans_brelse(tp, bp);
191 return XFS_ERROR(EFSCORRUPTED);
195 xfs_inobp_check(mp, bp);
198 * Mark the buffer as an inode buffer now that it looks good
200 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
202 *bpp = bp;
203 return 0;
207 * This routine is called to map an inode number within a file
208 * system to the buffer containing the on-disk version of the
209 * inode. It returns a pointer to the buffer containing the
210 * on-disk inode in the bpp parameter, and in the dip parameter
211 * it returns a pointer to the on-disk inode within that buffer.
213 * If a non-zero error is returned, then the contents of bpp and
214 * dipp are undefined.
216 * Use xfs_imap() to determine the size and location of the
217 * buffer to read from disk.
220 xfs_inotobp(
221 xfs_mount_t *mp,
222 xfs_trans_t *tp,
223 xfs_ino_t ino,
224 xfs_dinode_t **dipp,
225 xfs_buf_t **bpp,
226 int *offset,
227 uint imap_flags)
229 struct xfs_imap imap;
230 xfs_buf_t *bp;
231 int error;
233 imap.im_blkno = 0;
234 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
235 if (error)
236 return error;
238 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
239 if (error)
240 return error;
242 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
243 *bpp = bp;
244 *offset = imap.im_boffset;
245 return 0;
250 * This routine is called to map an inode to the buffer containing
251 * the on-disk version of the inode. It returns a pointer to the
252 * buffer containing the on-disk inode in the bpp parameter, and in
253 * the dip parameter it returns a pointer to the on-disk inode within
254 * that buffer.
256 * If a non-zero error is returned, then the contents of bpp and
257 * dipp are undefined.
259 * The inode is expected to already been mapped to its buffer and read
260 * in once, thus we can use the mapping information stored in the inode
261 * rather than calling xfs_imap(). This allows us to avoid the overhead
262 * of looking at the inode btree for small block file systems
263 * (see xfs_imap()).
266 xfs_itobp(
267 xfs_mount_t *mp,
268 xfs_trans_t *tp,
269 xfs_inode_t *ip,
270 xfs_dinode_t **dipp,
271 xfs_buf_t **bpp,
272 uint buf_flags)
274 xfs_buf_t *bp;
275 int error;
277 ASSERT(ip->i_imap.im_blkno != 0);
279 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
280 if (error)
281 return error;
283 if (!bp) {
284 ASSERT(buf_flags & XBF_TRYLOCK);
285 ASSERT(tp == NULL);
286 *bpp = NULL;
287 return EAGAIN;
290 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
291 *bpp = bp;
292 return 0;
296 * Move inode type and inode format specific information from the
297 * on-disk inode to the in-core inode. For fifos, devs, and sockets
298 * this means set if_rdev to the proper value. For files, directories,
299 * and symlinks this means to bring in the in-line data or extent
300 * pointers. For a file in B-tree format, only the root is immediately
301 * brought in-core. The rest will be in-lined in if_extents when it
302 * is first referenced (see xfs_iread_extents()).
304 STATIC int
305 xfs_iformat(
306 xfs_inode_t *ip,
307 xfs_dinode_t *dip)
309 xfs_attr_shortform_t *atp;
310 int size;
311 int error;
312 xfs_fsize_t di_size;
313 ip->i_df.if_ext_max =
314 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
315 error = 0;
317 if (unlikely(be32_to_cpu(dip->di_nextents) +
318 be16_to_cpu(dip->di_anextents) >
319 be64_to_cpu(dip->di_nblocks))) {
320 xfs_warn(ip->i_mount,
321 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
322 (unsigned long long)ip->i_ino,
323 (int)(be32_to_cpu(dip->di_nextents) +
324 be16_to_cpu(dip->di_anextents)),
325 (unsigned long long)
326 be64_to_cpu(dip->di_nblocks));
327 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
328 ip->i_mount, dip);
329 return XFS_ERROR(EFSCORRUPTED);
332 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
333 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
334 (unsigned long long)ip->i_ino,
335 dip->di_forkoff);
336 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
337 ip->i_mount, dip);
338 return XFS_ERROR(EFSCORRUPTED);
341 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
342 !ip->i_mount->m_rtdev_targp)) {
343 xfs_warn(ip->i_mount,
344 "corrupt dinode %Lu, has realtime flag set.",
345 ip->i_ino);
346 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
347 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
348 return XFS_ERROR(EFSCORRUPTED);
351 switch (ip->i_d.di_mode & S_IFMT) {
352 case S_IFIFO:
353 case S_IFCHR:
354 case S_IFBLK:
355 case S_IFSOCK:
356 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
357 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
358 ip->i_mount, dip);
359 return XFS_ERROR(EFSCORRUPTED);
361 ip->i_d.di_size = 0;
362 ip->i_size = 0;
363 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
364 break;
366 case S_IFREG:
367 case S_IFLNK:
368 case S_IFDIR:
369 switch (dip->di_format) {
370 case XFS_DINODE_FMT_LOCAL:
372 * no local regular files yet
374 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
375 xfs_warn(ip->i_mount,
376 "corrupt inode %Lu (local format for regular file).",
377 (unsigned long long) ip->i_ino);
378 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
379 XFS_ERRLEVEL_LOW,
380 ip->i_mount, dip);
381 return XFS_ERROR(EFSCORRUPTED);
384 di_size = be64_to_cpu(dip->di_size);
385 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
386 xfs_warn(ip->i_mount,
387 "corrupt inode %Lu (bad size %Ld for local inode).",
388 (unsigned long long) ip->i_ino,
389 (long long) di_size);
390 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
391 XFS_ERRLEVEL_LOW,
392 ip->i_mount, dip);
393 return XFS_ERROR(EFSCORRUPTED);
396 size = (int)di_size;
397 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
398 break;
399 case XFS_DINODE_FMT_EXTENTS:
400 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
401 break;
402 case XFS_DINODE_FMT_BTREE:
403 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
404 break;
405 default:
406 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
407 ip->i_mount);
408 return XFS_ERROR(EFSCORRUPTED);
410 break;
412 default:
413 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
414 return XFS_ERROR(EFSCORRUPTED);
416 if (error) {
417 return error;
419 if (!XFS_DFORK_Q(dip))
420 return 0;
421 ASSERT(ip->i_afp == NULL);
422 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
423 ip->i_afp->if_ext_max =
424 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
425 switch (dip->di_aformat) {
426 case XFS_DINODE_FMT_LOCAL:
427 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
428 size = be16_to_cpu(atp->hdr.totsize);
430 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
431 xfs_warn(ip->i_mount,
432 "corrupt inode %Lu (bad attr fork size %Ld).",
433 (unsigned long long) ip->i_ino,
434 (long long) size);
435 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
436 XFS_ERRLEVEL_LOW,
437 ip->i_mount, dip);
438 return XFS_ERROR(EFSCORRUPTED);
441 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
442 break;
443 case XFS_DINODE_FMT_EXTENTS:
444 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
445 break;
446 case XFS_DINODE_FMT_BTREE:
447 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
448 break;
449 default:
450 error = XFS_ERROR(EFSCORRUPTED);
451 break;
453 if (error) {
454 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
455 ip->i_afp = NULL;
456 xfs_idestroy_fork(ip, XFS_DATA_FORK);
458 return error;
462 * The file is in-lined in the on-disk inode.
463 * If it fits into if_inline_data, then copy
464 * it there, otherwise allocate a buffer for it
465 * and copy the data there. Either way, set
466 * if_data to point at the data.
467 * If we allocate a buffer for the data, make
468 * sure that its size is a multiple of 4 and
469 * record the real size in i_real_bytes.
471 STATIC int
472 xfs_iformat_local(
473 xfs_inode_t *ip,
474 xfs_dinode_t *dip,
475 int whichfork,
476 int size)
478 xfs_ifork_t *ifp;
479 int real_size;
482 * If the size is unreasonable, then something
483 * is wrong and we just bail out rather than crash in
484 * kmem_alloc() or memcpy() below.
486 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
487 xfs_warn(ip->i_mount,
488 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
489 (unsigned long long) ip->i_ino, size,
490 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
491 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
492 ip->i_mount, dip);
493 return XFS_ERROR(EFSCORRUPTED);
495 ifp = XFS_IFORK_PTR(ip, whichfork);
496 real_size = 0;
497 if (size == 0)
498 ifp->if_u1.if_data = NULL;
499 else if (size <= sizeof(ifp->if_u2.if_inline_data))
500 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
501 else {
502 real_size = roundup(size, 4);
503 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
505 ifp->if_bytes = size;
506 ifp->if_real_bytes = real_size;
507 if (size)
508 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
509 ifp->if_flags &= ~XFS_IFEXTENTS;
510 ifp->if_flags |= XFS_IFINLINE;
511 return 0;
515 * The file consists of a set of extents all
516 * of which fit into the on-disk inode.
517 * If there are few enough extents to fit into
518 * the if_inline_ext, then copy them there.
519 * Otherwise allocate a buffer for them and copy
520 * them into it. Either way, set if_extents
521 * to point at the extents.
523 STATIC int
524 xfs_iformat_extents(
525 xfs_inode_t *ip,
526 xfs_dinode_t *dip,
527 int whichfork)
529 xfs_bmbt_rec_t *dp;
530 xfs_ifork_t *ifp;
531 int nex;
532 int size;
533 int i;
535 ifp = XFS_IFORK_PTR(ip, whichfork);
536 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
537 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
540 * If the number of extents is unreasonable, then something
541 * is wrong and we just bail out rather than crash in
542 * kmem_alloc() or memcpy() below.
544 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
545 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
546 (unsigned long long) ip->i_ino, nex);
547 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
548 ip->i_mount, dip);
549 return XFS_ERROR(EFSCORRUPTED);
552 ifp->if_real_bytes = 0;
553 if (nex == 0)
554 ifp->if_u1.if_extents = NULL;
555 else if (nex <= XFS_INLINE_EXTS)
556 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
557 else
558 xfs_iext_add(ifp, 0, nex);
560 ifp->if_bytes = size;
561 if (size) {
562 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
563 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
564 for (i = 0; i < nex; i++, dp++) {
565 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
566 ep->l0 = get_unaligned_be64(&dp->l0);
567 ep->l1 = get_unaligned_be64(&dp->l1);
569 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
570 if (whichfork != XFS_DATA_FORK ||
571 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
572 if (unlikely(xfs_check_nostate_extents(
573 ifp, 0, nex))) {
574 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
575 XFS_ERRLEVEL_LOW,
576 ip->i_mount);
577 return XFS_ERROR(EFSCORRUPTED);
580 ifp->if_flags |= XFS_IFEXTENTS;
581 return 0;
585 * The file has too many extents to fit into
586 * the inode, so they are in B-tree format.
587 * Allocate a buffer for the root of the B-tree
588 * and copy the root into it. The i_extents
589 * field will remain NULL until all of the
590 * extents are read in (when they are needed).
592 STATIC int
593 xfs_iformat_btree(
594 xfs_inode_t *ip,
595 xfs_dinode_t *dip,
596 int whichfork)
598 xfs_bmdr_block_t *dfp;
599 xfs_ifork_t *ifp;
600 /* REFERENCED */
601 int nrecs;
602 int size;
604 ifp = XFS_IFORK_PTR(ip, whichfork);
605 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
606 size = XFS_BMAP_BROOT_SPACE(dfp);
607 nrecs = be16_to_cpu(dfp->bb_numrecs);
610 * blow out if -- fork has less extents than can fit in
611 * fork (fork shouldn't be a btree format), root btree
612 * block has more records than can fit into the fork,
613 * or the number of extents is greater than the number of
614 * blocks.
616 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
617 || XFS_BMDR_SPACE_CALC(nrecs) >
618 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
619 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
620 xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
621 (unsigned long long) ip->i_ino);
622 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
623 ip->i_mount, dip);
624 return XFS_ERROR(EFSCORRUPTED);
627 ifp->if_broot_bytes = size;
628 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
629 ASSERT(ifp->if_broot != NULL);
631 * Copy and convert from the on-disk structure
632 * to the in-memory structure.
634 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
635 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
636 ifp->if_broot, size);
637 ifp->if_flags &= ~XFS_IFEXTENTS;
638 ifp->if_flags |= XFS_IFBROOT;
640 return 0;
643 STATIC void
644 xfs_dinode_from_disk(
645 xfs_icdinode_t *to,
646 xfs_dinode_t *from)
648 to->di_magic = be16_to_cpu(from->di_magic);
649 to->di_mode = be16_to_cpu(from->di_mode);
650 to->di_version = from ->di_version;
651 to->di_format = from->di_format;
652 to->di_onlink = be16_to_cpu(from->di_onlink);
653 to->di_uid = be32_to_cpu(from->di_uid);
654 to->di_gid = be32_to_cpu(from->di_gid);
655 to->di_nlink = be32_to_cpu(from->di_nlink);
656 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
657 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
658 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
659 to->di_flushiter = be16_to_cpu(from->di_flushiter);
660 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
661 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
662 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
663 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
664 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
665 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
666 to->di_size = be64_to_cpu(from->di_size);
667 to->di_nblocks = be64_to_cpu(from->di_nblocks);
668 to->di_extsize = be32_to_cpu(from->di_extsize);
669 to->di_nextents = be32_to_cpu(from->di_nextents);
670 to->di_anextents = be16_to_cpu(from->di_anextents);
671 to->di_forkoff = from->di_forkoff;
672 to->di_aformat = from->di_aformat;
673 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
674 to->di_dmstate = be16_to_cpu(from->di_dmstate);
675 to->di_flags = be16_to_cpu(from->di_flags);
676 to->di_gen = be32_to_cpu(from->di_gen);
679 void
680 xfs_dinode_to_disk(
681 xfs_dinode_t *to,
682 xfs_icdinode_t *from)
684 to->di_magic = cpu_to_be16(from->di_magic);
685 to->di_mode = cpu_to_be16(from->di_mode);
686 to->di_version = from ->di_version;
687 to->di_format = from->di_format;
688 to->di_onlink = cpu_to_be16(from->di_onlink);
689 to->di_uid = cpu_to_be32(from->di_uid);
690 to->di_gid = cpu_to_be32(from->di_gid);
691 to->di_nlink = cpu_to_be32(from->di_nlink);
692 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
693 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
694 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
695 to->di_flushiter = cpu_to_be16(from->di_flushiter);
696 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
697 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
698 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
699 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
700 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
701 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
702 to->di_size = cpu_to_be64(from->di_size);
703 to->di_nblocks = cpu_to_be64(from->di_nblocks);
704 to->di_extsize = cpu_to_be32(from->di_extsize);
705 to->di_nextents = cpu_to_be32(from->di_nextents);
706 to->di_anextents = cpu_to_be16(from->di_anextents);
707 to->di_forkoff = from->di_forkoff;
708 to->di_aformat = from->di_aformat;
709 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
710 to->di_dmstate = cpu_to_be16(from->di_dmstate);
711 to->di_flags = cpu_to_be16(from->di_flags);
712 to->di_gen = cpu_to_be32(from->di_gen);
715 STATIC uint
716 _xfs_dic2xflags(
717 __uint16_t di_flags)
719 uint flags = 0;
721 if (di_flags & XFS_DIFLAG_ANY) {
722 if (di_flags & XFS_DIFLAG_REALTIME)
723 flags |= XFS_XFLAG_REALTIME;
724 if (di_flags & XFS_DIFLAG_PREALLOC)
725 flags |= XFS_XFLAG_PREALLOC;
726 if (di_flags & XFS_DIFLAG_IMMUTABLE)
727 flags |= XFS_XFLAG_IMMUTABLE;
728 if (di_flags & XFS_DIFLAG_APPEND)
729 flags |= XFS_XFLAG_APPEND;
730 if (di_flags & XFS_DIFLAG_SYNC)
731 flags |= XFS_XFLAG_SYNC;
732 if (di_flags & XFS_DIFLAG_NOATIME)
733 flags |= XFS_XFLAG_NOATIME;
734 if (di_flags & XFS_DIFLAG_NODUMP)
735 flags |= XFS_XFLAG_NODUMP;
736 if (di_flags & XFS_DIFLAG_RTINHERIT)
737 flags |= XFS_XFLAG_RTINHERIT;
738 if (di_flags & XFS_DIFLAG_PROJINHERIT)
739 flags |= XFS_XFLAG_PROJINHERIT;
740 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
741 flags |= XFS_XFLAG_NOSYMLINKS;
742 if (di_flags & XFS_DIFLAG_EXTSIZE)
743 flags |= XFS_XFLAG_EXTSIZE;
744 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
745 flags |= XFS_XFLAG_EXTSZINHERIT;
746 if (di_flags & XFS_DIFLAG_NODEFRAG)
747 flags |= XFS_XFLAG_NODEFRAG;
748 if (di_flags & XFS_DIFLAG_FILESTREAM)
749 flags |= XFS_XFLAG_FILESTREAM;
752 return flags;
755 uint
756 xfs_ip2xflags(
757 xfs_inode_t *ip)
759 xfs_icdinode_t *dic = &ip->i_d;
761 return _xfs_dic2xflags(dic->di_flags) |
762 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
765 uint
766 xfs_dic2xflags(
767 xfs_dinode_t *dip)
769 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
770 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
774 * Read the disk inode attributes into the in-core inode structure.
