2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
45 #include <trace/events/ext4.h>
47 static int ext4_split_extent(handle_t
*handle
,
49 struct ext4_ext_path
*path
,
50 struct ext4_map_blocks
*map
,
54 static int ext4_ext_truncate_extend_restart(handle_t
*handle
,
60 if (!ext4_handle_valid(handle
))
62 if (handle
->h_buffer_credits
> needed
)
64 err
= ext4_journal_extend(handle
, needed
);
67 err
= ext4_truncate_restart_trans(handle
, inode
, needed
);
79 static int ext4_ext_get_access(handle_t
*handle
, struct inode
*inode
,
80 struct ext4_ext_path
*path
)
83 /* path points to block */
84 return ext4_journal_get_write_access(handle
, path
->p_bh
);
86 /* path points to leaf/index in inode body */
87 /* we use in-core data, no need to protect them */
97 #define ext4_ext_dirty(handle, inode, path) \
98 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
99 static int __ext4_ext_dirty(const char *where
, unsigned int line
,
100 handle_t
*handle
, struct inode
*inode
,
101 struct ext4_ext_path
*path
)
105 /* path points to block */
106 err
= __ext4_handle_dirty_metadata(where
, line
, handle
,
109 /* path points to leaf/index in inode body */
110 err
= ext4_mark_inode_dirty(handle
, inode
);
115 static ext4_fsblk_t
ext4_ext_find_goal(struct inode
*inode
,
116 struct ext4_ext_path
*path
,
120 int depth
= path
->p_depth
;
121 struct ext4_extent
*ex
;
124 * Try to predict block placement assuming that we are
125 * filling in a file which will eventually be
126 * non-sparse --- i.e., in the case of libbfd writing
127 * an ELF object sections out-of-order but in a way
128 * the eventually results in a contiguous object or
129 * executable file, or some database extending a table
130 * space file. However, this is actually somewhat
131 * non-ideal if we are writing a sparse file such as
132 * qemu or KVM writing a raw image file that is going
133 * to stay fairly sparse, since it will end up
134 * fragmenting the file system's free space. Maybe we
135 * should have some hueristics or some way to allow
136 * userspace to pass a hint to file system,
137 * especially if the latter case turns out to be
140 ex
= path
[depth
].p_ext
;
142 ext4_fsblk_t ext_pblk
= ext4_ext_pblock(ex
);
143 ext4_lblk_t ext_block
= le32_to_cpu(ex
->ee_block
);
145 if (block
> ext_block
)
146 return ext_pblk
+ (block
- ext_block
);
148 return ext_pblk
- (ext_block
- block
);
151 /* it looks like index is empty;
152 * try to find starting block from index itself */
153 if (path
[depth
].p_bh
)
154 return path
[depth
].p_bh
->b_blocknr
;
157 /* OK. use inode's group */
158 return ext4_inode_to_goal_block(inode
);
162 * Allocation for a meta data block
165 ext4_ext_new_meta_block(handle_t
*handle
, struct inode
*inode
,
166 struct ext4_ext_path
*path
,
167 struct ext4_extent
*ex
, int *err
, unsigned int flags
)
169 ext4_fsblk_t goal
, newblock
;
171 goal
= ext4_ext_find_goal(inode
, path
, le32_to_cpu(ex
->ee_block
));
172 newblock
= ext4_new_meta_blocks(handle
, inode
, goal
, flags
,
177 static inline int ext4_ext_space_block(struct inode
*inode
, int check
)
181 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
182 / sizeof(struct ext4_extent
);
183 #ifdef AGGRESSIVE_TEST
184 if (!check
&& size
> 6)
190 static inline int ext4_ext_space_block_idx(struct inode
*inode
, int check
)
194 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
195 / sizeof(struct ext4_extent_idx
);
196 #ifdef AGGRESSIVE_TEST
197 if (!check
&& size
> 5)
203 static inline int ext4_ext_space_root(struct inode
*inode
, int check
)
207 size
= sizeof(EXT4_I(inode
)->i_data
);
208 size
-= sizeof(struct ext4_extent_header
);
209 size
/= sizeof(struct ext4_extent
);
210 #ifdef AGGRESSIVE_TEST
211 if (!check
&& size
> 3)
217 static inline int ext4_ext_space_root_idx(struct inode
*inode
, int check
)
221 size
= sizeof(EXT4_I(inode
)->i_data
);
222 size
-= sizeof(struct ext4_extent_header
);
223 size
/= sizeof(struct ext4_extent_idx
);
224 #ifdef AGGRESSIVE_TEST
225 if (!check
&& size
> 4)
232 * Calculate the number of metadata blocks needed
233 * to allocate @blocks
234 * Worse case is one block per extent
236 int ext4_ext_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
238 struct ext4_inode_info
*ei
= EXT4_I(inode
);
241 idxs
= ((inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
242 / sizeof(struct ext4_extent_idx
));
245 * If the new delayed allocation block is contiguous with the
246 * previous da block, it can share index blocks with the
247 * previous block, so we only need to allocate a new index
248 * block every idxs leaf blocks. At ldxs**2 blocks, we need
249 * an additional index block, and at ldxs**3 blocks, yet
250 * another index blocks.
252 if (ei
->i_da_metadata_calc_len
&&
253 ei
->i_da_metadata_calc_last_lblock
+1 == lblock
) {
256 if ((ei
->i_da_metadata_calc_len
% idxs
) == 0)
258 if ((ei
->i_da_metadata_calc_len
% (idxs
*idxs
)) == 0)
260 if ((ei
->i_da_metadata_calc_len
% (idxs
*idxs
*idxs
)) == 0) {
262 ei
->i_da_metadata_calc_len
= 0;
264 ei
->i_da_metadata_calc_len
++;
265 ei
->i_da_metadata_calc_last_lblock
++;
270 * In the worst case we need a new set of index blocks at
271 * every level of the inode's extent tree.
273 ei
->i_da_metadata_calc_len
= 1;
274 ei
->i_da_metadata_calc_last_lblock
= lblock
;
275 return ext_depth(inode
) + 1;
279 ext4_ext_max_entries(struct inode
*inode
, int depth
)
283 if (depth
== ext_depth(inode
)) {
285 max
= ext4_ext_space_root(inode
, 1);
287 max
= ext4_ext_space_root_idx(inode
, 1);
290 max
= ext4_ext_space_block(inode
, 1);
292 max
= ext4_ext_space_block_idx(inode
, 1);
298 static int ext4_valid_extent(struct inode
*inode
, struct ext4_extent
*ext
)
300 ext4_fsblk_t block
= ext4_ext_pblock(ext
);
301 int len
= ext4_ext_get_actual_len(ext
);
303 return ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block
, len
);
306 static int ext4_valid_extent_idx(struct inode
*inode
,
307 struct ext4_extent_idx
*ext_idx
)
309 ext4_fsblk_t block
= ext4_idx_pblock(ext_idx
);
311 return ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block
, 1);
314 static int ext4_valid_extent_entries(struct inode
*inode
,
315 struct ext4_extent_header
*eh
,
318 unsigned short entries
;
319 if (eh
->eh_entries
== 0)
322 entries
= le16_to_cpu(eh
->eh_entries
);
326 struct ext4_extent
*ext
= EXT_FIRST_EXTENT(eh
);
328 if (!ext4_valid_extent(inode
, ext
))
334 struct ext4_extent_idx
*ext_idx
= EXT_FIRST_INDEX(eh
);
336 if (!ext4_valid_extent_idx(inode
, ext_idx
))
345 static int __ext4_ext_check(const char *function
, unsigned int line
,
346 struct inode
*inode
, struct ext4_extent_header
*eh
,
349 const char *error_msg
;
352 if (unlikely(eh
->eh_magic
!= EXT4_EXT_MAGIC
)) {
353 error_msg
= "invalid magic";
356 if (unlikely(le16_to_cpu(eh
->eh_depth
) != depth
)) {
357 error_msg
= "unexpected eh_depth";
360 if (unlikely(eh
->eh_max
== 0)) {
361 error_msg
= "invalid eh_max";
364 max
= ext4_ext_max_entries(inode
, depth
);
365 if (unlikely(le16_to_cpu(eh
->eh_max
) > max
)) {
366 error_msg
= "too large eh_max";
369 if (unlikely(le16_to_cpu(eh
->eh_entries
) > le16_to_cpu(eh
->eh_max
))) {
370 error_msg
= "invalid eh_entries";
373 if (!ext4_valid_extent_entries(inode
, eh
, depth
)) {
374 error_msg
= "invalid extent entries";
380 ext4_error_inode(inode
, function
, line
, 0,
381 "bad header/extent: %s - magic %x, "
382 "entries %u, max %u(%u), depth %u(%u)",
383 error_msg
, le16_to_cpu(eh
->eh_magic
),
384 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
),
385 max
, le16_to_cpu(eh
->eh_depth
), depth
);
390 #define ext4_ext_check(inode, eh, depth) \
391 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
393 int ext4_ext_check_inode(struct inode
*inode
)
395 return ext4_ext_check(inode
, ext_inode_hdr(inode
), ext_depth(inode
));
399 static void ext4_ext_show_path(struct inode
*inode
, struct ext4_ext_path
*path
)
401 int k
, l
= path
->p_depth
;
404 for (k
= 0; k
<= l
; k
++, path
++) {
406 ext_debug(" %d->%llu", le32_to_cpu(path
->p_idx
->ei_block
),
407 ext4_idx_pblock(path
->p_idx
));
408 } else if (path
->p_ext
) {
409 ext_debug(" %d:[%d]%d:%llu ",
410 le32_to_cpu(path
->p_ext
->ee_block
),
411 ext4_ext_is_uninitialized(path
->p_ext
),
412 ext4_ext_get_actual_len(path
->p_ext
),
413 ext4_ext_pblock(path
->p_ext
));
420 static void ext4_ext_show_leaf(struct inode
*inode
, struct ext4_ext_path
*path
)
422 int depth
= ext_depth(inode
);
423 struct ext4_extent_header
*eh
;
424 struct ext4_extent
*ex
;
430 eh
= path
[depth
].p_hdr
;
431 ex
= EXT_FIRST_EXTENT(eh
);
433 ext_debug("Displaying leaf extents for inode %lu\n", inode
->i_ino
);
435 for (i
= 0; i
< le16_to_cpu(eh
->eh_entries
); i
++, ex
++) {
436 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex
->ee_block
),
437 ext4_ext_is_uninitialized(ex
),
438 ext4_ext_get_actual_len(ex
), ext4_ext_pblock(ex
));
443 static void ext4_ext_show_move(struct inode
*inode
, struct ext4_ext_path
*path
,
444 ext4_fsblk_t newblock
, int level
)
446 int depth
= ext_depth(inode
);
447 struct ext4_extent
*ex
;
449 if (depth
!= level
) {
450 struct ext4_extent_idx
*idx
;
451 idx
= path
[level
].p_idx
;
452 while (idx
<= EXT_MAX_INDEX(path
[level
].p_hdr
)) {
453 ext_debug("%d: move %d:%llu in new index %llu\n", level
,
454 le32_to_cpu(idx
->ei_block
),
455 ext4_idx_pblock(idx
),
463 ex
= path
[depth
].p_ext
;
464 while (ex
<= EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
465 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
466 le32_to_cpu(ex
->ee_block
),
468 ext4_ext_is_uninitialized(ex
),
469 ext4_ext_get_actual_len(ex
),
476 #define ext4_ext_show_path(inode, path)
477 #define ext4_ext_show_leaf(inode, path)
478 #define ext4_ext_show_move(inode, path, newblock, level)
481 void ext4_ext_drop_refs(struct ext4_ext_path
*path
)
483 int depth
= path
->p_depth
;
486 for (i
= 0; i
<= depth
; i
++, path
++)
494 * ext4_ext_binsearch_idx:
495 * binary search for the closest index of the given block
496 * the header must be checked before calling this
499 ext4_ext_binsearch_idx(struct inode
*inode
,
500 struct ext4_ext_path
*path
, ext4_lblk_t block
)
502 struct ext4_extent_header
*eh
= path
->p_hdr
;
503 struct ext4_extent_idx
*r
, *l
, *m
;
506 ext_debug("binsearch for %u(idx): ", block
);
508 l
= EXT_FIRST_INDEX(eh
) + 1;
509 r
= EXT_LAST_INDEX(eh
);
512 if (block
< le32_to_cpu(m
->ei_block
))
516 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ei_block
),
517 m
, le32_to_cpu(m
->ei_block
),
518 r
, le32_to_cpu(r
->ei_block
));
522 ext_debug(" -> %d->%lld ", le32_to_cpu(path
->p_idx
->ei_block
),
523 ext4_idx_pblock(path
->p_idx
));
525 #ifdef CHECK_BINSEARCH
527 struct ext4_extent_idx
*chix
, *ix
;
530 chix
= ix
= EXT_FIRST_INDEX(eh
);
531 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ix
++) {
533 le32_to_cpu(ix
->ei_block
) <= le32_to_cpu(ix
[-1].ei_block
)) {
534 printk(KERN_DEBUG
"k=%d, ix=0x%p, "
536 ix
, EXT_FIRST_INDEX(eh
));
537 printk(KERN_DEBUG
"%u <= %u\n",
538 le32_to_cpu(ix
->ei_block
),
539 le32_to_cpu(ix
[-1].ei_block
));
541 BUG_ON(k
&& le32_to_cpu(ix
->ei_block
)
542 <= le32_to_cpu(ix
[-1].ei_block
));
543 if (block
< le32_to_cpu(ix
->ei_block
))
547 BUG_ON(chix
!= path
->p_idx
);
554 * ext4_ext_binsearch:
555 * binary search for closest extent of the given block
556 * the header must be checked before calling this
559 ext4_ext_binsearch(struct inode
*inode
,
560 struct ext4_ext_path
*path
, ext4_lblk_t block
)
562 struct ext4_extent_header
*eh
= path
->p_hdr
;
563 struct ext4_extent
*r
, *l
, *m
;
565 if (eh
->eh_entries
== 0) {
567 * this leaf is empty:
568 * we get such a leaf in split/add case
573 ext_debug("binsearch for %u: ", block
);
575 l
= EXT_FIRST_EXTENT(eh
) + 1;
576 r
= EXT_LAST_EXTENT(eh
);
580 if (block
< le32_to_cpu(m
->ee_block
))
584 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ee_block
),
585 m
, le32_to_cpu(m
->ee_block
),
586 r
, le32_to_cpu(r
->ee_block
));
590 ext_debug(" -> %d:%llu:[%d]%d ",
591 le32_to_cpu(path
->p_ext
->ee_block
),
592 ext4_ext_pblock(path
->p_ext
),
593 ext4_ext_is_uninitialized(path
->p_ext
),
594 ext4_ext_get_actual_len(path
->p_ext
));
596 #ifdef CHECK_BINSEARCH
598 struct ext4_extent
*chex
, *ex
;
601 chex
= ex
= EXT_FIRST_EXTENT(eh
);
602 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ex
++) {
603 BUG_ON(k
&& le32_to_cpu(ex
->ee_block
)
604 <= le32_to_cpu(ex
[-1].ee_block
));
605 if (block
< le32_to_cpu(ex
->ee_block
))
609 BUG_ON(chex
!= path
->p_ext
);
615 int ext4_ext_tree_init(handle_t
*handle
, struct inode
*inode
)
617 struct ext4_extent_header
*eh
;
619 eh
= ext_inode_hdr(inode
);
622 eh
->eh_magic
= EXT4_EXT_MAGIC
;
623 eh
->eh_max
= cpu_to_le16(ext4_ext_space_root(inode
, 0));
624 ext4_mark_inode_dirty(handle
, inode
);
625 ext4_ext_invalidate_cache(inode
);
629 struct ext4_ext_path
*
630 ext4_ext_find_extent(struct inode
*inode
, ext4_lblk_t block
,
631 struct ext4_ext_path
*path
)
633 struct ext4_extent_header
*eh
;
634 struct buffer_head
*bh
;
635 short int depth
, i
, ppos
= 0, alloc
= 0;
637 eh
= ext_inode_hdr(inode
);
638 depth
= ext_depth(inode
);
640 /* account possible depth increase */
642 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 2),
645 return ERR_PTR(-ENOMEM
);
652 /* walk through the tree */
654 int need_to_validate
= 0;
656 ext_debug("depth %d: num %d, max %d\n",
657 ppos
, le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
659 ext4_ext_binsearch_idx(inode
, path
+ ppos
, block
);
660 path
[ppos
].p_block
= ext4_idx_pblock(path
[ppos
].p_idx
);
661 path
[ppos
].p_depth
= i
;
662 path
[ppos
].p_ext
= NULL
;
664 bh
= sb_getblk(inode
->i_sb
, path
[ppos
].p_block
);
667 if (!bh_uptodate_or_lock(bh
)) {
668 trace_ext4_ext_load_extent(inode
, block
,
670 if (bh_submit_read(bh
) < 0) {
674 /* validate the extent entries */
675 need_to_validate
= 1;
677 eh
= ext_block_hdr(bh
);
679 if (unlikely(ppos
> depth
)) {
681 EXT4_ERROR_INODE(inode
,
682 "ppos %d > depth %d", ppos
, depth
);
685 path
[ppos
].p_bh
= bh
;
686 path
[ppos
].p_hdr
= eh
;
689 if (need_to_validate
&& ext4_ext_check(inode
, eh
, i
))
693 path
[ppos
].p_depth
= i
;
694 path
[ppos
].p_ext
= NULL
;
695 path
[ppos
].p_idx
= NULL
;
698 ext4_ext_binsearch(inode
, path
+ ppos
, block
);
699 /* if not an empty leaf */
700 if (path
[ppos
].p_ext
)
701 path
[ppos
].p_block
= ext4_ext_pblock(path
[ppos
].p_ext
);
703 ext4_ext_show_path(inode
, path
);
708 ext4_ext_drop_refs(path
);
711 return ERR_PTR(-EIO
);
715 * ext4_ext_insert_index:
716 * insert new index [@logical;@ptr] into the block at @curp;
717 * check where to insert: before @curp or after @curp
719 static int ext4_ext_insert_index(handle_t
*handle
, struct inode
*inode
,
720 struct ext4_ext_path
*curp
,
721 int logical
, ext4_fsblk_t ptr
)
723 struct ext4_extent_idx
*ix
;
726 err
= ext4_ext_get_access(handle
, inode
, curp
);
730 if (unlikely(logical
== le32_to_cpu(curp
->p_idx
->ei_block
))) {
731 EXT4_ERROR_INODE(inode
,
732 "logical %d == ei_block %d!",
733 logical
, le32_to_cpu(curp
->p_idx
->ei_block
));
737 if (unlikely(le16_to_cpu(curp
->p_hdr
->eh_entries
)
738 >= le16_to_cpu(curp
->p_hdr
->eh_max
))) {
739 EXT4_ERROR_INODE(inode
,
740 "eh_entries %d >= eh_max %d!",
741 le16_to_cpu(curp
->p_hdr
->eh_entries
),
742 le16_to_cpu(curp
->p_hdr
->eh_max
));
746 if (logical
> le32_to_cpu(curp
->p_idx
->ei_block
)) {
748 ext_debug("insert new index %d after: %llu\n", logical
, ptr
);
749 ix
= curp
->p_idx
+ 1;
752 ext_debug("insert new index %d before: %llu\n", logical
, ptr
);
756 len
= EXT_LAST_INDEX(curp
->p_hdr
) - ix
+ 1;
759 ext_debug("insert new index %d: "
760 "move %d indices from 0x%p to 0x%p\n",
761 logical
, len
, ix
, ix
+ 1);
762 memmove(ix
+ 1, ix
, len
* sizeof(struct ext4_extent_idx
));
765 if (unlikely(ix
> EXT_MAX_INDEX(curp
->p_hdr
))) {
766 EXT4_ERROR_INODE(inode
, "ix > EXT_MAX_INDEX!");
770 ix
->ei_block
= cpu_to_le32(logical
);
771 ext4_idx_store_pblock(ix
, ptr
);
772 le16_add_cpu(&curp
->p_hdr
->eh_entries
, 1);
774 if (unlikely(ix
> EXT_LAST_INDEX(curp
->p_hdr
))) {
775 EXT4_ERROR_INODE(inode
, "ix > EXT_LAST_INDEX!");
779 err
= ext4_ext_dirty(handle
, inode
, curp
);
780 ext4_std_error(inode
->i_sb
, err
);
787 * inserts new subtree into the path, using free index entry
789 * - allocates all needed blocks (new leaf and all intermediate index blocks)
790 * - makes decision where to split
791 * - moves remaining extents and index entries (right to the split point)
792 * into the newly allocated blocks
793 * - initializes subtree
795 static int ext4_ext_split(handle_t
*handle
, struct inode
*inode
,
797 struct ext4_ext_path
*path
,
798 struct ext4_extent
*newext
, int at
)
800 struct buffer_head
*bh
= NULL
;
801 int depth
= ext_depth(inode
);
802 struct ext4_extent_header
*neh
;
803 struct ext4_extent_idx
*fidx
;
805 ext4_fsblk_t newblock
, oldblock
;
807 ext4_fsblk_t
*ablocks
= NULL
; /* array of allocated blocks */
810 /* make decision: where to split? */
811 /* FIXME: now decision is simplest: at current extent */
813 /* if current leaf will be split, then we should use
814 * border from split point */
815 if (unlikely(path
[depth
].p_ext
> EXT_MAX_EXTENT(path
[depth
].p_hdr
))) {
816 EXT4_ERROR_INODE(inode
, "p_ext > EXT_MAX_EXTENT!");
819 if (path
[depth
].p_ext
!= EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
820 border
= path
[depth
].p_ext
[1].ee_block
;
821 ext_debug("leaf will be split."
