2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/timer.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/jiffies.h>
59 #include <linux/scatterlist.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/semaphore.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
72 /* debounce timing parameters in msecs { interval, duration, timeout } */
73 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
74 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
75 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
77 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
78 u16 heads
, u16 sectors
);
79 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
80 static unsigned int ata_dev_set_feature(struct ata_device
*dev
,
81 u8 enable
, u8 feature
);
82 static void ata_dev_xfermask(struct ata_device
*dev
);
83 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
85 unsigned int ata_print_id
= 1;
86 static struct workqueue_struct
*ata_wq
;
88 struct workqueue_struct
*ata_aux_wq
;
90 int atapi_enabled
= 1;
91 module_param(atapi_enabled
, int, 0444);
92 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
95 module_param(atapi_dmadir
, int, 0444);
96 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
98 int atapi_passthru16
= 1;
99 module_param(atapi_passthru16
, int, 0444);
100 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
103 module_param_named(fua
, libata_fua
, int, 0444);
104 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
106 static int ata_ignore_hpa
;
107 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
108 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
110 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
111 module_param_named(dma
, libata_dma_mask
, int, 0444);
112 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
114 static int ata_probe_timeout
= ATA_TMOUT_INTERNAL
/ HZ
;
115 module_param(ata_probe_timeout
, int, 0444);
116 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
118 int libata_noacpi
= 0;
119 module_param_named(noacpi
, libata_noacpi
, int, 0444);
120 MODULE_PARM_DESC(noacpi
, "Disables the use of ACPI in probe/suspend/resume when set");
122 int libata_allow_tpm
= 0;
123 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
124 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands");
126 MODULE_AUTHOR("Jeff Garzik");
127 MODULE_DESCRIPTION("Library module for ATA devices");
128 MODULE_LICENSE("GPL");
129 MODULE_VERSION(DRV_VERSION
);
133 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
134 * @tf: Taskfile to convert
135 * @pmp: Port multiplier port
136 * @is_cmd: This FIS is for command
137 * @fis: Buffer into which data will output
139 * Converts a standard ATA taskfile to a Serial ATA
140 * FIS structure (Register - Host to Device).
143 * Inherited from caller.
145 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
147 fis
[0] = 0x27; /* Register - Host to Device FIS */
148 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
150 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
152 fis
[2] = tf
->command
;
153 fis
[3] = tf
->feature
;
160 fis
[8] = tf
->hob_lbal
;
161 fis
[9] = tf
->hob_lbam
;
162 fis
[10] = tf
->hob_lbah
;
163 fis
[11] = tf
->hob_feature
;
166 fis
[13] = tf
->hob_nsect
;
177 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
178 * @fis: Buffer from which data will be input
179 * @tf: Taskfile to output
181 * Converts a serial ATA FIS structure to a standard ATA taskfile.
184 * Inherited from caller.
187 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
189 tf
->command
= fis
[2]; /* status */
190 tf
->feature
= fis
[3]; /* error */
197 tf
->hob_lbal
= fis
[8];
198 tf
->hob_lbam
= fis
[9];
199 tf
->hob_lbah
= fis
[10];
202 tf
->hob_nsect
= fis
[13];
205 static const u8 ata_rw_cmds
[] = {
209 ATA_CMD_READ_MULTI_EXT
,
210 ATA_CMD_WRITE_MULTI_EXT
,
214 ATA_CMD_WRITE_MULTI_FUA_EXT
,
218 ATA_CMD_PIO_READ_EXT
,
219 ATA_CMD_PIO_WRITE_EXT
,
232 ATA_CMD_WRITE_FUA_EXT
236 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
237 * @tf: command to examine and configure
238 * @dev: device tf belongs to
240 * Examine the device configuration and tf->flags to calculate
241 * the proper read/write commands and protocol to use.
246 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
250 int index
, fua
, lba48
, write
;
252 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
253 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
254 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
256 if (dev
->flags
& ATA_DFLAG_PIO
) {
257 tf
->protocol
= ATA_PROT_PIO
;
258 index
= dev
->multi_count
? 0 : 8;
259 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
260 /* Unable to use DMA due to host limitation */
261 tf
->protocol
= ATA_PROT_PIO
;
262 index
= dev
->multi_count
? 0 : 8;
264 tf
->protocol
= ATA_PROT_DMA
;
268 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
277 * ata_tf_read_block - Read block address from ATA taskfile
278 * @tf: ATA taskfile of interest
279 * @dev: ATA device @tf belongs to
284 * Read block address from @tf. This function can handle all
285 * three address formats - LBA, LBA48 and CHS. tf->protocol and
286 * flags select the address format to use.
289 * Block address read from @tf.
291 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
295 if (tf
->flags
& ATA_TFLAG_LBA
) {
296 if (tf
->flags
& ATA_TFLAG_LBA48
) {
297 block
|= (u64
)tf
->hob_lbah
<< 40;
298 block
|= (u64
)tf
->hob_lbam
<< 32;
299 block
|= tf
->hob_lbal
<< 24;
301 block
|= (tf
->device
& 0xf) << 24;
303 block
|= tf
->lbah
<< 16;
304 block
|= tf
->lbam
<< 8;
309 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
310 head
= tf
->device
& 0xf;
313 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
320 * ata_build_rw_tf - Build ATA taskfile for given read/write request
321 * @tf: Target ATA taskfile
322 * @dev: ATA device @tf belongs to
323 * @block: Block address
324 * @n_block: Number of blocks
325 * @tf_flags: RW/FUA etc...
331 * Build ATA taskfile @tf for read/write request described by
332 * @block, @n_block, @tf_flags and @tag on @dev.
336 * 0 on success, -ERANGE if the request is too large for @dev,
337 * -EINVAL if the request is invalid.
339 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
340 u64 block
, u32 n_block
, unsigned int tf_flags
,
343 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
344 tf
->flags
|= tf_flags
;
346 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
348 if (!lba_48_ok(block
, n_block
))
351 tf
->protocol
= ATA_PROT_NCQ
;
352 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
354 if (tf
->flags
& ATA_TFLAG_WRITE
)
355 tf
->command
= ATA_CMD_FPDMA_WRITE
;
357 tf
->command
= ATA_CMD_FPDMA_READ
;
359 tf
->nsect
= tag
<< 3;
360 tf
->hob_feature
= (n_block
>> 8) & 0xff;
361 tf
->feature
= n_block
& 0xff;
363 tf
->hob_lbah
= (block
>> 40) & 0xff;
364 tf
->hob_lbam
= (block
>> 32) & 0xff;
365 tf
->hob_lbal
= (block
>> 24) & 0xff;
366 tf
->lbah
= (block
>> 16) & 0xff;
367 tf
->lbam
= (block
>> 8) & 0xff;
368 tf
->lbal
= block
& 0xff;
371 if (tf
->flags
& ATA_TFLAG_FUA
)
372 tf
->device
|= 1 << 7;
373 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
374 tf
->flags
|= ATA_TFLAG_LBA
;
376 if (lba_28_ok(block
, n_block
)) {
378 tf
->device
|= (block
>> 24) & 0xf;
379 } else if (lba_48_ok(block
, n_block
)) {
380 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
384 tf
->flags
|= ATA_TFLAG_LBA48
;
386 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
388 tf
->hob_lbah
= (block
>> 40) & 0xff;
389 tf
->hob_lbam
= (block
>> 32) & 0xff;
390 tf
->hob_lbal
= (block
>> 24) & 0xff;
392 /* request too large even for LBA48 */
395 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
398 tf
->nsect
= n_block
& 0xff;
400 tf
->lbah
= (block
>> 16) & 0xff;
401 tf
->lbam
= (block
>> 8) & 0xff;
402 tf
->lbal
= block
& 0xff;
404 tf
->device
|= ATA_LBA
;
407 u32 sect
, head
, cyl
, track
;
409 /* The request -may- be too large for CHS addressing. */
410 if (!lba_28_ok(block
, n_block
))
413 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
416 /* Convert LBA to CHS */
417 track
= (u32
)block
/ dev
->sectors
;
418 cyl
= track
/ dev
->heads
;
419 head
= track
% dev
->heads
;
420 sect
= (u32
)block
% dev
->sectors
+ 1;
422 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
423 (u32
)block
, track
, cyl
, head
, sect
);
425 /* Check whether the converted CHS can fit.
429 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
432 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
443 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
444 * @pio_mask: pio_mask
445 * @mwdma_mask: mwdma_mask
446 * @udma_mask: udma_mask
448 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
449 * unsigned int xfer_mask.
457 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
458 unsigned long mwdma_mask
,
459 unsigned long udma_mask
)
461 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
462 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
463 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
467 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
468 * @xfer_mask: xfer_mask to unpack
469 * @pio_mask: resulting pio_mask
470 * @mwdma_mask: resulting mwdma_mask
471 * @udma_mask: resulting udma_mask
473 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
474 * Any NULL distination masks will be ignored.
476 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
477 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
480 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
482 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
484 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
487 static const struct ata_xfer_ent
{
491 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
492 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
493 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
498 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
499 * @xfer_mask: xfer_mask of interest
501 * Return matching XFER_* value for @xfer_mask. Only the highest
502 * bit of @xfer_mask is considered.
508 * Matching XFER_* value, 0xff if no match found.
510 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
512 int highbit
= fls(xfer_mask
) - 1;
513 const struct ata_xfer_ent
*ent
;
515 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
516 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
517 return ent
->base
+ highbit
- ent
->shift
;
522 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
523 * @xfer_mode: XFER_* of interest
525 * Return matching xfer_mask for @xfer_mode.
531 * Matching xfer_mask, 0 if no match found.
533 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
535 const struct ata_xfer_ent
*ent
;
537 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
538 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
539 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
540 & ~((1 << ent
->shift
) - 1);
545 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
546 * @xfer_mode: XFER_* of interest
548 * Return matching xfer_shift for @xfer_mode.
554 * Matching xfer_shift, -1 if no match found.
556 int ata_xfer_mode2shift(unsigned long xfer_mode
)
558 const struct ata_xfer_ent
*ent
;
560 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
561 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
567 * ata_mode_string - convert xfer_mask to string
568 * @xfer_mask: mask of bits supported; only highest bit counts.
570 * Determine string which represents the highest speed
571 * (highest bit in @modemask).
577 * Constant C string representing highest speed listed in
578 * @mode_mask, or the constant C string "<n/a>".
580 const char *ata_mode_string(unsigned long xfer_mask
)
582 static const char * const xfer_mode_str
[] = {
606 highbit
= fls(xfer_mask
) - 1;
607 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
608 return xfer_mode_str
[highbit
];
612 static const char *sata_spd_string(unsigned int spd
)
614 static const char * const spd_str
[] = {
619 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
621 return spd_str
[spd
- 1];
624 void ata_dev_disable(struct ata_device
*dev
)
626 if (ata_dev_enabled(dev
)) {
627 if (ata_msg_drv(dev
->link
->ap
))
628 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
629 ata_acpi_on_disable(dev
);
630 ata_down_xfermask_limit(dev
, ATA_DNXFER_FORCE_PIO0
|
636 static int ata_dev_set_dipm(struct ata_device
*dev
, enum link_pm policy
)
638 struct ata_link
*link
= dev
->link
;
639 struct ata_port
*ap
= link
->ap
;
641 unsigned int err_mask
;
645 * disallow DIPM for drivers which haven't set
646 * ATA_FLAG_IPM. This is because when DIPM is enabled,
647 * phy ready will be set in the interrupt status on
648 * state changes, which will cause some drivers to
649 * think there are errors - additionally drivers will
650 * need to disable hot plug.
652 if (!(ap
->flags
& ATA_FLAG_IPM
) || !ata_dev_enabled(dev
)) {
653 ap
->pm_policy
= NOT_AVAILABLE
;
658 * For DIPM, we will only enable it for the
661 * Why? Because Disks are too stupid to know that
662 * If the host rejects a request to go to SLUMBER
663 * they should retry at PARTIAL, and instead it
664 * just would give up. So, for medium_power to
665 * work at all, we need to only allow HIPM.
667 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
673 /* no restrictions on IPM transitions */
674 scontrol
&= ~(0x3 << 8);
675 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
680 if (dev
->flags
& ATA_DFLAG_DIPM
)
681 err_mask
= ata_dev_set_feature(dev
,
682 SETFEATURES_SATA_ENABLE
, SATA_DIPM
);
685 /* allow IPM to PARTIAL */
686 scontrol
&= ~(0x1 << 8);
687 scontrol
|= (0x2 << 8);
688 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
693 * we don't have to disable DIPM since IPM flags
694 * disallow transitions to SLUMBER, which effectively
695 * disable DIPM if it does not support PARTIAL
699 case MAX_PERFORMANCE
:
700 /* disable all IPM transitions */
701 scontrol
|= (0x3 << 8);
702 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
707 * we don't have to disable DIPM since IPM flags
708 * disallow all transitions which effectively
709 * disable DIPM anyway.
714 /* FIXME: handle SET FEATURES failure */
721 * ata_dev_enable_pm - enable SATA interface power management
722 * @dev: device to enable power management
723 * @policy: the link power management policy
725 * Enable SATA Interface power management. This will enable
726 * Device Interface Power Management (DIPM) for min_power
727 * policy, and then call driver specific callbacks for
728 * enabling Host Initiated Power management.
731 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
733 void ata_dev_enable_pm(struct ata_device
*dev
, enum link_pm policy
)
736 struct ata_port
*ap
= dev
->link
->ap
;
738 /* set HIPM first, then DIPM */
739 if (ap
->ops
->enable_pm
)
740 rc
= ap
->ops
->enable_pm(ap
, policy
);
743 rc
= ata_dev_set_dipm(dev
, policy
);
747 ap
->pm_policy
= MAX_PERFORMANCE
;
749 ap
->pm_policy
= policy
;
750 return /* rc */; /* hopefully we can use 'rc' eventually */
755 * ata_dev_disable_pm - disable SATA interface power management
756 * @dev: device to disable power management
758 * Disable SATA Interface power management. This will disable
759 * Device Interface Power Management (DIPM) without changing
760 * policy, call driver specific callbacks for disabling Host
761 * Initiated Power management.