777 xfs_iread(
778 xfs_mount_t *mp,
779 xfs_trans_t *tp,
780 xfs_inode_t *ip,
781 uint iget_flags)
783 xfs_buf_t *bp;
784 xfs_dinode_t *dip;
785 int error;
788 * Fill in the location information in the in-core inode.
790 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
791 if (error)
792 return error;
795 * Get pointers to the on-disk inode and the buffer containing it.
797 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
798 XBF_LOCK, iget_flags);
799 if (error)
800 return error;
801 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
804 * If we got something that isn't an inode it means someone
805 * (nfs or dmi) has a stale handle.
807 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
808 #ifdef DEBUG
809 xfs_alert(mp,
810 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
811 __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
812 #endif /* DEBUG */
813 error = XFS_ERROR(EINVAL);
814 goto out_brelse;
818 * If the on-disk inode is already linked to a directory
819 * entry, copy all of the inode into the in-core inode.
820 * xfs_iformat() handles copying in the inode format
821 * specific information.
822 * Otherwise, just get the truly permanent information.
824 if (dip->di_mode) {
825 xfs_dinode_from_disk(&ip->i_d, dip);
826 error = xfs_iformat(ip, dip);
827 if (error) {
828 #ifdef DEBUG
829 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
830 __func__, error);
831 #endif /* DEBUG */
832 goto out_brelse;
834 } else {
835 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
836 ip->i_d.di_version = dip->di_version;
837 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
838 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
840 * Make sure to pull in the mode here as well in
841 * case the inode is released without being used.
842 * This ensures that xfs_inactive() will see that
843 * the inode is already free and not try to mess
844 * with the uninitialized part of it.
846 ip->i_d.di_mode = 0;
848 * Initialize the per-fork minima and maxima for a new
849 * inode here. xfs_iformat will do it for old inodes.
851 ip->i_df.if_ext_max =
852 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
856 * The inode format changed when we moved the link count and
857 * made it 32 bits long. If this is an old format inode,
858 * convert it in memory to look like a new one. If it gets
859 * flushed to disk we will convert back before flushing or
860 * logging it. We zero out the new projid field and the old link
861 * count field. We'll handle clearing the pad field (the remains
862 * of the old uuid field) when we actually convert the inode to
863 * the new format. We don't change the version number so that we
864 * can distinguish this from a real new format inode.
866 if (ip->i_d.di_version == 1) {
867 ip->i_d.di_nlink = ip->i_d.di_onlink;
868 ip->i_d.di_onlink = 0;
869 xfs_set_projid(ip, 0);
872 ip->i_delayed_blks = 0;
873 ip->i_size = ip->i_d.di_size;
876 * Mark the buffer containing the inode as something to keep
877 * around for a while. This helps to keep recently accessed
878 * meta-data in-core longer.
880 xfs_buf_set_ref(bp, XFS_INO_REF);
883 * Use xfs_trans_brelse() to release the buffer containing the
884 * on-disk inode, because it was acquired with xfs_trans_read_buf()
885 * in xfs_itobp() above. If tp is NULL, this is just a normal
886 * brelse(). If we're within a transaction, then xfs_trans_brelse()
887 * will only release the buffer if it is not dirty within the
888 * transaction. It will be OK to release the buffer in this case,
889 * because inodes on disk are never destroyed and we will be
890 * locking the new in-core inode before putting it in the hash
891 * table where other processes can find it. Thus we don't have
892 * to worry about the inode being changed just because we released
893 * the buffer.
895 out_brelse:
896 xfs_trans_brelse(tp, bp);
897 return error;
901 * Read in extents from a btree-format inode.
902 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
905 xfs_iread_extents(
906 xfs_trans_t *tp,
907 xfs_inode_t *ip,
908 int whichfork)
910 int error;
911 xfs_ifork_t *ifp;
912 xfs_extnum_t nextents;
914 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
915 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
916 ip->i_mount);
917 return XFS_ERROR(EFSCORRUPTED);
919 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
920 ifp = XFS_IFORK_PTR(ip, whichfork);
923 * We know that the size is valid (it's checked in iformat_btree)
925 ifp->if_lastex = NULLEXTNUM;
926 ifp->if_bytes = ifp->if_real_bytes = 0;
927 ifp->if_flags |= XFS_IFEXTENTS;
928 xfs_iext_add(ifp, 0, nextents);
929 error = xfs_bmap_read_extents(tp, ip, whichfork);
930 if (error) {
931 xfs_iext_destroy(ifp);
932 ifp->if_flags &= ~XFS_IFEXTENTS;
933 return error;
935 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
936 return 0;
940 * Allocate an inode on disk and return a copy of its in-core version.
941 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
942 * appropriately within the inode. The uid and gid for the inode are
943 * set according to the contents of the given cred structure.
945 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
946 * has a free inode available, call xfs_iget()
947 * to obtain the in-core version of the allocated inode. Finally,
948 * fill in the inode and log its initial contents. In this case,
949 * ialloc_context would be set to NULL and call_again set to false.
951 * If xfs_dialloc() does not have an available inode,
952 * it will replenish its supply by doing an allocation. Since we can
953 * only do one allocation within a transaction without deadlocks, we
954 * must commit the current transaction before returning the inode itself.
955 * In this case, therefore, we will set call_again to true and return.
956 * The caller should then commit the current transaction, start a new
957 * transaction, and call xfs_ialloc() again to actually get the inode.
959 * To ensure that some other process does not grab the inode that
960 * was allocated during the first call to xfs_ialloc(), this routine
961 * also returns the [locked] bp pointing to the head of the freelist
962 * as ialloc_context. The caller should hold this buffer across
963 * the commit and pass it back into this routine on the second call.
965 * If we are allocating quota inodes, we do not have a parent inode
966 * to attach to or associate with (i.e. pip == NULL) because they
967 * are not linked into the directory structure - they are attached
968 * directly to the superblock - and so have no parent.
971 xfs_ialloc(
972 xfs_trans_t *tp,
973 xfs_inode_t *pip,
974 mode_t mode,
975 xfs_nlink_t nlink,
976 xfs_dev_t rdev,
977 prid_t prid,
978 int okalloc,
979 xfs_buf_t **ialloc_context,
980 boolean_t *call_again,
981 xfs_inode_t **ipp)
983 xfs_ino_t ino;
984 xfs_inode_t *ip;
985 uint flags;
986 int error;
987 timespec_t tv;
988 int filestreams = 0;
991 * Call the space management code to pick
992 * the on-disk inode to be allocated.
994 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
995 ialloc_context, call_again, &ino);
996 if (error)
997 return error;
998 if (*call_again || ino == NULLFSINO) {
999 *ipp = NULL;
1000 return 0;
1002 ASSERT(*ialloc_context == NULL);
1005 * Get the in-core inode with the lock held exclusively.
1006 * This is because we're setting fields here we need
1007 * to prevent others from looking at until we're done.
1009 error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1010 XFS_ILOCK_EXCL, &ip);
1011 if (error)
1012 return error;
1013 ASSERT(ip != NULL);
1015 ip->i_d.di_mode = (__uint16_t)mode;
1016 ip->i_d.di_onlink = 0;
1017 ip->i_d.di_nlink = nlink;
1018 ASSERT(ip->i_d.di_nlink == nlink);
1019 ip->i_d.di_uid = current_fsuid();
1020 ip->i_d.di_gid = current_fsgid();
1021 xfs_set_projid(ip, prid);
1022 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1025 * If the superblock version is up to where we support new format
1026 * inodes and this is currently an old format inode, then change
1027 * the inode version number now. This way we only do the conversion
1028 * here rather than here and in the flush/logging code.
1030 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1031 ip->i_d.di_version == 1) {
1032 ip->i_d.di_version = 2;
1034 * We've already zeroed the old link count, the projid field,
1035 * and the pad field.
1040 * Project ids won't be stored on disk if we are using a version 1 inode.
1042 if ((prid != 0) && (ip->i_d.di_version == 1))
1043 xfs_bump_ino_vers2(tp, ip);
1045 if (pip && XFS_INHERIT_GID(pip)) {
1046 ip->i_d.di_gid = pip->i_d.di_gid;
1047 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1048 ip->i_d.di_mode |= S_ISGID;
1053 * If the group ID of the new file does not match the effective group
1054 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1055 * (and only if the irix_sgid_inherit compatibility variable is set).
1057 if ((irix_sgid_inherit) &&
1058 (ip->i_d.di_mode & S_ISGID) &&
1059 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1060 ip->i_d.di_mode &= ~S_ISGID;
1063 ip->i_d.di_size = 0;
1064 ip->i_size = 0;
1065 ip->i_d.di_nextents = 0;
1066 ASSERT(ip->i_d.di_nblocks == 0);
1068 nanotime(&tv);
1069 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1070 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1071 ip->i_d.di_atime = ip->i_d.di_mtime;
1072 ip->i_d.di_ctime = ip->i_d.di_mtime;
1075 * di_gen will have been taken care of in xfs_iread.
1077 ip->i_d.di_extsize = 0;
1078 ip->i_d.di_dmevmask = 0;
1079 ip->i_d.di_dmstate = 0;
1080 ip->i_d.di_flags = 0;
1081 flags = XFS_ILOG_CORE;
1082 switch (mode & S_IFMT) {
1083 case S_IFIFO:
1084 case S_IFCHR:
1085 case S_IFBLK:
1086 case S_IFSOCK:
1087 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1088 ip->i_df.if_u2.if_rdev = rdev;
1089 ip->i_df.if_flags = 0;
1090 flags |= XFS_ILOG_DEV;
1091 break;
1092 case S_IFREG:
1094 * we can't set up filestreams until after the VFS inode
1095 * is set up properly.
1097 if (pip && xfs_inode_is_filestream(pip))
1098 filestreams = 1;
1099 /* fall through */
1100 case S_IFDIR:
1101 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1102 uint di_flags = 0;
1104 if ((mode & S_IFMT) == S_IFDIR) {
1105 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1106 di_flags |= XFS_DIFLAG_RTINHERIT;
1107 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1108 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1109 ip->i_d.di_extsize = pip->i_d.di_extsize;
1111 } else if ((mode & S_IFMT) == S_IFREG) {
1112 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1113 di_flags |= XFS_DIFLAG_REALTIME;
1114 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1115 di_flags |= XFS_DIFLAG_EXTSIZE;
1116 ip->i_d.di_extsize = pip->i_d.di_extsize;
1119 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1120 xfs_inherit_noatime)
1121 di_flags |= XFS_DIFLAG_NOATIME;
1122 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1123 xfs_inherit_nodump)
1124 di_flags |= XFS_DIFLAG_NODUMP;
1125 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1126 xfs_inherit_sync)
1127 di_flags |= XFS_DIFLAG_SYNC;
1128 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1129 xfs_inherit_nosymlinks)
1130 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1131 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1132 di_flags |= XFS_DIFLAG_PROJINHERIT;
1133 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1134 xfs_inherit_nodefrag)
1135 di_flags |= XFS_DIFLAG_NODEFRAG;
1136 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1137 di_flags |= XFS_DIFLAG_FILESTREAM;
1138 ip->i_d.di_flags |= di_flags;
1140 /* FALLTHROUGH */
1141 case S_IFLNK:
1142 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1143 ip->i_df.if_flags = XFS_IFEXTENTS;
1144 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1145 ip->i_df.if_u1.if_extents = NULL;
1146 break;
1147 default:
1148 ASSERT(0);
1151 * Attribute fork settings for new inode.
1153 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1154 ip->i_d.di_anextents = 0;
1157 * Log the new values stuffed into the inode.
1159 xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
1160 xfs_trans_log_inode(tp, ip, flags);
1162 /* now that we have an i_mode we can setup inode ops and unlock */
1163 xfs_setup_inode(ip);
1165 /* now we have set up the vfs inode we can associate the filestream */
1166 if (filestreams) {
1167 error = xfs_filestream_associate(pip, ip);
1168 if (error < 0)
1169 return -error;
1170 if (!error)
1171 xfs_iflags_set(ip, XFS_IFILESTREAM);
1174 *ipp = ip;
1175 return 0;
1179 * Check to make sure that there are no blocks allocated to the
1180 * file beyond the size of the file. We don't check this for
1181 * files with fixed size extents or real time extents, but we
1182 * at least do it for regular files.