822 " next leaf starts at %d\n",
823 le32_to_cpu(border
));
825 border
= newext
->ee_block
;
826 ext_debug("leaf will be added."
827 " next leaf starts at %d\n",
828 le32_to_cpu(border
));
832 * If error occurs, then we break processing
833 * and mark filesystem read-only. index won't
834 * be inserted and tree will be in consistent
835 * state. Next mount will repair buffers too.
839 * Get array to track all allocated blocks.
840 * We need this to handle errors and free blocks
843 ablocks
= kzalloc(sizeof(ext4_fsblk_t
) * depth
, GFP_NOFS
);
847 /* allocate all needed blocks */
848 ext_debug("allocate %d blocks for indexes/leaf\n", depth
- at
);
849 for (a
= 0; a
< depth
- at
; a
++) {
850 newblock
= ext4_ext_new_meta_block(handle
, inode
, path
,
851 newext
, &err
, flags
);
854 ablocks
[a
] = newblock
;
857 /* initialize new leaf */
858 newblock
= ablocks
[--a
];
859 if (unlikely(newblock
== 0)) {
860 EXT4_ERROR_INODE(inode
, "newblock == 0!");
864 bh
= sb_getblk(inode
->i_sb
, newblock
);
871 err
= ext4_journal_get_create_access(handle
, bh
);
875 neh
= ext_block_hdr(bh
);
877 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
, 0));
878 neh
->eh_magic
= EXT4_EXT_MAGIC
;
881 /* move remainder of path[depth] to the new leaf */
882 if (unlikely(path
[depth
].p_hdr
->eh_entries
!=
883 path
[depth
].p_hdr
->eh_max
)) {
884 EXT4_ERROR_INODE(inode
, "eh_entries %d != eh_max %d!",
885 path
[depth
].p_hdr
->eh_entries
,
886 path
[depth
].p_hdr
->eh_max
);
890 /* start copy from next extent */
891 m
= EXT_MAX_EXTENT(path
[depth
].p_hdr
) - path
[depth
].p_ext
++;
892 ext4_ext_show_move(inode
, path
, newblock
, depth
);
894 struct ext4_extent
*ex
;
895 ex
= EXT_FIRST_EXTENT(neh
);
896 memmove(ex
, path
[depth
].p_ext
, sizeof(struct ext4_extent
) * m
);
897 le16_add_cpu(&neh
->eh_entries
, m
);
900 set_buffer_uptodate(bh
);
903 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
909 /* correct old leaf */
911 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
914 le16_add_cpu(&path
[depth
].p_hdr
->eh_entries
, -m
);
915 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
921 /* create intermediate indexes */
923 if (unlikely(k
< 0)) {
924 EXT4_ERROR_INODE(inode
, "k %d < 0!", k
);
929 ext_debug("create %d intermediate indices\n", k
);
930 /* insert new index into current index block */
931 /* current depth stored in i var */
935 newblock
= ablocks
[--a
];
936 bh
= sb_getblk(inode
->i_sb
, newblock
);
943 err
= ext4_journal_get_create_access(handle
, bh
);
947 neh
= ext_block_hdr(bh
);
948 neh
->eh_entries
= cpu_to_le16(1);
949 neh
->eh_magic
= EXT4_EXT_MAGIC
;
950 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
, 0));
951 neh
->eh_depth
= cpu_to_le16(depth
- i
);
952 fidx
= EXT_FIRST_INDEX(neh
);
953 fidx
->ei_block
= border
;
954 ext4_idx_store_pblock(fidx
, oldblock
);
956 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
957 i
, newblock
, le32_to_cpu(border
), oldblock
);
959 /* move remainder of path[i] to the new index block */
960 if (unlikely(EXT_MAX_INDEX(path
[i
].p_hdr
) !=
961 EXT_LAST_INDEX(path
[i
].p_hdr
))) {
962 EXT4_ERROR_INODE(inode
,
963 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
964 le32_to_cpu(path
[i
].p_ext
->ee_block
));
968 /* start copy indexes */
969 m
= EXT_MAX_INDEX(path
[i
].p_hdr
) - path
[i
].p_idx
++;
970 ext_debug("cur 0x%p, last 0x%p\n", path
[i
].p_idx
,
971 EXT_MAX_INDEX(path
[i
].p_hdr
));
972 ext4_ext_show_move(inode
, path
, newblock
, i
);
974 memmove(++fidx
, path
[i
].p_idx
,
975 sizeof(struct ext4_extent_idx
) * m
);
976 le16_add_cpu(&neh
->eh_entries
, m
);
978 set_buffer_uptodate(bh
);
981 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
987 /* correct old index */
989 err
= ext4_ext_get_access(handle
, inode
, path
+ i
);
992 le16_add_cpu(&path
[i
].p_hdr
->eh_entries
, -m
);
993 err
= ext4_ext_dirty(handle
, inode
, path
+ i
);
1001 /* insert new index */
1002 err
= ext4_ext_insert_index(handle
, inode
, path
+ at
,
1003 le32_to_cpu(border
), newblock
);
1007 if (buffer_locked(bh
))
1013 /* free all allocated blocks in error case */
1014 for (i
= 0; i
< depth
; i
++) {
1017 ext4_free_blocks(handle
, inode
, NULL
, ablocks
[i
], 1,
1018 EXT4_FREE_BLOCKS_METADATA
);
1027 * ext4_ext_grow_indepth:
1028 * implements tree growing procedure:
1029 * - allocates new block
1030 * - moves top-level data (index block or leaf) into the new block
1031 * - initializes new top-level, creating index that points to the
1032 * just created block
1034 static int ext4_ext_grow_indepth(handle_t
*handle
, struct inode
*inode
,
1036 struct ext4_extent
*newext
)
1038 struct ext4_extent_header
*neh
;
1039 struct buffer_head
*bh
;
1040 ext4_fsblk_t newblock
;
1043 newblock
= ext4_ext_new_meta_block(handle
, inode
, NULL
,
1044 newext
, &err
, flags
);
1048 bh
= sb_getblk(inode
->i_sb
, newblock
);
1051 ext4_std_error(inode
->i_sb
, err
);
1056 err
= ext4_journal_get_create_access(handle
, bh
);
1062 /* move top-level index/leaf into new block */
1063 memmove(bh
->b_data
, EXT4_I(inode
)->i_data
,
1064 sizeof(EXT4_I(inode
)->i_data
));
1066 /* set size of new block */
1067 neh
= ext_block_hdr(bh
);
1068 /* old root could have indexes or leaves
1069 * so calculate e_max right way */
1070 if (ext_depth(inode
))
1071 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
, 0));
1073 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
, 0));
1074 neh
->eh_magic
= EXT4_EXT_MAGIC
;
1075 set_buffer_uptodate(bh
);
1078 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1082 /* Update top-level index: num,max,pointer */
1083 neh
= ext_inode_hdr(inode
);
1084 neh
->eh_entries
= cpu_to_le16(1);
1085 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh
), newblock
);
1086 if (neh
->eh_depth
== 0) {
1087 /* Root extent block becomes index block */
1088 neh
->eh_max
= cpu_to_le16(ext4_ext_space_root_idx(inode
, 0));
1089 EXT_FIRST_INDEX(neh
)->ei_block
=
1090 EXT_FIRST_EXTENT(neh
)->ee_block
;
1092 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1093 le16_to_cpu(neh
->eh_entries
), le16_to_cpu(neh
->eh_max
),
1094 le32_to_cpu(EXT_FIRST_INDEX(neh
)->ei_block
),
1095 ext4_idx_pblock(EXT_FIRST_INDEX(neh
)));
1097 neh
->eh_depth
= cpu_to_le16(le16_to_cpu(neh
->eh_depth
) + 1);
1098 ext4_mark_inode_dirty(handle
, inode
);
1106 * ext4_ext_create_new_leaf:
1107 * finds empty index and adds new leaf.
1108 * if no free index is found, then it requests in-depth growing.
1110 static int ext4_ext_create_new_leaf(handle_t
*handle
, struct inode
*inode
,
1112 struct ext4_ext_path
*path
,
1113 struct ext4_extent
*newext
)
1115 struct ext4_ext_path
*curp
;
1116 int depth
, i
, err
= 0;
1119 i
= depth
= ext_depth(inode
);
1121 /* walk up to the tree and look for free index entry */
1122 curp
= path
+ depth
;
1123 while (i
> 0 && !EXT_HAS_FREE_INDEX(curp
)) {
1128 /* we use already allocated block for index block,
1129 * so subsequent data blocks should be contiguous */
1130 if (EXT_HAS_FREE_INDEX(curp
)) {
1131 /* if we found index with free entry, then use that
1132 * entry: create all needed subtree and add new leaf */
1133 err
= ext4_ext_split(handle
, inode
, flags
, path
, newext
, i
);
1138 ext4_ext_drop_refs(path
);
1139 path
= ext4_ext_find_extent(inode
,
1140 (ext4_lblk_t
)le32_to_cpu(newext
->ee_block
),
1143 err
= PTR_ERR(path
);
1145 /* tree is full, time to grow in depth */
1146 err
= ext4_ext_grow_indepth(handle
, inode
, flags
, newext
);
1151 ext4_ext_drop_refs(path
);
1152 path
= ext4_ext_find_extent(inode
,
1153 (ext4_lblk_t
)le32_to_cpu(newext
->ee_block
),
1156 err
= PTR_ERR(path
);
1161 * only first (depth 0 -> 1) produces free space;
1162 * in all other cases we have to split the grown tree
1164 depth
= ext_depth(inode
);
1165 if (path
[depth
].p_hdr
->eh_entries
== path
[depth
].p_hdr
->eh_max
) {
1166 /* now we need to split */
1176 * search the closest allocated block to the left for *logical
1177 * and returns it at @logical + it's physical address at @phys
1178 * if *logical is the smallest allocated block, the function
1179 * returns 0 at @phys
1180 * return value contains 0 (success) or error code
1182 static int ext4_ext_search_left(struct inode
*inode
,
1183 struct ext4_ext_path
*path
,
1184 ext4_lblk_t
*logical
, ext4_fsblk_t
*phys
)
1186 struct ext4_extent_idx
*ix
;
1187 struct ext4_extent
*ex
;
1190 if (unlikely(path
== NULL
)) {
1191 EXT4_ERROR_INODE(inode
, "path == NULL *logical %d!", *logical
);
1194 depth
= path
->p_depth
;
1197 if (depth
== 0 && path
->p_ext
== NULL
)
1200 /* usually extent in the path covers blocks smaller
1201 * then *logical, but it can be that extent is the
1202 * first one in the file */
1204 ex
= path
[depth
].p_ext
;
1205 ee_len
= ext4_ext_get_actual_len(ex
);
1206 if (*logical
< le32_to_cpu(ex
->ee_block
)) {
1207 if (unlikely(EXT_FIRST_EXTENT(path
[depth
].p_hdr
) != ex
)) {
1208 EXT4_ERROR_INODE(inode
,
1209 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1210 *logical
, le32_to_cpu(ex
->ee_block
));
1213 while (--depth
>= 0) {
1214 ix
= path
[depth
].p_idx
;
1215 if (unlikely(ix
!= EXT_FIRST_INDEX(path
[depth
].p_hdr
))) {
1216 EXT4_ERROR_INODE(inode
,
1217 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1218 ix
!= NULL
? le32_to_cpu(ix
->ei_block
) : 0,
1219 EXT_FIRST_INDEX(path
[depth
].p_hdr
) != NULL
?
1220 le32_to_cpu(EXT_FIRST_INDEX(path
[depth
].p_hdr
)->ei_block
) : 0,
1228 if (unlikely(*logical
< (le32_to_cpu(ex
->ee_block
) + ee_len
))) {
1229 EXT4_ERROR_INODE(inode
,
1230 "logical %d < ee_block %d + ee_len %d!",
1231 *logical
, le32_to_cpu(ex
->ee_block
), ee_len
);
1235 *logical
= le32_to_cpu(ex
->ee_block
) + ee_len
- 1;
1236 *phys
= ext4_ext_pblock(ex
) + ee_len
- 1;
1241 * search the closest allocated block to the right for *logical
1242 * and returns it at @logical + it's physical address at @phys
1243 * if *logical is the largest allocated block, the function
1244 * returns 0 at @phys
1245 * return value contains 0 (success) or error code
1247 static int ext4_ext_search_right(struct inode
*inode
,
1248 struct ext4_ext_path
*path
,
1249 ext4_lblk_t
*logical
, ext4_fsblk_t
*phys
,
1250 struct ext4_extent
**ret_ex
)
1252 struct buffer_head
*bh
= NULL
;
1253 struct ext4_extent_header
*eh
;
1254 struct ext4_extent_idx
*ix
;
1255 struct ext4_extent
*ex
;
1257 int depth
; /* Note, NOT eh_depth; depth from top of tree */
1260 if (unlikely(path
== NULL
)) {
1261 EXT4_ERROR_INODE(inode
, "path == NULL *logical %d!", *logical
);
1264 depth
= path
->p_depth
;
1267 if (depth
== 0 && path
->p_ext
== NULL
)
1270 /* usually extent in the path covers blocks smaller
1271 * then *logical, but it can be that extent is the
1272 * first one in the file */
1274 ex
= path
[depth
].p_ext
;
1275 ee_len
= ext4_ext_get_actual_len(ex
);
1276 if (*logical
< le32_to_cpu(ex
->ee_block
)) {
1277 if (unlikely(EXT_FIRST_EXTENT(path
[depth
].p_hdr
) != ex
)) {
1278 EXT4_ERROR_INODE(inode
,
1279 "first_extent(path[%d].p_hdr) != ex",
1283 while (--depth
>= 0) {
1284 ix
= path
[depth
].p_idx
;
1285 if (unlikely(ix
!= EXT_FIRST_INDEX(path
[depth
].p_hdr
))) {
1286 EXT4_ERROR_INODE(inode
,
1287 "ix != EXT_FIRST_INDEX *logical %d!",
1295 if (unlikely(*logical
< (le32_to_cpu(ex
->ee_block
) + ee_len
))) {
1296 EXT4_ERROR_INODE(inode
,
1297 "logical %d < ee_block %d + ee_len %d!",
1298 *logical
, le32_to_cpu(ex
->ee_block
), ee_len
);
1302 if (ex
!= EXT_LAST_EXTENT(path
[depth
].p_hdr
)) {
1303 /* next allocated block in this leaf */
1308 /* go up and search for index to the right */
1309 while (--depth
>= 0) {
1310 ix
= path
[depth
].p_idx
;
1311 if (ix
!= EXT_LAST_INDEX(path
[depth
].p_hdr
))
1315 /* we've gone up to the root and found no index to the right */
1319 /* we've found index to the right, let's
1320 * follow it and find the closest allocated
1321 * block to the right */
1323 block
= ext4_idx_pblock(ix
);
1324 while (++depth
< path
->p_depth
) {
1325 bh
= sb_bread(inode
->i_sb
, block
);
1328 eh
= ext_block_hdr(bh
);
1329 /* subtract from p_depth to get proper eh_depth */
1330 if (ext4_ext_check(inode
, eh
, path
->p_depth
- depth
)) {
1334 ix
= EXT_FIRST_INDEX(eh
);
1335 block
= ext4_idx_pblock(ix
);
1339 bh
= sb_bread(inode
->i_sb
, block
);
1342 eh
= ext_block_hdr(bh
);
1343 if (ext4_ext_check(inode
, eh
, path
->p_depth
- depth
)) {
1347 ex
= EXT_FIRST_EXTENT(eh
);
1349 *logical
= le32_to_cpu(ex
->ee_block
);
1350 *phys
= ext4_ext_pblock(ex
);
1358 * ext4_ext_next_allocated_block:
1359 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1360 * NOTE: it considers block number from index entry as
1361 * allocated block. Thus, index entries have to be consistent
1365 ext4_ext_next_allocated_block(struct ext4_ext_path
*path
)
1369 BUG_ON(path
== NULL
);
1370 depth
= path
->p_depth
;
1372 if (depth
== 0 && path
->p_ext
== NULL
)
1373 return EXT_MAX_BLOCKS
;
1375 while (depth
>= 0) {
1376 if (depth
== path
->p_depth
) {
1378 if (path
[depth
].p_ext
&&
1379 path
[depth
].p_ext
!=
1380 EXT_LAST_EXTENT(path
[depth
].p_hdr
))
1381 return le32_to_cpu(path
[depth
].p_ext
[1].ee_block
);
1384 if (path
[depth
].p_idx
!=
1385 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1386 return le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1391 return EXT_MAX_BLOCKS
;
1395 * ext4_ext_next_leaf_block:
1396 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1398 static ext4_lblk_t
ext4_ext_next_leaf_block(struct ext4_ext_path
*path
)
1402 BUG_ON(path
== NULL
);
1403 depth
= path
->p_depth
;
1405 /* zero-tree has no leaf blocks at all */
1407 return EXT_MAX_BLOCKS
;
1409 /* go to index block */
1412 while (depth
>= 0) {
1413 if (path
[depth
].p_idx
!=
1414 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1415 return (ext4_lblk_t
)
1416 le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1420 return EXT_MAX_BLOCKS
;
1424 * ext4_ext_correct_indexes:
1425 * if leaf gets modified and modified extent is first in the leaf,
1426 * then we have to correct all indexes above.