766 static void ata_dev_disable_pm(struct ata_device
*dev
)
768 struct ata_port
*ap
= dev
->link
->ap
;
770 ata_dev_set_dipm(dev
, MAX_PERFORMANCE
);
771 if (ap
->ops
->disable_pm
)
772 ap
->ops
->disable_pm(ap
);
774 #endif /* CONFIG_PM */
776 void ata_lpm_schedule(struct ata_port
*ap
, enum link_pm policy
)
778 ap
->pm_policy
= policy
;
779 ap
->link
.eh_info
.action
|= ATA_EHI_LPM
;
780 ap
->link
.eh_info
.flags
|= ATA_EHI_NO_AUTOPSY
;
781 ata_port_schedule_eh(ap
);
785 static void ata_lpm_enable(struct ata_host
*host
)
787 struct ata_link
*link
;
789 struct ata_device
*dev
;
792 for (i
= 0; i
< host
->n_ports
; i
++) {
794 ata_port_for_each_link(link
, ap
) {
795 ata_link_for_each_dev(dev
, link
)
796 ata_dev_disable_pm(dev
);
801 static void ata_lpm_disable(struct ata_host
*host
)
805 for (i
= 0; i
< host
->n_ports
; i
++) {
806 struct ata_port
*ap
= host
->ports
[i
];
807 ata_lpm_schedule(ap
, ap
->pm_policy
);
810 #endif /* CONFIG_PM */
814 * ata_devchk - PATA device presence detection
815 * @ap: ATA channel to examine
816 * @device: Device to examine (starting at zero)
818 * This technique was originally described in
819 * Hale Landis's ATADRVR (www.ata-atapi.com), and
820 * later found its way into the ATA/ATAPI spec.
822 * Write a pattern to the ATA shadow registers,
823 * and if a device is present, it will respond by
824 * correctly storing and echoing back the
825 * ATA shadow register contents.
831 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
833 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
836 ap
->ops
->dev_select(ap
, device
);
838 iowrite8(0x55, ioaddr
->nsect_addr
);
839 iowrite8(0xaa, ioaddr
->lbal_addr
);
841 iowrite8(0xaa, ioaddr
->nsect_addr
);
842 iowrite8(0x55, ioaddr
->lbal_addr
);
844 iowrite8(0x55, ioaddr
->nsect_addr
);
845 iowrite8(0xaa, ioaddr
->lbal_addr
);
847 nsect
= ioread8(ioaddr
->nsect_addr
);
848 lbal
= ioread8(ioaddr
->lbal_addr
);
850 if ((nsect
== 0x55) && (lbal
== 0xaa))
851 return 1; /* we found a device */
853 return 0; /* nothing found */
857 * ata_dev_classify - determine device type based on ATA-spec signature
858 * @tf: ATA taskfile register set for device to be identified
860 * Determine from taskfile register contents whether a device is
861 * ATA or ATAPI, as per "Signature and persistence" section
862 * of ATA/PI spec (volume 1, sect 5.14).
868 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
869 * %ATA_DEV_UNKNOWN the event of failure.
871 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
873 /* Apple's open source Darwin code hints that some devices only
874 * put a proper signature into the LBA mid/high registers,
875 * So, we only check those. It's sufficient for uniqueness.
877 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
878 * signatures for ATA and ATAPI devices attached on SerialATA,
879 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
880 * spec has never mentioned about using different signatures
881 * for ATA/ATAPI devices. Then, Serial ATA II: Port
882 * Multiplier specification began to use 0x69/0x96 to identify
883 * port multpliers and 0x3c/0xc3 to identify SEMB device.
884 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
885 * 0x69/0x96 shortly and described them as reserved for
888 * We follow the current spec and consider that 0x69/0x96
889 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
891 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
892 DPRINTK("found ATA device by sig\n");
896 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
897 DPRINTK("found ATAPI device by sig\n");
898 return ATA_DEV_ATAPI
;
901 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
902 DPRINTK("found PMP device by sig\n");
906 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
907 printk(KERN_INFO
"ata: SEMB device ignored\n");
908 return ATA_DEV_SEMB_UNSUP
; /* not yet */
911 DPRINTK("unknown device\n");
912 return ATA_DEV_UNKNOWN
;
916 * ata_dev_try_classify - Parse returned ATA device signature
917 * @dev: ATA device to classify (starting at zero)
918 * @present: device seems present
919 * @r_err: Value of error register on completion
921 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
922 * an ATA/ATAPI-defined set of values is placed in the ATA
923 * shadow registers, indicating the results of device detection
926 * Select the ATA device, and read the values from the ATA shadow
927 * registers. Then parse according to the Error register value,
928 * and the spec-defined values examined by ata_dev_classify().
934 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
936 unsigned int ata_dev_try_classify(struct ata_device
*dev
, int present
,
939 struct ata_port
*ap
= dev
->link
->ap
;
940 struct ata_taskfile tf
;
944 ap
->ops
->dev_select(ap
, dev
->devno
);
946 memset(&tf
, 0, sizeof(tf
));
948 ap
->ops
->tf_read(ap
, &tf
);
953 /* see if device passed diags: continue and warn later */
955 /* diagnostic fail : do nothing _YET_ */
956 dev
->horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
959 else if ((dev
->devno
== 0) && (err
== 0x81))
964 /* determine if device is ATA or ATAPI */
965 class = ata_dev_classify(&tf
);
967 if (class == ATA_DEV_UNKNOWN
) {
968 /* If the device failed diagnostic, it's likely to
969 * have reported incorrect device signature too.
970 * Assume ATA device if the device seems present but
971 * device signature is invalid with diagnostic
974 if (present
&& (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
))
977 class = ATA_DEV_NONE
;
978 } else if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
979 class = ATA_DEV_NONE
;
985 * ata_id_string - Convert IDENTIFY DEVICE page into string
986 * @id: IDENTIFY DEVICE results we will examine
987 * @s: string into which data is output
988 * @ofs: offset into identify device page
989 * @len: length of string to return. must be an even number.
991 * The strings in the IDENTIFY DEVICE page are broken up into
992 * 16-bit chunks. Run through the string, and output each
993 * 8-bit chunk linearly, regardless of platform.
999 void ata_id_string(const u16
*id
, unsigned char *s
,
1000 unsigned int ofs
, unsigned int len
)
1019 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1020 * @id: IDENTIFY DEVICE results we will examine
1021 * @s: string into which data is output
1022 * @ofs: offset into identify device page
1023 * @len: length of string to return. must be an odd number.
1025 * This function is identical to ata_id_string except that it
1026 * trims trailing spaces and terminates the resulting string with
1027 * null. @len must be actual maximum length (even number) + 1.
1032 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1033 unsigned int ofs
, unsigned int len
)
1037 WARN_ON(!(len
& 1));
1039 ata_id_string(id
, s
, ofs
, len
- 1);
1041 p
= s
+ strnlen(s
, len
- 1);
1042 while (p
> s
&& p
[-1] == ' ')
1047 static u64
ata_id_n_sectors(const u16
*id
)
1049 if (ata_id_has_lba(id
)) {
1050 if (ata_id_has_lba48(id
))
1051 return ata_id_u64(id
, 100);
1053 return ata_id_u32(id
, 60);
1055 if (ata_id_current_chs_valid(id
))
1056 return ata_id_u32(id
, 57);
1058 return id
[1] * id
[3] * id
[6];
1062 static u64
ata_tf_to_lba48(struct ata_taskfile
*tf
)
1066 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1067 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1068 sectors
|= (tf
->hob_lbal
& 0xff) << 24;
1069 sectors
|= (tf
->lbah
& 0xff) << 16;
1070 sectors
|= (tf
->lbam
& 0xff) << 8;
1071 sectors
|= (tf
->lbal
& 0xff);
1076 static u64
ata_tf_to_lba(struct ata_taskfile
*tf
)
1080 sectors
|= (tf
->device
& 0x0f) << 24;
1081 sectors
|= (tf
->lbah
& 0xff) << 16;
1082 sectors
|= (tf
->lbam
& 0xff) << 8;
1083 sectors
|= (tf
->lbal
& 0xff);
1089 * ata_read_native_max_address - Read native max address
1090 * @dev: target device
1091 * @max_sectors: out parameter for the result native max address
1093 * Perform an LBA48 or LBA28 native size query upon the device in
1097 * 0 on success, -EACCES if command is aborted by the drive.
1098 * -EIO on other errors.
1100 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1102 unsigned int err_mask
;
1103 struct ata_taskfile tf
;
1104 int lba48
= ata_id_has_lba48(dev
->id
);
1106 ata_tf_init(dev
, &tf
);
1108 /* always clear all address registers */
1109 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1112 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1113 tf
.flags
|= ATA_TFLAG_LBA48
;
1115 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1117 tf
.protocol
|= ATA_PROT_NODATA
;
1118 tf
.device
|= ATA_LBA
;
1120 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1122 ata_dev_printk(dev
, KERN_WARNING
, "failed to read native "
1123 "max address (err_mask=0x%x)\n", err_mask
);
1124 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1130 *max_sectors
= ata_tf_to_lba48(&tf
);
1132 *max_sectors
= ata_tf_to_lba(&tf
);
1133 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1139 * ata_set_max_sectors - Set max sectors
1140 * @dev: target device
1141 * @new_sectors: new max sectors value to set for the device
1143 * Set max sectors of @dev to @new_sectors.
1146 * 0 on success, -EACCES if command is aborted or denied (due to
1147 * previous non-volatile SET_MAX) by the drive. -EIO on other
1150 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1152 unsigned int err_mask
;
1153 struct ata_taskfile tf
;
1154 int lba48
= ata_id_has_lba48(dev
->id
);
1158 ata_tf_init(dev
, &tf
);
1160 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1163 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1164 tf
.flags
|= ATA_TFLAG_LBA48
;
1166 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1167 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1168 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1170 tf
.command
= ATA_CMD_SET_MAX
;
1172 tf
.device
|= (new_sectors
>> 24) & 0xf;
1175 tf
.protocol
|= ATA_PROT_NODATA
;
1176 tf
.device
|= ATA_LBA
;
1178 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1179 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1180 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1182 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1184 ata_dev_printk(dev
, KERN_WARNING
, "failed to set "
1185 "max address (err_mask=0x%x)\n", err_mask
);
1186 if (err_mask
== AC_ERR_DEV
&&
1187 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1196 * ata_hpa_resize - Resize a device with an HPA set
1197 * @dev: Device to resize
1199 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1200 * it if required to the full size of the media. The caller must check
1201 * the drive has the HPA feature set enabled.
1204 * 0 on success, -errno on failure.
1206 static int ata_hpa_resize(struct ata_device
*dev
)
1208 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1209 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1210 u64 sectors
= ata_id_n_sectors(dev
->id
);
1214 /* do we need to do it? */
1215 if (dev
->class != ATA_DEV_ATA
||
1216 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1217 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1220 /* read native max address */
1221 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1223 /* If HPA isn't going to be unlocked, skip HPA
1224 * resizing from the next try.
1226 if (!ata_ignore_hpa
) {
1227 ata_dev_printk(dev
, KERN_WARNING
, "HPA support seems "
1228 "broken, will skip HPA handling\n");
1229 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1231 /* we can continue if device aborted the command */
1239 /* nothing to do? */
1240 if (native_sectors
<= sectors
|| !ata_ignore_hpa
) {
1241 if (!print_info
|| native_sectors
== sectors
)
1244 if (native_sectors
> sectors
)
1245 ata_dev_printk(dev
, KERN_INFO
,
1246 "HPA detected: current %llu, native %llu\n",
1247 (unsigned long long)sectors
,
1248 (unsigned long long)native_sectors
);
1249 else if (native_sectors
< sectors
)
1250 ata_dev_printk(dev
, KERN_WARNING
,
1251 "native sectors (%llu) is smaller than "
1253 (unsigned long long)native_sectors
,
1254 (unsigned long long)sectors
);
1258 /* let's unlock HPA */
1259 rc
= ata_set_max_sectors(dev
, native_sectors
);
1260 if (rc
== -EACCES
) {
1261 /* if device aborted the command, skip HPA resizing */
1262 ata_dev_printk(dev
, KERN_WARNING
, "device aborted resize "
1263 "(%llu -> %llu), skipping HPA handling\n",
1264 (unsigned long long)sectors
,
1265 (unsigned long long)native_sectors
);
1266 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1271 /* re-read IDENTIFY data */
1272 rc
= ata_dev_reread_id(dev
, 0);
1274 ata_dev_printk(dev
, KERN_ERR
, "failed to re-read IDENTIFY "
1275 "data after HPA resizing\n");
1280 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1281 ata_dev_printk(dev
, KERN_INFO
,
1282 "HPA unlocked: %llu -> %llu, native %llu\n",
1283 (unsigned long long)sectors
,
1284 (unsigned long long)new_sectors
,
1285 (unsigned long long)native_sectors
);
1292 * ata_noop_dev_select - Select device 0/1 on ATA bus
1293 * @ap: ATA channel to manipulate
1294 * @device: ATA device (numbered from zero) to select
1296 * This function performs no actual function.
1298 * May be used as the dev_select() entry in ata_port_operations.
1303 void ata_noop_dev_select(struct ata_port
*ap
, unsigned int device
)
1309 * ata_std_dev_select - Select device 0/1 on ATA bus
1310 * @ap: ATA channel to manipulate
1311 * @device: ATA device (numbered from zero) to select
1313 * Use the method defined in the ATA specification to
1314 * make either device 0, or device 1, active on the
1315 * ATA channel. Works with both PIO and MMIO.
1317 * May be used as the dev_select() entry in ata_port_operations.
1323 void ata_std_dev_select(struct ata_port
*ap
, unsigned int device
)
1328 tmp
= ATA_DEVICE_OBS
;
1330 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
1332 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
1333 ata_pause(ap
); /* needed; also flushes, for mmio */
1337 * ata_dev_select - Select device 0/1 on ATA bus
1338 * @ap: ATA channel to manipulate
1339 * @device: ATA device (numbered from zero) to select
1340 * @wait: non-zero to wait for Status register BSY bit to clear
1341 * @can_sleep: non-zero if context allows sleeping
1343 * Use the method defined in the ATA specification to
1344 * make either device 0, or device 1, active on the
1347 * This is a high-level version of ata_std_dev_select(),
1348 * which additionally provides the services of inserting
1349 * the proper pauses and status polling, where needed.
1355 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
1356 unsigned int wait
, unsigned int can_sleep
)
1358 if (ata_msg_probe(ap
))
1359 ata_port_printk(ap
, KERN_INFO
, "ata_dev_select: ENTER, "
1360 "device %u, wait %u\n", device
, wait
);
1365 ap
->ops
->dev_select(ap
, device
);
1368 if (can_sleep
&& ap
->link
.device
[device
].class == ATA_DEV_ATAPI
)
1375 * ata_dump_id - IDENTIFY DEVICE info debugging output
1376 * @id: IDENTIFY DEVICE page to dump
1378 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1385 static inline void ata_dump_id(const u16
*id
)
1387 DPRINTK("49==0x%04x "
1397 DPRINTK("80==0x%04x "
1407 DPRINTK("88==0x%04x "
1414 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1415 * @id: IDENTIFY data to compute xfer mask from
1417 * Compute the xfermask for this device. This is not as trivial
1418 * as it seems if we must consider early devices correctly.