1184 #ifdef DEBUG
1185 void
1186 xfs_isize_check(
1187 xfs_mount_t *mp,
1188 xfs_inode_t *ip,
1189 xfs_fsize_t isize)
1191 xfs_fileoff_t map_first;
1192 int nimaps;
1193 xfs_bmbt_irec_t imaps[2];
1195 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1196 return;
1198 if (XFS_IS_REALTIME_INODE(ip))
1199 return;
1201 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1202 return;
1204 nimaps = 2;
1205 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1207 * The filesystem could be shutting down, so bmapi may return
1208 * an error.
1210 if (xfs_bmapi(NULL, ip, map_first,
1211 (XFS_B_TO_FSB(mp,
1212 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1213 map_first),
1214 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1215 NULL))
1216 return;
1217 ASSERT(nimaps == 1);
1218 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1220 #endif /* DEBUG */
1223 * Calculate the last possible buffered byte in a file. This must
1224 * include data that was buffered beyond the EOF by the write code.
1225 * This also needs to deal with overflowing the xfs_fsize_t type
1226 * which can happen for sizes near the limit.
1228 * We also need to take into account any blocks beyond the EOF. It
1229 * may be the case that they were buffered by a write which failed.
1230 * In that case the pages will still be in memory, but the inode size
1231 * will never have been updated.
1233 STATIC xfs_fsize_t
1234 xfs_file_last_byte(
1235 xfs_inode_t *ip)
1237 xfs_mount_t *mp;
1238 xfs_fsize_t last_byte;
1239 xfs_fileoff_t last_block;
1240 xfs_fileoff_t size_last_block;
1241 int error;
1243 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1245 mp = ip->i_mount;
1247 * Only check for blocks beyond the EOF if the extents have
1248 * been read in. This eliminates the need for the inode lock,
1249 * and it also saves us from looking when it really isn't
1250 * necessary.
1252 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1253 xfs_ilock(ip, XFS_ILOCK_SHARED);
1254 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1255 XFS_DATA_FORK);
1256 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1257 if (error) {
1258 last_block = 0;
1260 } else {
1261 last_block = 0;
1263 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1264 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1266 last_byte = XFS_FSB_TO_B(mp, last_block);
1267 if (last_byte < 0) {
1268 return XFS_MAXIOFFSET(mp);
1270 last_byte += (1 << mp->m_writeio_log);
1271 if (last_byte < 0) {
1272 return XFS_MAXIOFFSET(mp);
1274 return last_byte;
1278 * Start the truncation of the file to new_size. The new size
1279 * must be smaller than the current size. This routine will
1280 * clear the buffer and page caches of file data in the removed
1281 * range, and xfs_itruncate_finish() will remove the underlying
1282 * disk blocks.
1284 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1285 * must NOT have the inode lock held at all. This is because we're
1286 * calling into the buffer/page cache code and we can't hold the
1287 * inode lock when we do so.
1289 * We need to wait for any direct I/Os in flight to complete before we
1290 * proceed with the truncate. This is needed to prevent the extents
1291 * being read or written by the direct I/Os from being removed while the
1292 * I/O is in flight as there is no other method of synchronising
1293 * direct I/O with the truncate operation. Also, because we hold
1294 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1295 * started until the truncate completes and drops the lock. Essentially,
1296 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1297 * ordering between direct I/Os and the truncate operation.
1299 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1300 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1301 * in the case that the caller is locking things out of order and
1302 * may not be able to call xfs_itruncate_finish() with the inode lock
1303 * held without dropping the I/O lock. If the caller must drop the
1304 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1305 * must be called again with all the same restrictions as the initial
1306 * call.
1309 xfs_itruncate_start(
1310 xfs_inode_t *ip,
1311 uint flags,
1312 xfs_fsize_t new_size)
1314 xfs_fsize_t last_byte;
1315 xfs_off_t toss_start;
1316 xfs_mount_t *mp;
1317 int error = 0;
1319 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1320 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1321 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1322 (flags == XFS_ITRUNC_MAYBE));
1324 mp = ip->i_mount;
1326 /* wait for the completion of any pending DIOs */
1327 if (new_size == 0 || new_size < ip->i_size)
1328 xfs_ioend_wait(ip);
1331 * Call toss_pages or flushinval_pages to get rid of pages
1332 * overlapping the region being removed. We have to use
1333 * the less efficient flushinval_pages in the case that the
1334 * caller may not be able to finish the truncate without
1335 * dropping the inode's I/O lock. Make sure
1336 * to catch any pages brought in by buffers overlapping
1337 * the EOF by searching out beyond the isize by our
1338 * block size. We round new_size up to a block boundary
1339 * so that we don't toss things on the same block as
1340 * new_size but before it.
1342 * Before calling toss_page or flushinval_pages, make sure to
1343 * call remapf() over the same region if the file is mapped.
1344 * This frees up mapped file references to the pages in the
1345 * given range and for the flushinval_pages case it ensures
1346 * that we get the latest mapped changes flushed out.
1348 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1349 toss_start = XFS_FSB_TO_B(mp, toss_start);
1350 if (toss_start < 0) {
1352 * The place to start tossing is beyond our maximum
1353 * file size, so there is no way that the data extended
1354 * out there.
1356 return 0;
1358 last_byte = xfs_file_last_byte(ip);
1359 trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
1360 if (last_byte > toss_start) {
1361 if (flags & XFS_ITRUNC_DEFINITE) {
1362 xfs_tosspages(ip, toss_start,
1363 -1, FI_REMAPF_LOCKED);
1364 } else {
1365 error = xfs_flushinval_pages(ip, toss_start,
1366 -1, FI_REMAPF_LOCKED);
1370 #ifdef DEBUG
1371 if (new_size == 0) {
1372 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1374 #endif
1375 return error;
1379 * Shrink the file to the given new_size. The new size must be smaller than
1380 * the current size. This will free up the underlying blocks in the removed
1381 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1383 * The transaction passed to this routine must have made a permanent log
1384 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1385 * given transaction and start new ones, so make sure everything involved in
1386 * the transaction is tidy before calling here. Some transaction will be
1387 * returned to the caller to be committed. The incoming transaction must
1388 * already include the inode, and both inode locks must be held exclusively.
1389 * The inode must also be "held" within the transaction. On return the inode
1390 * will be "held" within the returned transaction. This routine does NOT
1391 * require any disk space to be reserved for it within the transaction.
1393 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1394 * indicates the fork which is to be truncated. For the attribute fork we only
1395 * support truncation to size 0.
1397 * We use the sync parameter to indicate whether or not the first transaction
1398 * we perform might have to be synchronous. For the attr fork, it needs to be
1399 * so if the unlink of the inode is not yet known to be permanent in the log.
1400 * This keeps us from freeing and reusing the blocks of the attribute fork
1401 * before the unlink of the inode becomes permanent.
1403 * For the data fork, we normally have to run synchronously if we're being
1404 * called out of the inactive path or we're being called out of the create path
1405 * where we're truncating an existing file. Either way, the truncate needs to
1406 * be sync so blocks don't reappear in the file with altered data in case of a
1407 * crash. wsync filesystems can run the first case async because anything that
1408 * shrinks the inode has to run sync so by the time we're called here from
1409 * inactive, the inode size is permanently set to 0.
1411 * Calls from the truncate path always need to be sync unless we're in a wsync
1412 * filesystem and the file has already been unlinked.
1414 * The caller is responsible for correctly setting the sync parameter. It gets
1415 * too hard for us to guess here which path we're being called out of just
1416 * based on inode state.
1418 * If we get an error, we must return with the inode locked and linked into the
1419 * current transaction. This keeps things simple for the higher level code,
1420 * because it always knows that the inode is locked and held in the transaction
1421 * that returns to it whether errors occur or not. We don't mark the inode
1422 * dirty on error so that transactions can be easily aborted if possible.
1425 xfs_itruncate_finish(
1426 xfs_trans_t **tp,
1427 xfs_inode_t *ip,
1428 xfs_fsize_t new_size,
1429 int fork,
1430 int sync)
1432 xfs_fsblock_t first_block;
1433 xfs_fileoff_t first_unmap_block;
1434 xfs_fileoff_t last_block;
1435 xfs_filblks_t unmap_len=0;
1436 xfs_mount_t *mp;
1437 xfs_trans_t *ntp;
1438 int done;
1439 int committed;
1440 xfs_bmap_free_t free_list;
1441 int error;
1443 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1444 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1445 ASSERT(*tp != NULL);
1446 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1447 ASSERT(ip->i_transp == *tp);
1448 ASSERT(ip->i_itemp != NULL);
1449 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1452 ntp = *tp;
1453 mp = (ntp)->t_mountp;
1454 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1457 * We only support truncating the entire attribute fork.
1459 if (fork == XFS_ATTR_FORK) {
1460 new_size = 0LL;
1462 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1463 trace_xfs_itruncate_finish_start(ip, new_size);
1466 * The first thing we do is set the size to new_size permanently
1467 * on disk. This way we don't have to worry about anyone ever
1468 * being able to look at the data being freed even in the face
1469 * of a crash. What we're getting around here is the case where
1470 * we free a block, it is allocated to another file, it is written
1471 * to, and then we crash. If the new data gets written to the
1472 * file but the log buffers containing the free and reallocation
1473 * don't, then we'd end up with garbage in the blocks being freed.
1474 * As long as we make the new_size permanent before actually
1475 * freeing any blocks it doesn't matter if they get writtten to.
1477 * The callers must signal into us whether or not the size
1478 * setting here must be synchronous. There are a few cases
1479 * where it doesn't have to be synchronous. Those cases
1480 * occur if the file is unlinked and we know the unlink is
1481 * permanent or if the blocks being truncated are guaranteed
1482 * to be beyond the inode eof (regardless of the link count)
1483 * and the eof value is permanent. Both of these cases occur
1484 * only on wsync-mounted filesystems. In those cases, we're
1485 * guaranteed that no user will ever see the data in the blocks
1486 * that are being truncated so the truncate can run async.
1487 * In the free beyond eof case, the file may wind up with
1488 * more blocks allocated to it than it needs if we crash
1489 * and that won't get fixed until the next time the file
1490 * is re-opened and closed but that's ok as that shouldn't
1491 * be too many blocks.
1493 * However, we can't just make all wsync xactions run async
1494 * because there's one call out of the create path that needs
1495 * to run sync where it's truncating an existing file to size
1496 * 0 whose size is > 0.
1498 * It's probably possible to come up with a test in this
1499 * routine that would correctly distinguish all the above
1500 * cases from the values of the function parameters and the
1501 * inode state but for sanity's sake, I've decided to let the
1502 * layers above just tell us. It's simpler to correctly figure
1503 * out in the layer above exactly under what conditions we
1504 * can run async and I think it's easier for others read and
1505 * follow the logic in case something has to be changed.
1506 * cscope is your friend -- rcc.
1508 * The attribute fork is much simpler.
1510 * For the attribute fork we allow the caller to tell us whether
1511 * the unlink of the inode that led to this call is yet permanent
1512 * in the on disk log. If it is not and we will be freeing extents
1513 * in this inode then we make the first transaction synchronous
1514 * to make sure that the unlink is permanent by the time we free
1515 * the blocks.
1517 if (fork == XFS_DATA_FORK) {
1518 if (ip->i_d.di_nextents > 0) {
1520 * If we are not changing the file size then do
1521 * not update the on-disk file size - we may be
1522 * called from xfs_inactive_free_eofblocks(). If we
1523 * update the on-disk file size and then the system
1524 * crashes before the contents of the file are
1525 * flushed to disk then the files may be full of
1526 * holes (ie NULL files bug).
1528 if (ip->i_size != new_size) {
1529 ip->i_d.di_size = new_size;
1530 ip->i_size = new_size;
1531 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1534 } else if (sync) {
1535 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1536 if (ip->i_d.di_anextents > 0)
1537 xfs_trans_set_sync(ntp);
1539 ASSERT(fork == XFS_DATA_FORK ||
1540 (fork == XFS_ATTR_FORK &&
1541 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1542 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1545 * Since it is possible for space to become allocated beyond
1546 * the end of the file (in a crash where the space is allocated
1547 * but the inode size is not yet updated), simply remove any
1548 * blocks which show up between the new EOF and the maximum
1549 * possible file size. If the first block to be removed is
1550 * beyond the maximum file size (ie it is the same as last_block),
1551 * then there is nothing to do.
1553 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1554 ASSERT(first_unmap_block <= last_block);
1555 done = 0;
1556 if (last_block == first_unmap_block) {
1557 done = 1;
1558 } else {
1559 unmap_len = last_block - first_unmap_block + 1;
1561 while (!done) {
1563 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1564 * will tell us whether it freed the entire range or
1565 * not. If this is a synchronous mount (wsync),
1566 * then we can tell bunmapi to keep all the
1567 * transactions asynchronous since the unlink
1568 * transaction that made this inode inactive has
1569 * already hit the disk. There's no danger of
1570 * the freed blocks being reused, there being a
1571 * crash, and the reused blocks suddenly reappearing
1572 * in this file with garbage in them once recovery
1573 * runs.
1575 xfs_bmap_init(&free_list, &first_block);
1576 error = xfs_bunmapi(ntp, ip,
1577 first_unmap_block, unmap_len,
1578 xfs_bmapi_aflag(fork),
1579 XFS_ITRUNC_MAX_EXTENTS,
1580 &first_block, &free_list,
1581 &done);
1582 if (error) {
1584 * If the bunmapi call encounters an error,
1585 * return to the caller where the transaction
1586 * can be properly aborted. We just need to
1587 * make sure we're not holding any resources
1588 * that we were not when we came in.
1590 xfs_bmap_cancel(&free_list);
1591 return error;
1595 * Duplicate the transaction that has the permanent
1596 * reservation and commit the old transaction.
1598 error = xfs_bmap_finish(tp, &free_list, &committed);
1599 ntp = *tp;
1600 if (committed)
1601 xfs_trans_ijoin(ntp, ip);
1603 if (error) {
1605 * If the bmap finish call encounters an error, return
1606 * to the caller where the transaction can be properly
1607 * aborted. We just need to make sure we're not
1608 * holding any resources that we were not when we came
1609 * in.
1611 * Aborting from this point might lose some blocks in
1612 * the file system, but oh well.
1614 xfs_bmap_cancel(&free_list);
1615 return error;
1618 if (committed) {
1620 * Mark the inode dirty so it will be logged and
1621 * moved forward in the log as part of every commit.