1427 * TODO: do we need to correct tree in all cases?
1429 static int ext4_ext_correct_indexes(handle_t
*handle
, struct inode
*inode
,
1430 struct ext4_ext_path
*path
)
1432 struct ext4_extent_header
*eh
;
1433 int depth
= ext_depth(inode
);
1434 struct ext4_extent
*ex
;
1438 eh
= path
[depth
].p_hdr
;
1439 ex
= path
[depth
].p_ext
;
1441 if (unlikely(ex
== NULL
|| eh
== NULL
)) {
1442 EXT4_ERROR_INODE(inode
,
1443 "ex %p == NULL or eh %p == NULL", ex
, eh
);
1448 /* there is no tree at all */
1452 if (ex
!= EXT_FIRST_EXTENT(eh
)) {
1453 /* we correct tree if first leaf got modified only */
1458 * TODO: we need correction if border is smaller than current one
1461 border
= path
[depth
].p_ext
->ee_block
;
1462 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1465 path
[k
].p_idx
->ei_block
= border
;
1466 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1471 /* change all left-side indexes */
1472 if (path
[k
+1].p_idx
!= EXT_FIRST_INDEX(path
[k
+1].p_hdr
))
1474 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1477 path
[k
].p_idx
->ei_block
= border
;
1478 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1487 ext4_can_extents_be_merged(struct inode
*inode
, struct ext4_extent
*ex1
,
1488 struct ext4_extent
*ex2
)
1490 unsigned short ext1_ee_len
, ext2_ee_len
, max_len
;
1493 * Make sure that either both extents are uninitialized, or
1496 if (ext4_ext_is_uninitialized(ex1
) ^ ext4_ext_is_uninitialized(ex2
))
1499 if (ext4_ext_is_uninitialized(ex1
))
1500 max_len
= EXT_UNINIT_MAX_LEN
;
1502 max_len
= EXT_INIT_MAX_LEN
;
1504 ext1_ee_len
= ext4_ext_get_actual_len(ex1
);
1505 ext2_ee_len
= ext4_ext_get_actual_len(ex2
);
1507 if (le32_to_cpu(ex1
->ee_block
) + ext1_ee_len
!=
1508 le32_to_cpu(ex2
->ee_block
))
1512 * To allow future support for preallocated extents to be added
1513 * as an RO_COMPAT feature, refuse to merge to extents if
1514 * this can result in the top bit of ee_len being set.
1516 if (ext1_ee_len
+ ext2_ee_len
> max_len
)
1518 #ifdef AGGRESSIVE_TEST
1519 if (ext1_ee_len
>= 4)
1523 if (ext4_ext_pblock(ex1
) + ext1_ee_len
== ext4_ext_pblock(ex2
))
1529 * This function tries to merge the "ex" extent to the next extent in the tree.
1530 * It always tries to merge towards right. If you want to merge towards
1531 * left, pass "ex - 1" as argument instead of "ex".
1532 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1533 * 1 if they got merged.
1535 static int ext4_ext_try_to_merge_right(struct inode
*inode
,
1536 struct ext4_ext_path
*path
,
1537 struct ext4_extent
*ex
)
1539 struct ext4_extent_header
*eh
;
1540 unsigned int depth
, len
;
1542 int uninitialized
= 0;
1544 depth
= ext_depth(inode
);
1545 BUG_ON(path
[depth
].p_hdr
== NULL
);
1546 eh
= path
[depth
].p_hdr
;
1548 while (ex
< EXT_LAST_EXTENT(eh
)) {
1549 if (!ext4_can_extents_be_merged(inode
, ex
, ex
+ 1))
1551 /* merge with next extent! */
1552 if (ext4_ext_is_uninitialized(ex
))
1554 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1555 + ext4_ext_get_actual_len(ex
+ 1));
1557 ext4_ext_mark_uninitialized(ex
);
1559 if (ex
+ 1 < EXT_LAST_EXTENT(eh
)) {
1560 len
= (EXT_LAST_EXTENT(eh
) - ex
- 1)
1561 * sizeof(struct ext4_extent
);
1562 memmove(ex
+ 1, ex
+ 2, len
);
1564 le16_add_cpu(&eh
->eh_entries
, -1);
1566 WARN_ON(eh
->eh_entries
== 0);
1567 if (!eh
->eh_entries
)
1568 EXT4_ERROR_INODE(inode
, "eh->eh_entries = 0!");
1575 * This function tries to merge the @ex extent to neighbours in the tree.
1576 * return 1 if merge left else 0.
1578 static int ext4_ext_try_to_merge(struct inode
*inode
,
1579 struct ext4_ext_path
*path
,
1580 struct ext4_extent
*ex
) {
1581 struct ext4_extent_header
*eh
;
1586 depth
= ext_depth(inode
);
1587 BUG_ON(path
[depth
].p_hdr
== NULL
);
1588 eh
= path
[depth
].p_hdr
;
1590 if (ex
> EXT_FIRST_EXTENT(eh
))
1591 merge_done
= ext4_ext_try_to_merge_right(inode
, path
, ex
- 1);
1594 ret
= ext4_ext_try_to_merge_right(inode
, path
, ex
);
1600 * check if a portion of the "newext" extent overlaps with an
1603 * If there is an overlap discovered, it updates the length of the newext
1604 * such that there will be no overlap, and then returns 1.
1605 * If there is no overlap found, it returns 0.
1607 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info
*sbi
,
1608 struct inode
*inode
,
1609 struct ext4_extent
*newext
,
1610 struct ext4_ext_path
*path
)
1613 unsigned int depth
, len1
;
1614 unsigned int ret
= 0;
1616 b1
= le32_to_cpu(newext
->ee_block
);
1617 len1
= ext4_ext_get_actual_len(newext
);
1618 depth
= ext_depth(inode
);
1619 if (!path
[depth
].p_ext
)
1621 b2
= le32_to_cpu(path
[depth
].p_ext
->ee_block
);
1622 b2
&= ~(sbi
->s_cluster_ratio
- 1);
1625 * get the next allocated block if the extent in the path
1626 * is before the requested block(s)
1629 b2
= ext4_ext_next_allocated_block(path
);
1630 if (b2
== EXT_MAX_BLOCKS
)
1632 b2
&= ~(sbi
->s_cluster_ratio
- 1);
1635 /* check for wrap through zero on extent logical start block*/
1636 if (b1
+ len1
< b1
) {
1637 len1
= EXT_MAX_BLOCKS
- b1
;
1638 newext
->ee_len
= cpu_to_le16(len1
);
1642 /* check for overlap */
1643 if (b1
+ len1
> b2
) {
1644 newext
->ee_len
= cpu_to_le16(b2
- b1
);
1652 * ext4_ext_insert_extent:
1653 * tries to merge requsted extent into the existing extent or
1654 * inserts requested extent as new one into the tree,
1655 * creating new leaf in the no-space case.
1657 int ext4_ext_insert_extent(handle_t
*handle
, struct inode
*inode
,
1658 struct ext4_ext_path
*path
,
1659 struct ext4_extent
*newext
, int flag
)
1661 struct ext4_extent_header
*eh
;
1662 struct ext4_extent
*ex
, *fex
;
1663 struct ext4_extent
*nearex
; /* nearest extent */
1664 struct ext4_ext_path
*npath
= NULL
;
1665 int depth
, len
, err
;
1667 unsigned uninitialized
= 0;
1670 if (unlikely(ext4_ext_get_actual_len(newext
) == 0)) {
1671 EXT4_ERROR_INODE(inode
, "ext4_ext_get_actual_len(newext) == 0");
1674 depth
= ext_depth(inode
);
1675 ex
= path
[depth
].p_ext
;
1676 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
1677 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
1681 /* try to insert block into found extent and return */
1682 if (ex
&& !(flag
& EXT4_GET_BLOCKS_PRE_IO
)
1683 && ext4_can_extents_be_merged(inode
, ex
, newext
)) {
1684 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1685 ext4_ext_is_uninitialized(newext
),
1686 ext4_ext_get_actual_len(newext
),
1687 le32_to_cpu(ex
->ee_block
),
1688 ext4_ext_is_uninitialized(ex
),
1689 ext4_ext_get_actual_len(ex
),
1690 ext4_ext_pblock(ex
));
1691 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1696 * ext4_can_extents_be_merged should have checked that either
1697 * both extents are uninitialized, or both aren't. Thus we
1698 * need to check only one of them here.
1700 if (ext4_ext_is_uninitialized(ex
))
1702 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1703 + ext4_ext_get_actual_len(newext
));
1705 ext4_ext_mark_uninitialized(ex
);
1706 eh
= path
[depth
].p_hdr
;
1711 depth
= ext_depth(inode
);
1712 eh
= path
[depth
].p_hdr
;
1713 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
))
1716 /* probably next leaf has space for us? */
1717 fex
= EXT_LAST_EXTENT(eh
);
1718 next
= EXT_MAX_BLOCKS
;
1719 if (le32_to_cpu(newext
->ee_block
) > le32_to_cpu(fex
->ee_block
))
1720 next
= ext4_ext_next_leaf_block(path
);
1721 if (next
!= EXT_MAX_BLOCKS
) {
1722 ext_debug("next leaf block - %u\n", next
);
1723 BUG_ON(npath
!= NULL
);
1724 npath
= ext4_ext_find_extent(inode
, next
, NULL
);
1726 return PTR_ERR(npath
);
1727 BUG_ON(npath
->p_depth
!= path
->p_depth
);
1728 eh
= npath
[depth
].p_hdr
;
1729 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
)) {
1730 ext_debug("next leaf isn't full(%d)\n",
1731 le16_to_cpu(eh
->eh_entries
));
1735 ext_debug("next leaf has no free space(%d,%d)\n",
1736 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
1740 * There is no free space in the found leaf.
1741 * We're gonna add a new leaf in the tree.
1743 if (flag
& EXT4_GET_BLOCKS_PUNCH_OUT_EXT
)
1744 flags
= EXT4_MB_USE_ROOT_BLOCKS
;
1745 err
= ext4_ext_create_new_leaf(handle
, inode
, flags
, path
, newext
);
1748 depth
= ext_depth(inode
);
1749 eh
= path
[depth
].p_hdr
;
1752 nearex
= path
[depth
].p_ext
;
1754 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1759 /* there is no extent in this leaf, create first one */
1760 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1761 le32_to_cpu(newext
->ee_block
),
1762 ext4_ext_pblock(newext
),
1763 ext4_ext_is_uninitialized(newext
),
1764 ext4_ext_get_actual_len(newext
));
1765 nearex
= EXT_FIRST_EXTENT(eh
);
1767 if (le32_to_cpu(newext
->ee_block
)
1768 > le32_to_cpu(nearex
->ee_block
)) {
1770 ext_debug("insert %u:%llu:[%d]%d before: "
1772 le32_to_cpu(newext
->ee_block
),
1773 ext4_ext_pblock(newext
),
1774 ext4_ext_is_uninitialized(newext
),
1775 ext4_ext_get_actual_len(newext
),
1780 BUG_ON(newext
->ee_block
== nearex
->ee_block
);
1781 ext_debug("insert %u:%llu:[%d]%d after: "
1783 le32_to_cpu(newext
->ee_block
),
1784 ext4_ext_pblock(newext
),
1785 ext4_ext_is_uninitialized(newext
),
1786 ext4_ext_get_actual_len(newext
),
1789 len
= EXT_LAST_EXTENT(eh
) - nearex
+ 1;
1791 ext_debug("insert %u:%llu:[%d]%d: "
1792 "move %d extents from 0x%p to 0x%p\n",
1793 le32_to_cpu(newext
->ee_block
),
1794 ext4_ext_pblock(newext
),
1795 ext4_ext_is_uninitialized(newext
),
1796 ext4_ext_get_actual_len(newext
),
1797 len
, nearex
, nearex
+ 1);
1798 memmove(nearex
+ 1, nearex
,
1799 len
* sizeof(struct ext4_extent
));
1803 le16_add_cpu(&eh
->eh_entries
, 1);
1804 path
[depth
].p_ext
= nearex
;
1805 nearex
->ee_block
= newext
->ee_block
;
1806 ext4_ext_store_pblock(nearex
, ext4_ext_pblock(newext
));
1807 nearex
->ee_len
= newext
->ee_len
;
1810 /* try to merge extents to the right */
1811 if (!(flag
& EXT4_GET_BLOCKS_PRE_IO
))
1812 ext4_ext_try_to_merge(inode
, path
, nearex
);
1814 /* try to merge extents to the left */
1816 /* time to correct all indexes above */
1817 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
1821 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
1825 ext4_ext_drop_refs(npath
);
1828 ext4_ext_invalidate_cache(inode
);
1832 static int ext4_ext_walk_space(struct inode
*inode
, ext4_lblk_t block
,
1833 ext4_lblk_t num
, ext_prepare_callback func
,
1836 struct ext4_ext_path
*path
= NULL
;
1837 struct ext4_ext_cache cbex
;
1838 struct ext4_extent
*ex
;
1839 ext4_lblk_t next
, start
= 0, end
= 0;
1840 ext4_lblk_t last
= block
+ num
;
1841 int depth
, exists
, err
= 0;
1843 BUG_ON(func
== NULL
);
1844 BUG_ON(inode
== NULL
);
1846 while (block
< last
&& block
!= EXT_MAX_BLOCKS
) {
1848 /* find extent for this block */
1849 down_read(&EXT4_I(inode
)->i_data_sem
);
1850 path
= ext4_ext_find_extent(inode
, block
, path
);
1851 up_read(&EXT4_I(inode
)->i_data_sem
);
1853 err
= PTR_ERR(path
);
1858 depth
= ext_depth(inode
);
1859 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
1860 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
1864 ex
= path
[depth
].p_ext
;
1865 next
= ext4_ext_next_allocated_block(path
);
1869 /* there is no extent yet, so try to allocate
1870 * all requested space */
1873 } else if (le32_to_cpu(ex
->ee_block
) > block
) {
1874 /* need to allocate space before found extent */
1876 end
= le32_to_cpu(ex
->ee_block
);
1877 if (block
+ num
< end
)
1879 } else if (block
>= le32_to_cpu(ex
->ee_block
)
1880 + ext4_ext_get_actual_len(ex
)) {
1881 /* need to allocate space after found extent */
1886 } else if (block
>= le32_to_cpu(ex
->ee_block
)) {
1888 * some part of requested space is covered
1892 end
= le32_to_cpu(ex
->ee_block
)
1893 + ext4_ext_get_actual_len(ex
);
1894 if (block
+ num
< end
)
1900 BUG_ON(end
<= start
);
1903 cbex
.ec_block
= start
;
1904 cbex
.ec_len
= end
- start
;
1907 cbex
.ec_block
= le32_to_cpu(ex
->ee_block
);
1908 cbex
.ec_len
= ext4_ext_get_actual_len(ex
);
1909 cbex
.ec_start
= ext4_ext_pblock(ex
);
1912 if (unlikely(cbex
.ec_len
== 0)) {
1913 EXT4_ERROR_INODE(inode
, "cbex.ec_len == 0");
1917 err
= func(inode
, next
, &cbex
, ex
, cbdata
);
1918 ext4_ext_drop_refs(path
);
1923 if (err
== EXT_REPEAT
)
1925 else if (err
== EXT_BREAK
) {
1930 if (ext_depth(inode
) != depth
) {
1931 /* depth was changed. we have to realloc path */
1936 block
= cbex
.ec_block
+ cbex
.ec_len
;
1940 ext4_ext_drop_refs(path
);
1948 ext4_ext_put_in_cache(struct inode
*inode
, ext4_lblk_t block
,
1949 __u32 len
, ext4_fsblk_t start
)
1951 struct ext4_ext_cache
*cex
;
1953 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1954 trace_ext4_ext_put_in_cache(inode
, block
, len
, start
);
1955 cex
= &EXT4_I(inode
)->i_cached_extent
;
1956 cex
->ec_block
= block
;
1958 cex
->ec_start
= start
;
1959 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1963 * ext4_ext_put_gap_in_cache:
1964 * calculate boundaries of the gap that the requested block fits into
1965 * and cache this gap
1968 ext4_ext_put_gap_in_cache(struct inode
*inode
, struct ext4_ext_path
*path
,
1971 int depth
= ext_depth(inode
);
1974 struct ext4_extent
*ex
;
1976 ex
= path
[depth
].p_ext
;
1978 /* there is no extent yet, so gap is [0;-] */
1980 len
= EXT_MAX_BLOCKS
;
1981 ext_debug("cache gap(whole file):");
1982 } else if (block
< le32_to_cpu(ex
->ee_block
)) {
1984 len
= le32_to_cpu(ex
->ee_block
) - block
;
1985 ext_debug("cache gap(before): %u [%u:%u]",
1987 le32_to_cpu(ex
->ee_block
),
1988 ext4_ext_get_actual_len(ex
));
1989 } else if (block
>= le32_to_cpu(ex
->ee_block
)
1990 + ext4_ext_get_actual_len(ex
)) {
1992 lblock
= le32_to_cpu(ex
->ee_block
)
1993 + ext4_ext_get_actual_len(ex
);
1995 next
= ext4_ext_next_allocated_block(path
);
1996 ext_debug("cache gap(after): [%u:%u] %u",
1997 le32_to_cpu(ex
->ee_block
),
1998 ext4_ext_get_actual_len(ex
),
2000 BUG_ON(next
== lblock
);
2001 len
= next
- lblock
;
2007 ext_debug(" -> %u:%lu\n", lblock
, len
);
2008 ext4_ext_put_in_cache(inode
, lblock
, len
, 0);
2012 * ext4_ext_check_cache()
2013 * Checks to see if the given block is in the cache.
2014 * If it is, the cached extent is stored in the given
2015 * cache extent pointer. If the cached extent is a hole,
2016 * this routine should be used instead of
2017 * ext4_ext_in_cache if the calling function needs to
2018 * know the size of the hole.