1420 * FIXME: pre IDE drive timing (do we care ?).
1428 unsigned long ata_id_xfermask(const u16
*id
)
1430 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1432 /* Usual case. Word 53 indicates word 64 is valid */
1433 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1434 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1438 /* If word 64 isn't valid then Word 51 high byte holds
1439 * the PIO timing number for the maximum. Turn it into
1442 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1443 if (mode
< 5) /* Valid PIO range */
1444 pio_mask
= (2 << mode
) - 1;
1448 /* But wait.. there's more. Design your standards by
1449 * committee and you too can get a free iordy field to
1450 * process. However its the speeds not the modes that
1451 * are supported... Note drivers using the timing API
1452 * will get this right anyway
1456 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1458 if (ata_id_is_cfa(id
)) {
1460 * Process compact flash extended modes
1462 int pio
= id
[163] & 0x7;
1463 int dma
= (id
[163] >> 3) & 7;
1466 pio_mask
|= (1 << 5);
1468 pio_mask
|= (1 << 6);
1470 mwdma_mask
|= (1 << 3);
1472 mwdma_mask
|= (1 << 4);
1476 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1477 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1479 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1483 * ata_pio_queue_task - Queue port_task
1484 * @ap: The ata_port to queue port_task for
1485 * @fn: workqueue function to be scheduled
1486 * @data: data for @fn to use
1487 * @delay: delay time for workqueue function
1489 * Schedule @fn(@data) for execution after @delay jiffies using
1490 * port_task. There is one port_task per port and it's the
1491 * user(low level driver)'s responsibility to make sure that only
1492 * one task is active at any given time.
1494 * libata core layer takes care of synchronization between
1495 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1499 * Inherited from caller.
1501 static void ata_pio_queue_task(struct ata_port
*ap
, void *data
,
1502 unsigned long delay
)
1504 ap
->port_task_data
= data
;
1506 /* may fail if ata_port_flush_task() in progress */
1507 queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
1511 * ata_port_flush_task - Flush port_task
1512 * @ap: The ata_port to flush port_task for
1514 * After this function completes, port_task is guranteed not to
1515 * be running or scheduled.
1518 * Kernel thread context (may sleep)
1520 void ata_port_flush_task(struct ata_port
*ap
)
1524 cancel_rearming_delayed_work(&ap
->port_task
);
1526 if (ata_msg_ctl(ap
))
1527 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __FUNCTION__
);
1530 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1532 struct completion
*waiting
= qc
->private_data
;
1538 * ata_exec_internal_sg - execute libata internal command
1539 * @dev: Device to which the command is sent
1540 * @tf: Taskfile registers for the command and the result
1541 * @cdb: CDB for packet command
1542 * @dma_dir: Data tranfer direction of the command
1543 * @sgl: sg list for the data buffer of the command
1544 * @n_elem: Number of sg entries
1545 * @timeout: Timeout in msecs (0 for default)
1547 * Executes libata internal command with timeout. @tf contains
1548 * command on entry and result on return. Timeout and error
1549 * conditions are reported via return value. No recovery action
1550 * is taken after a command times out. It's caller's duty to
1551 * clean up after timeout.
1554 * None. Should be called with kernel context, might sleep.
1557 * Zero on success, AC_ERR_* mask on failure
1559 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1560 struct ata_taskfile
*tf
, const u8
*cdb
,
1561 int dma_dir
, struct scatterlist
*sgl
,
1562 unsigned int n_elem
, unsigned long timeout
)
1564 struct ata_link
*link
= dev
->link
;
1565 struct ata_port
*ap
= link
->ap
;
1566 u8 command
= tf
->command
;
1567 struct ata_queued_cmd
*qc
;
1568 unsigned int tag
, preempted_tag
;
1569 u32 preempted_sactive
, preempted_qc_active
;
1570 int preempted_nr_active_links
;
1571 DECLARE_COMPLETION_ONSTACK(wait
);
1572 unsigned long flags
;
1573 unsigned int err_mask
;
1576 spin_lock_irqsave(ap
->lock
, flags
);
1578 /* no internal command while frozen */
1579 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1580 spin_unlock_irqrestore(ap
->lock
, flags
);
1581 return AC_ERR_SYSTEM
;
1584 /* initialize internal qc */
1586 /* XXX: Tag 0 is used for drivers with legacy EH as some
1587 * drivers choke if any other tag is given. This breaks
1588 * ata_tag_internal() test for those drivers. Don't use new
1589 * EH stuff without converting to it.
1591 if (ap
->ops
->error_handler
)
1592 tag
= ATA_TAG_INTERNAL
;
1596 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1598 qc
= __ata_qc_from_tag(ap
, tag
);
1606 preempted_tag
= link
->active_tag
;
1607 preempted_sactive
= link
->sactive
;
1608 preempted_qc_active
= ap
->qc_active
;
1609 preempted_nr_active_links
= ap
->nr_active_links
;
1610 link
->active_tag
= ATA_TAG_POISON
;
1613 ap
->nr_active_links
= 0;
1615 /* prepare & issue qc */
1618 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1619 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1620 qc
->dma_dir
= dma_dir
;
1621 if (dma_dir
!= DMA_NONE
) {
1622 unsigned int i
, buflen
= 0;
1623 struct scatterlist
*sg
;
1625 for_each_sg(sgl
, sg
, n_elem
, i
)
1626 buflen
+= sg
->length
;
1628 ata_sg_init(qc
, sgl
, n_elem
);
1629 qc
->nbytes
= buflen
;
1632 qc
->private_data
= &wait
;
1633 qc
->complete_fn
= ata_qc_complete_internal
;
1637 spin_unlock_irqrestore(ap
->lock
, flags
);
1640 timeout
= ata_probe_timeout
* 1000 / HZ
;
1642 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1644 ata_port_flush_task(ap
);
1647 spin_lock_irqsave(ap
->lock
, flags
);
1649 /* We're racing with irq here. If we lose, the
1650 * following test prevents us from completing the qc
1651 * twice. If we win, the port is frozen and will be
1652 * cleaned up by ->post_internal_cmd().
1654 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1655 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1657 if (ap
->ops
->error_handler
)
1658 ata_port_freeze(ap
);
1660 ata_qc_complete(qc
);
1662 if (ata_msg_warn(ap
))
1663 ata_dev_printk(dev
, KERN_WARNING
,
1664 "qc timeout (cmd 0x%x)\n", command
);
1667 spin_unlock_irqrestore(ap
->lock
, flags
);
1670 /* do post_internal_cmd */
1671 if (ap
->ops
->post_internal_cmd
)
1672 ap
->ops
->post_internal_cmd(qc
);
1674 /* perform minimal error analysis */
1675 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1676 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1677 qc
->err_mask
|= AC_ERR_DEV
;
1680 qc
->err_mask
|= AC_ERR_OTHER
;
1682 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1683 qc
->err_mask
&= ~AC_ERR_OTHER
;
1687 spin_lock_irqsave(ap
->lock
, flags
);
1689 *tf
= qc
->result_tf
;
1690 err_mask
= qc
->err_mask
;
1693 link
->active_tag
= preempted_tag
;
1694 link
->sactive
= preempted_sactive
;
1695 ap
->qc_active
= preempted_qc_active
;
1696 ap
->nr_active_links
= preempted_nr_active_links
;
1698 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1699 * Until those drivers are fixed, we detect the condition
1700 * here, fail the command with AC_ERR_SYSTEM and reenable the
1703 * Note that this doesn't change any behavior as internal
1704 * command failure results in disabling the device in the
1705 * higher layer for LLDDs without new reset/EH callbacks.
1707 * Kill the following code as soon as those drivers are fixed.
1709 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1710 err_mask
|= AC_ERR_SYSTEM
;
1714 spin_unlock_irqrestore(ap
->lock
, flags
);
1720 * ata_exec_internal - execute libata internal command
1721 * @dev: Device to which the command is sent
1722 * @tf: Taskfile registers for the command and the result
1723 * @cdb: CDB for packet command
1724 * @dma_dir: Data tranfer direction of the command
1725 * @buf: Data buffer of the command
1726 * @buflen: Length of data buffer
1727 * @timeout: Timeout in msecs (0 for default)
1729 * Wrapper around ata_exec_internal_sg() which takes simple
1730 * buffer instead of sg list.
1733 * None. Should be called with kernel context, might sleep.
1736 * Zero on success, AC_ERR_* mask on failure
1738 unsigned ata_exec_internal(struct ata_device
*dev
,
1739 struct ata_taskfile
*tf
, const u8
*cdb
,
1740 int dma_dir
, void *buf
, unsigned int buflen
,
1741 unsigned long timeout
)
1743 struct scatterlist
*psg
= NULL
, sg
;
1744 unsigned int n_elem
= 0;
1746 if (dma_dir
!= DMA_NONE
) {
1748 sg_init_one(&sg
, buf
, buflen
);
1753 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1758 * ata_do_simple_cmd - execute simple internal command
1759 * @dev: Device to which the command is sent
1760 * @cmd: Opcode to execute
1762 * Execute a 'simple' command, that only consists of the opcode
1763 * 'cmd' itself, without filling any other registers
1766 * Kernel thread context (may sleep).
1769 * Zero on success, AC_ERR_* mask on failure
1771 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1773 struct ata_taskfile tf
;
1775 ata_tf_init(dev
, &tf
);
1778 tf
.flags
|= ATA_TFLAG_DEVICE
;
1779 tf
.protocol
= ATA_PROT_NODATA
;
1781 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1785 * ata_pio_need_iordy - check if iordy needed
1788 * Check if the current speed of the device requires IORDY. Used
1789 * by various controllers for chip configuration.
1792 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1794 /* Controller doesn't support IORDY. Probably a pointless check
1795 as the caller should know this */
1796 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1798 /* PIO3 and higher it is mandatory */
1799 if (adev
->pio_mode
> XFER_PIO_2
)
1801 /* We turn it on when possible */
1802 if (ata_id_has_iordy(adev
->id
))
1808 * ata_pio_mask_no_iordy - Return the non IORDY mask
1811 * Compute the highest mode possible if we are not using iordy. Return
1812 * -1 if no iordy mode is available.
1815 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
1817 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1818 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1819 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1820 /* Is the speed faster than the drive allows non IORDY ? */
1822 /* This is cycle times not frequency - watch the logic! */
1823 if (pio
> 240) /* PIO2 is 240nS per cycle */
1824 return 3 << ATA_SHIFT_PIO
;
1825 return 7 << ATA_SHIFT_PIO
;
1828 return 3 << ATA_SHIFT_PIO
;
1832 * ata_dev_read_id - Read ID data from the specified device
1833 * @dev: target device
1834 * @p_class: pointer to class of the target device (may be changed)
1835 * @flags: ATA_READID_* flags
1836 * @id: buffer to read IDENTIFY data into
1838 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1839 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1840 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1841 * for pre-ATA4 drives.
1843 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1844 * now we abort if we hit that case.
1847 * Kernel thread context (may sleep)
1850 * 0 on success, -errno otherwise.
1852 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1853 unsigned int flags
, u16
*id
)
1855 struct ata_port
*ap
= dev
->link
->ap
;
1856 unsigned int class = *p_class
;
1857 struct ata_taskfile tf
;
1858 unsigned int err_mask
= 0;
1860 int may_fallback
= 1, tried_spinup
= 0;
1863 if (ata_msg_ctl(ap
))
1864 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
1866 ata_dev_select(ap
, dev
->devno
, 1, 1); /* select device 0/1 */
1868 ata_tf_init(dev
, &tf
);
1872 tf
.command
= ATA_CMD_ID_ATA
;
1875 tf
.command
= ATA_CMD_ID_ATAPI
;
1879 reason
= "unsupported class";
1883 tf
.protocol
= ATA_PROT_PIO
;
1885 /* Some devices choke if TF registers contain garbage. Make
1886 * sure those are properly initialized.
1888 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1890 /* Device presence detection is unreliable on some
1891 * controllers. Always poll IDENTIFY if available.
1893 tf
.flags
|= ATA_TFLAG_POLLING
;
1895 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
1896 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
1898 if (err_mask
& AC_ERR_NODEV_HINT
) {
1899 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1900 ap
->print_id
, dev
->devno
);
1904 /* Device or controller might have reported the wrong
1905 * device class. Give a shot at the other IDENTIFY if
1906 * the current one is aborted by the device.
1909 (err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
1912 if (class == ATA_DEV_ATA
)
1913 class = ATA_DEV_ATAPI
;
1915 class = ATA_DEV_ATA
;
1920 reason
= "I/O error";
1924 /* Falling back doesn't make sense if ID data was read
1925 * successfully at least once.
1929 swap_buf_le16(id
, ATA_ID_WORDS
);
1933 reason
= "device reports invalid type";
1935 if (class == ATA_DEV_ATA
) {
1936 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1939 if (ata_id_is_ata(id
))
1943 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
1946 * Drive powered-up in standby mode, and requires a specific
1947 * SET_FEATURES spin-up subcommand before it will accept
1948 * anything other than the original IDENTIFY command.
1950 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
1951 if (err_mask
&& id
[2] != 0x738c) {
1953 reason
= "SPINUP failed";
1957 * If the drive initially returned incomplete IDENTIFY info,
1958 * we now must reissue the IDENTIFY command.
1960 if (id
[2] == 0x37c8)
1964 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
1966 * The exact sequence expected by certain pre-ATA4 drives is:
1968 * IDENTIFY (optional in early ATA)
1969 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1971 * Some drives were very specific about that exact sequence.
1973 * Note that ATA4 says lba is mandatory so the second check
1974 * shoud never trigger.
1976 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
1977 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
1980 reason
= "INIT_DEV_PARAMS failed";
1984 /* current CHS translation info (id[53-58]) might be
1985 * changed. reread the identify device info.
1987 flags
&= ~ATA_READID_POSTRESET
;
1997 if (ata_msg_warn(ap
))
1998 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
1999 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
2003 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2005 struct ata_port
*ap
= dev
->link
->ap
;
2006 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2009 static void ata_dev_config_ncq(struct ata_device
*dev
,
2010 char *desc
, size_t desc_sz
)
2012 struct ata_port
*ap
= dev
->link
->ap
;
2013 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2015 if (!ata_id_has_ncq(dev
->id
)) {
2019 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2020 snprintf(desc
, desc_sz
, "NCQ (not used)");
2023 if (ap
->flags
& ATA_FLAG_NCQ
) {
2024 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2025 dev
->flags
|= ATA_DFLAG_NCQ
;
2028 if (hdepth
>= ddepth
)
2029 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
2031 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
2035 * ata_dev_configure - Configure the specified ATA/ATAPI device
2036 * @dev: Target device to configure
2038 * Configure @dev according to @dev->id. Generic and low-level
2039 * driver specific fixups are also applied.