1623 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1626 ntp = xfs_trans_dup(ntp);
1627 error = xfs_trans_commit(*tp, 0);
1628 *tp = ntp;
1630 xfs_trans_ijoin(ntp, ip);
1632 if (error)
1633 return error;
1635 * transaction commit worked ok so we can drop the extra ticket
1636 * reference that we gained in xfs_trans_dup()
1638 xfs_log_ticket_put(ntp->t_ticket);
1639 error = xfs_trans_reserve(ntp, 0,
1640 XFS_ITRUNCATE_LOG_RES(mp), 0,
1641 XFS_TRANS_PERM_LOG_RES,
1642 XFS_ITRUNCATE_LOG_COUNT);
1643 if (error)
1644 return error;
1647 * Only update the size in the case of the data fork, but
1648 * always re-log the inode so that our permanent transaction
1649 * can keep on rolling it forward in the log.
1651 if (fork == XFS_DATA_FORK) {
1652 xfs_isize_check(mp, ip, new_size);
1654 * If we are not changing the file size then do
1655 * not update the on-disk file size - we may be
1656 * called from xfs_inactive_free_eofblocks(). If we
1657 * update the on-disk file size and then the system
1658 * crashes before the contents of the file are
1659 * flushed to disk then the files may be full of
1660 * holes (ie NULL files bug).
1662 if (ip->i_size != new_size) {
1663 ip->i_d.di_size = new_size;
1664 ip->i_size = new_size;
1667 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1668 ASSERT((new_size != 0) ||
1669 (fork == XFS_ATTR_FORK) ||
1670 (ip->i_delayed_blks == 0));
1671 ASSERT((new_size != 0) ||
1672 (fork == XFS_ATTR_FORK) ||
1673 (ip->i_d.di_nextents == 0));
1674 trace_xfs_itruncate_finish_end(ip, new_size);
1675 return 0;
1679 * This is called when the inode's link count goes to 0.
1680 * We place the on-disk inode on a list in the AGI. It
1681 * will be pulled from this list when the inode is freed.
1684 xfs_iunlink(
1685 xfs_trans_t *tp,
1686 xfs_inode_t *ip)
1688 xfs_mount_t *mp;
1689 xfs_agi_t *agi;
1690 xfs_dinode_t *dip;
1691 xfs_buf_t *agibp;
1692 xfs_buf_t *ibp;
1693 xfs_agino_t agino;
1694 short bucket_index;
1695 int offset;
1696 int error;
1698 ASSERT(ip->i_d.di_nlink == 0);
1699 ASSERT(ip->i_d.di_mode != 0);
1700 ASSERT(ip->i_transp == tp);
1702 mp = tp->t_mountp;
1705 * Get the agi buffer first. It ensures lock ordering
1706 * on the list.
1708 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1709 if (error)
1710 return error;
1711 agi = XFS_BUF_TO_AGI(agibp);
1714 * Get the index into the agi hash table for the
1715 * list this inode will go on.
1717 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1718 ASSERT(agino != 0);
1719 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1720 ASSERT(agi->agi_unlinked[bucket_index]);
1721 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1723 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1725 * There is already another inode in the bucket we need
1726 * to add ourselves to. Add us at the front of the list.
1727 * Here we put the head pointer into our next pointer,
1728 * and then we fall through to point the head at us.
1730 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1731 if (error)
1732 return error;
1734 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1735 /* both on-disk, don't endian flip twice */
1736 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1737 offset = ip->i_imap.im_boffset +
1738 offsetof(xfs_dinode_t, di_next_unlinked);
1739 xfs_trans_inode_buf(tp, ibp);
1740 xfs_trans_log_buf(tp, ibp, offset,
1741 (offset + sizeof(xfs_agino_t) - 1));
1742 xfs_inobp_check(mp, ibp);
1746 * Point the bucket head pointer at the inode being inserted.
1748 ASSERT(agino != 0);
1749 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1750 offset = offsetof(xfs_agi_t, agi_unlinked) +
1751 (sizeof(xfs_agino_t) * bucket_index);
1752 xfs_trans_log_buf(tp, agibp, offset,
1753 (offset + sizeof(xfs_agino_t) - 1));
1754 return 0;
1758 * Pull the on-disk inode from the AGI unlinked list.
1760 STATIC int
1761 xfs_iunlink_remove(
1762 xfs_trans_t *tp,
1763 xfs_inode_t *ip)
1765 xfs_ino_t next_ino;
1766 xfs_mount_t *mp;
1767 xfs_agi_t *agi;
1768 xfs_dinode_t *dip;
1769 xfs_buf_t *agibp;
1770 xfs_buf_t *ibp;
1771 xfs_agnumber_t agno;
1772 xfs_agino_t agino;
1773 xfs_agino_t next_agino;
1774 xfs_buf_t *last_ibp;
1775 xfs_dinode_t *last_dip = NULL;
1776 short bucket_index;
1777 int offset, last_offset = 0;
1778 int error;
1780 mp = tp->t_mountp;
1781 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1784 * Get the agi buffer first. It ensures lock ordering
1785 * on the list.
1787 error = xfs_read_agi(mp, tp, agno, &agibp);
1788 if (error)
1789 return error;
1791 agi = XFS_BUF_TO_AGI(agibp);
1794 * Get the index into the agi hash table for the
1795 * list this inode will go on.
1797 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1798 ASSERT(agino != 0);
1799 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1800 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1801 ASSERT(agi->agi_unlinked[bucket_index]);
1803 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1805 * We're at the head of the list. Get the inode's
1806 * on-disk buffer to see if there is anyone after us
1807 * on the list. Only modify our next pointer if it
1808 * is not already NULLAGINO. This saves us the overhead
1809 * of dealing with the buffer when there is no need to
1810 * change it.
1812 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1813 if (error) {
1814 cmn_err(CE_WARN,
1815 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1816 error, mp->m_fsname);
1817 return error;
1819 next_agino = be32_to_cpu(dip->di_next_unlinked);
1820 ASSERT(next_agino != 0);
1821 if (next_agino != NULLAGINO) {
1822 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1823 offset = ip->i_imap.im_boffset +
1824 offsetof(xfs_dinode_t, di_next_unlinked);
1825 xfs_trans_inode_buf(tp, ibp);
1826 xfs_trans_log_buf(tp, ibp, offset,
1827 (offset + sizeof(xfs_agino_t) - 1));
1828 xfs_inobp_check(mp, ibp);
1829 } else {
1830 xfs_trans_brelse(tp, ibp);
1833 * Point the bucket head pointer at the next inode.
1835 ASSERT(next_agino != 0);
1836 ASSERT(next_agino != agino);
1837 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1838 offset = offsetof(xfs_agi_t, agi_unlinked) +
1839 (sizeof(xfs_agino_t) * bucket_index);
1840 xfs_trans_log_buf(tp, agibp, offset,
1841 (offset + sizeof(xfs_agino_t) - 1));
1842 } else {
1844 * We need to search the list for the inode being freed.
1846 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1847 last_ibp = NULL;
1848 while (next_agino != agino) {
1850 * If the last inode wasn't the one pointing to
1851 * us, then release its buffer since we're not
1852 * going to do anything with it.
1854 if (last_ibp != NULL) {
1855 xfs_trans_brelse(tp, last_ibp);
1857 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1858 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1859 &last_ibp, &last_offset, 0);
1860 if (error) {
1861 cmn_err(CE_WARN,
1862 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1863 error, mp->m_fsname);
1864 return error;
1866 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1867 ASSERT(next_agino != NULLAGINO);
1868 ASSERT(next_agino != 0);
1871 * Now last_ibp points to the buffer previous to us on
1872 * the unlinked list. Pull us from the list.
1874 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1875 if (error) {
1876 cmn_err(CE_WARN,
1877 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1878 error, mp->m_fsname);
1879 return error;
1881 next_agino = be32_to_cpu(dip->di_next_unlinked);
1882 ASSERT(next_agino != 0);
1883 ASSERT(next_agino != agino);
1884 if (next_agino != NULLAGINO) {
1885 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1886 offset = ip->i_imap.im_boffset +
1887 offsetof(xfs_dinode_t, di_next_unlinked);
1888 xfs_trans_inode_buf(tp, ibp);
1889 xfs_trans_log_buf(tp, ibp, offset,
1890 (offset + sizeof(xfs_agino_t) - 1));
1891 xfs_inobp_check(mp, ibp);
1892 } else {
1893 xfs_trans_brelse(tp, ibp);
1896 * Point the previous inode on the list to the next inode.
1898 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1899 ASSERT(next_agino != 0);
1900 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1901 xfs_trans_inode_buf(tp, last_ibp);
1902 xfs_trans_log_buf(tp, last_ibp, offset,
1903 (offset + sizeof(xfs_agino_t) - 1));
1904 xfs_inobp_check(mp, last_ibp);
1906 return 0;
1910 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1911 * inodes that are in memory - they all must be marked stale and attached to
1912 * the cluster buffer.
1914 STATIC void
1915 xfs_ifree_cluster(
1916 xfs_inode_t *free_ip,
1917 xfs_trans_t *tp,
1918 xfs_ino_t inum)
1920 xfs_mount_t *mp = free_ip->i_mount;
1921 int blks_per_cluster;
1922 int nbufs;
1923 int ninodes;
1924 int i, j;
1925 xfs_daddr_t blkno;
1926 xfs_buf_t *bp;
1927 xfs_inode_t *ip;
1928 xfs_inode_log_item_t *iip;
1929 xfs_log_item_t *lip;
1930 struct xfs_perag *pag;
1932 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1933 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1934 blks_per_cluster = 1;
1935 ninodes = mp->m_sb.sb_inopblock;
1936 nbufs = XFS_IALLOC_BLOCKS(mp);
1937 } else {
1938 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1939 mp->m_sb.sb_blocksize;
1940 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1941 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1944 for (j = 0; j < nbufs; j++, inum += ninodes) {
1945 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1946 XFS_INO_TO_AGBNO(mp, inum));
1949 * We obtain and lock the backing buffer first in the process
1950 * here, as we have to ensure that any dirty inode that we
1951 * can't get the flush lock on is attached to the buffer.
1952 * If we scan the in-memory inodes first, then buffer IO can
1953 * complete before we get a lock on it, and hence we may fail
1954 * to mark all the active inodes on the buffer stale.
1956 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1957 mp->m_bsize * blks_per_cluster,
1958 XBF_LOCK);
1961 * Walk the inodes already attached to the buffer and mark them
1962 * stale. These will all have the flush locks held, so an
1963 * in-memory inode walk can't lock them. By marking them all
1964 * stale first, we will not attempt to lock them in the loop
1965 * below as the XFS_ISTALE flag will be set.
1967 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1968 while (lip) {
1969 if (lip->li_type == XFS_LI_INODE) {
1970 iip = (xfs_inode_log_item_t *)lip;
1971 ASSERT(iip->ili_logged == 1);
1972 lip->li_cb = xfs_istale_done;
1973 xfs_trans_ail_copy_lsn(mp->m_ail,
1974 &iip->ili_flush_lsn,
1975 &iip->ili_item.li_lsn);
1976 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1978 lip = lip->li_bio_list;
1983 * For each inode in memory attempt to add it to the inode
1984 * buffer and set it up for being staled on buffer IO
1985 * completion. This is safe as we've locked out tail pushing
1986 * and flushing by locking the buffer.
1988 * We have already marked every inode that was part of a
1989 * transaction stale above, which means there is no point in
1990 * even trying to lock them.
1992 for (i = 0; i < ninodes; i++) {
1993 retry:
1994 rcu_read_lock();
1995 ip = radix_tree_lookup(&pag->pag_ici_root,
1996 XFS_INO_TO_AGINO(mp, (inum + i)));
1998 /* Inode not in memory, nothing to do */
1999 if (!ip) {
2000 rcu_read_unlock();
2001 continue;
2005 * because this is an RCU protected lookup, we could
2006 * find a recently freed or even reallocated inode
2007 * during the lookup. We need to check under the
2008 * i_flags_lock for a valid inode here. Skip it if it
2009 * is not valid, the wrong inode or stale.
2011 spin_lock(&ip->i_flags_lock);
2012 if (ip->i_ino != inum + i ||
2013 __xfs_iflags_test(ip, XFS_ISTALE)) {
2014 spin_unlock(&ip->i_flags_lock);
2015 rcu_read_unlock();
2016 continue;
2018 spin_unlock(&ip->i_flags_lock);
2021 * Don't try to lock/unlock the current inode, but we
2022 * _cannot_ skip the other inodes that we did not find
2023 * in the list attached to the buffer and are not
2024 * already marked stale. If we can't lock it, back off
2025 * and retry.
2027 if (ip != free_ip &&
2028 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2029 rcu_read_unlock();
2030 delay(1);
2031 goto retry;
2033 rcu_read_unlock();
2035 xfs_iflock(ip);
2036 xfs_iflags_set(ip, XFS_ISTALE);
2039 * we don't need to attach clean inodes or those only
2040 * with unlogged changes (which we throw away, anyway).
2042 iip = ip->i_itemp;
2043 if (!iip || xfs_inode_clean(ip)) {
2044 ASSERT(ip != free_ip);
2045 ip->i_update_core = 0;
2046 xfs_ifunlock(ip);
2047 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2048 continue;
2051 iip->ili_last_fields = iip->ili_format.ilf_fields;
2052 iip->ili_format.ilf_fields = 0;
2053 iip->ili_logged = 1;
2054 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2055 &iip->ili_item.li_lsn);
2057 xfs_buf_attach_iodone(bp, xfs_istale_done,
2058 &iip->ili_item);
2060 if (ip != free_ip)
2061 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2064 xfs_trans_stale_inode_buf(tp, bp);
2065 xfs_trans_binval(tp, bp);
2068 xfs_perag_put(pag);
2072 * This is called to return an inode to the inode free list.
2073 * The inode should already be truncated to 0 length and have
2074 * no pages associated with it. This routine also assumes that
2075 * the inode is already a part of the transaction.
2077 * The on-disk copy of the inode will have been added to the list
2078 * of unlinked inodes in the AGI. We need to remove the inode from
2079 * that list atomically with respect to freeing it here.
2082 xfs_ifree(
2083 xfs_trans_t *tp,
2084 xfs_inode_t *ip,
2085 xfs_bmap_free_t *flist)
2087 int error;
2088 int delete;
2089 xfs_ino_t first_ino;
2090 xfs_dinode_t *dip;
2091 xfs_buf_t *ibp;
2093 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2094 ASSERT(ip->i_transp == tp);
2095 ASSERT(ip->i_d.di_nlink == 0);
2096 ASSERT(ip->i_d.di_nextents == 0);
2097 ASSERT(ip->i_d.di_anextents == 0);
2098 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2099 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2100 ASSERT(ip->i_d.di_nblocks == 0);
2103 * Pull the on-disk inode from the AGI unlinked list.