2020 * @inode: The files inode
2021 * @block: The block to look for in the cache
2022 * @ex: Pointer where the cached extent will be stored
2023 * if it contains block
2025 * Return 0 if cache is invalid; 1 if the cache is valid
2027 static int ext4_ext_check_cache(struct inode
*inode
, ext4_lblk_t block
,
2028 struct ext4_ext_cache
*ex
){
2029 struct ext4_ext_cache
*cex
;
2030 struct ext4_sb_info
*sbi
;
2034 * We borrow i_block_reservation_lock to protect i_cached_extent
2036 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
2037 cex
= &EXT4_I(inode
)->i_cached_extent
;
2038 sbi
= EXT4_SB(inode
->i_sb
);
2040 /* has cache valid data? */
2041 if (cex
->ec_len
== 0)
2044 if (in_range(block
, cex
->ec_block
, cex
->ec_len
)) {
2045 memcpy(ex
, cex
, sizeof(struct ext4_ext_cache
));
2046 ext_debug("%u cached by %u:%u:%llu\n",
2048 cex
->ec_block
, cex
->ec_len
, cex
->ec_start
);
2053 sbi
->extent_cache_misses
++;
2055 sbi
->extent_cache_hits
++;
2056 trace_ext4_ext_in_cache(inode
, block
, ret
);
2057 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
2062 * ext4_ext_in_cache()
2063 * Checks to see if the given block is in the cache.
2064 * If it is, the cached extent is stored in the given
2067 * @inode: The files inode
2068 * @block: The block to look for in the cache
2069 * @ex: Pointer where the cached extent will be stored
2070 * if it contains block
2072 * Return 0 if cache is invalid; 1 if the cache is valid
2075 ext4_ext_in_cache(struct inode
*inode
, ext4_lblk_t block
,
2076 struct ext4_extent
*ex
)
2078 struct ext4_ext_cache cex
;
2081 if (ext4_ext_check_cache(inode
, block
, &cex
)) {
2082 ex
->ee_block
= cpu_to_le32(cex
.ec_block
);
2083 ext4_ext_store_pblock(ex
, cex
.ec_start
);
2084 ex
->ee_len
= cpu_to_le16(cex
.ec_len
);
2094 * removes index from the index block.
2096 static int ext4_ext_rm_idx(handle_t
*handle
, struct inode
*inode
,
2097 struct ext4_ext_path
*path
)
2102 /* free index block */
2104 leaf
= ext4_idx_pblock(path
->p_idx
);
2105 if (unlikely(path
->p_hdr
->eh_entries
== 0)) {
2106 EXT4_ERROR_INODE(inode
, "path->p_hdr->eh_entries == 0");
2109 err
= ext4_ext_get_access(handle
, inode
, path
);
2113 if (path
->p_idx
!= EXT_LAST_INDEX(path
->p_hdr
)) {
2114 int len
= EXT_LAST_INDEX(path
->p_hdr
) - path
->p_idx
;
2115 len
*= sizeof(struct ext4_extent_idx
);
2116 memmove(path
->p_idx
, path
->p_idx
+ 1, len
);
2119 le16_add_cpu(&path
->p_hdr
->eh_entries
, -1);
2120 err
= ext4_ext_dirty(handle
, inode
, path
);
2123 ext_debug("index is empty, remove it, free block %llu\n", leaf
);
2124 trace_ext4_ext_rm_idx(inode
, leaf
);
2126 ext4_free_blocks(handle
, inode
, NULL
, leaf
, 1,
2127 EXT4_FREE_BLOCKS_METADATA
| EXT4_FREE_BLOCKS_FORGET
);
2132 * ext4_ext_calc_credits_for_single_extent:
2133 * This routine returns max. credits that needed to insert an extent
2134 * to the extent tree.
2135 * When pass the actual path, the caller should calculate credits
2138 int ext4_ext_calc_credits_for_single_extent(struct inode
*inode
, int nrblocks
,
2139 struct ext4_ext_path
*path
)
2142 int depth
= ext_depth(inode
);
2145 /* probably there is space in leaf? */
2146 if (le16_to_cpu(path
[depth
].p_hdr
->eh_entries
)
2147 < le16_to_cpu(path
[depth
].p_hdr
->eh_max
)) {
2150 * There are some space in the leaf tree, no
2151 * need to account for leaf block credit
2153 * bitmaps and block group descriptor blocks
2154 * and other metadata blocks still need to be
2157 /* 1 bitmap, 1 block group descriptor */
2158 ret
= 2 + EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
2163 return ext4_chunk_trans_blocks(inode
, nrblocks
);
2167 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2169 * if nrblocks are fit in a single extent (chunk flag is 1), then
2170 * in the worse case, each tree level index/leaf need to be changed
2171 * if the tree split due to insert a new extent, then the old tree
2172 * index/leaf need to be updated too
2174 * If the nrblocks are discontiguous, they could cause
2175 * the whole tree split more than once, but this is really rare.
2177 int ext4_ext_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
2180 int depth
= ext_depth(inode
);
2190 static int ext4_remove_blocks(handle_t
*handle
, struct inode
*inode
,
2191 struct ext4_extent
*ex
,
2192 ext4_fsblk_t
*partial_cluster
,
2193 ext4_lblk_t from
, ext4_lblk_t to
)
2195 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2196 unsigned short ee_len
= ext4_ext_get_actual_len(ex
);
2198 int flags
= EXT4_FREE_BLOCKS_FORGET
;
2200 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2201 flags
|= EXT4_FREE_BLOCKS_METADATA
;
2203 * For bigalloc file systems, we never free a partial cluster
2204 * at the beginning of the extent. Instead, we make a note
2205 * that we tried freeing the cluster, and check to see if we
2206 * need to free it on a subsequent call to ext4_remove_blocks,
2207 * or at the end of the ext4_truncate() operation.
2209 flags
|= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER
;
2211 trace_ext4_remove_blocks(inode
, ex
, from
, to
, *partial_cluster
);
2213 * If we have a partial cluster, and it's different from the
2214 * cluster of the last block, we need to explicitly free the
2215 * partial cluster here.
2217 pblk
= ext4_ext_pblock(ex
) + ee_len
- 1;
2218 if (*partial_cluster
&& (EXT4_B2C(sbi
, pblk
) != *partial_cluster
)) {
2219 ext4_free_blocks(handle
, inode
, NULL
,
2220 EXT4_C2B(sbi
, *partial_cluster
),
2221 sbi
->s_cluster_ratio
, flags
);
2222 *partial_cluster
= 0;
2225 #ifdef EXTENTS_STATS
2227 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2228 spin_lock(&sbi
->s_ext_stats_lock
);
2229 sbi
->s_ext_blocks
+= ee_len
;
2230 sbi
->s_ext_extents
++;
2231 if (ee_len
< sbi
->s_ext_min
)
2232 sbi
->s_ext_min
= ee_len
;
2233 if (ee_len
> sbi
->s_ext_max
)
2234 sbi
->s_ext_max
= ee_len
;
2235 if (ext_depth(inode
) > sbi
->s_depth_max
)
2236 sbi
->s_depth_max
= ext_depth(inode
);
2237 spin_unlock(&sbi
->s_ext_stats_lock
);
2240 if (from
>= le32_to_cpu(ex
->ee_block
)
2241 && to
== le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
2245 num
= le32_to_cpu(ex
->ee_block
) + ee_len
- from
;
2246 pblk
= ext4_ext_pblock(ex
) + ee_len
- num
;
2247 ext_debug("free last %u blocks starting %llu\n", num
, pblk
);
2248 ext4_free_blocks(handle
, inode
, NULL
, pblk
, num
, flags
);
2250 * If the block range to be freed didn't start at the
2251 * beginning of a cluster, and we removed the entire
2252 * extent, save the partial cluster here, since we
2253 * might need to delete if we determine that the
2254 * truncate operation has removed all of the blocks in
2257 if (pblk
& (sbi
->s_cluster_ratio
- 1) &&
2259 *partial_cluster
= EXT4_B2C(sbi
, pblk
);
2261 *partial_cluster
= 0;
2262 } else if (from
== le32_to_cpu(ex
->ee_block
)
2263 && to
<= le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
2269 start
= ext4_ext_pblock(ex
);
2271 ext_debug("free first %u blocks starting %llu\n", num
, start
);
2272 ext4_free_blocks(handle
, inode
, NULL
, start
, num
, flags
);
2275 printk(KERN_INFO
"strange request: removal(2) "
2276 "%u-%u from %u:%u\n",
2277 from
, to
, le32_to_cpu(ex
->ee_block
), ee_len
);
2284 * ext4_ext_rm_leaf() Removes the extents associated with the
2285 * blocks appearing between "start" and "end", and splits the extents
2286 * if "start" and "end" appear in the same extent
2288 * @handle: The journal handle
2289 * @inode: The files inode
2290 * @path: The path to the leaf
2291 * @start: The first block to remove
2292 * @end: The last block to remove
2295 ext4_ext_rm_leaf(handle_t
*handle
, struct inode
*inode
,
2296 struct ext4_ext_path
*path
, ext4_fsblk_t
*partial_cluster
,
2297 ext4_lblk_t start
, ext4_lblk_t end
)
2299 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2300 int err
= 0, correct_index
= 0;
2301 int depth
= ext_depth(inode
), credits
;
2302 struct ext4_extent_header
*eh
;
2305 ext4_lblk_t ex_ee_block
;
2306 unsigned short ex_ee_len
;
2307 unsigned uninitialized
= 0;
2308 struct ext4_extent
*ex
;
2310 /* the header must be checked already in ext4_ext_remove_space() */
2311 ext_debug("truncate since %u in leaf\n", start
);
2312 if (!path
[depth
].p_hdr
)
2313 path
[depth
].p_hdr
= ext_block_hdr(path
[depth
].p_bh
);
2314 eh
= path
[depth
].p_hdr
;
2315 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
2316 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
2319 /* find where to start removing */
2320 ex
= EXT_LAST_EXTENT(eh
);
2322 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2323 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2325 trace_ext4_ext_rm_leaf(inode
, start
, ex
, *partial_cluster
);
2327 while (ex
>= EXT_FIRST_EXTENT(eh
) &&
2328 ex_ee_block
+ ex_ee_len
> start
) {
2330 if (ext4_ext_is_uninitialized(ex
))
2335 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block
,
2336 uninitialized
, ex_ee_len
);
2337 path
[depth
].p_ext
= ex
;
2339 a
= ex_ee_block
> start
? ex_ee_block
: start
;
2340 b
= ex_ee_block
+ex_ee_len
- 1 < end
?
2341 ex_ee_block
+ex_ee_len
- 1 : end
;
2343 ext_debug(" border %u:%u\n", a
, b
);
2345 /* If this extent is beyond the end of the hole, skip it */
2346 if (end
<= ex_ee_block
) {
2348 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2349 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2351 } else if (b
!= ex_ee_block
+ ex_ee_len
- 1) {
2352 EXT4_ERROR_INODE(inode
," bad truncate %u:%u\n",
2356 } else if (a
!= ex_ee_block
) {
2357 /* remove tail of the extent */
2358 num
= a
- ex_ee_block
;
2360 /* remove whole extent: excellent! */
2364 * 3 for leaf, sb, and inode plus 2 (bmap and group
2365 * descriptor) for each block group; assume two block
2366 * groups plus ex_ee_len/blocks_per_block_group for
2369 credits
= 7 + 2*(ex_ee_len
/EXT4_BLOCKS_PER_GROUP(inode
->i_sb
));
2370 if (ex
== EXT_FIRST_EXTENT(eh
)) {
2372 credits
+= (ext_depth(inode
)) + 1;
2374 credits
+= EXT4_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
);
2376 err
= ext4_ext_truncate_extend_restart(handle
, inode
, credits
);
2380 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
2384 err
= ext4_remove_blocks(handle
, inode
, ex
, partial_cluster
,
2390 /* this extent is removed; mark slot entirely unused */
2391 ext4_ext_store_pblock(ex
, 0);
2393 ex
->ee_len
= cpu_to_le16(num
);
2395 * Do not mark uninitialized if all the blocks in the
2396 * extent have been removed.
2398 if (uninitialized
&& num
)
2399 ext4_ext_mark_uninitialized(ex
);
2401 * If the extent was completely released,
2402 * we need to remove it from the leaf
2405 if (end
!= EXT_MAX_BLOCKS
- 1) {
2407 * For hole punching, we need to scoot all the
2408 * extents up when an extent is removed so that
2409 * we dont have blank extents in the middle
2411 memmove(ex
, ex
+1, (EXT_LAST_EXTENT(eh
) - ex
) *
2412 sizeof(struct ext4_extent
));
2414 /* Now get rid of the one at the end */
2415 memset(EXT_LAST_EXTENT(eh
), 0,
2416 sizeof(struct ext4_extent
));
2418 le16_add_cpu(&eh
->eh_entries
, -1);
2420 *partial_cluster
= 0;
2422 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2426 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block
, num
,
2427 ext4_ext_pblock(ex
));
2429 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2430 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2433 if (correct_index
&& eh
->eh_entries
)
2434 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
2437 * If there is still a entry in the leaf node, check to see if
2438 * it references the partial cluster. This is the only place
2439 * where it could; if it doesn't, we can free the cluster.
2441 if (*partial_cluster
&& ex
>= EXT_FIRST_EXTENT(eh
) &&
2442 (EXT4_B2C(sbi
, ext4_ext_pblock(ex
) + ex_ee_len
- 1) !=
2443 *partial_cluster
)) {
2444 int flags
= EXT4_FREE_BLOCKS_FORGET
;
2446 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2447 flags
|= EXT4_FREE_BLOCKS_METADATA
;
2449 ext4_free_blocks(handle
, inode
, NULL
,
2450 EXT4_C2B(sbi
, *partial_cluster
),
2451 sbi
->s_cluster_ratio
, flags
);
2452 *partial_cluster
= 0;
2455 /* if this leaf is free, then we should
2456 * remove it from index block above */
2457 if (err
== 0 && eh
->eh_entries
== 0 && path
[depth
].p_bh
!= NULL
)
2458 err
= ext4_ext_rm_idx(handle
, inode
, path
+ depth
);
2465 * ext4_ext_more_to_rm:
2466 * returns 1 if current index has to be freed (even partial)
2469 ext4_ext_more_to_rm(struct ext4_ext_path
*path
)
2471 BUG_ON(path
->p_idx
== NULL
);
2473 if (path
->p_idx
< EXT_FIRST_INDEX(path
->p_hdr
))
2477 * if truncate on deeper level happened, it wasn't partial,
2478 * so we have to consider current index for truncation
2480 if (le16_to_cpu(path
->p_hdr
->eh_entries
) == path
->p_block
)
2485 static int ext4_ext_remove_space(struct inode
*inode
, ext4_lblk_t start
)
2487 struct super_block
*sb
= inode
->i_sb
;
2488 int depth
= ext_depth(inode
);
2489 struct ext4_ext_path
*path
;
2490 ext4_fsblk_t partial_cluster
= 0;
2494 ext_debug("truncate since %u\n", start
);
2496 /* probably first extent we're gonna free will be last in block */
2497 handle
= ext4_journal_start(inode
, depth
+ 1);
2499 return PTR_ERR(handle
);
2502 ext4_ext_invalidate_cache(inode
);
2504 trace_ext4_ext_remove_space(inode
, start
, depth
);
2507 * We start scanning from right side, freeing all the blocks
2508 * after i_size and walking into the tree depth-wise.
2510 depth
= ext_depth(inode
);
2511 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 1), GFP_NOFS
);
2513 ext4_journal_stop(handle
);
2516 path
[0].p_depth
= depth
;
2517 path
[0].p_hdr
= ext_inode_hdr(inode
);
2518 if (ext4_ext_check(inode
, path
[0].p_hdr
, depth
)) {
2524 while (i
>= 0 && err
== 0) {
2526 /* this is leaf block */
2527 err
= ext4_ext_rm_leaf(handle
, inode
, path
,
2528 &partial_cluster
, start
,
2529 EXT_MAX_BLOCKS
- 1);
2530 /* root level has p_bh == NULL, brelse() eats this */
2531 brelse(path
[i
].p_bh
);
2532 path
[i
].p_bh
= NULL
;
2537 /* this is index block */
2538 if (!path
[i
].p_hdr
) {
2539 ext_debug("initialize header\n");
2540 path
[i
].p_hdr
= ext_block_hdr(path
[i
].p_bh
);
2543 if (!path
[i
].p_idx
) {
2544 /* this level hasn't been touched yet */
2545 path
[i
].p_idx
= EXT_LAST_INDEX(path
[i
].p_hdr
);
2546 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
)+1;
2547 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2549 le16_to_cpu(path
[i
].p_hdr
->eh_entries
));
2551 /* we were already here, see at next index */
2555 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2556 i
, EXT_FIRST_INDEX(path
[i
].p_hdr
),
2558 if (ext4_ext_more_to_rm(path
+ i
)) {
2559 struct buffer_head
*bh
;
2560 /* go to the next level */
2561 ext_debug("move to level %d (block %llu)\n",
2562 i
+ 1, ext4_idx_pblock(path
[i
].p_idx
));
2563 memset(path
+ i
+ 1, 0, sizeof(*path
));
2564 bh
= sb_bread(sb
, ext4_idx_pblock(path
[i
].p_idx
));
2566 /* should we reset i_size? */
2570 if (WARN_ON(i
+ 1 > depth
)) {
2574 if (ext4_ext_check(inode
, ext_block_hdr(bh
),
2579 path
[i
+ 1].p_bh
= bh
;
2581 /* save actual number of indexes since this
2582 * number is changed at the next iteration */
2583 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
);
2586 /* we finished processing this index, go up */
2587 if (path
[i
].p_hdr
->eh_entries
== 0 && i
> 0) {
2588 /* index is empty, remove it;
2589 * handle must be already prepared by the
2590 * truncatei_leaf() */
2591 err
= ext4_ext_rm_idx(handle
, inode
, path
+ i
);
2593 /* root level has p_bh == NULL, brelse() eats this */
2594 brelse(path
[i
].p_bh
);
2595 path
[i
].p_bh
= NULL
;
2597 ext_debug("return to level %d\n", i
);
2601 trace_ext4_ext_remove_space_done(inode
, start
, depth
, partial_cluster
,
2602 path
->p_hdr
->eh_entries
);
2604 /* If we still have something in the partial cluster and we have removed
2605 * even the first extent, then we should free the blocks in the partial
2606 * cluster as well. */
2607 if (partial_cluster
&& path
->p_hdr
->eh_entries
== 0) {
2608 int flags
= EXT4_FREE_BLOCKS_FORGET
;
2610 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2611 flags
|= EXT4_FREE_BLOCKS_METADATA
;
2613 ext4_free_blocks(handle
, inode
, NULL
,
2614 EXT4_C2B(EXT4_SB(sb
), partial_cluster
),
2615 EXT4_SB(sb
)->s_cluster_ratio
, flags
);
2616 partial_cluster
= 0;
2619 /* TODO: flexible tree reduction should be here */
2620 if (path
->p_hdr
->eh_entries
== 0) {
2622 * truncate to zero freed all the tree,
2623 * so we need to correct eh_depth
2625 err
= ext4_ext_get_access(handle
, inode
, path
);
2627 ext_inode_hdr(inode
)->eh_depth
= 0;
2628 ext_inode_hdr(inode
)->eh_max
=
2629 cpu_to_le16(ext4_ext_space_root(inode
, 0));
2630 err
= ext4_ext_dirty(handle
, inode
, path
);
2634 ext4_ext_drop_refs(path
);
2638 ext4_journal_stop(handle
);
2644 * called at mount time
2646 void ext4_ext_init(struct super_block
*sb
)
2649 * possible initialization would be here
2652 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_EXTENTS
)) {
2653 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2654 printk(KERN_INFO
"EXT4-fs: file extents enabled");
2655 #ifdef AGGRESSIVE_TEST
2656 printk(", aggressive tests");
2658 #ifdef CHECK_BINSEARCH
2659 printk(", check binsearch");
2661 #ifdef EXTENTS_STATS
2666 #ifdef EXTENTS_STATS
2667 spin_lock_init(&EXT4_SB(sb
)->s_ext_stats_lock
);
2668 EXT4_SB(sb
)->s_ext_min
= 1 << 30;
2669 EXT4_SB(sb
)->s_ext_max
= 0;
2675 * called at umount time
2677 void ext4_ext_release(struct super_block
*sb
)
2679 if (!EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_EXTENTS
))
2682 #ifdef EXTENTS_STATS
2683 if (EXT4_SB(sb
)->s_ext_blocks
&& EXT4_SB(sb
)->s_ext_extents
) {
2684 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2685 printk(KERN_ERR
"EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2686 sbi
->s_ext_blocks
, sbi
->s_ext_extents
,
2687 sbi
->s_ext_blocks
/ sbi
->s_ext_extents
);
2688 printk(KERN_ERR
"EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2689 sbi
->s_ext_min
, sbi
->s_ext_max
, sbi
->s_depth_max
);
2694 /* FIXME!! we need to try to merge to left or right after zero-out */
2695 static int ext4_ext_zeroout(struct inode
*inode
, struct ext4_extent
*ex
)
2697 ext4_fsblk_t ee_pblock
;
2698 unsigned int ee_len
;
2701 ee_len
= ext4_ext_get_actual_len(ex
);
2702 ee_pblock
= ext4_ext_pblock(ex
);
2704 ret
= sb_issue_zeroout(inode
->i_sb
, ee_pblock
, ee_len
, GFP_NOFS
);
2712 * used by extent splitting.