2042 * Kernel thread context (may sleep)
2045 * 0 on success, -errno otherwise
2047 int ata_dev_configure(struct ata_device
*dev
)
2049 struct ata_port
*ap
= dev
->link
->ap
;
2050 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2051 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2052 const u16
*id
= dev
->id
;
2053 unsigned long xfer_mask
;
2054 char revbuf
[7]; /* XYZ-99\0 */
2055 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2056 char modelbuf
[ATA_ID_PROD_LEN
+1];
2059 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2060 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
2065 if (ata_msg_probe(ap
))
2066 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
2069 dev
->horkage
|= ata_dev_blacklisted(dev
);
2071 /* let ACPI work its magic */
2072 rc
= ata_acpi_on_devcfg(dev
);
2076 /* massage HPA, do it early as it might change IDENTIFY data */
2077 rc
= ata_hpa_resize(dev
);
2081 /* print device capabilities */
2082 if (ata_msg_probe(ap
))
2083 ata_dev_printk(dev
, KERN_DEBUG
,
2084 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2085 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2087 id
[49], id
[82], id
[83], id
[84],
2088 id
[85], id
[86], id
[87], id
[88]);
2090 /* initialize to-be-configured parameters */
2091 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2092 dev
->max_sectors
= 0;
2100 * common ATA, ATAPI feature tests
2103 /* find max transfer mode; for printk only */
2104 xfer_mask
= ata_id_xfermask(id
);
2106 if (ata_msg_probe(ap
))
2109 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2110 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2113 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2116 /* ATA-specific feature tests */
2117 if (dev
->class == ATA_DEV_ATA
) {
2118 if (ata_id_is_cfa(id
)) {
2119 if (id
[162] & 1) /* CPRM may make this media unusable */
2120 ata_dev_printk(dev
, KERN_WARNING
,
2121 "supports DRM functions and may "
2122 "not be fully accessable.\n");
2123 snprintf(revbuf
, 7, "CFA");
2125 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2126 /* Warn the user if the device has TPM extensions */
2127 if (ata_id_has_tpm(id
))
2128 ata_dev_printk(dev
, KERN_WARNING
,
2129 "supports DRM functions and may "
2130 "not be fully accessable.\n");
2133 dev
->n_sectors
= ata_id_n_sectors(id
);
2135 if (dev
->id
[59] & 0x100)
2136 dev
->multi_count
= dev
->id
[59] & 0xff;
2138 if (ata_id_has_lba(id
)) {
2139 const char *lba_desc
;
2143 dev
->flags
|= ATA_DFLAG_LBA
;
2144 if (ata_id_has_lba48(id
)) {
2145 dev
->flags
|= ATA_DFLAG_LBA48
;
2148 if (dev
->n_sectors
>= (1UL << 28) &&
2149 ata_id_has_flush_ext(id
))
2150 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2154 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2156 /* print device info to dmesg */
2157 if (ata_msg_drv(ap
) && print_info
) {
2158 ata_dev_printk(dev
, KERN_INFO
,
2159 "%s: %s, %s, max %s\n",
2160 revbuf
, modelbuf
, fwrevbuf
,
2161 ata_mode_string(xfer_mask
));
2162 ata_dev_printk(dev
, KERN_INFO
,
2163 "%Lu sectors, multi %u: %s %s\n",
2164 (unsigned long long)dev
->n_sectors
,
2165 dev
->multi_count
, lba_desc
, ncq_desc
);
2170 /* Default translation */
2171 dev
->cylinders
= id
[1];
2173 dev
->sectors
= id
[6];
2175 if (ata_id_current_chs_valid(id
)) {
2176 /* Current CHS translation is valid. */
2177 dev
->cylinders
= id
[54];
2178 dev
->heads
= id
[55];
2179 dev
->sectors
= id
[56];
2182 /* print device info to dmesg */
2183 if (ata_msg_drv(ap
) && print_info
) {
2184 ata_dev_printk(dev
, KERN_INFO
,
2185 "%s: %s, %s, max %s\n",
2186 revbuf
, modelbuf
, fwrevbuf
,
2187 ata_mode_string(xfer_mask
));
2188 ata_dev_printk(dev
, KERN_INFO
,
2189 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2190 (unsigned long long)dev
->n_sectors
,
2191 dev
->multi_count
, dev
->cylinders
,
2192 dev
->heads
, dev
->sectors
);
2199 /* ATAPI-specific feature tests */
2200 else if (dev
->class == ATA_DEV_ATAPI
) {
2201 const char *cdb_intr_string
= "";
2202 const char *atapi_an_string
= "";
2205 rc
= atapi_cdb_len(id
);
2206 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2207 if (ata_msg_warn(ap
))
2208 ata_dev_printk(dev
, KERN_WARNING
,
2209 "unsupported CDB len\n");
2213 dev
->cdb_len
= (unsigned int) rc
;
2215 /* Enable ATAPI AN if both the host and device have
2216 * the support. If PMP is attached, SNTF is required
2217 * to enable ATAPI AN to discern between PHY status
2218 * changed notifications and ATAPI ANs.
2220 if ((ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2221 (!ap
->nr_pmp_links
||
2222 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2223 unsigned int err_mask
;
2225 /* issue SET feature command to turn this on */
2226 err_mask
= ata_dev_set_feature(dev
,
2227 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2229 ata_dev_printk(dev
, KERN_ERR
,
2230 "failed to enable ATAPI AN "
2231 "(err_mask=0x%x)\n", err_mask
);
2233 dev
->flags
|= ATA_DFLAG_AN
;
2234 atapi_an_string
= ", ATAPI AN";
2238 if (ata_id_cdb_intr(dev
->id
)) {
2239 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2240 cdb_intr_string
= ", CDB intr";
2243 /* print device info to dmesg */
2244 if (ata_msg_drv(ap
) && print_info
)
2245 ata_dev_printk(dev
, KERN_INFO
,
2246 "ATAPI: %s, %s, max %s%s%s\n",
2248 ata_mode_string(xfer_mask
),
2249 cdb_intr_string
, atapi_an_string
);
2252 /* determine max_sectors */
2253 dev
->max_sectors
= ATA_MAX_SECTORS
;
2254 if (dev
->flags
& ATA_DFLAG_LBA48
)
2255 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2257 if (!(dev
->horkage
& ATA_HORKAGE_IPM
)) {
2258 if (ata_id_has_hipm(dev
->id
))
2259 dev
->flags
|= ATA_DFLAG_HIPM
;
2260 if (ata_id_has_dipm(dev
->id
))
2261 dev
->flags
|= ATA_DFLAG_DIPM
;
2264 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2266 if (ata_dev_knobble(dev
)) {
2267 if (ata_msg_drv(ap
) && print_info
)
2268 ata_dev_printk(dev
, KERN_INFO
,
2269 "applying bridge limits\n");
2270 dev
->udma_mask
&= ATA_UDMA5
;
2271 dev
->max_sectors
= ATA_MAX_SECTORS
;
2274 if ((dev
->class == ATA_DEV_ATAPI
) &&
2275 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2276 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2277 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2280 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2281 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2284 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_IPM
) {
2285 dev
->horkage
|= ATA_HORKAGE_IPM
;
2287 /* reset link pm_policy for this port to no pm */
2288 ap
->pm_policy
= MAX_PERFORMANCE
;
2291 if (ap
->ops
->dev_config
)
2292 ap
->ops
->dev_config(dev
);
2294 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2295 /* Let the user know. We don't want to disallow opens for
2296 rescue purposes, or in case the vendor is just a blithering
2297 idiot. Do this after the dev_config call as some controllers
2298 with buggy firmware may want to avoid reporting false device
2302 ata_dev_printk(dev
, KERN_WARNING
,
2303 "Drive reports diagnostics failure. This may indicate a drive\n");
2304 ata_dev_printk(dev
, KERN_WARNING
,
2305 "fault or invalid emulation. Contact drive vendor for information.\n");
2309 if (ata_msg_probe(ap
))
2310 ata_dev_printk(dev
, KERN_DEBUG
, "%s: EXIT, drv_stat = 0x%x\n",
2311 __FUNCTION__
, ata_chk_status(ap
));
2315 if (ata_msg_probe(ap
))
2316 ata_dev_printk(dev
, KERN_DEBUG
,
2317 "%s: EXIT, err\n", __FUNCTION__
);
2322 * ata_cable_40wire - return 40 wire cable type
2325 * Helper method for drivers which want to hardwire 40 wire cable
2329 int ata_cable_40wire(struct ata_port
*ap
)
2331 return ATA_CBL_PATA40
;
2335 * ata_cable_80wire - return 80 wire cable type
2338 * Helper method for drivers which want to hardwire 80 wire cable
2342 int ata_cable_80wire(struct ata_port
*ap
)
2344 return ATA_CBL_PATA80
;
2348 * ata_cable_unknown - return unknown PATA cable.
2351 * Helper method for drivers which have no PATA cable detection.
2354 int ata_cable_unknown(struct ata_port
*ap
)
2356 return ATA_CBL_PATA_UNK
;
2360 * ata_cable_ignore - return ignored PATA cable.
2363 * Helper method for drivers which don't use cable type to limit
2366 int ata_cable_ignore(struct ata_port
*ap
)
2368 return ATA_CBL_PATA_IGN
;
2372 * ata_cable_sata - return SATA cable type
2375 * Helper method for drivers which have SATA cables
2378 int ata_cable_sata(struct ata_port
*ap
)
2380 return ATA_CBL_SATA
;
2384 * ata_bus_probe - Reset and probe ATA bus
2387 * Master ATA bus probing function. Initiates a hardware-dependent
2388 * bus reset, then attempts to identify any devices found on
2392 * PCI/etc. bus probe sem.
2395 * Zero on success, negative errno otherwise.
2398 int ata_bus_probe(struct ata_port
*ap
)
2400 unsigned int classes
[ATA_MAX_DEVICES
];
2401 int tries
[ATA_MAX_DEVICES
];
2403 struct ata_device
*dev
;
2407 ata_link_for_each_dev(dev
, &ap
->link
)
2408 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2411 ata_link_for_each_dev(dev
, &ap
->link
) {
2412 /* If we issue an SRST then an ATA drive (not ATAPI)
2413 * may change configuration and be in PIO0 timing. If
2414 * we do a hard reset (or are coming from power on)
2415 * this is true for ATA or ATAPI. Until we've set a
2416 * suitable controller mode we should not touch the
2417 * bus as we may be talking too fast.
2419 dev
->pio_mode
= XFER_PIO_0
;
2421 /* If the controller has a pio mode setup function
2422 * then use it to set the chipset to rights. Don't
2423 * touch the DMA setup as that will be dealt with when
2424 * configuring devices.
2426 if (ap
->ops
->set_piomode
)
2427 ap
->ops
->set_piomode(ap
, dev
);
2430 /* reset and determine device classes */
2431 ap
->ops
->phy_reset(ap
);
2433 ata_link_for_each_dev(dev
, &ap
->link
) {
2434 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2435 dev
->class != ATA_DEV_UNKNOWN
)
2436 classes
[dev
->devno
] = dev
->class;
2438 classes
[dev
->devno
] = ATA_DEV_NONE
;
2440 dev
->class = ATA_DEV_UNKNOWN
;
2445 /* read IDENTIFY page and configure devices. We have to do the identify
2446 specific sequence bass-ackwards so that PDIAG- is released by
2449 ata_link_for_each_dev(dev
, &ap
->link
) {
2450 if (tries
[dev
->devno
])
2451 dev
->class = classes
[dev
->devno
];
2453 if (!ata_dev_enabled(dev
))
2456 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2462 /* Now ask for the cable type as PDIAG- should have been released */
2463 if (ap
->ops
->cable_detect
)
2464 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2466 /* We may have SATA bridge glue hiding here irrespective of the
2467 reported cable types and sensed types */
2468 ata_link_for_each_dev(dev
, &ap
->link
) {
2469 if (!ata_dev_enabled(dev
))
2471 /* SATA drives indicate we have a bridge. We don't know which
2472 end of the link the bridge is which is a problem */
2473 if (ata_id_is_sata(dev
->id
))
2474 ap
->cbl
= ATA_CBL_SATA
;
2477 /* After the identify sequence we can now set up the devices. We do
2478 this in the normal order so that the user doesn't get confused */
2480 ata_link_for_each_dev(dev
, &ap
->link
) {
2481 if (!ata_dev_enabled(dev
))
2484 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2485 rc
= ata_dev_configure(dev
);
2486 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2491 /* configure transfer mode */
2492 rc
= ata_set_mode(&ap
->link
, &dev
);
2496 ata_link_for_each_dev(dev
, &ap
->link
)
2497 if (ata_dev_enabled(dev
))
2500 /* no device present, disable port */
2501 ata_port_disable(ap
);
2505 tries
[dev
->devno
]--;
2509 /* eeek, something went very wrong, give up */
2510 tries
[dev
->devno
] = 0;
2514 /* give it just one more chance */
2515 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2517 if (tries
[dev
->devno
] == 1) {
2518 /* This is the last chance, better to slow
2519 * down than lose it.
2521 sata_down_spd_limit(&ap
->link
);
2522 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2526 if (!tries
[dev
->devno
])
2527 ata_dev_disable(dev
);
2533 * ata_port_probe - Mark port as enabled
2534 * @ap: Port for which we indicate enablement
2536 * Modify @ap data structure such that the system
2537 * thinks that the entire port is enabled.
2539 * LOCKING: host lock, or some other form of
2543 void ata_port_probe(struct ata_port
*ap
)
2545 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2549 * sata_print_link_status - Print SATA link status
2550 * @link: SATA link to printk link status about
2552 * This function prints link speed and status of a SATA link.
2557 void sata_print_link_status(struct ata_link
*link
)
2559 u32 sstatus
, scontrol
, tmp
;
2561 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2563 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2565 if (ata_link_online(link
)) {
2566 tmp
= (sstatus
>> 4) & 0xf;
2567 ata_link_printk(link
, KERN_INFO
,
2568 "SATA link up %s (SStatus %X SControl %X)\n",
2569 sata_spd_string(tmp
), sstatus
, scontrol
);
2571 ata_link_printk(link
, KERN_INFO
,
2572 "SATA link down (SStatus %X SControl %X)\n",
2578 * ata_dev_pair - return other device on cable
2581 * Obtain the other device on the same cable, or if none is
2582 * present NULL is returned
2585 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2587 struct ata_link
*link
= adev
->link
;
2588 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2589 if (!ata_dev_enabled(pair
))
2595 * ata_port_disable - Disable port.
2596 * @ap: Port to be disabled.