2105 error = xfs_iunlink_remove(tp, ip);
2106 if (error != 0) {
2107 return error;
2110 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2111 if (error != 0) {
2112 return error;
2114 ip->i_d.di_mode = 0; /* mark incore inode as free */
2115 ip->i_d.di_flags = 0;
2116 ip->i_d.di_dmevmask = 0;
2117 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2118 ip->i_df.if_ext_max =
2119 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2120 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2121 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2123 * Bump the generation count so no one will be confused
2124 * by reincarnations of this inode.
2126 ip->i_d.di_gen++;
2128 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2130 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
2131 if (error)
2132 return error;
2135 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2136 * from picking up this inode when it is reclaimed (its incore state
2137 * initialzed but not flushed to disk yet). The in-core di_mode is
2138 * already cleared and a corresponding transaction logged.
2139 * The hack here just synchronizes the in-core to on-disk
2140 * di_mode value in advance before the actual inode sync to disk.
2141 * This is OK because the inode is already unlinked and would never
2142 * change its di_mode again for this inode generation.
2143 * This is a temporary hack that would require a proper fix
2144 * in the future.
2146 dip->di_mode = 0;
2148 if (delete) {
2149 xfs_ifree_cluster(ip, tp, first_ino);
2152 return 0;
2156 * Reallocate the space for if_broot based on the number of records
2157 * being added or deleted as indicated in rec_diff. Move the records
2158 * and pointers in if_broot to fit the new size. When shrinking this
2159 * will eliminate holes between the records and pointers created by
2160 * the caller. When growing this will create holes to be filled in
2161 * by the caller.
2163 * The caller must not request to add more records than would fit in
2164 * the on-disk inode root. If the if_broot is currently NULL, then
2165 * if we adding records one will be allocated. The caller must also
2166 * not request that the number of records go below zero, although
2167 * it can go to zero.
2169 * ip -- the inode whose if_broot area is changing
2170 * ext_diff -- the change in the number of records, positive or negative,
2171 * requested for the if_broot array.
2173 void
2174 xfs_iroot_realloc(
2175 xfs_inode_t *ip,
2176 int rec_diff,
2177 int whichfork)
2179 struct xfs_mount *mp = ip->i_mount;
2180 int cur_max;
2181 xfs_ifork_t *ifp;
2182 struct xfs_btree_block *new_broot;
2183 int new_max;
2184 size_t new_size;
2185 char *np;
2186 char *op;
2189 * Handle the degenerate case quietly.
2191 if (rec_diff == 0) {
2192 return;
2195 ifp = XFS_IFORK_PTR(ip, whichfork);
2196 if (rec_diff > 0) {
2198 * If there wasn't any memory allocated before, just
2199 * allocate it now and get out.
2201 if (ifp->if_broot_bytes == 0) {
2202 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2203 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2204 ifp->if_broot_bytes = (int)new_size;
2205 return;
2209 * If there is already an existing if_broot, then we need
2210 * to realloc() it and shift the pointers to their new
2211 * location. The records don't change location because
2212 * they are kept butted up against the btree block header.
2214 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2215 new_max = cur_max + rec_diff;
2216 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2217 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2218 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2219 KM_SLEEP | KM_NOFS);
2220 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2221 ifp->if_broot_bytes);
2222 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2223 (int)new_size);
2224 ifp->if_broot_bytes = (int)new_size;
2225 ASSERT(ifp->if_broot_bytes <=
2226 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2227 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2228 return;
2232 * rec_diff is less than 0. In this case, we are shrinking the
2233 * if_broot buffer. It must already exist. If we go to zero
2234 * records, just get rid of the root and clear the status bit.
2236 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2237 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2238 new_max = cur_max + rec_diff;
2239 ASSERT(new_max >= 0);
2240 if (new_max > 0)
2241 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2242 else
2243 new_size = 0;
2244 if (new_size > 0) {
2245 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2247 * First copy over the btree block header.
2249 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2250 } else {
2251 new_broot = NULL;
2252 ifp->if_flags &= ~XFS_IFBROOT;
2256 * Only copy the records and pointers if there are any.
2258 if (new_max > 0) {
2260 * First copy the records.
2262 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2263 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2264 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2267 * Then copy the pointers.
2269 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2270 ifp->if_broot_bytes);
2271 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2272 (int)new_size);
2273 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2275 kmem_free(ifp->if_broot);
2276 ifp->if_broot = new_broot;
2277 ifp->if_broot_bytes = (int)new_size;
2278 ASSERT(ifp->if_broot_bytes <=
2279 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2280 return;
2285 * This is called when the amount of space needed for if_data
2286 * is increased or decreased. The change in size is indicated by
2287 * the number of bytes that need to be added or deleted in the
2288 * byte_diff parameter.
2290 * If the amount of space needed has decreased below the size of the
2291 * inline buffer, then switch to using the inline buffer. Otherwise,
2292 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2293 * to what is needed.
2295 * ip -- the inode whose if_data area is changing
2296 * byte_diff -- the change in the number of bytes, positive or negative,
2297 * requested for the if_data array.
2299 void
2300 xfs_idata_realloc(
2301 xfs_inode_t *ip,
2302 int byte_diff,
2303 int whichfork)
2305 xfs_ifork_t *ifp;
2306 int new_size;
2307 int real_size;
2309 if (byte_diff == 0) {
2310 return;
2313 ifp = XFS_IFORK_PTR(ip, whichfork);
2314 new_size = (int)ifp->if_bytes + byte_diff;
2315 ASSERT(new_size >= 0);
2317 if (new_size == 0) {
2318 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2319 kmem_free(ifp->if_u1.if_data);
2321 ifp->if_u1.if_data = NULL;
2322 real_size = 0;
2323 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2325 * If the valid extents/data can fit in if_inline_ext/data,
2326 * copy them from the malloc'd vector and free it.
2328 if (ifp->if_u1.if_data == NULL) {
2329 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2330 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2331 ASSERT(ifp->if_real_bytes != 0);
2332 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2333 new_size);
2334 kmem_free(ifp->if_u1.if_data);
2335 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2337 real_size = 0;
2338 } else {
2340 * Stuck with malloc/realloc.
2341 * For inline data, the underlying buffer must be
2342 * a multiple of 4 bytes in size so that it can be
2343 * logged and stay on word boundaries. We enforce
2344 * that here.
2346 real_size = roundup(new_size, 4);
2347 if (ifp->if_u1.if_data == NULL) {
2348 ASSERT(ifp->if_real_bytes == 0);
2349 ifp->if_u1.if_data = kmem_alloc(real_size,
2350 KM_SLEEP | KM_NOFS);
2351 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2353 * Only do the realloc if the underlying size
2354 * is really changing.
2356 if (ifp->if_real_bytes != real_size) {
2357 ifp->if_u1.if_data =
2358 kmem_realloc(ifp->if_u1.if_data,
2359 real_size,
2360 ifp->if_real_bytes,
2361 KM_SLEEP | KM_NOFS);
2363 } else {
2364 ASSERT(ifp->if_real_bytes == 0);
2365 ifp->if_u1.if_data = kmem_alloc(real_size,
2366 KM_SLEEP | KM_NOFS);
2367 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2368 ifp->if_bytes);
2371 ifp->if_real_bytes = real_size;
2372 ifp->if_bytes = new_size;
2373 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2376 void
2377 xfs_idestroy_fork(
2378 xfs_inode_t *ip,
2379 int whichfork)
2381 xfs_ifork_t *ifp;
2383 ifp = XFS_IFORK_PTR(ip, whichfork);
2384 if (ifp->if_broot != NULL) {
2385 kmem_free(ifp->if_broot);
2386 ifp->if_broot = NULL;
2390 * If the format is local, then we can't have an extents
2391 * array so just look for an inline data array. If we're
2392 * not local then we may or may not have an extents list,
2393 * so check and free it up if we do.
2395 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2396 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2397 (ifp->if_u1.if_data != NULL)) {
2398 ASSERT(ifp->if_real_bytes != 0);
2399 kmem_free(ifp->if_u1.if_data);
2400 ifp->if_u1.if_data = NULL;
2401 ifp->if_real_bytes = 0;
2403 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2404 ((ifp->if_flags & XFS_IFEXTIREC) ||
2405 ((ifp->if_u1.if_extents != NULL) &&
2406 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2407 ASSERT(ifp->if_real_bytes != 0);
2408 xfs_iext_destroy(ifp);
2410 ASSERT(ifp->if_u1.if_extents == NULL ||
2411 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2412 ASSERT(ifp->if_real_bytes == 0);
2413 if (whichfork == XFS_ATTR_FORK) {
2414 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2415 ip->i_afp = NULL;
2420 * This is called to unpin an inode. The caller must have the inode locked
2421 * in at least shared mode so that the buffer cannot be subsequently pinned
2422 * once someone is waiting for it to be unpinned.
2424 static void
2425 xfs_iunpin_nowait(
2426 struct xfs_inode *ip)
2428 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2430 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2432 /* Give the log a push to start the unpinning I/O */
2433 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2437 void
2438 xfs_iunpin_wait(
2439 struct xfs_inode *ip)
2441 if (xfs_ipincount(ip)) {
2442 xfs_iunpin_nowait(ip);
2443 wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2448 * xfs_iextents_copy()
2450 * This is called to copy the REAL extents (as opposed to the delayed
2451 * allocation extents) from the inode into the given buffer. It
2452 * returns the number of bytes copied into the buffer.
2454 * If there are no delayed allocation extents, then we can just
2455 * memcpy() the extents into the buffer. Otherwise, we need to
2456 * examine each extent in turn and skip those which are delayed.
2459 xfs_iextents_copy(
2460 xfs_inode_t *ip,
2461 xfs_bmbt_rec_t *dp,
2462 int whichfork)
2464 int copied;
2465 int i;
2466 xfs_ifork_t *ifp;
2467 int nrecs;
2468 xfs_fsblock_t start_block;
2470 ifp = XFS_IFORK_PTR(ip, whichfork);
2471 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2472 ASSERT(ifp->if_bytes > 0);
2474 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2475 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2476 ASSERT(nrecs > 0);
2479 * There are some delayed allocation extents in the
2480 * inode, so copy the extents one at a time and skip
2481 * the delayed ones. There must be at least one
2482 * non-delayed extent.
2484 copied = 0;
2485 for (i = 0; i < nrecs; i++) {
2486 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2487 start_block = xfs_bmbt_get_startblock(ep);
2488 if (isnullstartblock(start_block)) {
2490 * It's a delayed allocation extent, so skip it.
2492 continue;
2495 /* Translate to on disk format */
2496 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2497 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2498 dp++;
2499 copied++;
2501 ASSERT(copied != 0);
2502 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2504 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2508 * Each of the following cases stores data into the same region
2509 * of the on-disk inode, so only one of them can be valid at
2510 * any given time. While it is possible to have conflicting formats
2511 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2512 * in EXTENTS format, this can only happen when the fork has
2513 * changed formats after being modified but before being flushed.
2514 * In these cases, the format always takes precedence, because the
2515 * format indicates the current state of the fork.
2517 /*ARGSUSED*/
2518 STATIC void
2519 xfs_iflush_fork(
2520 xfs_inode_t *ip,
2521 xfs_dinode_t *dip,
2522 xfs_inode_log_item_t *iip,
2523 int whichfork,
2524 xfs_buf_t *bp)
2526 char *cp;
2527 xfs_ifork_t *ifp;
2528 xfs_mount_t *mp;
2529 #ifdef XFS_TRANS_DEBUG
2530 int first;
2531 #endif
2532 static const short brootflag[2] =
2533 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2534 static const short dataflag[2] =
2535 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2536 static const short extflag[2] =
2537 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2539 if (!iip)
2540 return;
2541 ifp = XFS_IFORK_PTR(ip, whichfork);
2543 * This can happen if we gave up in iformat in an error path,
2544 * for the attribute fork.
2546 if (!ifp) {
2547 ASSERT(whichfork == XFS_ATTR_FORK);
2548 return;
2550 cp = XFS_DFORK_PTR(dip, whichfork);
2551 mp = ip->i_mount;
2552 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2553 case XFS_DINODE_FMT_LOCAL:
2554 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2555 (ifp->if_bytes > 0)) {
2556 ASSERT(ifp->if_u1.if_data != NULL);
2557 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2558 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2560 break;
2562 case XFS_DINODE_FMT_EXTENTS:
2563 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2564 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2565 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2566 (ifp->if_bytes == 0));
2567 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2568 (ifp->if_bytes > 0));
2569 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2570 (ifp->if_bytes > 0)) {
2571 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2572 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2573 whichfork);
2575 break;
2577 case XFS_DINODE_FMT_BTREE:
2578 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2579 (ifp->if_broot_bytes > 0)) {
2580 ASSERT(ifp->if_broot != NULL);
2581 ASSERT(ifp->if_broot_bytes <=
2582 (XFS_IFORK_SIZE(ip, whichfork) +
2583 XFS_BROOT_SIZE_ADJ));
2584 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2585 (xfs_bmdr_block_t *)cp,
2586 XFS_DFORK_SIZE(dip, mp, whichfork));
2588 break;
2590 case XFS_DINODE_FMT_DEV:
2591 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2592 ASSERT(whichfork == XFS_DATA_FORK);
2593 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2595 break;
2597 case XFS_DINODE_FMT_UUID:
2598 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2599 ASSERT(whichfork == XFS_DATA_FORK);
2600 memcpy(XFS_DFORK_DPTR(dip),
2601 &ip->i_df.if_u2.if_uuid,
2602 sizeof(uuid_t));
2604 break;
2606 default:
2607 ASSERT(0);
2608 break;
2612 STATIC int
2613 xfs_iflush_cluster(
2614 xfs_inode_t *ip,
2615 xfs_buf_t *bp)
2617 xfs_mount_t *mp = ip->i_mount;
2618 struct xfs_perag *pag;
2619 unsigned long first_index, mask;
2620 unsigned long inodes_per_cluster;
2621 int ilist_size;
2622 xfs_inode_t **ilist;
2623 xfs_inode_t *iq;
2624 int nr_found;
2625 int clcount = 0;
2626 int bufwasdelwri;
2627 int i;
2629 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2631 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2632 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2633 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2634 if (!ilist)
2635 goto out_put;
2637 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2638 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2639 rcu_read_lock();
2640 /* really need a gang lookup range call here */
2641 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2642 first_index, inodes_per_cluster);
2643 if (nr_found == 0)
2644 goto out_free;
2646 for (i = 0; i < nr_found; i++) {
2647 iq = ilist[i];
2648 if (iq == ip)
2649 continue;
2652 * because this is an RCU protected lookup, we could find a
2653 * recently freed or even reallocated inode during the lookup.