2714 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
2716 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
2717 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
2720 * ext4_split_extent_at() splits an extent at given block.
2722 * @handle: the journal handle
2723 * @inode: the file inode
2724 * @path: the path to the extent
2725 * @split: the logical block where the extent is splitted.
2726 * @split_flags: indicates if the extent could be zeroout if split fails, and
2727 * the states(init or uninit) of new extents.
2728 * @flags: flags used to insert new extent to extent tree.
2731 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2732 * of which are deterimined by split_flag.
2734 * There are two cases:
2735 * a> the extent are splitted into two extent.
2736 * b> split is not needed, and just mark the extent.
2738 * return 0 on success.
2740 static int ext4_split_extent_at(handle_t
*handle
,
2741 struct inode
*inode
,
2742 struct ext4_ext_path
*path
,
2747 ext4_fsblk_t newblock
;
2748 ext4_lblk_t ee_block
;
2749 struct ext4_extent
*ex
, newex
, orig_ex
;
2750 struct ext4_extent
*ex2
= NULL
;
2751 unsigned int ee_len
, depth
;
2754 ext_debug("ext4_split_extents_at: inode %lu, logical"
2755 "block %llu\n", inode
->i_ino
, (unsigned long long)split
);
2757 ext4_ext_show_leaf(inode
, path
);
2759 depth
= ext_depth(inode
);
2760 ex
= path
[depth
].p_ext
;
2761 ee_block
= le32_to_cpu(ex
->ee_block
);
2762 ee_len
= ext4_ext_get_actual_len(ex
);
2763 newblock
= split
- ee_block
+ ext4_ext_pblock(ex
);
2765 BUG_ON(split
< ee_block
|| split
>= (ee_block
+ ee_len
));
2767 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
2771 if (split
== ee_block
) {
2773 * case b: block @split is the block that the extent begins with
2774 * then we just change the state of the extent, and splitting
2777 if (split_flag
& EXT4_EXT_MARK_UNINIT2
)
2778 ext4_ext_mark_uninitialized(ex
);
2780 ext4_ext_mark_initialized(ex
);
2782 if (!(flags
& EXT4_GET_BLOCKS_PRE_IO
))
2783 ext4_ext_try_to_merge(inode
, path
, ex
);
2785 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2790 memcpy(&orig_ex
, ex
, sizeof(orig_ex
));
2791 ex
->ee_len
= cpu_to_le16(split
- ee_block
);
2792 if (split_flag
& EXT4_EXT_MARK_UNINIT1
)
2793 ext4_ext_mark_uninitialized(ex
);
2796 * path may lead to new leaf, not to original leaf any more
2797 * after ext4_ext_insert_extent() returns,
2799 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2801 goto fix_extent_len
;
2804 ex2
->ee_block
= cpu_to_le32(split
);
2805 ex2
->ee_len
= cpu_to_le16(ee_len
- (split
- ee_block
));
2806 ext4_ext_store_pblock(ex2
, newblock
);
2807 if (split_flag
& EXT4_EXT_MARK_UNINIT2
)
2808 ext4_ext_mark_uninitialized(ex2
);
2810 err
= ext4_ext_insert_extent(handle
, inode
, path
, &newex
, flags
);
2811 if (err
== -ENOSPC
&& (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
2812 err
= ext4_ext_zeroout(inode
, &orig_ex
);
2814 goto fix_extent_len
;
2815 /* update the extent length and mark as initialized */
2816 ex
->ee_len
= cpu_to_le32(ee_len
);
2817 ext4_ext_try_to_merge(inode
, path
, ex
);
2818 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2821 goto fix_extent_len
;
2824 ext4_ext_show_leaf(inode
, path
);
2828 ex
->ee_len
= orig_ex
.ee_len
;
2829 ext4_ext_dirty(handle
, inode
, path
+ depth
);
2834 * ext4_split_extents() splits an extent and mark extent which is covered
2835 * by @map as split_flags indicates
2837 * It may result in splitting the extent into multiple extents (upto three)
2838 * There are three possibilities:
2839 * a> There is no split required
2840 * b> Splits in two extents: Split is happening at either end of the extent
2841 * c> Splits in three extents: Somone is splitting in middle of the extent
2844 static int ext4_split_extent(handle_t
*handle
,
2845 struct inode
*inode
,
2846 struct ext4_ext_path
*path
,
2847 struct ext4_map_blocks
*map
,
2851 ext4_lblk_t ee_block
;
2852 struct ext4_extent
*ex
;
2853 unsigned int ee_len
, depth
;
2856 int split_flag1
, flags1
;
2858 depth
= ext_depth(inode
);
2859 ex
= path
[depth
].p_ext
;
2860 ee_block
= le32_to_cpu(ex
->ee_block
);
2861 ee_len
= ext4_ext_get_actual_len(ex
);
2862 uninitialized
= ext4_ext_is_uninitialized(ex
);
2864 if (map
->m_lblk
+ map
->m_len
< ee_block
+ ee_len
) {
2865 split_flag1
= split_flag
& EXT4_EXT_MAY_ZEROOUT
?
2866 EXT4_EXT_MAY_ZEROOUT
: 0;
2867 flags1
= flags
| EXT4_GET_BLOCKS_PRE_IO
;
2869 split_flag1
|= EXT4_EXT_MARK_UNINIT1
|
2870 EXT4_EXT_MARK_UNINIT2
;
2871 err
= ext4_split_extent_at(handle
, inode
, path
,
2872 map
->m_lblk
+ map
->m_len
, split_flag1
, flags1
);
2877 ext4_ext_drop_refs(path
);
2878 path
= ext4_ext_find_extent(inode
, map
->m_lblk
, path
);
2880 return PTR_ERR(path
);
2882 if (map
->m_lblk
>= ee_block
) {
2883 split_flag1
= split_flag
& EXT4_EXT_MAY_ZEROOUT
?
2884 EXT4_EXT_MAY_ZEROOUT
: 0;
2886 split_flag1
|= EXT4_EXT_MARK_UNINIT1
;
2887 if (split_flag
& EXT4_EXT_MARK_UNINIT2
)
2888 split_flag1
|= EXT4_EXT_MARK_UNINIT2
;
2889 err
= ext4_split_extent_at(handle
, inode
, path
,
2890 map
->m_lblk
, split_flag1
, flags
);
2895 ext4_ext_show_leaf(inode
, path
);
2897 return err
? err
: map
->m_len
;
2900 #define EXT4_EXT_ZERO_LEN 7
2902 * This function is called by ext4_ext_map_blocks() if someone tries to write
2903 * to an uninitialized extent. It may result in splitting the uninitialized
2904 * extent into multiple extents (up to three - one initialized and two
2906 * There are three possibilities:
2907 * a> There is no split required: Entire extent should be initialized
2908 * b> Splits in two extents: Write is happening at either end of the extent
2909 * c> Splits in three extents: Somone is writing in middle of the extent
2912 * - The extent pointed to by 'path' is uninitialized.
2913 * - The extent pointed to by 'path' contains a superset
2914 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
2916 * Post-conditions on success:
2917 * - the returned value is the number of blocks beyond map->l_lblk
2918 * that are allocated and initialized.
2919 * It is guaranteed to be >= map->m_len.
2921 static int ext4_ext_convert_to_initialized(handle_t
*handle
,
2922 struct inode
*inode
,
2923 struct ext4_map_blocks
*map
,
2924 struct ext4_ext_path
*path
)
2926 struct ext4_extent_header
*eh
;
2927 struct ext4_map_blocks split_map
;
2928 struct ext4_extent zero_ex
;
2929 struct ext4_extent
*ex
;
2930 ext4_lblk_t ee_block
, eof_block
;
2931 unsigned int ee_len
, depth
;
2936 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2937 "block %llu, max_blocks %u\n", inode
->i_ino
,
2938 (unsigned long long)map
->m_lblk
, map
->m_len
);
2940 eof_block
= (inode
->i_size
+ inode
->i_sb
->s_blocksize
- 1) >>
2941 inode
->i_sb
->s_blocksize_bits
;
2942 if (eof_block
< map
->m_lblk
+ map
->m_len
)
2943 eof_block
= map
->m_lblk
+ map
->m_len
;
2945 depth
= ext_depth(inode
);
2946 eh
= path
[depth
].p_hdr
;
2947 ex
= path
[depth
].p_ext
;
2948 ee_block
= le32_to_cpu(ex
->ee_block
);
2949 ee_len
= ext4_ext_get_actual_len(ex
);
2950 allocated
= ee_len
- (map
->m_lblk
- ee_block
);
2952 trace_ext4_ext_convert_to_initialized_enter(inode
, map
, ex
);
2954 /* Pre-conditions */
2955 BUG_ON(!ext4_ext_is_uninitialized(ex
));
2956 BUG_ON(!in_range(map
->m_lblk
, ee_block
, ee_len
));
2959 * Attempt to transfer newly initialized blocks from the currently
2960 * uninitialized extent to its left neighbor. This is much cheaper
2961 * than an insertion followed by a merge as those involve costly
2962 * memmove() calls. This is the common case in steady state for
2963 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
2966 * Limitations of the current logic:
2967 * - L1: we only deal with writes at the start of the extent.
2968 * The approach could be extended to writes at the end
2969 * of the extent but this scenario was deemed less common.
2970 * - L2: we do not deal with writes covering the whole extent.
2971 * This would require removing the extent if the transfer
2973 * - L3: we only attempt to merge with an extent stored in the
2974 * same extent tree node.
2976 if ((map
->m_lblk
== ee_block
) && /*L1*/
2977 (map
->m_len
< ee_len
) && /*L2*/
2978 (ex
> EXT_FIRST_EXTENT(eh
))) { /*L3*/
2979 struct ext4_extent
*prev_ex
;
2980 ext4_lblk_t prev_lblk
;
2981 ext4_fsblk_t prev_pblk
, ee_pblk
;
2982 unsigned int prev_len
, write_len
;
2985 prev_lblk
= le32_to_cpu(prev_ex
->ee_block
);
2986 prev_len
= ext4_ext_get_actual_len(prev_ex
);
2987 prev_pblk
= ext4_ext_pblock(prev_ex
);
2988 ee_pblk
= ext4_ext_pblock(ex
);
2989 write_len
= map
->m_len
;
2992 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
2993 * upon those conditions:
2994 * - C1: prev_ex is initialized,
2995 * - C2: prev_ex is logically abutting ex,
2996 * - C3: prev_ex is physically abutting ex,
2997 * - C4: prev_ex can receive the additional blocks without
2998 * overflowing the (initialized) length limit.
3000 if ((!ext4_ext_is_uninitialized(prev_ex
)) && /*C1*/
3001 ((prev_lblk
+ prev_len
) == ee_block
) && /*C2*/
3002 ((prev_pblk
+ prev_len
) == ee_pblk
) && /*C3*/
3003 (prev_len
< (EXT_INIT_MAX_LEN
- write_len
))) { /*C4*/
3004 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3008 trace_ext4_ext_convert_to_initialized_fastpath(inode
,
3011 /* Shift the start of ex by 'write_len' blocks */
3012 ex
->ee_block
= cpu_to_le32(ee_block
+ write_len
);
3013 ext4_ext_store_pblock(ex
, ee_pblk
+ write_len
);
3014 ex
->ee_len
= cpu_to_le16(ee_len
- write_len
);
3015 ext4_ext_mark_uninitialized(ex
); /* Restore the flag */
3017 /* Extend prev_ex by 'write_len' blocks */
3018 prev_ex
->ee_len
= cpu_to_le16(prev_len
+ write_len
);
3020 /* Mark the block containing both extents as dirty */
3021 ext4_ext_dirty(handle
, inode
, path
+ depth
);
3023 /* Update path to point to the right extent */
3024 path
[depth
].p_ext
= prev_ex
;
3026 /* Result: number of initialized blocks past m_lblk */
3027 allocated
= write_len
;
3032 WARN_ON(map
->m_lblk
< ee_block
);
3034 * It is safe to convert extent to initialized via explicit
3035 * zeroout only if extent is fully insde i_size or new_size.
3037 split_flag
|= ee_block
+ ee_len
<= eof_block
? EXT4_EXT_MAY_ZEROOUT
: 0;
3039 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3040 if (ee_len
<= 2*EXT4_EXT_ZERO_LEN
&&
3041 (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
3042 err
= ext4_ext_zeroout(inode
, ex
);
3046 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3049 ext4_ext_mark_initialized(ex
);
3050 ext4_ext_try_to_merge(inode
, path
, ex
);
3051 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
3057 * 1. split the extent into three extents.
3058 * 2. split the extent into two extents, zeroout the first half.
3059 * 3. split the extent into two extents, zeroout the second half.
3060 * 4. split the extent into two extents with out zeroout.
3062 split_map
.m_lblk
= map
->m_lblk
;
3063 split_map
.m_len
= map
->m_len
;
3065 if (allocated
> map
->m_len
) {
3066 if (allocated
<= EXT4_EXT_ZERO_LEN
&&
3067 (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
3070 cpu_to_le32(map
->m_lblk
);
3071 zero_ex
.ee_len
= cpu_to_le16(allocated
);
3072 ext4_ext_store_pblock(&zero_ex
,
3073 ext4_ext_pblock(ex
) + map
->m_lblk
- ee_block
);
3074 err
= ext4_ext_zeroout(inode
, &zero_ex
);
3077 split_map
.m_lblk
= map
->m_lblk
;
3078 split_map
.m_len
= allocated
;
3079 } else if ((map
->m_lblk
- ee_block
+ map
->m_len
<
3080 EXT4_EXT_ZERO_LEN
) &&
3081 (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
3083 if (map
->m_lblk
!= ee_block
) {
3084 zero_ex
.ee_block
= ex
->ee_block
;
3085 zero_ex
.ee_len
= cpu_to_le16(map
->m_lblk
-
3087 ext4_ext_store_pblock(&zero_ex
,
3088 ext4_ext_pblock(ex
));
3089 err
= ext4_ext_zeroout(inode
, &zero_ex
);
3094 split_map
.m_lblk
= ee_block
;
3095 split_map
.m_len
= map
->m_lblk
- ee_block
+ map
->m_len
;
3096 allocated
= map
->m_len
;
3100 allocated
= ext4_split_extent(handle
, inode
, path
,
3101 &split_map
, split_flag
, 0);
3106 return err
? err
: allocated
;
3110 * This function is called by ext4_ext_map_blocks() from
3111 * ext4_get_blocks_dio_write() when DIO to write
3112 * to an uninitialized extent.
3114 * Writing to an uninitialized extent may result in splitting the uninitialized
3115 * extent into multiple /initialized uninitialized extents (up to three)
3116 * There are three possibilities:
3117 * a> There is no split required: Entire extent should be uninitialized
3118 * b> Splits in two extents: Write is happening at either end of the extent
3119 * c> Splits in three extents: Somone is writing in middle of the extent
3121 * One of more index blocks maybe needed if the extent tree grow after
3122 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3123 * complete, we need to split the uninitialized extent before DIO submit
3124 * the IO. The uninitialized extent called at this time will be split
3125 * into three uninitialized extent(at most). After IO complete, the part
3126 * being filled will be convert to initialized by the end_io callback function
3127 * via ext4_convert_unwritten_extents().
3129 * Returns the size of uninitialized extent to be written on success.
3131 static int ext4_split_unwritten_extents(handle_t
*handle
,
3132 struct inode
*inode
,
3133 struct ext4_map_blocks
*map
,
3134 struct ext4_ext_path
*path
,
3137 ext4_lblk_t eof_block
;
3138 ext4_lblk_t ee_block
;
3139 struct ext4_extent
*ex
;
3140 unsigned int ee_len
;
3141 int split_flag
= 0, depth
;
3143 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3144 "block %llu, max_blocks %u\n", inode
->i_ino
,
3145 (unsigned long long)map
->m_lblk
, map
->m_len
);
3147 eof_block
= (inode
->i_size
+ inode
->i_sb
->s_blocksize
- 1) >>
3148 inode
->i_sb
->s_blocksize_bits
;
3149 if (eof_block
< map
->m_lblk
+ map
->m_len
)
3150 eof_block
= map
->m_lblk
+ map
->m_len
;
3152 * It is safe to convert extent to initialized via explicit
3153 * zeroout only if extent is fully insde i_size or new_size.