2598 * Modify @ap data structure such that the system
2599 * thinks that the entire port is disabled, and should
2600 * never attempt to probe or communicate with devices
2603 * LOCKING: host lock, or some other form of
2607 void ata_port_disable(struct ata_port
*ap
)
2609 ap
->link
.device
[0].class = ATA_DEV_NONE
;
2610 ap
->link
.device
[1].class = ATA_DEV_NONE
;
2611 ap
->flags
|= ATA_FLAG_DISABLED
;
2615 * sata_down_spd_limit - adjust SATA spd limit downward
2616 * @link: Link to adjust SATA spd limit for
2618 * Adjust SATA spd limit of @link downward. Note that this
2619 * function only adjusts the limit. The change must be applied
2620 * using sata_set_spd().
2623 * Inherited from caller.
2626 * 0 on success, negative errno on failure
2628 int sata_down_spd_limit(struct ata_link
*link
)
2630 u32 sstatus
, spd
, mask
;
2633 if (!sata_scr_valid(link
))
2636 /* If SCR can be read, use it to determine the current SPD.
2637 * If not, use cached value in link->sata_spd.
2639 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2641 spd
= (sstatus
>> 4) & 0xf;
2643 spd
= link
->sata_spd
;
2645 mask
= link
->sata_spd_limit
;
2649 /* unconditionally mask off the highest bit */
2650 highbit
= fls(mask
) - 1;
2651 mask
&= ~(1 << highbit
);
2653 /* Mask off all speeds higher than or equal to the current
2654 * one. Force 1.5Gbps if current SPD is not available.
2657 mask
&= (1 << (spd
- 1)) - 1;
2661 /* were we already at the bottom? */
2665 link
->sata_spd_limit
= mask
;
2667 ata_link_printk(link
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2668 sata_spd_string(fls(mask
)));
2673 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
2675 struct ata_link
*host_link
= &link
->ap
->link
;
2676 u32 limit
, target
, spd
;
2678 limit
= link
->sata_spd_limit
;
2680 /* Don't configure downstream link faster than upstream link.
2681 * It doesn't speed up anything and some PMPs choke on such
2684 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
2685 limit
&= (1 << host_link
->sata_spd
) - 1;
2687 if (limit
== UINT_MAX
)
2690 target
= fls(limit
);
2692 spd
= (*scontrol
>> 4) & 0xf;
2693 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
2695 return spd
!= target
;
2699 * sata_set_spd_needed - is SATA spd configuration needed
2700 * @link: Link in question
2702 * Test whether the spd limit in SControl matches
2703 * @link->sata_spd_limit. This function is used to determine
2704 * whether hardreset is necessary to apply SATA spd
2708 * Inherited from caller.
2711 * 1 if SATA spd configuration is needed, 0 otherwise.
2713 int sata_set_spd_needed(struct ata_link
*link
)
2717 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
2720 return __sata_set_spd_needed(link
, &scontrol
);
2724 * sata_set_spd - set SATA spd according to spd limit
2725 * @link: Link to set SATA spd for
2727 * Set SATA spd of @link according to sata_spd_limit.
2730 * Inherited from caller.
2733 * 0 if spd doesn't need to be changed, 1 if spd has been
2734 * changed. Negative errno if SCR registers are inaccessible.
2736 int sata_set_spd(struct ata_link
*link
)
2741 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
2744 if (!__sata_set_spd_needed(link
, &scontrol
))
2747 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
2754 * This mode timing computation functionality is ported over from
2755 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2758 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2759 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2760 * for UDMA6, which is currently supported only by Maxtor drives.
2762 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2765 static const struct ata_timing ata_timing
[] = {
2766 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2767 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
2768 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
2769 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
2770 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
2771 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
2772 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
2773 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
2775 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
2776 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
2777 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
2779 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
2780 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
2781 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
2782 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
2783 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
2785 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2786 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
2787 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
2788 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
2789 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
2790 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
2791 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
2792 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
2797 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2798 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2800 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
2802 q
->setup
= EZ(t
->setup
* 1000, T
);
2803 q
->act8b
= EZ(t
->act8b
* 1000, T
);
2804 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
2805 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
2806 q
->active
= EZ(t
->active
* 1000, T
);
2807 q
->recover
= EZ(t
->recover
* 1000, T
);
2808 q
->cycle
= EZ(t
->cycle
* 1000, T
);
2809 q
->udma
= EZ(t
->udma
* 1000, UT
);
2812 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
2813 struct ata_timing
*m
, unsigned int what
)
2815 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
2816 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
2817 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
2818 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
2819 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
2820 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
2821 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
2822 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
2825 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
2827 const struct ata_timing
*t
= ata_timing
;
2829 while (xfer_mode
> t
->mode
)
2832 if (xfer_mode
== t
->mode
)
2837 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
2838 struct ata_timing
*t
, int T
, int UT
)
2840 const struct ata_timing
*s
;
2841 struct ata_timing p
;
2847 if (!(s
= ata_timing_find_mode(speed
)))
2850 memcpy(t
, s
, sizeof(*s
));
2853 * If the drive is an EIDE drive, it can tell us it needs extended
2854 * PIO/MW_DMA cycle timing.
2857 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
2858 memset(&p
, 0, sizeof(p
));
2859 if (speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
2860 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
2861 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
2862 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
2863 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
2865 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
2869 * Convert the timing to bus clock counts.
2872 ata_timing_quantize(t
, t
, T
, UT
);
2875 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2876 * S.M.A.R.T * and some other commands. We have to ensure that the
2877 * DMA cycle timing is slower/equal than the fastest PIO timing.
2880 if (speed
> XFER_PIO_6
) {
2881 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
2882 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
2886 * Lengthen active & recovery time so that cycle time is correct.
2889 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
2890 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
2891 t
->rec8b
= t
->cyc8b
- t
->act8b
;
2894 if (t
->active
+ t
->recover
< t
->cycle
) {
2895 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
2896 t
->recover
= t
->cycle
- t
->active
;
2899 /* In a few cases quantisation may produce enough errors to
2900 leave t->cycle too low for the sum of active and recovery
2901 if so we must correct this */
2902 if (t
->active
+ t
->recover
> t
->cycle
)
2903 t
->cycle
= t
->active
+ t
->recover
;
2909 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
2910 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
2911 * @cycle: cycle duration in ns
2913 * Return matching xfer mode for @cycle. The returned mode is of
2914 * the transfer type specified by @xfer_shift. If @cycle is too
2915 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
2916 * than the fastest known mode, the fasted mode is returned.
2922 * Matching xfer_mode, 0xff if no match found.
2924 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
2926 u8 base_mode
= 0xff, last_mode
= 0xff;
2927 const struct ata_xfer_ent
*ent
;
2928 const struct ata_timing
*t
;
2930 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
2931 if (ent
->shift
== xfer_shift
)
2932 base_mode
= ent
->base
;
2934 for (t
= ata_timing_find_mode(base_mode
);
2935 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
2936 unsigned short this_cycle
;
2938 switch (xfer_shift
) {
2940 case ATA_SHIFT_MWDMA
:
2941 this_cycle
= t
->cycle
;
2943 case ATA_SHIFT_UDMA
:
2944 this_cycle
= t
->udma
;
2950 if (cycle
> this_cycle
)
2953 last_mode
= t
->mode
;
2960 * ata_down_xfermask_limit - adjust dev xfer masks downward
2961 * @dev: Device to adjust xfer masks
2962 * @sel: ATA_DNXFER_* selector
2964 * Adjust xfer masks of @dev downward. Note that this function
2965 * does not apply the change. Invoking ata_set_mode() afterwards
2966 * will apply the limit.
2969 * Inherited from caller.
2972 * 0 on success, negative errno on failure
2974 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
2977 unsigned long orig_mask
, xfer_mask
;
2978 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
2981 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
2982 sel
&= ~ATA_DNXFER_QUIET
;
2984 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
2987 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
2990 case ATA_DNXFER_PIO
:
2991 highbit
= fls(pio_mask
) - 1;
2992 pio_mask
&= ~(1 << highbit
);
2995 case ATA_DNXFER_DMA
:
2997 highbit
= fls(udma_mask
) - 1;
2998 udma_mask
&= ~(1 << highbit
);
3001 } else if (mwdma_mask
) {
3002 highbit
= fls(mwdma_mask
) - 1;
3003 mwdma_mask
&= ~(1 << highbit
);
3009 case ATA_DNXFER_40C
:
3010 udma_mask
&= ATA_UDMA_MASK_40C
;
3013 case ATA_DNXFER_FORCE_PIO0
:
3015 case ATA_DNXFER_FORCE_PIO
:
3024 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3026 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3030 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3031 snprintf(buf
, sizeof(buf
), "%s:%s",
3032 ata_mode_string(xfer_mask
),
3033 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3035 snprintf(buf
, sizeof(buf
), "%s",
3036 ata_mode_string(xfer_mask
));
3038 ata_dev_printk(dev
, KERN_WARNING
,
3039 "limiting speed to %s\n", buf
);
3042 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3048 static int ata_dev_set_mode(struct ata_device
*dev
)
3050 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3051 unsigned int err_mask
;
3054 dev
->flags
&= ~ATA_DFLAG_PIO
;
3055 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3056 dev
->flags
|= ATA_DFLAG_PIO
;
3058 err_mask
= ata_dev_set_xfermode(dev
);
3060 /* Old CFA may refuse this command, which is just fine */
3061 if (dev
->xfer_shift
== ATA_SHIFT_PIO
&& ata_id_is_cfa(dev
->id
))
3062 err_mask
&= ~AC_ERR_DEV
;
3064 /* Some very old devices and some bad newer ones fail any kind of
3065 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3066 if (dev
->xfer_shift
== ATA_SHIFT_PIO
&& !ata_id_has_iordy(dev
->id
) &&
3067 dev
->pio_mode
<= XFER_PIO_2
)
3068 err_mask
&= ~AC_ERR_DEV
;
3070 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3071 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3072 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3073 dev
->dma_mode
== XFER_MW_DMA_0
&&
3074 (dev
->id
[63] >> 8) & 1)
3075 err_mask
&= ~AC_ERR_DEV
;
3078 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
3079 "(err_mask=0x%x)\n", err_mask
);
3083 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3084 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3085 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3089 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3090 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3092 ata_dev_printk(dev
, KERN_INFO
, "configured for %s\n",
3093 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)));
3098 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3099 * @link: link on which timings will be programmed
3100 * @r_failed_dev: out paramter for failed device
3102 * Standard implementation of the function used to tune and set
3103 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3104 * ata_dev_set_mode() fails, pointer to the failing device is
3105 * returned in @r_failed_dev.
3108 * PCI/etc. bus probe sem.
3111 * 0 on success, negative errno otherwise
3114 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3116 struct ata_port
*ap
= link
->ap
;
3117 struct ata_device
*dev
;
3118 int rc
= 0, used_dma
= 0, found
= 0;
3120 /* step 1: calculate xfer_mask */
3121 ata_link_for_each_dev(dev
, link
) {
3122 unsigned long pio_mask
, dma_mask
;
3123 unsigned int mode_mask
;
3125 if (!ata_dev_enabled(dev
))
3128 mode_mask
= ATA_DMA_MASK_ATA
;
3129 if (dev
->class == ATA_DEV_ATAPI
)
3130 mode_mask
= ATA_DMA_MASK_ATAPI
;
3131 else if (ata_id_is_cfa(dev
->id
))
3132 mode_mask
= ATA_DMA_MASK_CFA
;
3134 ata_dev_xfermask(dev
);
3136 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3137 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3139 if (libata_dma_mask
& mode_mask
)
3140 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3144 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3145 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3148 if (dev
->dma_mode
!= 0xff)
3154 /* step 2: always set host PIO timings */
3155 ata_link_for_each_dev(dev
, link
) {
3156 if (!ata_dev_enabled(dev
))
3159 if (dev
->pio_mode
== 0xff) {
3160 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
3165 dev
->xfer_mode
= dev
->pio_mode
;
3166 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3167 if (ap
->ops
->set_piomode
)
3168 ap
->ops
->set_piomode(ap
, dev
);
3171 /* step 3: set host DMA timings */
3172 ata_link_for_each_dev(dev
, link
) {
3173 if (!ata_dev_enabled(dev
) || dev
->dma_mode
== 0xff)
3176 dev
->xfer_mode
= dev
->dma_mode
;
3177 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3178 if (ap
->ops
->set_dmamode
)
3179 ap
->ops
->set_dmamode(ap
, dev
);
3182 /* step 4: update devices' xfer mode */
3183 ata_link_for_each_dev(dev
, link
) {
3184 /* don't update suspended devices' xfer mode */
3185 if (!ata_dev_enabled(dev
))
3188 rc
= ata_dev_set_mode(dev
);
3193 /* Record simplex status. If we selected DMA then the other
3194 * host channels are not permitted to do so.
3196 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3197 ap
->host
->simplex_claimed
= ap
;
3201 *r_failed_dev
= dev
;
3206 * ata_tf_to_host - issue ATA taskfile to host controller
3207 * @ap: port to which command is being issued
3208 * @tf: ATA taskfile register set
3210 * Issues ATA taskfile register set to ATA host controller,
3211 * with proper synchronization with interrupt handler and
3215 * spin_lock_irqsave(host lock)
3218 static inline void ata_tf_to_host(struct ata_port
*ap
,
3219 const struct ata_taskfile
*tf
)
3221 ap
->ops
->tf_load(ap
, tf
);
3222 ap
->ops
->exec_command(ap
, tf
);
3226 * ata_busy_sleep - sleep until BSY clears, or timeout
3227 * @ap: port containing status register to be polled
3228 * @tmout_pat: impatience timeout
3229 * @tmout: overall timeout
3231 * Sleep until ATA Status register bit BSY clears,
3232 * or a timeout occurs.
3235 * Kernel thread context (may sleep).
3238 * 0 on success, -errno otherwise.
3240 int ata_busy_sleep(struct ata_port
*ap
,
3241 unsigned long tmout_pat
, unsigned long tmout
)
3243 unsigned long timer_start
, timeout
;
3246 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
3247 timer_start
= jiffies
;
3248 timeout
= timer_start
+ tmout_pat
;
3249 while (status
!= 0xff && (status
& ATA_BUSY
) &&
3250 time_before(jiffies
, timeout
)) {
3252 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
3255 if (status
!= 0xff && (status
& ATA_BUSY
))
3256 ata_port_printk(ap
, KERN_WARNING
,
3257 "port is slow to respond, please be patient "
3258 "(Status 0x%x)\n", status
);
3260 timeout
= timer_start
+ tmout
;
3261 while (status
!= 0xff && (status
& ATA_BUSY
) &&
3262 time_before(jiffies
, timeout
)) {
3264 status
= ata_chk_status(ap
);
3270 if (status
& ATA_BUSY
) {
3271 ata_port_printk(ap
, KERN_ERR
, "port failed to respond "
3272 "(%lu secs, Status 0x%x)\n",
3273 tmout
/ HZ
, status
);
3281 * ata_wait_after_reset - wait before checking status after reset
3282 * @ap: port containing status register to be polled
3283 * @deadline: deadline jiffies for the operation
3285 * After reset, we need to pause a while before reading status.