2654 * We need to check under the i_flags_lock for a valid inode
2655 * here. Skip it if it is not valid or the wrong inode.
2657 spin_lock(&ip->i_flags_lock);
2658 if (!ip->i_ino ||
2659 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2660 spin_unlock(&ip->i_flags_lock);
2661 continue;
2663 spin_unlock(&ip->i_flags_lock);
2666 * Do an un-protected check to see if the inode is dirty and
2667 * is a candidate for flushing. These checks will be repeated
2668 * later after the appropriate locks are acquired.
2670 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2671 continue;
2674 * Try to get locks. If any are unavailable or it is pinned,
2675 * then this inode cannot be flushed and is skipped.
2678 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2679 continue;
2680 if (!xfs_iflock_nowait(iq)) {
2681 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2682 continue;
2684 if (xfs_ipincount(iq)) {
2685 xfs_ifunlock(iq);
2686 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2687 continue;
2691 * arriving here means that this inode can be flushed. First
2692 * re-check that it's dirty before flushing.
2694 if (!xfs_inode_clean(iq)) {
2695 int error;
2696 error = xfs_iflush_int(iq, bp);
2697 if (error) {
2698 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2699 goto cluster_corrupt_out;
2701 clcount++;
2702 } else {
2703 xfs_ifunlock(iq);
2705 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2708 if (clcount) {
2709 XFS_STATS_INC(xs_icluster_flushcnt);
2710 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2713 out_free:
2714 rcu_read_unlock();
2715 kmem_free(ilist);
2716 out_put:
2717 xfs_perag_put(pag);
2718 return 0;
2721 cluster_corrupt_out:
2723 * Corruption detected in the clustering loop. Invalidate the
2724 * inode buffer and shut down the filesystem.
2726 rcu_read_unlock();
2728 * Clean up the buffer. If it was B_DELWRI, just release it --
2729 * brelse can handle it with no problems. If not, shut down the
2730 * filesystem before releasing the buffer.
2732 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2733 if (bufwasdelwri)
2734 xfs_buf_relse(bp);
2736 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2738 if (!bufwasdelwri) {
2740 * Just like incore_relse: if we have b_iodone functions,
2741 * mark the buffer as an error and call them. Otherwise
2742 * mark it as stale and brelse.
2744 if (XFS_BUF_IODONE_FUNC(bp)) {
2745 XFS_BUF_UNDONE(bp);
2746 XFS_BUF_STALE(bp);
2747 XFS_BUF_ERROR(bp,EIO);
2748 xfs_buf_ioend(bp, 0);
2749 } else {
2750 XFS_BUF_STALE(bp);
2751 xfs_buf_relse(bp);
2756 * Unlocks the flush lock
2758 xfs_iflush_abort(iq);
2759 kmem_free(ilist);
2760 xfs_perag_put(pag);
2761 return XFS_ERROR(EFSCORRUPTED);
2765 * xfs_iflush() will write a modified inode's changes out to the
2766 * inode's on disk home. The caller must have the inode lock held
2767 * in at least shared mode and the inode flush completion must be
2768 * active as well. The inode lock will still be held upon return from
2769 * the call and the caller is free to unlock it.
2770 * The inode flush will be completed when the inode reaches the disk.
2771 * The flags indicate how the inode's buffer should be written out.
2774 xfs_iflush(
2775 xfs_inode_t *ip,
2776 uint flags)
2778 xfs_inode_log_item_t *iip;
2779 xfs_buf_t *bp;
2780 xfs_dinode_t *dip;
2781 xfs_mount_t *mp;
2782 int error;
2784 XFS_STATS_INC(xs_iflush_count);
2786 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2787 ASSERT(!completion_done(&ip->i_flush));
2788 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2789 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2791 iip = ip->i_itemp;
2792 mp = ip->i_mount;
2795 * We can't flush the inode until it is unpinned, so wait for it if we
2796 * are allowed to block. We know noone new can pin it, because we are
2797 * holding the inode lock shared and you need to hold it exclusively to
2798 * pin the inode.
2800 * If we are not allowed to block, force the log out asynchronously so
2801 * that when we come back the inode will be unpinned. If other inodes
2802 * in the same cluster are dirty, they will probably write the inode
2803 * out for us if they occur after the log force completes.
2805 if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2806 xfs_iunpin_nowait(ip);
2807 xfs_ifunlock(ip);
2808 return EAGAIN;
2810 xfs_iunpin_wait(ip);
2813 * For stale inodes we cannot rely on the backing buffer remaining
2814 * stale in cache for the remaining life of the stale inode and so
2815 * xfs_itobp() below may give us a buffer that no longer contains
2816 * inodes below. We have to check this after ensuring the inode is
2817 * unpinned so that it is safe to reclaim the stale inode after the
2818 * flush call.
2820 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2821 xfs_ifunlock(ip);
2822 return 0;
2826 * This may have been unpinned because the filesystem is shutting
2827 * down forcibly. If that's the case we must not write this inode
2828 * to disk, because the log record didn't make it to disk!
2830 if (XFS_FORCED_SHUTDOWN(mp)) {
2831 ip->i_update_core = 0;
2832 if (iip)
2833 iip->ili_format.ilf_fields = 0;
2834 xfs_ifunlock(ip);
2835 return XFS_ERROR(EIO);
2839 * Get the buffer containing the on-disk inode.
2841 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2842 (flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
2843 if (error || !bp) {
2844 xfs_ifunlock(ip);
2845 return error;
2849 * First flush out the inode that xfs_iflush was called with.
2851 error = xfs_iflush_int(ip, bp);
2852 if (error)
2853 goto corrupt_out;
2856 * If the buffer is pinned then push on the log now so we won't
2857 * get stuck waiting in the write for too long.
2859 if (XFS_BUF_ISPINNED(bp))
2860 xfs_log_force(mp, 0);
2863 * inode clustering:
2864 * see if other inodes can be gathered into this write
2866 error = xfs_iflush_cluster(ip, bp);
2867 if (error)
2868 goto cluster_corrupt_out;
2870 if (flags & SYNC_WAIT)
2871 error = xfs_bwrite(mp, bp);
2872 else
2873 xfs_bdwrite(mp, bp);
2874 return error;
2876 corrupt_out:
2877 xfs_buf_relse(bp);
2878 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2879 cluster_corrupt_out:
2881 * Unlocks the flush lock
2883 xfs_iflush_abort(ip);
2884 return XFS_ERROR(EFSCORRUPTED);
2888 STATIC int
2889 xfs_iflush_int(
2890 xfs_inode_t *ip,
2891 xfs_buf_t *bp)
2893 xfs_inode_log_item_t *iip;
2894 xfs_dinode_t *dip;
2895 xfs_mount_t *mp;
2896 #ifdef XFS_TRANS_DEBUG
2897 int first;
2898 #endif
2900 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2901 ASSERT(!completion_done(&ip->i_flush));
2902 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2903 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2905 iip = ip->i_itemp;
2906 mp = ip->i_mount;
2908 /* set *dip = inode's place in the buffer */
2909 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2912 * Clear i_update_core before copying out the data.
2913 * This is for coordination with our timestamp updates
2914 * that don't hold the inode lock. They will always
2915 * update the timestamps BEFORE setting i_update_core,
2916 * so if we clear i_update_core after they set it we
2917 * are guaranteed to see their updates to the timestamps.
2918 * I believe that this depends on strongly ordered memory
2919 * semantics, but we have that. We use the SYNCHRONIZE
2920 * macro to make sure that the compiler does not reorder
2921 * the i_update_core access below the data copy below.
2923 ip->i_update_core = 0;
2924 SYNCHRONIZE();
2927 * Make sure to get the latest timestamps from the Linux inode.
2929 xfs_synchronize_times(ip);
2931 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
2932 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2933 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2934 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2935 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2936 goto corrupt_out;
2938 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2939 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2940 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2941 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2942 __func__, ip->i_ino, ip, ip->i_d.di_magic);
2943 goto corrupt_out;
2945 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
2946 if (XFS_TEST_ERROR(
2947 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2948 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2949 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2950 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2951 "%s: Bad regular inode %Lu, ptr 0x%p",
2952 __func__, ip->i_ino, ip);
2953 goto corrupt_out;
2955 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
2956 if (XFS_TEST_ERROR(
2957 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2958 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2959 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2960 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2961 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2962 "%s: Bad directory inode %Lu, ptr 0x%p",
2963 __func__, ip->i_ino, ip);
2964 goto corrupt_out;
2967 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2968 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2969 XFS_RANDOM_IFLUSH_5)) {
2970 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2971 "%s: detected corrupt incore inode %Lu, "
2972 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2973 __func__, ip->i_ino,
2974 ip->i_d.di_nextents + ip->i_d.di_anextents,
2975 ip->i_d.di_nblocks, ip);
2976 goto corrupt_out;
2978 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2979 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2980 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2981 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2982 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2983 goto corrupt_out;
2986 * bump the flush iteration count, used to detect flushes which
2987 * postdate a log record during recovery.
2990 ip->i_d.di_flushiter++;
2993 * Copy the dirty parts of the inode into the on-disk
2994 * inode. We always copy out the core of the inode,
2995 * because if the inode is dirty at all the core must
2996 * be.
2998 xfs_dinode_to_disk(dip, &ip->i_d);
3000 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3001 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3002 ip->i_d.di_flushiter = 0;
3005 * If this is really an old format inode and the superblock version
3006 * has not been updated to support only new format inodes, then
3007 * convert back to the old inode format. If the superblock version
3008 * has been updated, then make the conversion permanent.
3010 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3011 if (ip->i_d.di_version == 1) {
3012 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3014 * Convert it back.
3016 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3017 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3018 } else {
3020 * The superblock version has already been bumped,
3021 * so just make the conversion to the new inode
3022 * format permanent.
3024 ip->i_d.di_version = 2;
3025 dip->di_version = 2;
3026 ip->i_d.di_onlink = 0;
3027 dip->di_onlink = 0;
3028 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3029 memset(&(dip->di_pad[0]), 0,
3030 sizeof(dip->di_pad));
3031 ASSERT(xfs_get_projid(ip) == 0);
3035 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3036 if (XFS_IFORK_Q(ip))
3037 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3038 xfs_inobp_check(mp, bp);
3041 * We've recorded everything logged in the inode, so we'd
3042 * like to clear the ilf_fields bits so we don't log and
3043 * flush things unnecessarily. However, we can't stop
3044 * logging all this information until the data we've copied
3045 * into the disk buffer is written to disk. If we did we might
3046 * overwrite the copy of the inode in the log with all the
3047 * data after re-logging only part of it, and in the face of
3048 * a crash we wouldn't have all the data we need to recover.
3050 * What we do is move the bits to the ili_last_fields field.
3051 * When logging the inode, these bits are moved back to the
3052 * ilf_fields field. In the xfs_iflush_done() routine we
3053 * clear ili_last_fields, since we know that the information
3054 * those bits represent is permanently on disk. As long as
3055 * the flush completes before the inode is logged again, then
3056 * both ilf_fields and ili_last_fields will be cleared.
3058 * We can play with the ilf_fields bits here, because the inode
3059 * lock must be held exclusively in order to set bits there
3060 * and the flush lock protects the ili_last_fields bits.
3061 * Set ili_logged so the flush done
3062 * routine can tell whether or not to look in the AIL.
3063 * Also, store the current LSN of the inode so that we can tell
3064 * whether the item has moved in the AIL from xfs_iflush_done().
3065 * In order to read the lsn we need the AIL lock, because
3066 * it is a 64 bit value that cannot be read atomically.
3068 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3069 iip->ili_last_fields = iip->ili_format.ilf_fields;
3070 iip->ili_format.ilf_fields = 0;
3071 iip->ili_logged = 1;
3073 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3074 &iip->ili_item.li_lsn);
3077 * Attach the function xfs_iflush_done to the inode's
3078 * buffer. This will remove the inode from the AIL
3079 * and unlock the inode's flush lock when the inode is
3080 * completely written to disk.
3082 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3084 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3085 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3086 } else {
3088 * We're flushing an inode which is not in the AIL and has
3089 * not been logged but has i_update_core set. For this
3090 * case we can use a B_DELWRI flush and immediately drop
3091 * the inode flush lock because we can avoid the whole
3092 * AIL state thing. It's OK to drop the flush lock now,
3093 * because we've already locked the buffer and to do anything
3094 * you really need both.
3096 if (iip != NULL) {
3097 ASSERT(iip->ili_logged == 0);
3098 ASSERT(iip->ili_last_fields == 0);
3099 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3101 xfs_ifunlock(ip);
3104 return 0;
3106 corrupt_out:
3107 return XFS_ERROR(EFSCORRUPTED);
3111 * Return a pointer to the extent record at file index idx.
3113 xfs_bmbt_rec_host_t *
3114 xfs_iext_get_ext(
3115 xfs_ifork_t *ifp, /* inode fork pointer */
3116 xfs_extnum_t idx) /* index of target extent */
3118 ASSERT(idx >= 0);
3119 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3120 return ifp->if_u1.if_ext_irec->er_extbuf;
3121 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3122 xfs_ext_irec_t *erp; /* irec pointer */
3123 int erp_idx = 0; /* irec index */
3124 xfs_extnum_t page_idx = idx; /* ext index in target list */
3126 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3127 return &erp->er_extbuf[page_idx];
3128 } else if (ifp->if_bytes) {
3129 return &ifp->if_u1.if_extents[idx];
3130 } else {
3131 return NULL;
3136 * Insert new item(s) into the extent records for incore inode
3137 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3139 void
3140 xfs_iext_insert(
3141 xfs_inode_t *ip, /* incore inode pointer */
3142 xfs_extnum_t idx, /* starting index of new items */
3143 xfs_extnum_t count, /* number of inserted items */
3144 xfs_bmbt_irec_t *new, /* items to insert */
3145 int state) /* type of extent conversion */
3147 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3148 xfs_extnum_t i; /* extent record index */
3150 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3152 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3153 xfs_iext_add(ifp, idx, count);
3154 for (i = idx; i < idx + count; i++, new++)
3155 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3159 * This is called when the amount of space required for incore file
3160 * extents needs to be increased. The ext_diff parameter stores the
3161 * number of new extents being added and the idx parameter contains
3162 * the extent index where the new extents will be added. If the new
3163 * extents are being appended, then we just need to (re)allocate and
3164 * initialize the space. Otherwise, if the new extents are being
3165 * inserted into the middle of the existing entries, a bit more work
3166 * is required to make room for the new extents to be inserted. The
3167 * caller is responsible for filling in the new extent entries upon
3168 * return.