3155 depth
= ext_depth(inode
);
3156 ex
= path
[depth
].p_ext
;
3157 ee_block
= le32_to_cpu(ex
->ee_block
);
3158 ee_len
= ext4_ext_get_actual_len(ex
);
3160 split_flag
|= ee_block
+ ee_len
<= eof_block
? EXT4_EXT_MAY_ZEROOUT
: 0;
3161 split_flag
|= EXT4_EXT_MARK_UNINIT2
;
3163 flags
|= EXT4_GET_BLOCKS_PRE_IO
;
3164 return ext4_split_extent(handle
, inode
, path
, map
, split_flag
, flags
);
3167 static int ext4_convert_unwritten_extents_endio(handle_t
*handle
,
3168 struct inode
*inode
,
3169 struct ext4_ext_path
*path
)
3171 struct ext4_extent
*ex
;
3175 depth
= ext_depth(inode
);
3176 ex
= path
[depth
].p_ext
;
3178 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3179 "block %llu, max_blocks %u\n", inode
->i_ino
,
3180 (unsigned long long)le32_to_cpu(ex
->ee_block
),
3181 ext4_ext_get_actual_len(ex
));
3183 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3186 /* first mark the extent as initialized */
3187 ext4_ext_mark_initialized(ex
);
3189 /* note: ext4_ext_correct_indexes() isn't needed here because
3190 * borders are not changed
3192 ext4_ext_try_to_merge(inode
, path
, ex
);
3194 /* Mark modified extent as dirty */
3195 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
3197 ext4_ext_show_leaf(inode
, path
);
3201 static void unmap_underlying_metadata_blocks(struct block_device
*bdev
,
3202 sector_t block
, int count
)
3205 for (i
= 0; i
< count
; i
++)
3206 unmap_underlying_metadata(bdev
, block
+ i
);
3210 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3212 static int check_eofblocks_fl(handle_t
*handle
, struct inode
*inode
,
3214 struct ext4_ext_path
*path
,
3218 struct ext4_extent_header
*eh
;
3219 struct ext4_extent
*last_ex
;
3221 if (!ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
))
3224 depth
= ext_depth(inode
);
3225 eh
= path
[depth
].p_hdr
;
3227 if (unlikely(!eh
->eh_entries
)) {
3228 EXT4_ERROR_INODE(inode
, "eh->eh_entries == 0 and "
3229 "EOFBLOCKS_FL set");
3232 last_ex
= EXT_LAST_EXTENT(eh
);
3234 * We should clear the EOFBLOCKS_FL flag if we are writing the
3235 * last block in the last extent in the file. We test this by
3236 * first checking to see if the caller to
3237 * ext4_ext_get_blocks() was interested in the last block (or
3238 * a block beyond the last block) in the current extent. If
3239 * this turns out to be false, we can bail out from this
3240 * function immediately.
3242 if (lblk
+ len
< le32_to_cpu(last_ex
->ee_block
) +
3243 ext4_ext_get_actual_len(last_ex
))
3246 * If the caller does appear to be planning to write at or
3247 * beyond the end of the current extent, we then test to see
3248 * if the current extent is the last extent in the file, by
3249 * checking to make sure it was reached via the rightmost node
3250 * at each level of the tree.
3252 for (i
= depth
-1; i
>= 0; i
--)
3253 if (path
[i
].p_idx
!= EXT_LAST_INDEX(path
[i
].p_hdr
))
3255 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3256 return ext4_mark_inode_dirty(handle
, inode
);
3260 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3262 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3263 * whether there are any buffers marked for delayed allocation. It returns '1'
3264 * on the first delalloc'ed buffer head found. If no buffer head in the given
3265 * range is marked for delalloc, it returns 0.
3266 * lblk_start should always be <= lblk_end.
3267 * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3268 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3269 * block sooner). This is useful when blocks are truncated sequentially from
3270 * lblk_start towards lblk_end.
3272 static int ext4_find_delalloc_range(struct inode
*inode
,
3273 ext4_lblk_t lblk_start
,
3274 ext4_lblk_t lblk_end
,
3275 int search_hint_reverse
)
3277 struct address_space
*mapping
= inode
->i_mapping
;
3278 struct buffer_head
*head
, *bh
= NULL
;
3280 ext4_lblk_t i
, pg_lblk
;
3283 if (!test_opt(inode
->i_sb
, DELALLOC
))
3286 /* reverse search wont work if fs block size is less than page size */
3287 if (inode
->i_blkbits
< PAGE_CACHE_SHIFT
)
3288 search_hint_reverse
= 0;
3290 if (search_hint_reverse
)
3295 index
= i
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
3297 while ((i
>= lblk_start
) && (i
<= lblk_end
)) {
3298 page
= find_get_page(mapping
, index
);
3302 if (!page_has_buffers(page
))
3305 head
= page_buffers(page
);
3310 pg_lblk
= index
<< (PAGE_CACHE_SHIFT
-
3313 if (unlikely(pg_lblk
< lblk_start
)) {
3315 * This is possible when fs block size is less
3316 * than page size and our cluster starts/ends in
3317 * middle of the page. So we need to skip the
3318 * initial few blocks till we reach the 'lblk'
3324 /* Check if the buffer is delayed allocated and that it
3325 * is not yet mapped. (when da-buffers are mapped during
3326 * their writeout, their da_mapped bit is set.)
3328 if (buffer_delay(bh
) && !buffer_da_mapped(bh
)) {
3329 page_cache_release(page
);
3330 trace_ext4_find_delalloc_range(inode
,
3331 lblk_start
, lblk_end
,
3332 search_hint_reverse
,
3336 if (search_hint_reverse
)
3340 } while ((i
>= lblk_start
) && (i
<= lblk_end
) &&
3341 ((bh
= bh
->b_this_page
) != head
));
3344 page_cache_release(page
);
3346 * Move to next page. 'i' will be the first lblk in the next
3349 if (search_hint_reverse
)
3353 i
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
3356 trace_ext4_find_delalloc_range(inode
, lblk_start
, lblk_end
,
3357 search_hint_reverse
, 0, 0);
3361 int ext4_find_delalloc_cluster(struct inode
*inode
, ext4_lblk_t lblk
,
3362 int search_hint_reverse
)
3364 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3365 ext4_lblk_t lblk_start
, lblk_end
;
3366 lblk_start
= lblk
& (~(sbi
->s_cluster_ratio
- 1));
3367 lblk_end
= lblk_start
+ sbi
->s_cluster_ratio
- 1;
3369 return ext4_find_delalloc_range(inode
, lblk_start
, lblk_end
,
3370 search_hint_reverse
);
3374 * Determines how many complete clusters (out of those specified by the 'map')
3375 * are under delalloc and were reserved quota for.
3376 * This function is called when we are writing out the blocks that were
3377 * originally written with their allocation delayed, but then the space was
3378 * allocated using fallocate() before the delayed allocation could be resolved.
3379 * The cases to look for are:
3380 * ('=' indicated delayed allocated blocks
3381 * '-' indicates non-delayed allocated blocks)
3382 * (a) partial clusters towards beginning and/or end outside of allocated range
3383 * are not delalloc'ed.
3385 * |----c---=|====c====|====c====|===-c----|
3386 * |++++++ allocated ++++++|
3387 * ==> 4 complete clusters in above example
3389 * (b) partial cluster (outside of allocated range) towards either end is
3390 * marked for delayed allocation. In this case, we will exclude that
3393 * |----====c========|========c========|
3394 * |++++++ allocated ++++++|
3395 * ==> 1 complete clusters in above example
3398 * |================c================|
3399 * |++++++ allocated ++++++|
3400 * ==> 0 complete clusters in above example
3402 * The ext4_da_update_reserve_space will be called only if we
3403 * determine here that there were some "entire" clusters that span
3404 * this 'allocated' range.
3405 * In the non-bigalloc case, this function will just end up returning num_blks
3406 * without ever calling ext4_find_delalloc_range.
3409 get_reserved_cluster_alloc(struct inode
*inode
, ext4_lblk_t lblk_start
,
3410 unsigned int num_blks
)
3412 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3413 ext4_lblk_t alloc_cluster_start
, alloc_cluster_end
;
3414 ext4_lblk_t lblk_from
, lblk_to
, c_offset
;
3415 unsigned int allocated_clusters
= 0;
3417 alloc_cluster_start
= EXT4_B2C(sbi
, lblk_start
);
3418 alloc_cluster_end
= EXT4_B2C(sbi
, lblk_start
+ num_blks
- 1);
3420 /* max possible clusters for this allocation */
3421 allocated_clusters
= alloc_cluster_end
- alloc_cluster_start
+ 1;
3423 trace_ext4_get_reserved_cluster_alloc(inode
, lblk_start
, num_blks
);
3425 /* Check towards left side */
3426 c_offset
= lblk_start
& (sbi
->s_cluster_ratio
- 1);
3428 lblk_from
= lblk_start
& (~(sbi
->s_cluster_ratio
- 1));
3429 lblk_to
= lblk_from
+ c_offset
- 1;
3431 if (ext4_find_delalloc_range(inode
, lblk_from
, lblk_to
, 0))
3432 allocated_clusters
--;
3435 /* Now check towards right. */
3436 c_offset
= (lblk_start
+ num_blks
) & (sbi
->s_cluster_ratio
- 1);
3437 if (allocated_clusters
&& c_offset
) {
3438 lblk_from
= lblk_start
+ num_blks
;
3439 lblk_to
= lblk_from
+ (sbi
->s_cluster_ratio
- c_offset
) - 1;
3441 if (ext4_find_delalloc_range(inode
, lblk_from
, lblk_to
, 0))
3442 allocated_clusters
--;
3445 return allocated_clusters
;
3449 ext4_ext_handle_uninitialized_extents(handle_t
*handle
, struct inode
*inode
,
3450 struct ext4_map_blocks
*map
,
3451 struct ext4_ext_path
*path
, int flags
,
3452 unsigned int allocated
, ext4_fsblk_t newblock
)
3456 ext4_io_end_t
*io
= EXT4_I(inode
)->cur_aio_dio
;
3458 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3459 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3460 inode
->i_ino
, (unsigned long long)map
->m_lblk
, map
->m_len
,
3462 ext4_ext_show_leaf(inode
, path
);
3464 trace_ext4_ext_handle_uninitialized_extents(inode
, map
, allocated
,
3467 /* get_block() before submit the IO, split the extent */
3468 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
)) {
3469 ret
= ext4_split_unwritten_extents(handle
, inode
, map
,
3472 * Flag the inode(non aio case) or end_io struct (aio case)
3473 * that this IO needs to conversion to written when IO is
3477 ext4_set_io_unwritten_flag(inode
, io
);
3479 ext4_set_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3480 if (ext4_should_dioread_nolock(inode
))
3481 map
->m_flags
|= EXT4_MAP_UNINIT
;
3484 /* IO end_io complete, convert the filled extent to written */
3485 if ((flags
& EXT4_GET_BLOCKS_CONVERT
)) {
3486 ret
= ext4_convert_unwritten_extents_endio(handle
, inode
,
3489 ext4_update_inode_fsync_trans(handle
, inode
, 1);
3490 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
,
3496 /* buffered IO case */
3498 * repeat fallocate creation request
3499 * we already have an unwritten extent
3501 if (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
)
3504 /* buffered READ or buffered write_begin() lookup */
3505 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0) {
3507 * We have blocks reserved already. We
3508 * return allocated blocks so that delalloc
3509 * won't do block reservation for us. But
3510 * the buffer head will be unmapped so that
3511 * a read from the block returns 0s.
3513 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
3517 /* buffered write, writepage time, convert*/
3518 ret
= ext4_ext_convert_to_initialized(handle
, inode
, map
, path
);
3520 ext4_update_inode_fsync_trans(handle
, inode
, 1);
3527 map
->m_flags
|= EXT4_MAP_NEW
;
3529 * if we allocated more blocks than requested
3530 * we need to make sure we unmap the extra block
3531 * allocated. The actual needed block will get
3532 * unmapped later when we find the buffer_head marked
3535 if (allocated
> map
->m_len
) {
3536 unmap_underlying_metadata_blocks(inode
->i_sb
->s_bdev
,
3537 newblock
+ map
->m_len
,
3538 allocated
- map
->m_len
);
3539 allocated
= map
->m_len
;
3543 * If we have done fallocate with the offset that is already
3544 * delayed allocated, we would have block reservation
3545 * and quota reservation done in the delayed write path.
3546 * But fallocate would have already updated quota and block
3547 * count for this offset. So cancel these reservation
3549 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) {
3550 unsigned int reserved_clusters
;
3551 reserved_clusters
= get_reserved_cluster_alloc(inode
,
3552 map
->m_lblk
, map
->m_len
);
3553 if (reserved_clusters
)
3554 ext4_da_update_reserve_space(inode
,
3560 map
->m_flags
|= EXT4_MAP_MAPPED
;
3561 if ((flags
& EXT4_GET_BLOCKS_KEEP_SIZE
) == 0) {
3562 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
, path
,
3568 if (allocated
> map
->m_len
)
3569 allocated
= map
->m_len
;
3570 ext4_ext_show_leaf(inode
, path
);
3571 map
->m_pblk
= newblock
;
3572 map
->m_len
= allocated
;
3575 ext4_ext_drop_refs(path
);
3578 return err
? err
: allocated
;
3582 * get_implied_cluster_alloc - check to see if the requested
3583 * allocation (in the map structure) overlaps with a cluster already
3584 * allocated in an extent.
3585 * @sb The filesystem superblock structure
3586 * @map The requested lblk->pblk mapping
3587 * @ex The extent structure which might contain an implied
3588 * cluster allocation
3590 * This function is called by ext4_ext_map_blocks() after we failed to
3591 * find blocks that were already in the inode's extent tree. Hence,
3592 * we know that the beginning of the requested region cannot overlap
3593 * the extent from the inode's extent tree. There are three cases we
3594 * want to catch. The first is this case:
3596 * |--- cluster # N--|
3597 * |--- extent ---| |---- requested region ---|
3600 * The second case that we need to test for is this one:
3602 * |--------- cluster # N ----------------|
3603 * |--- requested region --| |------- extent ----|
3604 * |=======================|
3606 * The third case is when the requested region lies between two extents
3607 * within the same cluster:
3608 * |------------- cluster # N-------------|
3609 * |----- ex -----| |---- ex_right ----|
3610 * |------ requested region ------|
3611 * |================|
3613 * In each of the above cases, we need to set the map->m_pblk and
3614 * map->m_len so it corresponds to the return the extent labelled as
3615 * "|====|" from cluster #N, since it is already in use for data in
3616 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3617 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3618 * as a new "allocated" block region. Otherwise, we will return 0 and
3619 * ext4_ext_map_blocks() will then allocate one or more new clusters
3620 * by calling ext4_mb_new_blocks().
3622 static int get_implied_cluster_alloc(struct super_block
*sb
,
3623 struct ext4_map_blocks
*map
,
3624 struct ext4_extent
*ex
,
3625 struct ext4_ext_path
*path
)
3627 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3628 ext4_lblk_t c_offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
-1);
3629 ext4_lblk_t ex_cluster_start
, ex_cluster_end
;
3630 ext4_lblk_t rr_cluster_start
;
3631 ext4_lblk_t ee_block
= le32_to_cpu(ex
->ee_block
);
3632 ext4_fsblk_t ee_start
= ext4_ext_pblock(ex
);
3633 unsigned short ee_len
= ext4_ext_get_actual_len(ex
);
3635 /* The extent passed in that we are trying to match */
3636 ex_cluster_start
= EXT4_B2C(sbi
, ee_block
);
3637 ex_cluster_end
= EXT4_B2C(sbi
, ee_block
+ ee_len
- 1);
3639 /* The requested region passed into ext4_map_blocks() */
3640 rr_cluster_start
= EXT4_B2C(sbi
, map
->m_lblk
);
3642 if ((rr_cluster_start
== ex_cluster_end
) ||
3643 (rr_cluster_start
== ex_cluster_start
)) {
3644 if (rr_cluster_start
== ex_cluster_end
)
3645 ee_start
+= ee_len
- 1;
3646 map
->m_pblk
= (ee_start
& ~(sbi
->s_cluster_ratio
- 1)) +
3648 map
->m_len
= min(map
->m_len
,
3649 (unsigned) sbi
->s_cluster_ratio
- c_offset
);
3651 * Check for and handle this case:
3653 * |--------- cluster # N-------------|
3654 * |------- extent ----|
3655 * |--- requested region ---|
3659 if (map
->m_lblk
< ee_block
)
3660 map
->m_len
= min(map
->m_len
, ee_block
- map
->m_lblk
);
3663 * Check for the case where there is already another allocated
3664 * block to the right of 'ex' but before the end of the cluster.
3666 * |------------- cluster # N-------------|
3667 * |----- ex -----| |---- ex_right ----|
3668 * |------ requested region ------|
3669 * |================|
3671 if (map
->m_lblk
> ee_block
) {
3672 ext4_lblk_t next
= ext4_ext_next_allocated_block(path
);
3673 map
->m_len
= min(map
->m_len
, next
- map
->m_lblk
);
3676 trace_ext4_get_implied_cluster_alloc_exit(sb
, map
, 1);
3680 trace_ext4_get_implied_cluster_alloc_exit(sb
, map
, 0);
3686 * Block allocation/map/preallocation routine for extents based files
3689 * Need to be called with
3690 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3691 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3693 * return > 0, number of of blocks already mapped/allocated
3694 * if create == 0 and these are pre-allocated blocks
3695 * buffer head is unmapped
3696 * otherwise blocks are mapped
3698 * return = 0, if plain look up failed (blocks have not been allocated)
3699 * buffer head is unmapped
3701 * return < 0, error case.
3703 int ext4_ext_map_blocks(handle_t
*handle
, struct inode
*inode
,
3704 struct ext4_map_blocks
*map
, int flags
)
3706 struct ext4_ext_path
*path
= NULL
;
3707 struct ext4_extent newex
, *ex
, *ex2
;
3708 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3709 ext4_fsblk_t newblock
= 0;
3710 int free_on_err
= 0, err
= 0, depth
, ret
;
3711 unsigned int allocated
= 0, offset
= 0;
3712 unsigned int allocated_clusters
= 0;
3713 unsigned int punched_out
= 0;
3714 unsigned int result
= 0;
3715 struct ext4_allocation_request ar
;
3716 ext4_io_end_t
*io
= EXT4_I(inode
)->cur_aio_dio
;
3717 ext4_lblk_t cluster_offset
;
3719 ext_debug("blocks %u/%u requested for inode %lu\n",
3720 map
->m_lblk
, map
->m_len
, inode
->i_ino
);
3721 trace_ext4_ext_map_blocks_enter(inode
, map
->m_lblk
, map
->m_len
, flags
);
3723 /* check in cache */
3724 if (!(flags
& EXT4_GET_BLOCKS_PUNCH_OUT_EXT
) &&
3725 ext4_ext_in_cache(inode
, map
->m_lblk
, &newex
)) {
3726 if (!newex
.ee_start_lo
&& !newex
.ee_start_hi
) {
3727 if ((sbi
->s_cluster_ratio
> 1) &&
3728 ext4_find_delalloc_cluster(inode
, map
->m_lblk
, 0))
3729 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3731 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0) {
3733 * block isn't allocated yet and
3734 * user doesn't want to allocate it
3738 /* we should allocate requested block */
3740 /* block is already allocated */
3741 if (sbi
->s_cluster_ratio
> 1)
3742 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3743 newblock
= map
->m_lblk
3744 - le32_to_cpu(newex
.ee_block
)
3745 + ext4_ext_pblock(&newex
);
3746 /* number of remaining blocks in the extent */
3747 allocated
= ext4_ext_get_actual_len(&newex
) -
3748 (map
->m_lblk
- le32_to_cpu(newex
.ee_block
));
3753 /* find extent for this block */
3754 path
= ext4_ext_find_extent(inode
, map
->m_lblk
, NULL
);
3756 err
= PTR_ERR(path
);
3761 depth
= ext_depth(inode
);
3764 * consistent leaf must not be empty;
3765 * this situation is possible, though, _during_ tree modification;
3766 * this is why assert can't be put in ext4_ext_find_extent()
3768 if (unlikely(path
[depth
].p_ext
== NULL
&& depth
!= 0)) {
3769 EXT4_ERROR_INODE(inode
, "bad extent address "
3770 "lblock: %lu, depth: %d pblock %lld",
3771 (unsigned long) map
->m_lblk
, depth
,
3772 path
[depth
].p_block
);
3777 ex
= path
[depth
].p_ext
;
3779 ext4_lblk_t ee_block
= le32_to_cpu(ex
->ee_block
);
3780 ext4_fsblk_t ee_start
= ext4_ext_pblock(ex
);
3781 unsigned short ee_len
;
3784 * Uninitialized extents are treated as holes, except that
3785 * we split out initialized portions during a write.