3286 * Also, certain combination of controller and device report 0xff
3287 * for some duration (e.g. until SATA PHY is up and running)
3288 * which is interpreted as empty port in ATA world. This
3289 * function also waits for such devices to get out of 0xff
3293 * Kernel thread context (may sleep).
3295 void ata_wait_after_reset(struct ata_port
*ap
, unsigned long deadline
)
3297 unsigned long until
= jiffies
+ ATA_TMOUT_FF_WAIT
;
3299 if (time_before(until
, deadline
))
3302 /* Spec mandates ">= 2ms" before checking status. We wait
3303 * 150ms, because that was the magic delay used for ATAPI
3304 * devices in Hale Landis's ATADRVR, for the period of time
3305 * between when the ATA command register is written, and then
3306 * status is checked. Because waiting for "a while" before
3307 * checking status is fine, post SRST, we perform this magic
3308 * delay here as well.
3310 * Old drivers/ide uses the 2mS rule and then waits for ready.
3314 /* Wait for 0xff to clear. Some SATA devices take a long time
3315 * to clear 0xff after reset. For example, HHD424020F7SV00
3316 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3319 * Note that some PATA controllers (pata_ali) explode if
3320 * status register is read more than once when there's no
3323 if (ap
->flags
& ATA_FLAG_SATA
) {
3325 u8 status
= ata_chk_status(ap
);
3327 if (status
!= 0xff || time_after(jiffies
, deadline
))
3336 * ata_wait_ready - sleep until BSY clears, or timeout
3337 * @ap: port containing status register to be polled
3338 * @deadline: deadline jiffies for the operation
3340 * Sleep until ATA Status register bit BSY clears, or timeout
3344 * Kernel thread context (may sleep).
3347 * 0 on success, -errno otherwise.
3349 int ata_wait_ready(struct ata_port
*ap
, unsigned long deadline
)
3351 unsigned long start
= jiffies
;
3355 u8 status
= ata_chk_status(ap
);
3356 unsigned long now
= jiffies
;
3358 if (!(status
& ATA_BUSY
))
3360 if (!ata_link_online(&ap
->link
) && status
== 0xff)
3362 if (time_after(now
, deadline
))
3365 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3366 (deadline
- now
> 3 * HZ
)) {
3367 ata_port_printk(ap
, KERN_WARNING
,
3368 "port is slow to respond, please be patient "
3369 "(Status 0x%x)\n", status
);
3377 static int ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
,
3378 unsigned long deadline
)
3380 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3381 unsigned int dev0
= devmask
& (1 << 0);
3382 unsigned int dev1
= devmask
& (1 << 1);
3385 /* if device 0 was found in ata_devchk, wait for its
3389 rc
= ata_wait_ready(ap
, deadline
);
3397 /* if device 1 was found in ata_devchk, wait for register
3398 * access briefly, then wait for BSY to clear.
3403 ap
->ops
->dev_select(ap
, 1);
3405 /* Wait for register access. Some ATAPI devices fail
3406 * to set nsect/lbal after reset, so don't waste too
3407 * much time on it. We're gonna wait for !BSY anyway.
3409 for (i
= 0; i
< 2; i
++) {
3412 nsect
= ioread8(ioaddr
->nsect_addr
);
3413 lbal
= ioread8(ioaddr
->lbal_addr
);
3414 if ((nsect
== 1) && (lbal
== 1))
3416 msleep(50); /* give drive a breather */
3419 rc
= ata_wait_ready(ap
, deadline
);
3427 /* is all this really necessary? */
3428 ap
->ops
->dev_select(ap
, 0);
3430 ap
->ops
->dev_select(ap
, 1);
3432 ap
->ops
->dev_select(ap
, 0);
3437 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
3438 unsigned long deadline
)
3440 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3442 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
3444 /* software reset. causes dev0 to be selected */
3445 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3446 udelay(20); /* FIXME: flush */
3447 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
3448 udelay(20); /* FIXME: flush */
3449 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3451 /* wait a while before checking status */
3452 ata_wait_after_reset(ap
, deadline
);
3454 /* Before we perform post reset processing we want to see if
3455 * the bus shows 0xFF because the odd clown forgets the D7
3456 * pulldown resistor.
3458 if (ata_chk_status(ap
) == 0xFF)
3461 return ata_bus_post_reset(ap
, devmask
, deadline
);
3465 * ata_bus_reset - reset host port and associated ATA channel
3466 * @ap: port to reset
3468 * This is typically the first time we actually start issuing
3469 * commands to the ATA channel. We wait for BSY to clear, then
3470 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3471 * result. Determine what devices, if any, are on the channel
3472 * by looking at the device 0/1 error register. Look at the signature
3473 * stored in each device's taskfile registers, to determine if
3474 * the device is ATA or ATAPI.
3477 * PCI/etc. bus probe sem.
3478 * Obtains host lock.
3481 * Sets ATA_FLAG_DISABLED if bus reset fails.
3484 void ata_bus_reset(struct ata_port
*ap
)
3486 struct ata_device
*device
= ap
->link
.device
;
3487 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3488 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3490 unsigned int dev0
, dev1
= 0, devmask
= 0;
3493 DPRINTK("ENTER, host %u, port %u\n", ap
->print_id
, ap
->port_no
);
3495 /* determine if device 0/1 are present */
3496 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
3499 dev0
= ata_devchk(ap
, 0);
3501 dev1
= ata_devchk(ap
, 1);
3505 devmask
|= (1 << 0);
3507 devmask
|= (1 << 1);
3509 /* select device 0 again */
3510 ap
->ops
->dev_select(ap
, 0);
3512 /* issue bus reset */
3513 if (ap
->flags
& ATA_FLAG_SRST
) {
3514 rc
= ata_bus_softreset(ap
, devmask
, jiffies
+ 40 * HZ
);
3515 if (rc
&& rc
!= -ENODEV
)
3520 * determine by signature whether we have ATA or ATAPI devices
3522 device
[0].class = ata_dev_try_classify(&device
[0], dev0
, &err
);
3523 if ((slave_possible
) && (err
!= 0x81))
3524 device
[1].class = ata_dev_try_classify(&device
[1], dev1
, &err
);
3526 /* is double-select really necessary? */
3527 if (device
[1].class != ATA_DEV_NONE
)
3528 ap
->ops
->dev_select(ap
, 1);
3529 if (device
[0].class != ATA_DEV_NONE
)
3530 ap
->ops
->dev_select(ap
, 0);
3532 /* if no devices were detected, disable this port */
3533 if ((device
[0].class == ATA_DEV_NONE
) &&
3534 (device
[1].class == ATA_DEV_NONE
))
3537 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
3538 /* set up device control for ATA_FLAG_SATA_RESET */
3539 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3546 ata_port_printk(ap
, KERN_ERR
, "disabling port\n");
3547 ata_port_disable(ap
);
3553 * sata_link_debounce - debounce SATA phy status
3554 * @link: ATA link to debounce SATA phy status for
3555 * @params: timing parameters { interval, duratinon, timeout } in msec
3556 * @deadline: deadline jiffies for the operation
3558 * Make sure SStatus of @link reaches stable state, determined by
3559 * holding the same value where DET is not 1 for @duration polled
3560 * every @interval, before @timeout. Timeout constraints the
3561 * beginning of the stable state. Because DET gets stuck at 1 on
3562 * some controllers after hot unplugging, this functions waits
3563 * until timeout then returns 0 if DET is stable at 1.
3565 * @timeout is further limited by @deadline. The sooner of the
3569 * Kernel thread context (may sleep)
3572 * 0 on success, -errno on failure.
3574 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3575 unsigned long deadline
)
3577 unsigned long interval_msec
= params
[0];
3578 unsigned long duration
= msecs_to_jiffies(params
[1]);
3579 unsigned long last_jiffies
, t
;
3583 t
= jiffies
+ msecs_to_jiffies(params
[2]);
3584 if (time_before(t
, deadline
))
3587 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3592 last_jiffies
= jiffies
;
3595 msleep(interval_msec
);
3596 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3602 if (cur
== 1 && time_before(jiffies
, deadline
))
3604 if (time_after(jiffies
, last_jiffies
+ duration
))
3609 /* unstable, start over */
3611 last_jiffies
= jiffies
;
3613 /* Check deadline. If debouncing failed, return
3614 * -EPIPE to tell upper layer to lower link speed.
3616 if (time_after(jiffies
, deadline
))
3622 * sata_link_resume - resume SATA link
3623 * @link: ATA link to resume SATA
3624 * @params: timing parameters { interval, duratinon, timeout } in msec
3625 * @deadline: deadline jiffies for the operation
3627 * Resume SATA phy @link and debounce it.
3630 * Kernel thread context (may sleep)
3633 * 0 on success, -errno on failure.
3635 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3636 unsigned long deadline
)
3641 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3644 scontrol
= (scontrol
& 0x0f0) | 0x300;
3646 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3649 /* Some PHYs react badly if SStatus is pounded immediately
3650 * after resuming. Delay 200ms before debouncing.
3654 return sata_link_debounce(link
, params
, deadline
);
3658 * ata_std_prereset - prepare for reset
3659 * @link: ATA link to be reset
3660 * @deadline: deadline jiffies for the operation
3662 * @link is about to be reset. Initialize it. Failure from
3663 * prereset makes libata abort whole reset sequence and give up
3664 * that port, so prereset should be best-effort. It does its
3665 * best to prepare for reset sequence but if things go wrong, it
3666 * should just whine, not fail.
3669 * Kernel thread context (may sleep)
3672 * 0 on success, -errno otherwise.
3674 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3676 struct ata_port
*ap
= link
->ap
;
3677 struct ata_eh_context
*ehc
= &link
->eh_context
;
3678 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3681 /* handle link resume */
3682 if ((ehc
->i
.flags
& ATA_EHI_RESUME_LINK
) &&
3683 (link
->flags
& ATA_LFLAG_HRST_TO_RESUME
))
3684 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3686 /* Some PMPs don't work with only SRST, force hardreset if PMP
3689 if (ap
->flags
& ATA_FLAG_PMP
)
3690 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3692 /* if we're about to do hardreset, nothing more to do */
3693 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3696 /* if SATA, resume link */
3697 if (ap
->flags
& ATA_FLAG_SATA
) {
3698 rc
= sata_link_resume(link
, timing
, deadline
);
3699 /* whine about phy resume failure but proceed */
3700 if (rc
&& rc
!= -EOPNOTSUPP
)
3701 ata_link_printk(link
, KERN_WARNING
, "failed to resume "
3702 "link for reset (errno=%d)\n", rc
);
3705 /* Wait for !BSY if the controller can wait for the first D2H
3706 * Reg FIS and we don't know that no device is attached.
3708 if (!(link
->flags
& ATA_LFLAG_SKIP_D2H_BSY
) && !ata_link_offline(link
)) {
3709 rc
= ata_wait_ready(ap
, deadline
);
3710 if (rc
&& rc
!= -ENODEV
) {
3711 ata_link_printk(link
, KERN_WARNING
, "device not ready "
3712 "(errno=%d), forcing hardreset\n", rc
);
3713 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3721 * ata_std_softreset - reset host port via ATA SRST
3722 * @link: ATA link to reset
3723 * @classes: resulting classes of attached devices
3724 * @deadline: deadline jiffies for the operation
3726 * Reset host port using ATA SRST.
3729 * Kernel thread context (may sleep)
3732 * 0 on success, -errno otherwise.
3734 int ata_std_softreset(struct ata_link
*link
, unsigned int *classes
,
3735 unsigned long deadline
)
3737 struct ata_port
*ap
= link
->ap
;
3738 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3739 unsigned int devmask
= 0;
3745 if (ata_link_offline(link
)) {
3746 classes
[0] = ATA_DEV_NONE
;
3750 /* determine if device 0/1 are present */
3751 if (ata_devchk(ap
, 0))
3752 devmask
|= (1 << 0);
3753 if (slave_possible
&& ata_devchk(ap
, 1))
3754 devmask
|= (1 << 1);
3756 /* select device 0 again */
3757 ap
->ops
->dev_select(ap
, 0);
3759 /* issue bus reset */
3760 DPRINTK("about to softreset, devmask=%x\n", devmask
);
3761 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
3762 /* if link is occupied, -ENODEV too is an error */
3763 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(link
))) {
3764 ata_link_printk(link
, KERN_ERR
, "SRST failed (errno=%d)\n", rc
);
3768 /* determine by signature whether we have ATA or ATAPI devices */
3769 classes
[0] = ata_dev_try_classify(&link
->device
[0],
3770 devmask
& (1 << 0), &err
);
3771 if (slave_possible
&& err
!= 0x81)
3772 classes
[1] = ata_dev_try_classify(&link
->device
[1],
3773 devmask
& (1 << 1), &err
);
3776 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
3781 * sata_link_hardreset - reset link via SATA phy reset
3782 * @link: link to reset
3783 * @timing: timing parameters { interval, duratinon, timeout } in msec
3784 * @deadline: deadline jiffies for the operation
3786 * SATA phy-reset @link using DET bits of SControl register.
3789 * Kernel thread context (may sleep)
3792 * 0 on success, -errno otherwise.
3794 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
3795 unsigned long deadline
)
3802 if (sata_set_spd_needed(link
)) {
3803 /* SATA spec says nothing about how to reconfigure
3804 * spd. To be on the safe side, turn off phy during
3805 * reconfiguration. This works for at least ICH7 AHCI
3808 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3811 scontrol
= (scontrol
& 0x0f0) | 0x304;
3813 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3819 /* issue phy wake/reset */
3820 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3823 scontrol
= (scontrol
& 0x0f0) | 0x301;
3825 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
3828 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3829 * 10.4.2 says at least 1 ms.
3833 /* bring link back */
3834 rc
= sata_link_resume(link
, timing
, deadline
);
3836 DPRINTK("EXIT, rc=%d\n", rc
);
3841 * sata_std_hardreset - reset host port via SATA phy reset
3842 * @link: link to reset
3843 * @class: resulting class of attached device
3844 * @deadline: deadline jiffies for the operation
3846 * SATA phy-reset host port using DET bits of SControl register,
3847 * wait for !BSY and classify the attached device.
3850 * Kernel thread context (may sleep)
3853 * 0 on success, -errno otherwise.