3170 void
3171 xfs_iext_add(
3172 xfs_ifork_t *ifp, /* inode fork pointer */
3173 xfs_extnum_t idx, /* index to begin adding exts */
3174 int ext_diff) /* number of extents to add */
3176 int byte_diff; /* new bytes being added */
3177 int new_size; /* size of extents after adding */
3178 xfs_extnum_t nextents; /* number of extents in file */
3180 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3181 ASSERT((idx >= 0) && (idx <= nextents));
3182 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3183 new_size = ifp->if_bytes + byte_diff;
3185 * If the new number of extents (nextents + ext_diff)
3186 * fits inside the inode, then continue to use the inline
3187 * extent buffer.
3189 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3190 if (idx < nextents) {
3191 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3192 &ifp->if_u2.if_inline_ext[idx],
3193 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3194 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3196 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3197 ifp->if_real_bytes = 0;
3198 ifp->if_lastex = nextents + ext_diff;
3201 * Otherwise use a linear (direct) extent list.
3202 * If the extents are currently inside the inode,
3203 * xfs_iext_realloc_direct will switch us from
3204 * inline to direct extent allocation mode.
3206 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3207 xfs_iext_realloc_direct(ifp, new_size);
3208 if (idx < nextents) {
3209 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3210 &ifp->if_u1.if_extents[idx],
3211 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3212 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3215 /* Indirection array */
3216 else {
3217 xfs_ext_irec_t *erp;
3218 int erp_idx = 0;
3219 int page_idx = idx;
3221 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3222 if (ifp->if_flags & XFS_IFEXTIREC) {
3223 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3224 } else {
3225 xfs_iext_irec_init(ifp);
3226 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3227 erp = ifp->if_u1.if_ext_irec;
3229 /* Extents fit in target extent page */
3230 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3231 if (page_idx < erp->er_extcount) {
3232 memmove(&erp->er_extbuf[page_idx + ext_diff],
3233 &erp->er_extbuf[page_idx],
3234 (erp->er_extcount - page_idx) *
3235 sizeof(xfs_bmbt_rec_t));
3236 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3238 erp->er_extcount += ext_diff;
3239 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3241 /* Insert a new extent page */
3242 else if (erp) {
3243 xfs_iext_add_indirect_multi(ifp,
3244 erp_idx, page_idx, ext_diff);
3247 * If extent(s) are being appended to the last page in
3248 * the indirection array and the new extent(s) don't fit
3249 * in the page, then erp is NULL and erp_idx is set to
3250 * the next index needed in the indirection array.
3252 else {
3253 int count = ext_diff;
3255 while (count) {
3256 erp = xfs_iext_irec_new(ifp, erp_idx);
3257 erp->er_extcount = count;
3258 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3259 if (count) {
3260 erp_idx++;
3265 ifp->if_bytes = new_size;
3269 * This is called when incore extents are being added to the indirection
3270 * array and the new extents do not fit in the target extent list. The
3271 * erp_idx parameter contains the irec index for the target extent list
3272 * in the indirection array, and the idx parameter contains the extent
3273 * index within the list. The number of extents being added is stored
3274 * in the count parameter.
3276 * |-------| |-------|
3277 * | | | | idx - number of extents before idx
3278 * | idx | | count |
3279 * | | | | count - number of extents being inserted at idx
3280 * |-------| |-------|
3281 * | count | | nex2 | nex2 - number of extents after idx + count
3282 * |-------| |-------|
3284 void
3285 xfs_iext_add_indirect_multi(
3286 xfs_ifork_t *ifp, /* inode fork pointer */
3287 int erp_idx, /* target extent irec index */
3288 xfs_extnum_t idx, /* index within target list */
3289 int count) /* new extents being added */
3291 int byte_diff; /* new bytes being added */
3292 xfs_ext_irec_t *erp; /* pointer to irec entry */
3293 xfs_extnum_t ext_diff; /* number of extents to add */
3294 xfs_extnum_t ext_cnt; /* new extents still needed */
3295 xfs_extnum_t nex2; /* extents after idx + count */
3296 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3297 int nlists; /* number of irec's (lists) */
3299 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3300 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3301 nex2 = erp->er_extcount - idx;
3302 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3305 * Save second part of target extent list
3306 * (all extents past */
3307 if (nex2) {
3308 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3309 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3310 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3311 erp->er_extcount -= nex2;
3312 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3313 memset(&erp->er_extbuf[idx], 0, byte_diff);
3317 * Add the new extents to the end of the target
3318 * list, then allocate new irec record(s) and
3319 * extent buffer(s) as needed to store the rest
3320 * of the new extents.
3322 ext_cnt = count;
3323 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3324 if (ext_diff) {
3325 erp->er_extcount += ext_diff;
3326 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3327 ext_cnt -= ext_diff;
3329 while (ext_cnt) {
3330 erp_idx++;
3331 erp = xfs_iext_irec_new(ifp, erp_idx);
3332 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3333 erp->er_extcount = ext_diff;
3334 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3335 ext_cnt -= ext_diff;
3338 /* Add nex2 extents back to indirection array */
3339 if (nex2) {
3340 xfs_extnum_t ext_avail;
3341 int i;
3343 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3344 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3345 i = 0;
3347 * If nex2 extents fit in the current page, append
3348 * nex2_ep after the new extents.
3350 if (nex2 <= ext_avail) {
3351 i = erp->er_extcount;
3354 * Otherwise, check if space is available in the
3355 * next page.
3357 else if ((erp_idx < nlists - 1) &&
3358 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3359 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3360 erp_idx++;
3361 erp++;
3362 /* Create a hole for nex2 extents */
3363 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3364 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3367 * Final choice, create a new extent page for
3368 * nex2 extents.
3370 else {
3371 erp_idx++;
3372 erp = xfs_iext_irec_new(ifp, erp_idx);
3374 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3375 kmem_free(nex2_ep);
3376 erp->er_extcount += nex2;
3377 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3382 * This is called when the amount of space required for incore file
3383 * extents needs to be decreased. The ext_diff parameter stores the
3384 * number of extents to be removed and the idx parameter contains
3385 * the extent index where the extents will be removed from.
3387 * If the amount of space needed has decreased below the linear
3388 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3389 * extent array. Otherwise, use kmem_realloc() to adjust the
3390 * size to what is needed.
3392 void
3393 xfs_iext_remove(
3394 xfs_inode_t *ip, /* incore inode pointer */
3395 xfs_extnum_t idx, /* index to begin removing exts */
3396 int ext_diff, /* number of extents to remove */
3397 int state) /* type of extent conversion */
3399 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3400 xfs_extnum_t nextents; /* number of extents in file */
3401 int new_size; /* size of extents after removal */
3403 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3405 ASSERT(ext_diff > 0);
3406 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3407 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3409 if (new_size == 0) {
3410 xfs_iext_destroy(ifp);
3411 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3412 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3413 } else if (ifp->if_real_bytes) {
3414 xfs_iext_remove_direct(ifp, idx, ext_diff);
3415 } else {
3416 xfs_iext_remove_inline(ifp, idx, ext_diff);
3418 ifp->if_bytes = new_size;
3422 * This removes ext_diff extents from the inline buffer, beginning
3423 * at extent index idx.
3425 void
3426 xfs_iext_remove_inline(
3427 xfs_ifork_t *ifp, /* inode fork pointer */
3428 xfs_extnum_t idx, /* index to begin removing exts */
3429 int ext_diff) /* number of extents to remove */
3431 int nextents; /* number of extents in file */
3433 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3434 ASSERT(idx < XFS_INLINE_EXTS);
3435 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3436 ASSERT(((nextents - ext_diff) > 0) &&
3437 (nextents - ext_diff) < XFS_INLINE_EXTS);
3439 if (idx + ext_diff < nextents) {
3440 memmove(&ifp->if_u2.if_inline_ext[idx],
3441 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3442 (nextents - (idx + ext_diff)) *
3443 sizeof(xfs_bmbt_rec_t));
3444 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3445 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3446 } else {
3447 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3448 ext_diff * sizeof(xfs_bmbt_rec_t));
3453 * This removes ext_diff extents from a linear (direct) extent list,
3454 * beginning at extent index idx. If the extents are being removed
3455 * from the end of the list (ie. truncate) then we just need to re-
3456 * allocate the list to remove the extra space. Otherwise, if the
3457 * extents are being removed from the middle of the existing extent
3458 * entries, then we first need to move the extent records beginning
3459 * at idx + ext_diff up in the list to overwrite the records being
3460 * removed, then remove the extra space via kmem_realloc.
3462 void
3463 xfs_iext_remove_direct(
3464 xfs_ifork_t *ifp, /* inode fork pointer */
3465 xfs_extnum_t idx, /* index to begin removing exts */
3466 int ext_diff) /* number of extents to remove */
3468 xfs_extnum_t nextents; /* number of extents in file */
3469 int new_size; /* size of extents after removal */
3471 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3472 new_size = ifp->if_bytes -
3473 (ext_diff * sizeof(xfs_bmbt_rec_t));
3474 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3476 if (new_size == 0) {
3477 xfs_iext_destroy(ifp);
3478 return;
3480 /* Move extents up in the list (if needed) */
3481 if (idx + ext_diff < nextents) {
3482 memmove(&ifp->if_u1.if_extents[idx],
3483 &ifp->if_u1.if_extents[idx + ext_diff],
3484 (nextents - (idx + ext_diff)) *
3485 sizeof(xfs_bmbt_rec_t));
3487 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3488 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3490 * Reallocate the direct extent list. If the extents
3491 * will fit inside the inode then xfs_iext_realloc_direct
3492 * will switch from direct to inline extent allocation
3493 * mode for us.
3495 xfs_iext_realloc_direct(ifp, new_size);
3496 ifp->if_bytes = new_size;
3500 * This is called when incore extents are being removed from the
3501 * indirection array and the extents being removed span multiple extent
3502 * buffers. The idx parameter contains the file extent index where we
3503 * want to begin removing extents, and the count parameter contains
3504 * how many extents need to be removed.
3506 * |-------| |-------|
3507 * | nex1 | | | nex1 - number of extents before idx
3508 * |-------| | count |
3509 * | | | | count - number of extents being removed at idx
3510 * | count | |-------|
3511 * | | | nex2 | nex2 - number of extents after idx + count
3512 * |-------| |-------|
3514 void
3515 xfs_iext_remove_indirect(
3516 xfs_ifork_t *ifp, /* inode fork pointer */
3517 xfs_extnum_t idx, /* index to begin removing extents */
3518 int count) /* number of extents to remove */
3520 xfs_ext_irec_t *erp; /* indirection array pointer */
3521 int erp_idx = 0; /* indirection array index */
3522 xfs_extnum_t ext_cnt; /* extents left to remove */
3523 xfs_extnum_t ext_diff; /* extents to remove in current list */
3524 xfs_extnum_t nex1; /* number of extents before idx */
3525 xfs_extnum_t nex2; /* extents after idx + count */
3526 int page_idx = idx; /* index in target extent list */
3528 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3529 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3530 ASSERT(erp != NULL);
3531 nex1 = page_idx;
3532 ext_cnt = count;
3533 while (ext_cnt) {
3534 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3535 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3537 * Check for deletion of entire list;
3538 * xfs_iext_irec_remove() updates extent offsets.
3540 if (ext_diff == erp->er_extcount) {
3541 xfs_iext_irec_remove(ifp, erp_idx);
3542 ext_cnt -= ext_diff;
3543 nex1 = 0;
3544 if (ext_cnt) {
3545 ASSERT(erp_idx < ifp->if_real_bytes /
3546 XFS_IEXT_BUFSZ);
3547 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3548 nex1 = 0;
3549 continue;
3550 } else {
3551 break;
3554 /* Move extents up (if needed) */
3555 if (nex2) {
3556 memmove(&erp->er_extbuf[nex1],
3557 &erp->er_extbuf[nex1 + ext_diff],
3558 nex2 * sizeof(xfs_bmbt_rec_t));
3560 /* Zero out rest of page */
3561 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3562 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3563 /* Update remaining counters */
3564 erp->er_extcount -= ext_diff;
3565 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3566 ext_cnt -= ext_diff;
3567 nex1 = 0;
3568 erp_idx++;
3569 erp++;
3571 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3572 xfs_iext_irec_compact(ifp);
3576 * Create, destroy, or resize a linear (direct) block of extents.
3578 void
3579 xfs_iext_realloc_direct(
3580 xfs_ifork_t *ifp, /* inode fork pointer */
3581 int new_size) /* new size of extents */
3583 int rnew_size; /* real new size of extents */
3585 rnew_size = new_size;
3587 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3588 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3589 (new_size != ifp->if_real_bytes)));
3591 /* Free extent records */
3592 if (new_size == 0) {
3593 xfs_iext_destroy(ifp);
3595 /* Resize direct extent list and zero any new bytes */
3596 else if (ifp->if_real_bytes) {
3597 /* Check if extents will fit inside the inode */
3598 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3599 xfs_iext_direct_to_inline(ifp, new_size /
3600 (uint)sizeof(xfs_bmbt_rec_t));
3601 ifp->if_bytes = new_size;
3602 return;
3604 if (!is_power_of_2(new_size)){
3605 rnew_size = roundup_pow_of_two(new_size);
3607 if (rnew_size != ifp->if_real_bytes) {
3608 ifp->if_u1.if_extents =
3609 kmem_realloc(ifp->if_u1.if_extents,
3610 rnew_size,
3611 ifp->if_real_bytes, KM_NOFS);
3613 if (rnew_size > ifp->if_real_bytes) {
3614 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3615 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3616 rnew_size - ifp->if_real_bytes);
3620 * Switch from the inline extent buffer to a direct
3621 * extent list. Be sure to include the inline extent
3622 * bytes in new_size.
3624 else {
3625 new_size += ifp->if_bytes;
3626 if (!is_power_of_2(new_size)) {
3627 rnew_size = roundup_pow_of_two(new_size);
3629 xfs_iext_inline_to_direct(ifp, rnew_size);
3631 ifp->if_real_bytes = rnew_size;
3632 ifp->if_bytes = new_size;
3636 * Switch from linear (direct) extent records to inline buffer.
3638 void
3639 xfs_iext_direct_to_inline(
3640 xfs_ifork_t *ifp, /* inode fork pointer */
3641 xfs_extnum_t nextents) /* number of extents in file */
3643 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3644 ASSERT(nextents <= XFS_INLINE_EXTS);
3646 * The inline buffer was zeroed when we switched
3647 * from inline to direct extent allocation mode,
3648 * so we don't need to clear it here.
3650 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3651 nextents * sizeof(xfs_bmbt_rec_t));
3652 kmem_free(ifp->if_u1.if_extents);
3653 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3654 ifp->if_real_bytes = 0;
3658 * Switch from inline buffer to linear (direct) extent records.