3787 ee_len
= ext4_ext_get_actual_len(ex
);
3789 trace_ext4_ext_show_extent(inode
, ee_block
, ee_start
, ee_len
);
3791 /* if found extent covers block, simply return it */
3792 if (in_range(map
->m_lblk
, ee_block
, ee_len
)) {
3793 struct ext4_map_blocks punch_map
;
3794 ext4_fsblk_t partial_cluster
= 0;
3796 newblock
= map
->m_lblk
- ee_block
+ ee_start
;
3797 /* number of remaining blocks in the extent */
3798 allocated
= ee_len
- (map
->m_lblk
- ee_block
);
3799 ext_debug("%u fit into %u:%d -> %llu\n", map
->m_lblk
,
3800 ee_block
, ee_len
, newblock
);
3802 if ((flags
& EXT4_GET_BLOCKS_PUNCH_OUT_EXT
) == 0) {
3804 * Do not put uninitialized extent
3807 if (!ext4_ext_is_uninitialized(ex
)) {
3808 ext4_ext_put_in_cache(inode
, ee_block
,
3812 ret
= ext4_ext_handle_uninitialized_extents(
3813 handle
, inode
, map
, path
, flags
,
3814 allocated
, newblock
);
3819 * Punch out the map length, but only to the
3822 punched_out
= allocated
< map
->m_len
?
3823 allocated
: map
->m_len
;
3826 * Sense extents need to be converted to
3827 * uninitialized, they must fit in an
3828 * uninitialized extent
3830 if (punched_out
> EXT_UNINIT_MAX_LEN
)
3831 punched_out
= EXT_UNINIT_MAX_LEN
;
3833 punch_map
.m_lblk
= map
->m_lblk
;
3834 punch_map
.m_pblk
= newblock
;
3835 punch_map
.m_len
= punched_out
;
3836 punch_map
.m_flags
= 0;
3838 /* Check to see if the extent needs to be split */
3839 if (punch_map
.m_len
!= ee_len
||
3840 punch_map
.m_lblk
!= ee_block
) {
3842 ret
= ext4_split_extent(handle
, inode
,
3843 path
, &punch_map
, 0,
3844 EXT4_GET_BLOCKS_PUNCH_OUT_EXT
|
3845 EXT4_GET_BLOCKS_PRE_IO
);
3852 * find extent for the block at
3853 * the start of the hole
3855 ext4_ext_drop_refs(path
);
3858 path
= ext4_ext_find_extent(inode
,
3861 err
= PTR_ERR(path
);
3866 depth
= ext_depth(inode
);
3867 ex
= path
[depth
].p_ext
;
3868 ee_len
= ext4_ext_get_actual_len(ex
);
3869 ee_block
= le32_to_cpu(ex
->ee_block
);
3870 ee_start
= ext4_ext_pblock(ex
);
3874 ext4_ext_mark_uninitialized(ex
);
3876 ext4_ext_invalidate_cache(inode
);
3878 err
= ext4_ext_rm_leaf(handle
, inode
, path
,
3879 &partial_cluster
, map
->m_lblk
,
3880 map
->m_lblk
+ punched_out
);
3882 if (!err
&& path
->p_hdr
->eh_entries
== 0) {
3884 * Punch hole freed all of this sub tree,
3885 * so we need to correct eh_depth
3887 err
= ext4_ext_get_access(handle
, inode
, path
);
3889 ext_inode_hdr(inode
)->eh_depth
= 0;
3890 ext_inode_hdr(inode
)->eh_max
=
3891 cpu_to_le16(ext4_ext_space_root(
3894 err
= ext4_ext_dirty(
3895 handle
, inode
, path
);
3903 if ((sbi
->s_cluster_ratio
> 1) &&
3904 ext4_find_delalloc_cluster(inode
, map
->m_lblk
, 0))
3905 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3908 * requested block isn't allocated yet;
3909 * we couldn't try to create block if create flag is zero
3911 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0) {
3913 * put just found gap into cache to speed up
3914 * subsequent requests
3916 ext4_ext_put_gap_in_cache(inode
, path
, map
->m_lblk
);
3921 * Okay, we need to do block allocation.
3923 map
->m_flags
&= ~EXT4_MAP_FROM_CLUSTER
;
3924 newex
.ee_block
= cpu_to_le32(map
->m_lblk
);
3925 cluster_offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
-1);
3928 * If we are doing bigalloc, check to see if the extent returned
3929 * by ext4_ext_find_extent() implies a cluster we can use.
3931 if (cluster_offset
&& ex
&&
3932 get_implied_cluster_alloc(inode
->i_sb
, map
, ex
, path
)) {
3933 ar
.len
= allocated
= map
->m_len
;
3934 newblock
= map
->m_pblk
;
3935 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3936 goto got_allocated_blocks
;
3939 /* find neighbour allocated blocks */
3940 ar
.lleft
= map
->m_lblk
;
3941 err
= ext4_ext_search_left(inode
, path
, &ar
.lleft
, &ar
.pleft
);
3944 ar
.lright
= map
->m_lblk
;
3946 err
= ext4_ext_search_right(inode
, path
, &ar
.lright
, &ar
.pright
, &ex2
);
3950 /* Check if the extent after searching to the right implies a
3951 * cluster we can use. */
3952 if ((sbi
->s_cluster_ratio
> 1) && ex2
&&
3953 get_implied_cluster_alloc(inode
->i_sb
, map
, ex2
, path
)) {
3954 ar
.len
= allocated
= map
->m_len
;
3955 newblock
= map
->m_pblk
;
3956 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3957 goto got_allocated_blocks
;
3961 * See if request is beyond maximum number of blocks we can have in
3962 * a single extent. For an initialized extent this limit is
3963 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3964 * EXT_UNINIT_MAX_LEN.
3966 if (map
->m_len
> EXT_INIT_MAX_LEN
&&
3967 !(flags
& EXT4_GET_BLOCKS_UNINIT_EXT
))
3968 map
->m_len
= EXT_INIT_MAX_LEN
;
3969 else if (map
->m_len
> EXT_UNINIT_MAX_LEN
&&
3970 (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
))
3971 map
->m_len
= EXT_UNINIT_MAX_LEN
;
3973 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3974 newex
.ee_len
= cpu_to_le16(map
->m_len
);
3975 err
= ext4_ext_check_overlap(sbi
, inode
, &newex
, path
);
3977 allocated
= ext4_ext_get_actual_len(&newex
);
3979 allocated
= map
->m_len
;
3981 /* allocate new block */
3983 ar
.goal
= ext4_ext_find_goal(inode
, path
, map
->m_lblk
);
3984 ar
.logical
= map
->m_lblk
;
3986 * We calculate the offset from the beginning of the cluster
3987 * for the logical block number, since when we allocate a
3988 * physical cluster, the physical block should start at the
3989 * same offset from the beginning of the cluster. This is
3990 * needed so that future calls to get_implied_cluster_alloc()
3993 offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
- 1);
3994 ar
.len
= EXT4_NUM_B2C(sbi
, offset
+allocated
);
3996 ar
.logical
-= offset
;
3997 if (S_ISREG(inode
->i_mode
))
3998 ar
.flags
= EXT4_MB_HINT_DATA
;
4000 /* disable in-core preallocation for non-regular files */
4002 if (flags
& EXT4_GET_BLOCKS_NO_NORMALIZE
)
4003 ar
.flags
|= EXT4_MB_HINT_NOPREALLOC
;
4004 newblock
= ext4_mb_new_blocks(handle
, &ar
, &err
);
4007 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4008 ar
.goal
, newblock
, allocated
);
4010 allocated_clusters
= ar
.len
;
4011 ar
.len
= EXT4_C2B(sbi
, ar
.len
) - offset
;
4012 if (ar
.len
> allocated
)
4015 got_allocated_blocks
:
4016 /* try to insert new extent into found leaf and return */
4017 ext4_ext_store_pblock(&newex
, newblock
+ offset
);
4018 newex
.ee_len
= cpu_to_le16(ar
.len
);
4019 /* Mark uninitialized */
4020 if (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
){
4021 ext4_ext_mark_uninitialized(&newex
);
4023 * io_end structure was created for every IO write to an
4024 * uninitialized extent. To avoid unnecessary conversion,
4025 * here we flag the IO that really needs the conversion.
4026 * For non asycn direct IO case, flag the inode state
4027 * that we need to perform conversion when IO is done.
4029 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
)) {
4031 ext4_set_io_unwritten_flag(inode
, io
);
4033 ext4_set_inode_state(inode
,
4034 EXT4_STATE_DIO_UNWRITTEN
);
4036 if (ext4_should_dioread_nolock(inode
))
4037 map
->m_flags
|= EXT4_MAP_UNINIT
;
4041 if ((flags
& EXT4_GET_BLOCKS_KEEP_SIZE
) == 0)
4042 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
,
4045 err
= ext4_ext_insert_extent(handle
, inode
, path
,
4047 if (err
&& free_on_err
) {
4048 int fb_flags
= flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
?
4049 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE
: 0;
4050 /* free data blocks we just allocated */
4051 /* not a good idea to call discard here directly,
4052 * but otherwise we'd need to call it every free() */
4053 ext4_discard_preallocations(inode
);
4054 ext4_free_blocks(handle
, inode
, NULL
, ext4_ext_pblock(&newex
),
4055 ext4_ext_get_actual_len(&newex
), fb_flags
);
4059 /* previous routine could use block we allocated */
4060 newblock
= ext4_ext_pblock(&newex
);
4061 allocated
= ext4_ext_get_actual_len(&newex
);
4062 if (allocated
> map
->m_len
)
4063 allocated
= map
->m_len
;
4064 map
->m_flags
|= EXT4_MAP_NEW
;
4067 * Update reserved blocks/metadata blocks after successful
4068 * block allocation which had been deferred till now.
4070 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) {
4071 unsigned int reserved_clusters
;
4073 * Check how many clusters we had reserved this allocated range
4075 reserved_clusters
= get_reserved_cluster_alloc(inode
,
4076 map
->m_lblk
, allocated
);
4077 if (map
->m_flags
& EXT4_MAP_FROM_CLUSTER
) {
4078 if (reserved_clusters
) {
4080 * We have clusters reserved for this range.
4081 * But since we are not doing actual allocation
4082 * and are simply using blocks from previously
4083 * allocated cluster, we should release the
4084 * reservation and not claim quota.
4086 ext4_da_update_reserve_space(inode
,
4087 reserved_clusters
, 0);
4090 BUG_ON(allocated_clusters
< reserved_clusters
);
4091 /* We will claim quota for all newly allocated blocks.*/
4092 ext4_da_update_reserve_space(inode
, allocated_clusters
,
4094 if (reserved_clusters
< allocated_clusters
) {
4095 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4096 int reservation
= allocated_clusters
-
4099 * It seems we claimed few clusters outside of
4100 * the range of this allocation. We should give
4101 * it back to the reservation pool. This can
4102 * happen in the following case:
4104 * * Suppose s_cluster_ratio is 4 (i.e., each
4105 * cluster has 4 blocks. Thus, the clusters
4106 * are [0-3],[4-7],[8-11]...
4107 * * First comes delayed allocation write for
4108 * logical blocks 10 & 11. Since there were no
4109 * previous delayed allocated blocks in the
4110 * range [8-11], we would reserve 1 cluster
4112 * * Next comes write for logical blocks 3 to 8.
4113 * In this case, we will reserve 2 clusters
4114 * (for [0-3] and [4-7]; and not for [8-11] as
4115 * that range has a delayed allocated blocks.
4116 * Thus total reserved clusters now becomes 3.
4117 * * Now, during the delayed allocation writeout
4118 * time, we will first write blocks [3-8] and
4119 * allocate 3 clusters for writing these
4120 * blocks. Also, we would claim all these
4121 * three clusters above.
4122 * * Now when we come here to writeout the
4123 * blocks [10-11], we would expect to claim
4124 * the reservation of 1 cluster we had made
4125 * (and we would claim it since there are no
4126 * more delayed allocated blocks in the range
4127 * [8-11]. But our reserved cluster count had
4128 * already gone to 0.
4130 * Thus, at the step 4 above when we determine
4131 * that there are still some unwritten delayed
4132 * allocated blocks outside of our current
4133 * block range, we should increment the
4134 * reserved clusters count so that when the
4135 * remaining blocks finally gets written, we
4138 dquot_reserve_block(inode
,
4139 EXT4_C2B(sbi
, reservation
));
4140 spin_lock(&ei
->i_block_reservation_lock
);
4141 ei
->i_reserved_data_blocks
+= reservation
;
4142 spin_unlock(&ei
->i_block_reservation_lock
);
4148 * Cache the extent and update transaction to commit on fdatasync only
4149 * when it is _not_ an uninitialized extent.
4151 if ((flags
& EXT4_GET_BLOCKS_UNINIT_EXT
) == 0) {
4152 ext4_ext_put_in_cache(inode
, map
->m_lblk
, allocated
, newblock
);
4153 ext4_update_inode_fsync_trans(handle
, inode
, 1);
4155 ext4_update_inode_fsync_trans(handle
, inode
, 0);
4157 if (allocated
> map
->m_len
)
4158 allocated
= map
->m_len
;
4159 ext4_ext_show_leaf(inode
, path
);
4160 map
->m_flags
|= EXT4_MAP_MAPPED
;
4161 map
->m_pblk
= newblock
;
4162 map
->m_len
= allocated
;
4165 ext4_ext_drop_refs(path
);
4168 result
= (flags
& EXT4_GET_BLOCKS_PUNCH_OUT_EXT
) ?
4169 punched_out
: allocated
;
4171 trace_ext4_ext_map_blocks_exit(inode
, map
->m_lblk
,
4172 newblock
, map
->m_len
, err
? err
: result
);
4174 return err
? err
: result
;
4177 void ext4_ext_truncate(struct inode
*inode
)
4179 struct address_space
*mapping
= inode
->i_mapping
;
4180 struct super_block
*sb
= inode
->i_sb
;
4181 ext4_lblk_t last_block
;
4187 * finish any pending end_io work so we won't run the risk of
4188 * converting any truncated blocks to initialized later
4190 ext4_flush_completed_IO(inode
);
4193 * probably first extent we're gonna free will be last in block
4195 err
= ext4_writepage_trans_blocks(inode
);
4196 handle
= ext4_journal_start(inode
, err
);
4200 if (inode
->i_size
% PAGE_CACHE_SIZE
!= 0) {
4201 page_len
= PAGE_CACHE_SIZE
-
4202 (inode
->i_size
& (PAGE_CACHE_SIZE
- 1));
4204 err
= ext4_discard_partial_page_buffers(handle
,
4205 mapping
, inode
->i_size
, page_len
, 0);
4211 if (ext4_orphan_add(handle
, inode
))
4214 down_write(&EXT4_I(inode
)->i_data_sem
);
4215 ext4_ext_invalidate_cache(inode
);
4217 ext4_discard_preallocations(inode
);
4220 * TODO: optimization is possible here.
4221 * Probably we need not scan at all,
4222 * because page truncation is enough.
4225 /* we have to know where to truncate from in crash case */
4226 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
4227 ext4_mark_inode_dirty(handle
, inode
);
4229 last_block
= (inode
->i_size
+ sb
->s_blocksize
- 1)
4230 >> EXT4_BLOCK_SIZE_BITS(sb
);
4231 err
= ext4_ext_remove_space(inode
, last_block
);
4233 /* In a multi-transaction truncate, we only make the final
4234 * transaction synchronous.
4237 ext4_handle_sync(handle
);
4239 up_write(&EXT4_I(inode
)->i_data_sem
);
4243 * If this was a simple ftruncate() and the file will remain alive,
4244 * then we need to clear up the orphan record which we created above.
4245 * However, if this was a real unlink then we were called by
4246 * ext4_delete_inode(), and we allow that function to clean up the
4247 * orphan info for us.
4250 ext4_orphan_del(handle
, inode
);
4252 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4253 ext4_mark_inode_dirty(handle
, inode
);
4254 ext4_journal_stop(handle
);
4257 static void ext4_falloc_update_inode(struct inode
*inode
,
4258 int mode
, loff_t new_size
, int update_ctime
)
4260 struct timespec now
;
4263 now
= current_fs_time(inode
->i_sb
);
4264 if (!timespec_equal(&inode
->i_ctime
, &now
))
4265 inode
->i_ctime
= now
;
4268 * Update only when preallocation was requested beyond
4271 if (!(mode
& FALLOC_FL_KEEP_SIZE
)) {
4272 if (new_size
> i_size_read(inode
))
4273 i_size_write(inode
, new_size
);
4274 if (new_size
> EXT4_I(inode
)->i_disksize
)
4275 ext4_update_i_disksize(inode
, new_size
);
4278 * Mark that we allocate beyond EOF so the subsequent truncate
4279 * can proceed even if the new size is the same as i_size.
4281 if (new_size
> i_size_read(inode
))
4282 ext4_set_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
4288 * preallocate space for a file. This implements ext4's fallocate file
4289 * operation, which gets called from sys_fallocate system call.
4290 * For block-mapped files, posix_fallocate should fall back to the method
4291 * of writing zeroes to the required new blocks (the same behavior which is
4292 * expected for file systems which do not support fallocate() system call).