3855 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
3856 unsigned long deadline
)
3858 struct ata_port
*ap
= link
->ap
;
3859 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
3865 rc
= sata_link_hardreset(link
, timing
, deadline
);
3867 ata_link_printk(link
, KERN_ERR
,
3868 "COMRESET failed (errno=%d)\n", rc
);
3872 /* TODO: phy layer with polling, timeouts, etc. */
3873 if (ata_link_offline(link
)) {
3874 *class = ATA_DEV_NONE
;
3875 DPRINTK("EXIT, link offline\n");
3879 /* wait a while before checking status */
3880 ata_wait_after_reset(ap
, deadline
);
3882 /* If PMP is supported, we have to do follow-up SRST. Note
3883 * that some PMPs don't send D2H Reg FIS after hardreset at
3884 * all if the first port is empty. Wait for it just for a
3885 * second and request follow-up SRST.
3887 if (ap
->flags
& ATA_FLAG_PMP
) {
3888 ata_wait_ready(ap
, jiffies
+ HZ
);
3892 rc
= ata_wait_ready(ap
, deadline
);
3893 /* link occupied, -ENODEV too is an error */
3895 ata_link_printk(link
, KERN_ERR
,
3896 "COMRESET failed (errno=%d)\n", rc
);
3900 ap
->ops
->dev_select(ap
, 0); /* probably unnecessary */
3902 *class = ata_dev_try_classify(link
->device
, 1, NULL
);
3904 DPRINTK("EXIT, class=%u\n", *class);
3909 * ata_std_postreset - standard postreset callback
3910 * @link: the target ata_link
3911 * @classes: classes of attached devices
3913 * This function is invoked after a successful reset. Note that
3914 * the device might have been reset more than once using
3915 * different reset methods before postreset is invoked.
3918 * Kernel thread context (may sleep)
3920 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
3922 struct ata_port
*ap
= link
->ap
;
3927 /* print link status */
3928 sata_print_link_status(link
);
3931 if (sata_scr_read(link
, SCR_ERROR
, &serror
) == 0)
3932 sata_scr_write(link
, SCR_ERROR
, serror
);
3933 link
->eh_info
.serror
= 0;
3935 /* is double-select really necessary? */
3936 if (classes
[0] != ATA_DEV_NONE
)
3937 ap
->ops
->dev_select(ap
, 1);
3938 if (classes
[1] != ATA_DEV_NONE
)
3939 ap
->ops
->dev_select(ap
, 0);
3941 /* bail out if no device is present */
3942 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
3943 DPRINTK("EXIT, no device\n");
3947 /* set up device control */
3948 if (ap
->ioaddr
.ctl_addr
)
3949 iowrite8(ap
->ctl
, ap
->ioaddr
.ctl_addr
);
3955 * ata_dev_same_device - Determine whether new ID matches configured device
3956 * @dev: device to compare against
3957 * @new_class: class of the new device
3958 * @new_id: IDENTIFY page of the new device
3960 * Compare @new_class and @new_id against @dev and determine
3961 * whether @dev is the device indicated by @new_class and
3968 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3970 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3973 const u16
*old_id
= dev
->id
;
3974 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3975 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3977 if (dev
->class != new_class
) {
3978 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
3979 dev
->class, new_class
);
3983 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
3984 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
3985 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
3986 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
3988 if (strcmp(model
[0], model
[1])) {
3989 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
3990 "'%s' != '%s'\n", model
[0], model
[1]);
3994 if (strcmp(serial
[0], serial
[1])) {
3995 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
3996 "'%s' != '%s'\n", serial
[0], serial
[1]);
4004 * ata_dev_reread_id - Re-read IDENTIFY data
4005 * @dev: target ATA device
4006 * @readid_flags: read ID flags
4008 * Re-read IDENTIFY page and make sure @dev is still attached to
4012 * Kernel thread context (may sleep)
4015 * 0 on success, negative errno otherwise
4017 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
4019 unsigned int class = dev
->class;
4020 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
4024 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
4028 /* is the device still there? */
4029 if (!ata_dev_same_device(dev
, class, id
))
4032 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
4037 * ata_dev_revalidate - Revalidate ATA device
4038 * @dev: device to revalidate
4039 * @new_class: new class code
4040 * @readid_flags: read ID flags
4042 * Re-read IDENTIFY page, make sure @dev is still attached to the
4043 * port and reconfigure it according to the new IDENTIFY page.
4046 * Kernel thread context (may sleep)
4049 * 0 on success, negative errno otherwise
4051 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
4052 unsigned int readid_flags
)
4054 u64 n_sectors
= dev
->n_sectors
;
4057 if (!ata_dev_enabled(dev
))
4060 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4061 if (ata_class_enabled(new_class
) &&
4062 new_class
!= ATA_DEV_ATA
&& new_class
!= ATA_DEV_ATAPI
) {
4063 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %u != %u\n",
4064 dev
->class, new_class
);
4070 rc
= ata_dev_reread_id(dev
, readid_flags
);
4074 /* configure device according to the new ID */
4075 rc
= ata_dev_configure(dev
);
4079 /* verify n_sectors hasn't changed */
4080 if (dev
->class == ATA_DEV_ATA
&& n_sectors
&&
4081 dev
->n_sectors
!= n_sectors
) {
4082 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
4084 (unsigned long long)n_sectors
,
4085 (unsigned long long)dev
->n_sectors
);
4087 /* restore original n_sectors */
4088 dev
->n_sectors
= n_sectors
;
4097 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
4101 struct ata_blacklist_entry
{
4102 const char *model_num
;
4103 const char *model_rev
;
4104 unsigned long horkage
;
4107 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4108 /* Devices with DMA related problems under Linux */
4109 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4110 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4111 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4112 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4113 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4114 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4115 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4116 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4117 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4118 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
4119 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
4120 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4121 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4122 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4123 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4124 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4125 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
4126 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
4127 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4128 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4129 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4130 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4131 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4132 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4133 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4134 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4135 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4136 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4137 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4138 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4139 /* Odd clown on sil3726/4726 PMPs */
4140 { "Config Disk", NULL
, ATA_HORKAGE_NODMA
|
4141 ATA_HORKAGE_SKIP_PM
},
4143 /* Weird ATAPI devices */
4144 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4146 /* Devices we expect to fail diagnostics */
4148 /* Devices where NCQ should be avoided */
4150 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4151 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4152 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4153 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4155 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4156 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4157 { "HITACHI HDS7250SASUN500G*", NULL
, ATA_HORKAGE_NONCQ
},
4158 { "HITACHI HDS7225SBSUN250G*", NULL
, ATA_HORKAGE_NONCQ
},
4159 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4160 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4162 /* Blacklist entries taken from Silicon Image 3124/3132
4163 Windows driver .inf file - also several Linux problem reports */
4164 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4165 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4166 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4168 /* devices which puke on READ_NATIVE_MAX */
4169 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4170 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4171 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4172 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4174 /* Devices which report 1 sector over size HPA */
4175 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4176 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4178 /* Devices which get the IVB wrong */
4179 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4180 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB
, },
4181 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB
, },
4182 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB
, },
4183 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB
, },
4189 static int strn_pattern_cmp(const char *patt
, const char *name
, int wildchar
)
4195 * check for trailing wildcard: *\0
4197 p
= strchr(patt
, wildchar
);
4198 if (p
&& ((*(p
+ 1)) == 0))
4209 return strncmp(patt
, name
, len
);
4212 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4214 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4215 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4216 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4218 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4219 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4221 while (ad
->model_num
) {
4222 if (!strn_pattern_cmp(ad
->model_num
, model_num
, '*')) {
4223 if (ad
->model_rev
== NULL
)
4225 if (!strn_pattern_cmp(ad
->model_rev
, model_rev
, '*'))
4233 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4235 /* We don't support polling DMA.
4236 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4237 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4239 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4240 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4242 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4246 * ata_is_40wire - check drive side detection
4249 * Perform drive side detection decoding, allowing for device vendors
4250 * who can't follow the documentation.
4253 static int ata_is_40wire(struct ata_device
*dev
)
4255 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4256 return ata_drive_40wire_relaxed(dev
->id
);
4257 return ata_drive_40wire(dev
->id
);
4261 * ata_dev_xfermask - Compute supported xfermask of the given device
4262 * @dev: Device to compute xfermask for
4264 * Compute supported xfermask of @dev and store it in
4265 * dev->*_mask. This function is responsible for applying all
4266 * known limits including host controller limits, device
4272 static void ata_dev_xfermask(struct ata_device
*dev
)
4274 struct ata_link
*link
= dev
->link
;
4275 struct ata_port
*ap
= link
->ap
;
4276 struct ata_host
*host
= ap
->host
;
4277 unsigned long xfer_mask
;
4279 /* controller modes available */
4280 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4281 ap
->mwdma_mask
, ap
->udma_mask
);
4283 /* drive modes available */
4284 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4285 dev
->mwdma_mask
, dev
->udma_mask
);
4286 xfer_mask
&= ata_id_xfermask(dev
->id
);
4289 * CFA Advanced TrueIDE timings are not allowed on a shared
4292 if (ata_dev_pair(dev
)) {
4293 /* No PIO5 or PIO6 */
4294 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4295 /* No MWDMA3 or MWDMA 4 */
4296 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4299 if (ata_dma_blacklisted(dev
)) {
4300 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4301 ata_dev_printk(dev
, KERN_WARNING
,
4302 "device is on DMA blacklist, disabling DMA\n");
4305 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4306 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4307 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4308 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
4309 "other device, disabling DMA\n");
4312 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4313 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4315 if (ap
->ops
->mode_filter
)
4316 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4318 /* Apply cable rule here. Don't apply it early because when
4319 * we handle hot plug the cable type can itself change.
4320 * Check this last so that we know if the transfer rate was
4321 * solely limited by the cable.
4322 * Unknown or 80 wire cables reported host side are checked
4323 * drive side as well. Cases where we know a 40wire cable
4324 * is used safely for 80 are not checked here.
4326 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4327 /* UDMA/44 or higher would be available */
4328 if ((ap
->cbl
== ATA_CBL_PATA40
) ||
4329 (ata_is_40wire(dev
) &&
4330 (ap
->cbl
== ATA_CBL_PATA_UNK
||
4331 ap
->cbl
== ATA_CBL_PATA80
))) {
4332 ata_dev_printk(dev
, KERN_WARNING
,
4333 "limited to UDMA/33 due to 40-wire cable\n");
4334 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4337 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4338 &dev
->mwdma_mask
, &dev
->udma_mask
);
4342 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4343 * @dev: Device to which command will be sent
4345 * Issue SET FEATURES - XFER MODE command to device @dev
4349 * PCI/etc. bus probe sem.
4352 * 0 on success, AC_ERR_* mask otherwise.
4355 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4357 struct ata_taskfile tf
;
4358 unsigned int err_mask
;
4360 /* set up set-features taskfile */
4361 DPRINTK("set features - xfer mode\n");
4363 /* Some controllers and ATAPI devices show flaky interrupt
4364 * behavior after setting xfer mode. Use polling instead.
4366 ata_tf_init(dev
, &tf
);
4367 tf
.command
= ATA_CMD_SET_FEATURES
;
4368 tf
.feature
= SETFEATURES_XFER
;
4369 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4370 tf
.protocol
= ATA_PROT_NODATA
;
4371 /* If we are using IORDY we must send the mode setting command */
4372 if (ata_pio_need_iordy(dev
))
4373 tf
.nsect
= dev
->xfer_mode
;
4374 /* If the device has IORDY and the controller does not - turn it off */
4375 else if (ata_id_has_iordy(dev
->id
))
4377 else /* In the ancient relic department - skip all of this */
4380 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4382 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4386 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4387 * @dev: Device to which command will be sent
4388 * @enable: Whether to enable or disable the feature
4389 * @feature: The sector count represents the feature to set
4391 * Issue SET FEATURES - SATA FEATURES command to device @dev
4392 * on port @ap with sector count
4395 * PCI/etc. bus probe sem.
4398 * 0 on success, AC_ERR_* mask otherwise.
4400 static unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
,
4403 struct ata_taskfile tf
;
4404 unsigned int err_mask
;
4406 /* set up set-features taskfile */
4407 DPRINTK("set features - SATA features\n");
4409 ata_tf_init(dev
, &tf
);
4410 tf
.command
= ATA_CMD_SET_FEATURES
;
4411 tf
.feature
= enable
;
4412 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4413 tf
.protocol
= ATA_PROT_NODATA
;
4416 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4418 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4423 * ata_dev_init_params - Issue INIT DEV PARAMS command
4424 * @dev: Device to which command will be sent
4425 * @heads: Number of heads (taskfile parameter)
4426 * @sectors: Number of sectors (taskfile parameter)
4429 * Kernel thread context (may sleep)
4432 * 0 on success, AC_ERR_* mask otherwise.
4434 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4435 u16 heads
, u16 sectors
)
4437 struct ata_taskfile tf
;
4438 unsigned int err_mask
;
4440 /* Number of sectors per track 1-255. Number of heads 1-16 */
4441 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4442 return AC_ERR_INVALID
;
4444 /* set up init dev params taskfile */
4445 DPRINTK("init dev params \n");
4447 ata_tf_init(dev
, &tf
);
4448 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4449 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4450 tf
.protocol
= ATA_PROT_NODATA
;
4452 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4454 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4455 /* A clean abort indicates an original or just out of spec drive
4456 and we should continue as we issue the setup based on the
4457 drive reported working geometry */
4458 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4461 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4466 * ata_sg_clean - Unmap DMA memory associated with command
4467 * @qc: Command containing DMA memory to be released
4469 * Unmap all mapped DMA memory associated with this command.
4472 * spin_lock_irqsave(host lock)
4474 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4476 struct ata_port
*ap
= qc
->ap
;
4477 struct scatterlist
*sg
= qc
->sg
;
4478 int dir
= qc
->dma_dir
;
4479 void *pad_buf
= NULL
;
4481 WARN_ON(sg
== NULL
);
4483 VPRINTK("unmapping %u sg elements\n", qc
->mapped_n_elem
);
4485 /* if we padded the buffer out to 32-bit bound, and data
4486 * xfer direction is from-device, we must copy from the
4487 * pad buffer back into the supplied buffer
4489 if (qc
->pad_len
&& !(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
4490 pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4492 if (qc
->mapped_n_elem
)
4493 dma_unmap_sg(ap
->dev
, sg
, qc
->mapped_n_elem
, dir
);
4494 /* restore last sg */
4496 *qc
->last_sg
= qc
->saved_last_sg
;
4498 struct scatterlist
*psg
= &qc
->extra_sg
[1];
4499 void *addr
= kmap_atomic(sg_page(psg
), KM_IRQ0
);
4500 memcpy(addr
+ psg
->offset
, pad_buf
, qc
->pad_len
);
4501 kunmap_atomic(addr
, KM_IRQ0
);
4504 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4509 * ata_fill_sg - Fill PCI IDE PRD table
4510 * @qc: Metadata associated with taskfile to be transferred
4512 * Fill PCI IDE PRD (scatter-gather) table with segments
4513 * associated with the current disk command.