3659 * new_size should already be rounded up to the next power of 2
3660 * by the caller (when appropriate), so use new_size as it is.
3661 * However, since new_size may be rounded up, we can't update
3662 * if_bytes here. It is the caller's responsibility to update
3663 * if_bytes upon return.
3665 void
3666 xfs_iext_inline_to_direct(
3667 xfs_ifork_t *ifp, /* inode fork pointer */
3668 int new_size) /* number of extents in file */
3670 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3671 memset(ifp->if_u1.if_extents, 0, new_size);
3672 if (ifp->if_bytes) {
3673 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3674 ifp->if_bytes);
3675 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3676 sizeof(xfs_bmbt_rec_t));
3678 ifp->if_real_bytes = new_size;
3682 * Resize an extent indirection array to new_size bytes.
3684 STATIC void
3685 xfs_iext_realloc_indirect(
3686 xfs_ifork_t *ifp, /* inode fork pointer */
3687 int new_size) /* new indirection array size */
3689 int nlists; /* number of irec's (ex lists) */
3690 int size; /* current indirection array size */
3692 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3693 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3694 size = nlists * sizeof(xfs_ext_irec_t);
3695 ASSERT(ifp->if_real_bytes);
3696 ASSERT((new_size >= 0) && (new_size != size));
3697 if (new_size == 0) {
3698 xfs_iext_destroy(ifp);
3699 } else {
3700 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3701 kmem_realloc(ifp->if_u1.if_ext_irec,
3702 new_size, size, KM_NOFS);
3707 * Switch from indirection array to linear (direct) extent allocations.
3709 STATIC void
3710 xfs_iext_indirect_to_direct(
3711 xfs_ifork_t *ifp) /* inode fork pointer */
3713 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
3714 xfs_extnum_t nextents; /* number of extents in file */
3715 int size; /* size of file extents */
3717 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3718 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3719 ASSERT(nextents <= XFS_LINEAR_EXTS);
3720 size = nextents * sizeof(xfs_bmbt_rec_t);
3722 xfs_iext_irec_compact_pages(ifp);
3723 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3725 ep = ifp->if_u1.if_ext_irec->er_extbuf;
3726 kmem_free(ifp->if_u1.if_ext_irec);
3727 ifp->if_flags &= ~XFS_IFEXTIREC;
3728 ifp->if_u1.if_extents = ep;
3729 ifp->if_bytes = size;
3730 if (nextents < XFS_LINEAR_EXTS) {
3731 xfs_iext_realloc_direct(ifp, size);
3736 * Free incore file extents.
3738 void
3739 xfs_iext_destroy(
3740 xfs_ifork_t *ifp) /* inode fork pointer */
3742 if (ifp->if_flags & XFS_IFEXTIREC) {
3743 int erp_idx;
3744 int nlists;
3746 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3747 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3748 xfs_iext_irec_remove(ifp, erp_idx);
3750 ifp->if_flags &= ~XFS_IFEXTIREC;
3751 } else if (ifp->if_real_bytes) {
3752 kmem_free(ifp->if_u1.if_extents);
3753 } else if (ifp->if_bytes) {
3754 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3755 sizeof(xfs_bmbt_rec_t));
3757 ifp->if_u1.if_extents = NULL;
3758 ifp->if_real_bytes = 0;
3759 ifp->if_bytes = 0;
3763 * Return a pointer to the extent record for file system block bno.
3765 xfs_bmbt_rec_host_t * /* pointer to found extent record */
3766 xfs_iext_bno_to_ext(
3767 xfs_ifork_t *ifp, /* inode fork pointer */
3768 xfs_fileoff_t bno, /* block number to search for */
3769 xfs_extnum_t *idxp) /* index of target extent */
3771 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
3772 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
3773 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
3774 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3775 int high; /* upper boundary in search */
3776 xfs_extnum_t idx = 0; /* index of target extent */
3777 int low; /* lower boundary in search */
3778 xfs_extnum_t nextents; /* number of file extents */
3779 xfs_fileoff_t startoff = 0; /* start offset of extent */
3781 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3782 if (nextents == 0) {
3783 *idxp = 0;
3784 return NULL;
3786 low = 0;
3787 if (ifp->if_flags & XFS_IFEXTIREC) {
3788 /* Find target extent list */
3789 int erp_idx = 0;
3790 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3791 base = erp->er_extbuf;
3792 high = erp->er_extcount - 1;
3793 } else {
3794 base = ifp->if_u1.if_extents;
3795 high = nextents - 1;
3797 /* Binary search extent records */
3798 while (low <= high) {
3799 idx = (low + high) >> 1;
3800 ep = base + idx;
3801 startoff = xfs_bmbt_get_startoff(ep);
3802 blockcount = xfs_bmbt_get_blockcount(ep);
3803 if (bno < startoff) {
3804 high = idx - 1;
3805 } else if (bno >= startoff + blockcount) {
3806 low = idx + 1;
3807 } else {
3808 /* Convert back to file-based extent index */
3809 if (ifp->if_flags & XFS_IFEXTIREC) {
3810 idx += erp->er_extoff;
3812 *idxp = idx;
3813 return ep;
3816 /* Convert back to file-based extent index */
3817 if (ifp->if_flags & XFS_IFEXTIREC) {
3818 idx += erp->er_extoff;
3820 if (bno >= startoff + blockcount) {
3821 if (++idx == nextents) {
3822 ep = NULL;
3823 } else {
3824 ep = xfs_iext_get_ext(ifp, idx);
3827 *idxp = idx;
3828 return ep;
3832 * Return a pointer to the indirection array entry containing the
3833 * extent record for filesystem block bno. Store the index of the
3834 * target irec in *erp_idxp.
3836 xfs_ext_irec_t * /* pointer to found extent record */
3837 xfs_iext_bno_to_irec(
3838 xfs_ifork_t *ifp, /* inode fork pointer */
3839 xfs_fileoff_t bno, /* block number to search for */
3840 int *erp_idxp) /* irec index of target ext list */
3842 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3843 xfs_ext_irec_t *erp_next; /* next indirection array entry */
3844 int erp_idx; /* indirection array index */
3845 int nlists; /* number of extent irec's (lists) */
3846 int high; /* binary search upper limit */
3847 int low; /* binary search lower limit */
3849 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3850 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3851 erp_idx = 0;
3852 low = 0;
3853 high = nlists - 1;
3854 while (low <= high) {
3855 erp_idx = (low + high) >> 1;
3856 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3857 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3858 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3859 high = erp_idx - 1;
3860 } else if (erp_next && bno >=
3861 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3862 low = erp_idx + 1;
3863 } else {
3864 break;
3867 *erp_idxp = erp_idx;
3868 return erp;
3872 * Return a pointer to the indirection array entry containing the
3873 * extent record at file extent index *idxp. Store the index of the
3874 * target irec in *erp_idxp and store the page index of the target
3875 * extent record in *idxp.
3877 xfs_ext_irec_t *
3878 xfs_iext_idx_to_irec(
3879 xfs_ifork_t *ifp, /* inode fork pointer */
3880 xfs_extnum_t *idxp, /* extent index (file -> page) */
3881 int *erp_idxp, /* pointer to target irec */
3882 int realloc) /* new bytes were just added */
3884 xfs_ext_irec_t *prev; /* pointer to previous irec */
3885 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3886 int erp_idx; /* indirection array index */
3887 int nlists; /* number of irec's (ex lists) */
3888 int high; /* binary search upper limit */
3889 int low; /* binary search lower limit */
3890 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3892 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3893 ASSERT(page_idx >= 0 && page_idx <=
3894 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
3895 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3896 erp_idx = 0;
3897 low = 0;
3898 high = nlists - 1;
3900 /* Binary search extent irec's */
3901 while (low <= high) {
3902 erp_idx = (low + high) >> 1;
3903 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3904 prev = erp_idx > 0 ? erp - 1 : NULL;
3905 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3906 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3907 high = erp_idx - 1;
3908 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3909 (page_idx == erp->er_extoff + erp->er_extcount &&
3910 !realloc)) {
3911 low = erp_idx + 1;
3912 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3913 erp->er_extcount == XFS_LINEAR_EXTS) {
3914 ASSERT(realloc);
3915 page_idx = 0;
3916 erp_idx++;
3917 erp = erp_idx < nlists ? erp + 1 : NULL;
3918 break;
3919 } else {
3920 page_idx -= erp->er_extoff;
3921 break;
3924 *idxp = page_idx;
3925 *erp_idxp = erp_idx;
3926 return(erp);
3930 * Allocate and initialize an indirection array once the space needed
3931 * for incore extents increases above XFS_IEXT_BUFSZ.
3933 void
3934 xfs_iext_irec_init(
3935 xfs_ifork_t *ifp) /* inode fork pointer */
3937 xfs_ext_irec_t *erp; /* indirection array pointer */
3938 xfs_extnum_t nextents; /* number of extents in file */
3940 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3941 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3942 ASSERT(nextents <= XFS_LINEAR_EXTS);
3944 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3946 if (nextents == 0) {
3947 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3948 } else if (!ifp->if_real_bytes) {
3949 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3950 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3951 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3953 erp->er_extbuf = ifp->if_u1.if_extents;
3954 erp->er_extcount = nextents;
3955 erp->er_extoff = 0;
3957 ifp->if_flags |= XFS_IFEXTIREC;
3958 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3959 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3960 ifp->if_u1.if_ext_irec = erp;
3962 return;
3966 * Allocate and initialize a new entry in the indirection array.
3968 xfs_ext_irec_t *
3969 xfs_iext_irec_new(
3970 xfs_ifork_t *ifp, /* inode fork pointer */
3971 int erp_idx) /* index for new irec */
3973 xfs_ext_irec_t *erp; /* indirection array pointer */
3974 int i; /* loop counter */
3975 int nlists; /* number of irec's (ex lists) */
3977 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3978 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3980 /* Resize indirection array */
3981 xfs_iext_realloc_indirect(ifp, ++nlists *
3982 sizeof(xfs_ext_irec_t));
3984 * Move records down in the array so the
3985 * new page can use erp_idx.
3987 erp = ifp->if_u1.if_ext_irec;
3988 for (i = nlists - 1; i > erp_idx; i--) {
3989 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3991 ASSERT(i == erp_idx);
3993 /* Initialize new extent record */
3994 erp = ifp->if_u1.if_ext_irec;
3995 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3996 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3997 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3998 erp[erp_idx].er_extcount = 0;
3999 erp[erp_idx].er_extoff = erp_idx > 0 ?
4000 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4001 return (&erp[erp_idx]);
4005 * Remove a record from the indirection array.
4007 void
4008 xfs_iext_irec_remove(
4009 xfs_ifork_t *ifp, /* inode fork pointer */
4010 int erp_idx) /* irec index to remove */
4012 xfs_ext_irec_t *erp; /* indirection array pointer */
4013 int i; /* loop counter */
4014 int nlists; /* number of irec's (ex lists) */
4016 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4017 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4018 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4019 if (erp->er_extbuf) {
4020 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4021 -erp->er_extcount);
4022 kmem_free(erp->er_extbuf);
4024 /* Compact extent records */
4025 erp = ifp->if_u1.if_ext_irec;
4026 for (i = erp_idx; i < nlists - 1; i++) {
4027 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4030 * Manually free the last extent record from the indirection
4031 * array. A call to xfs_iext_realloc_indirect() with a size
4032 * of zero would result in a call to xfs_iext_destroy() which
4033 * would in turn call this function again, creating a nasty
4034 * infinite loop.
4036 if (--nlists) {
4037 xfs_iext_realloc_indirect(ifp,
4038 nlists * sizeof(xfs_ext_irec_t));
4039 } else {
4040 kmem_free(ifp->if_u1.if_ext_irec);
4042 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4046 * This is called to clean up large amounts of unused memory allocated
4047 * by the indirection array. Before compacting anything though, verify
4048 * that the indirection array is still needed and switch back to the
4049 * linear extent list (or even the inline buffer) if possible. The
4050 * compaction policy is as follows:
4052 * Full Compaction: Extents fit into a single page (or inline buffer)
4053 * Partial Compaction: Extents occupy less than 50% of allocated space
4054 * No Compaction: Extents occupy at least 50% of allocated space
4056 void
4057 xfs_iext_irec_compact(
4058 xfs_ifork_t *ifp) /* inode fork pointer */
4060 xfs_extnum_t nextents; /* number of extents in file */
4061 int nlists; /* number of irec's (ex lists) */
4063 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4064 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4065 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4067 if (nextents == 0) {
4068 xfs_iext_destroy(ifp);
4069 } else if (nextents <= XFS_INLINE_EXTS) {
4070 xfs_iext_indirect_to_direct(ifp);
4071 xfs_iext_direct_to_inline(ifp, nextents);
4072 } else if (nextents <= XFS_LINEAR_EXTS) {
4073 xfs_iext_indirect_to_direct(ifp);
4074 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4075 xfs_iext_irec_compact_pages(ifp);
4080 * Combine extents from neighboring extent pages.
4082 void
4083 xfs_iext_irec_compact_pages(
4084 xfs_ifork_t *ifp) /* inode fork pointer */
4086 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4087 int erp_idx = 0; /* indirection array index */
4088 int nlists; /* number of irec's (ex lists) */
4090 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4091 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4092 while (erp_idx < nlists - 1) {
4093 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4094 erp_next = erp + 1;
4095 if (erp_next->er_extcount <=
4096 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4097 memcpy(&erp->er_extbuf[erp->er_extcount],
4098 erp_next->er_extbuf, erp_next->er_extcount *
4099 sizeof(xfs_bmbt_rec_t));
4100 erp->er_extcount += erp_next->er_extcount;
4102 * Free page before removing extent record
4103 * so er_extoffs don't get modified in
4104 * xfs_iext_irec_remove.
4106 kmem_free(erp_next->er_extbuf);
4107 erp_next->er_extbuf = NULL;
4108 xfs_iext_irec_remove(ifp, erp_idx + 1);
4109 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4110 } else {
4111 erp_idx++;
4117 * This is called to update the er_extoff field in the indirection
4118 * array when extents have been added or removed from one of the
4119 * extent lists. erp_idx contains the irec index to begin updating
4120 * at and ext_diff contains the number of extents that were added
4121 * or removed.
4123 void
4124 xfs_iext_irec_update_extoffs(
4125 xfs_ifork_t *ifp, /* inode fork pointer */
4126 int erp_idx, /* irec index to update */
4127 int ext_diff) /* number of new extents */
4129 int i; /* loop counter */
4130 int nlists; /* number of irec's (ex lists */
4132 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4133 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4134 for (i = erp_idx; i < nlists; i++) {
4135 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;