4294 long ext4_fallocate(struct file
*file
, int mode
, loff_t offset
, loff_t len
)
4296 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4299 unsigned int max_blocks
;
4304 struct ext4_map_blocks map
;
4305 unsigned int credits
, blkbits
= inode
->i_blkbits
;
4308 * currently supporting (pre)allocate mode for extent-based
4311 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4314 /* Return error if mode is not supported */
4315 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
4318 if (mode
& FALLOC_FL_PUNCH_HOLE
)
4319 return ext4_punch_hole(file
, offset
, len
);
4321 trace_ext4_fallocate_enter(inode
, offset
, len
, mode
);
4322 map
.m_lblk
= offset
>> blkbits
;
4324 * We can't just convert len to max_blocks because
4325 * If blocksize = 4096 offset = 3072 and len = 2048
4327 max_blocks
= (EXT4_BLOCK_ALIGN(len
+ offset
, blkbits
) >> blkbits
)
4330 * credits to insert 1 extent into extent tree
4332 credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
4333 mutex_lock(&inode
->i_mutex
);
4334 ret
= inode_newsize_ok(inode
, (len
+ offset
));
4336 mutex_unlock(&inode
->i_mutex
);
4337 trace_ext4_fallocate_exit(inode
, offset
, max_blocks
, ret
);
4340 flags
= EXT4_GET_BLOCKS_CREATE_UNINIT_EXT
;
4341 if (mode
& FALLOC_FL_KEEP_SIZE
)
4342 flags
|= EXT4_GET_BLOCKS_KEEP_SIZE
;
4344 * Don't normalize the request if it can fit in one extent so
4345 * that it doesn't get unnecessarily split into multiple
4348 if (len
<= EXT_UNINIT_MAX_LEN
<< blkbits
)
4349 flags
|= EXT4_GET_BLOCKS_NO_NORMALIZE
;
4351 while (ret
>= 0 && ret
< max_blocks
) {
4352 map
.m_lblk
= map
.m_lblk
+ ret
;
4353 map
.m_len
= max_blocks
= max_blocks
- ret
;
4354 handle
= ext4_journal_start(inode
, credits
);
4355 if (IS_ERR(handle
)) {
4356 ret
= PTR_ERR(handle
);
4359 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
4363 printk(KERN_ERR
"%s: ext4_ext_map_blocks "
4364 "returned error inode#%lu, block=%u, "
4365 "max_blocks=%u", __func__
,
4366 inode
->i_ino
, map
.m_lblk
, max_blocks
);
4368 ext4_mark_inode_dirty(handle
, inode
);
4369 ret2
= ext4_journal_stop(handle
);
4372 if ((map
.m_lblk
+ ret
) >= (EXT4_BLOCK_ALIGN(offset
+ len
,
4373 blkbits
) >> blkbits
))
4374 new_size
= offset
+ len
;
4376 new_size
= ((loff_t
) map
.m_lblk
+ ret
) << blkbits
;
4378 ext4_falloc_update_inode(inode
, mode
, new_size
,
4379 (map
.m_flags
& EXT4_MAP_NEW
));
4380 ext4_mark_inode_dirty(handle
, inode
);
4381 ret2
= ext4_journal_stop(handle
);
4385 if (ret
== -ENOSPC
&&
4386 ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
4390 mutex_unlock(&inode
->i_mutex
);
4391 trace_ext4_fallocate_exit(inode
, offset
, max_blocks
,
4392 ret
> 0 ? ret2
: ret
);
4393 return ret
> 0 ? ret2
: ret
;
4397 * This function convert a range of blocks to written extents
4398 * The caller of this function will pass the start offset and the size.
4399 * all unwritten extents within this range will be converted to
4402 * This function is called from the direct IO end io call back
4403 * function, to convert the fallocated extents after IO is completed.
4404 * Returns 0 on success.
4406 int ext4_convert_unwritten_extents(struct inode
*inode
, loff_t offset
,
4410 unsigned int max_blocks
;
4413 struct ext4_map_blocks map
;
4414 unsigned int credits
, blkbits
= inode
->i_blkbits
;
4416 map
.m_lblk
= offset
>> blkbits
;
4418 * We can't just convert len to max_blocks because
4419 * If blocksize = 4096 offset = 3072 and len = 2048
4421 max_blocks
= ((EXT4_BLOCK_ALIGN(len
+ offset
, blkbits
) >> blkbits
) -
4424 * credits to insert 1 extent into extent tree
4426 credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
4427 while (ret
>= 0 && ret
< max_blocks
) {
4429 map
.m_len
= (max_blocks
-= ret
);
4430 handle
= ext4_journal_start(inode
, credits
);
4431 if (IS_ERR(handle
)) {
4432 ret
= PTR_ERR(handle
);
4435 ret
= ext4_map_blocks(handle
, inode
, &map
,
4436 EXT4_GET_BLOCKS_IO_CONVERT_EXT
);
4439 printk(KERN_ERR
"%s: ext4_ext_map_blocks "
4440 "returned error inode#%lu, block=%u, "
4441 "max_blocks=%u", __func__
,
4442 inode
->i_ino
, map
.m_lblk
, map
.m_len
);
4444 ext4_mark_inode_dirty(handle
, inode
);
4445 ret2
= ext4_journal_stop(handle
);
4446 if (ret
<= 0 || ret2
)
4449 return ret
> 0 ? ret2
: ret
;
4453 * Callback function called for each extent to gather FIEMAP information.
4455 static int ext4_ext_fiemap_cb(struct inode
*inode
, ext4_lblk_t next
,
4456 struct ext4_ext_cache
*newex
, struct ext4_extent
*ex
,
4464 struct fiemap_extent_info
*fieinfo
= data
;
4465 unsigned char blksize_bits
;
4467 blksize_bits
= inode
->i_sb
->s_blocksize_bits
;
4468 logical
= (__u64
)newex
->ec_block
<< blksize_bits
;
4470 if (newex
->ec_start
== 0) {
4472 * No extent in extent-tree contains block @newex->ec_start,
4473 * then the block may stay in 1)a hole or 2)delayed-extent.
4475 * Holes or delayed-extents are processed as follows.
4476 * 1. lookup dirty pages with specified range in pagecache.
4477 * If no page is got, then there is no delayed-extent and
4478 * return with EXT_CONTINUE.
4479 * 2. find the 1st mapped buffer,
4480 * 3. check if the mapped buffer is both in the request range
4481 * and a delayed buffer. If not, there is no delayed-extent,
4483 * 4. a delayed-extent is found, the extent will be collected.
4485 ext4_lblk_t end
= 0;
4486 pgoff_t last_offset
;
4489 pgoff_t start_index
= 0;
4490 struct page
**pages
= NULL
;
4491 struct buffer_head
*bh
= NULL
;
4492 struct buffer_head
*head
= NULL
;
4493 unsigned int nr_pages
= PAGE_SIZE
/ sizeof(struct page
*);
4495 pages
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4499 offset
= logical
>> PAGE_SHIFT
;
4501 last_offset
= offset
;
4503 ret
= find_get_pages_tag(inode
->i_mapping
, &offset
,
4504 PAGECACHE_TAG_DIRTY
, nr_pages
, pages
);
4506 if (!(flags
& FIEMAP_EXTENT_DELALLOC
)) {
4507 /* First time, try to find a mapped buffer. */
4510 for (index
= 0; index
< ret
; index
++)
4511 page_cache_release(pages
[index
]);
4514 return EXT_CONTINUE
;
4519 /* Try to find the 1st mapped buffer. */
4520 end
= ((__u64
)pages
[index
]->index
<< PAGE_SHIFT
) >>
4522 if (!page_has_buffers(pages
[index
]))
4524 head
= page_buffers(pages
[index
]);
4531 if (end
>= newex
->ec_block
+
4533 /* The buffer is out of
4534 * the request range.
4538 if (buffer_mapped(bh
) &&
4539 end
>= newex
->ec_block
) {
4540 start_index
= index
- 1;
4541 /* get the 1st mapped buffer. */
4542 goto found_mapped_buffer
;
4545 bh
= bh
->b_this_page
;
4547 } while (bh
!= head
);
4549 /* No mapped buffer in the range found in this page,
4550 * We need to look up next page.
4553 /* There is no page left, but we need to limit
4556 newex
->ec_len
= end
- newex
->ec_block
;
4561 /*Find contiguous delayed buffers. */
4562 if (ret
> 0 && pages
[0]->index
== last_offset
)
4563 head
= page_buffers(pages
[0]);
4569 found_mapped_buffer
:
4570 if (bh
!= NULL
&& buffer_delay(bh
)) {
4571 /* 1st or contiguous delayed buffer found. */
4572 if (!(flags
& FIEMAP_EXTENT_DELALLOC
)) {
4574 * 1st delayed buffer found, record
4575 * the start of extent.
4577 flags
|= FIEMAP_EXTENT_DELALLOC
;
4578 newex
->ec_block
= end
;
4579 logical
= (__u64
)end
<< blksize_bits
;
4581 /* Find contiguous delayed buffers. */
4583 if (!buffer_delay(bh
))
4584 goto found_delayed_extent
;
4585 bh
= bh
->b_this_page
;
4587 } while (bh
!= head
);
4589 for (; index
< ret
; index
++) {
4590 if (!page_has_buffers(pages
[index
])) {
4594 head
= page_buffers(pages
[index
]);
4600 if (pages
[index
]->index
!=
4601 pages
[start_index
]->index
+ index
4603 /* Blocks are not contiguous. */
4609 if (!buffer_delay(bh
))
4610 /* Delayed-extent ends. */
4611 goto found_delayed_extent
;
4612 bh
= bh
->b_this_page
;
4614 } while (bh
!= head
);
4616 } else if (!(flags
& FIEMAP_EXTENT_DELALLOC
))
4620 found_delayed_extent
:
4621 newex
->ec_len
= min(end
- newex
->ec_block
,
4622 (ext4_lblk_t
)EXT_INIT_MAX_LEN
);
4623 if (ret
== nr_pages
&& bh
!= NULL
&&
4624 newex
->ec_len
< EXT_INIT_MAX_LEN
&&
4626 /* Have not collected an extent and continue. */
4627 for (index
= 0; index
< ret
; index
++)
4628 page_cache_release(pages
[index
]);
4632 for (index
= 0; index
< ret
; index
++)
4633 page_cache_release(pages
[index
]);
4637 physical
= (__u64
)newex
->ec_start
<< blksize_bits
;
4638 length
= (__u64
)newex
->ec_len
<< blksize_bits
;
4640 if (ex
&& ext4_ext_is_uninitialized(ex
))
4641 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
4643 if (next
== EXT_MAX_BLOCKS
)
4644 flags
|= FIEMAP_EXTENT_LAST
;
4646 ret
= fiemap_fill_next_extent(fieinfo
, logical
, physical
,
4652 return EXT_CONTINUE
;
4654 /* fiemap flags we can handle specified here */
4655 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4657 static int ext4_xattr_fiemap(struct inode
*inode
,
4658 struct fiemap_extent_info
*fieinfo
)
4662 __u32 flags
= FIEMAP_EXTENT_LAST
;
4663 int blockbits
= inode
->i_sb
->s_blocksize_bits
;
4667 if (ext4_test_inode_state(inode
, EXT4_STATE_XATTR
)) {
4668 struct ext4_iloc iloc
;
4669 int offset
; /* offset of xattr in inode */
4671 error
= ext4_get_inode_loc(inode
, &iloc
);
4674 physical
= iloc
.bh
->b_blocknr
<< blockbits
;
4675 offset
= EXT4_GOOD_OLD_INODE_SIZE
+
4676 EXT4_I(inode
)->i_extra_isize
;
4678 length
= EXT4_SB(inode
->i_sb
)->s_inode_size
- offset
;
4679 flags
|= FIEMAP_EXTENT_DATA_INLINE
;
4681 } else { /* external block */
4682 physical
= EXT4_I(inode
)->i_file_acl
<< blockbits
;
4683 length
= inode
->i_sb
->s_blocksize
;
4687 error
= fiemap_fill_next_extent(fieinfo
, 0, physical
,
4689 return (error
< 0 ? error
: 0);
4693 * ext4_ext_punch_hole
4695 * Punches a hole of "length" bytes in a file starting
4698 * @inode: The inode of the file to punch a hole in
4699 * @offset: The starting byte offset of the hole
4700 * @length: The length of the hole
4702 * Returns the number of blocks removed or negative on err
4704 int ext4_ext_punch_hole(struct file
*file
, loff_t offset
, loff_t length
)
4706 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4707 struct super_block
*sb
= inode
->i_sb
;
4708 struct ext4_ext_cache cache_ex
;
4709 ext4_lblk_t first_block
, last_block
, num_blocks
, iblock
, max_blocks
;
4710 struct address_space
*mapping
= inode
->i_mapping
;
4711 struct ext4_map_blocks map
;
4713 loff_t first_page
, last_page
, page_len
;
4714 loff_t first_page_offset
, last_page_offset
;
4715 int ret
, credits
, blocks_released
, err
= 0;
4717 /* No need to punch hole beyond i_size */
4718 if (offset
>= inode
->i_size
)
4722 * If the hole extends beyond i_size, set the hole
4723 * to end after the page that contains i_size
4725 if (offset
+ length
> inode
->i_size
) {
4726 length
= inode
->i_size
+
4727 PAGE_CACHE_SIZE
- (inode
->i_size
& (PAGE_CACHE_SIZE
- 1)) -
4731 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
4732 EXT4_BLOCK_SIZE_BITS(sb
);
4733 last_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
4735 first_page
= (offset
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
4736 last_page
= (offset
+ length
) >> PAGE_CACHE_SHIFT
;
4738 first_page_offset
= first_page
<< PAGE_CACHE_SHIFT
;
4739 last_page_offset
= last_page
<< PAGE_CACHE_SHIFT
;
4742 * Write out all dirty pages to avoid race conditions
4743 * Then release them.
4745 if (mapping
->nrpages
&& mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
4746 err
= filemap_write_and_wait_range(mapping
,
4747 offset
, offset
+ length
- 1);
4753 /* Now release the pages */
4754 if (last_page_offset
> first_page_offset
) {
4755 truncate_inode_pages_range(mapping
, first_page_offset
,
4756 last_page_offset
-1);
4759 /* finish any pending end_io work */
4760 ext4_flush_completed_IO(inode
);
4762 credits
= ext4_writepage_trans_blocks(inode
);
4763 handle
= ext4_journal_start(inode
, credits
);
4765 return PTR_ERR(handle
);
4767 err
= ext4_orphan_add(handle
, inode
);
4772 * Now we need to zero out the non-page-aligned data in the
4773 * pages at the start and tail of the hole, and unmap the buffer
4774 * heads for the block aligned regions of the page that were
4775 * completely zeroed.
4777 if (first_page
> last_page
) {
4779 * If the file space being truncated is contained within a page
4780 * just zero out and unmap the middle of that page
4782 err
= ext4_discard_partial_page_buffers(handle
,
4783 mapping
, offset
, length
, 0);
4789 * zero out and unmap the partial page that contains
4790 * the start of the hole
4792 page_len
= first_page_offset
- offset
;
4794 err
= ext4_discard_partial_page_buffers(handle
, mapping
,
4795 offset
, page_len
, 0);
4801 * zero out and unmap the partial page that contains
4802 * the end of the hole
4804 page_len
= offset
+ length
- last_page_offset
;
4806 err
= ext4_discard_partial_page_buffers(handle
, mapping
,
4807 last_page_offset
, page_len
, 0);
4815 * If i_size is contained in the last page, we need to
4816 * unmap and zero the partial page after i_size
4818 if (inode
->i_size
>> PAGE_CACHE_SHIFT
== last_page
&&
4819 inode
->i_size
% PAGE_CACHE_SIZE
!= 0) {
4821 page_len
= PAGE_CACHE_SIZE
-
4822 (inode
->i_size
& (PAGE_CACHE_SIZE
- 1));
4825 err
= ext4_discard_partial_page_buffers(handle
,
4826 mapping
, inode
->i_size
, page_len
, 0);
4833 /* If there are no blocks to remove, return now */
4834 if (first_block
>= last_block
)
4837 down_write(&EXT4_I(inode
)->i_data_sem
);
4838 ext4_ext_invalidate_cache(inode
);
4839 ext4_discard_preallocations(inode
);
4842 * Loop over all the blocks and identify blocks
4843 * that need to be punched out
4845 iblock
= first_block
;
4846 blocks_released
= 0;
4847 while (iblock
< last_block
) {
4848 max_blocks
= last_block
- iblock
;
4850 memset(&map
, 0, sizeof(map
));
4851 map
.m_lblk
= iblock
;
4852 map
.m_len
= max_blocks
;
4853 ret
= ext4_ext_map_blocks(handle
, inode
, &map
,
4854 EXT4_GET_BLOCKS_PUNCH_OUT_EXT
);
4857 blocks_released
+= ret
;
4859 } else if (ret
== 0) {
4861 * If map blocks could not find the block,
4862 * then it is in a hole. If the hole was
4863 * not already cached, then map blocks should
4864 * put it in the cache. So we can get the hole
4867 memset(&cache_ex
, 0, sizeof(cache_ex
));
4868 if ((ext4_ext_check_cache(inode
, iblock
, &cache_ex
)) &&
4869 !cache_ex
.ec_start
) {
4871 /* The hole is cached */
4872 num_blocks
= cache_ex
.ec_block
+
4873 cache_ex
.ec_len
- iblock
;
4876 /* The block could not be identified */
4881 /* Map blocks error */
4886 if (num_blocks
== 0) {
4887 /* This condition should never happen */
4888 ext_debug("Block lookup failed");
4893 iblock
+= num_blocks
;
4896 if (blocks_released
> 0) {
4897 ext4_ext_invalidate_cache(inode
);
4898 ext4_discard_preallocations(inode
);
4902 ext4_handle_sync(handle
);
4904 up_write(&EXT4_I(inode
)->i_data_sem
);
4907 ext4_orphan_del(handle
, inode
);
4908 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4909 ext4_mark_inode_dirty(handle
, inode
);
4910 ext4_journal_stop(handle
);
4913 int ext4_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4914 __u64 start
, __u64 len
)
4916 ext4_lblk_t start_blk
;
4919 /* fallback to generic here if not in extents fmt */
4920 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4921 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
4924 if (fiemap_check_flags(fieinfo
, EXT4_FIEMAP_FLAGS
))
4927 if (fieinfo
->fi_flags
& FIEMAP_FLAG_XATTR
) {
4928 error
= ext4_xattr_fiemap(inode
, fieinfo
);
4930 ext4_lblk_t len_blks
;
4933 start_blk
= start
>> inode
->i_sb
->s_blocksize_bits
;
4934 last_blk
= (start
+ len
- 1) >> inode
->i_sb
->s_blocksize_bits
;
4935 if (last_blk
>= EXT_MAX_BLOCKS
)
4936 last_blk
= EXT_MAX_BLOCKS
-1;
4937 len_blks
= ((ext4_lblk_t
) last_blk
) - start_blk
+ 1;
4940 * Walk the extent tree gathering extent information.
4941 * ext4_ext_fiemap_cb will push extents back to user.
4943 error
= ext4_ext_walk_space(inode
, start_blk
, len_blks
,
4944 ext4_ext_fiemap_cb
, fieinfo
);