4516 * spin_lock_irqsave(host lock)
4519 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
4521 struct ata_port
*ap
= qc
->ap
;
4522 struct scatterlist
*sg
;
4523 unsigned int si
, pi
;
4526 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
4530 /* determine if physical DMA addr spans 64K boundary.
4531 * Note h/w doesn't support 64-bit, so we unconditionally
4532 * truncate dma_addr_t to u32.
4534 addr
= (u32
) sg_dma_address(sg
);
4535 sg_len
= sg_dma_len(sg
);
4538 offset
= addr
& 0xffff;
4540 if ((offset
+ sg_len
) > 0x10000)
4541 len
= 0x10000 - offset
;
4543 ap
->prd
[pi
].addr
= cpu_to_le32(addr
);
4544 ap
->prd
[pi
].flags_len
= cpu_to_le32(len
& 0xffff);
4545 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
4553 ap
->prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
4557 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4558 * @qc: Metadata associated with taskfile to be transferred
4560 * Fill PCI IDE PRD (scatter-gather) table with segments
4561 * associated with the current disk command. Perform the fill
4562 * so that we avoid writing any length 64K records for
4563 * controllers that don't follow the spec.
4566 * spin_lock_irqsave(host lock)
4569 static void ata_fill_sg_dumb(struct ata_queued_cmd
*qc
)
4571 struct ata_port
*ap
= qc
->ap
;
4572 struct scatterlist
*sg
;
4573 unsigned int si
, pi
;
4576 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
4578 u32 sg_len
, len
, blen
;
4580 /* determine if physical DMA addr spans 64K boundary.
4581 * Note h/w doesn't support 64-bit, so we unconditionally
4582 * truncate dma_addr_t to u32.
4584 addr
= (u32
) sg_dma_address(sg
);
4585 sg_len
= sg_dma_len(sg
);
4588 offset
= addr
& 0xffff;
4590 if ((offset
+ sg_len
) > 0x10000)
4591 len
= 0x10000 - offset
;
4593 blen
= len
& 0xffff;
4594 ap
->prd
[pi
].addr
= cpu_to_le32(addr
);
4596 /* Some PATA chipsets like the CS5530 can't
4597 cope with 0x0000 meaning 64K as the spec says */
4598 ap
->prd
[pi
].flags_len
= cpu_to_le32(0x8000);
4600 ap
->prd
[++pi
].addr
= cpu_to_le32(addr
+ 0x8000);
4602 ap
->prd
[pi
].flags_len
= cpu_to_le32(blen
);
4603 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
4611 ap
->prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
4615 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4616 * @qc: Metadata associated with taskfile to check
4618 * Allow low-level driver to filter ATA PACKET commands, returning
4619 * a status indicating whether or not it is OK to use DMA for the
4620 * supplied PACKET command.
4623 * spin_lock_irqsave(host lock)
4625 * RETURNS: 0 when ATAPI DMA can be used
4628 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
4630 struct ata_port
*ap
= qc
->ap
;
4632 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4633 * few ATAPI devices choke on such DMA requests.
4635 if (unlikely(qc
->nbytes
& 15))
4638 if (ap
->ops
->check_atapi_dma
)
4639 return ap
->ops
->check_atapi_dma(qc
);
4645 * atapi_qc_may_overflow - Check whether data transfer may overflow
4646 * @qc: ATA command in question
4648 * ATAPI commands which transfer variable length data to host
4649 * might overflow due to application error or hardare bug. This
4650 * function checks whether overflow should be drained and ignored
4657 * 1 if @qc may overflow; otherwise, 0.
4659 static int atapi_qc_may_overflow(struct ata_queued_cmd
*qc
)
4661 if (qc
->tf
.protocol
!= ATAPI_PROT_PIO
&&
4662 qc
->tf
.protocol
!= ATAPI_PROT_DMA
)
4665 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
4668 switch (qc
->cdb
[0]) {
4674 case GPCMD_READ_CD_MSF
:
4682 * ata_std_qc_defer - Check whether a qc needs to be deferred
4683 * @qc: ATA command in question
4685 * Non-NCQ commands cannot run with any other command, NCQ or
4686 * not. As upper layer only knows the queue depth, we are
4687 * responsible for maintaining exclusion. This function checks
4688 * whether a new command @qc can be issued.
4691 * spin_lock_irqsave(host lock)
4694 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4696 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4698 struct ata_link
*link
= qc
->dev
->link
;
4700 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4701 if (!ata_tag_valid(link
->active_tag
))
4704 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4708 return ATA_DEFER_LINK
;
4712 * ata_qc_prep - Prepare taskfile for submission
4713 * @qc: Metadata associated with taskfile to be prepared
4715 * Prepare ATA taskfile for submission.
4718 * spin_lock_irqsave(host lock)
4720 void ata_qc_prep(struct ata_queued_cmd
*qc
)
4722 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4729 * ata_dumb_qc_prep - Prepare taskfile for submission
4730 * @qc: Metadata associated with taskfile to be prepared
4732 * Prepare ATA taskfile for submission.
4735 * spin_lock_irqsave(host lock)
4737 void ata_dumb_qc_prep(struct ata_queued_cmd
*qc
)
4739 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4742 ata_fill_sg_dumb(qc
);
4745 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4748 * ata_sg_init - Associate command with scatter-gather table.
4749 * @qc: Command to be associated
4750 * @sg: Scatter-gather table.
4751 * @n_elem: Number of elements in s/g table.
4753 * Initialize the data-related elements of queued_cmd @qc
4754 * to point to a scatter-gather table @sg, containing @n_elem
4758 * spin_lock_irqsave(host lock)
4760 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4761 unsigned int n_elem
)
4764 qc
->n_elem
= n_elem
;
4768 static unsigned int ata_sg_setup_extra(struct ata_queued_cmd
*qc
,
4769 unsigned int *n_elem_extra
,
4770 unsigned int *nbytes_extra
)
4772 struct ata_port
*ap
= qc
->ap
;
4773 unsigned int n_elem
= qc
->n_elem
;
4774 struct scatterlist
*lsg
, *copy_lsg
= NULL
, *tsg
= NULL
, *esg
= NULL
;
4779 /* needs padding? */
4780 qc
->pad_len
= qc
->nbytes
& 3;
4782 if (likely(!qc
->pad_len
))
4785 /* locate last sg and save it */
4786 lsg
= sg_last(qc
->sg
, n_elem
);
4788 qc
->saved_last_sg
= *lsg
;
4790 sg_init_table(qc
->extra_sg
, ARRAY_SIZE(qc
->extra_sg
));
4793 struct scatterlist
*psg
= &qc
->extra_sg
[1];
4794 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4795 unsigned int offset
;
4797 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
4799 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
4801 /* psg->page/offset are used to copy to-be-written
4802 * data in this function or read data in ata_sg_clean.
4804 offset
= lsg
->offset
+ lsg
->length
- qc
->pad_len
;
4805 sg_set_page(psg
, nth_page(sg_page(lsg
), offset
>> PAGE_SHIFT
),
4806 qc
->pad_len
, offset_in_page(offset
));
4808 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
4809 void *addr
= kmap_atomic(sg_page(psg
), KM_IRQ0
);
4810 memcpy(pad_buf
, addr
+ psg
->offset
, qc
->pad_len
);
4811 kunmap_atomic(addr
, KM_IRQ0
);
4814 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4815 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
4817 /* Trim the last sg entry and chain the original and
4820 * Because chaining consumes one sg entry, one extra
4821 * sg entry is allocated and the last sg entry is
4822 * copied to it if the length isn't zero after padded
4823 * amount is removed.
4825 * If the last sg entry is completely replaced by
4826 * padding sg entry, the first sg entry is skipped
4829 lsg
->length
-= qc
->pad_len
;
4831 copy_lsg
= &qc
->extra_sg
[0];
4832 tsg
= &qc
->extra_sg
[0];
4835 tsg
= &qc
->extra_sg
[1];
4838 esg
= &qc
->extra_sg
[1];
4841 (*nbytes_extra
) += 4 - qc
->pad_len
;
4845 sg_set_page(copy_lsg
, sg_page(lsg
), lsg
->length
, lsg
->offset
);
4847 sg_chain(lsg
, 1, tsg
);
4850 /* sglist can't start with chaining sg entry, fast forward */
4851 if (qc
->sg
== lsg
) {
4860 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4861 * @qc: Command with scatter-gather table to be mapped.
4863 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4866 * spin_lock_irqsave(host lock)
4869 * Zero on success, negative on error.
4872 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4874 struct ata_port
*ap
= qc
->ap
;
4875 unsigned int n_elem
, n_elem_extra
, nbytes_extra
;
4877 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4879 n_elem
= ata_sg_setup_extra(qc
, &n_elem_extra
, &nbytes_extra
);
4882 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, n_elem
, qc
->dma_dir
);
4884 /* restore last sg */
4886 *qc
->last_sg
= qc
->saved_last_sg
;
4889 DPRINTK("%d sg elements mapped\n", n_elem
);
4892 qc
->n_elem
= qc
->mapped_n_elem
= n_elem
;
4893 qc
->n_elem
+= n_elem_extra
;
4894 qc
->nbytes
+= nbytes_extra
;
4895 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4901 * swap_buf_le16 - swap halves of 16-bit words in place
4902 * @buf: Buffer to swap
4903 * @buf_words: Number of 16-bit words in buffer.
4905 * Swap halves of 16-bit words if needed to convert from
4906 * little-endian byte order to native cpu byte order, or
4910 * Inherited from caller.
4912 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4917 for (i
= 0; i
< buf_words
; i
++)
4918 buf
[i
] = le16_to_cpu(buf
[i
]);
4919 #endif /* __BIG_ENDIAN */
4923 * ata_data_xfer - Transfer data by PIO
4924 * @dev: device to target
4926 * @buflen: buffer length
4929 * Transfer data from/to the device data register by PIO.
4932 * Inherited from caller.
4937 unsigned int ata_data_xfer(struct ata_device
*dev
, unsigned char *buf
,
4938 unsigned int buflen
, int rw
)
4940 struct ata_port
*ap
= dev
->link
->ap
;
4941 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
4942 unsigned int words
= buflen
>> 1;
4944 /* Transfer multiple of 2 bytes */
4946 ioread16_rep(data_addr
, buf
, words
);
4948 iowrite16_rep(data_addr
, buf
, words
);
4950 /* Transfer trailing 1 byte, if any. */
4951 if (unlikely(buflen
& 0x01)) {
4952 __le16 align_buf
[1] = { 0 };
4953 unsigned char *trailing_buf
= buf
+ buflen
- 1;
4956 align_buf
[0] = cpu_to_le16(ioread16(data_addr
));
4957 memcpy(trailing_buf
, align_buf
, 1);
4959 memcpy(align_buf
, trailing_buf
, 1);
4960 iowrite16(le16_to_cpu(align_buf
[0]), data_addr
);
4969 * ata_data_xfer_noirq - Transfer data by PIO
4970 * @dev: device to target
4972 * @buflen: buffer length
4975 * Transfer data from/to the device data register by PIO. Do the
4976 * transfer with interrupts disabled.
4979 * Inherited from caller.
4984 unsigned int ata_data_xfer_noirq(struct ata_device
*dev
, unsigned char *buf
,
4985 unsigned int buflen
, int rw
)
4987 unsigned long flags
;
4988 unsigned int consumed
;
4990 local_irq_save(flags
);
4991 consumed
= ata_data_xfer(dev
, buf
, buflen
, rw
);
4992 local_irq_restore(flags
);
4999 * ata_pio_sector - Transfer a sector of data.
5000 * @qc: Command on going
5002 * Transfer qc->sect_size bytes of data from/to the ATA device.
5005 * Inherited from caller.
5008 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
5010 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
5011 struct ata_port
*ap
= qc
->ap
;
5013 unsigned int offset
;
5016 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
5017 ap
->hsm_task_state
= HSM_ST_LAST
;
5019 page
= sg_page(qc
->cursg
);
5020 offset
= qc
->cursg
->offset
+ qc
->cursg_ofs
;
5022 /* get the current page and offset */
5023 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
5024 offset
%= PAGE_SIZE
;
5026 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
5028 if (PageHighMem(page
)) {
5029 unsigned long flags
;
5031 /* FIXME: use a bounce buffer */
5032 local_irq_save(flags
);
5033 buf
= kmap_atomic(page
, KM_IRQ0
);
5035 /* do the actual data transfer */
5036 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
5038 kunmap_atomic(buf
, KM_IRQ0
);
5039 local_irq_restore(flags
);
5041 buf
= page_address(page
);
5042 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
5045 qc
->curbytes
+= qc
->sect_size
;
5046 qc
->cursg_ofs
+= qc
->sect_size
;
5048 if (qc
->cursg_ofs
== qc
->cursg
->length
) {
5049 qc
->cursg
= sg_next(qc
->cursg
);
5055 * ata_pio_sectors - Transfer one or many sectors.
5056 * @qc: Command on going
5058 * Transfer one or many sectors of data from/to the
5059 * ATA device for the DRQ request.
5062 * Inherited from caller.
5065 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
5067 if (is_multi_taskfile(&qc
->tf
)) {
5068 /* READ/WRITE MULTIPLE */
5071 WARN_ON(qc
->dev
->multi_count
== 0);
5073 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
5074 qc
->dev
->multi_count
);
5080 ata_altstatus(qc
->ap
); /* flush */
5084 * atapi_send_cdb - Write CDB bytes to hardware
5085 * @ap: Port to which ATAPI device is attached.
5086 * @qc: Taskfile currently active
5088 * When device has indicated its readiness to accept
5089 * a CDB, this function is called. Send the CDB.
5095 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
5098 DPRINTK("send cdb\n");
5099 WARN_ON(qc
->dev
->cdb_len
< 12);
5101 ap
->ops
->data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
5102 ata_altstatus(ap
); /* flush */
5104 switch (qc
->tf
.protocol
) {
5105 case ATAPI_PROT_PIO
:
5106 ap
->hsm_task_state
= HSM_ST
;
5108 case ATAPI_PROT_NODATA
:
5109 ap
->hsm_task_state
= HSM_ST_LAST
;
5111 case ATAPI_PROT_DMA
:
5112 ap
->hsm_task_state
= HSM_ST_LAST
;
5113 /* initiate bmdma */
5114 ap
->ops
->bmdma_start(qc
);
5120 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5121 * @qc: Command on going
5122 * @bytes: number of bytes
5124 * Transfer Transfer data from/to the ATAPI device.
5127 * Inherited from caller.
5130 static int __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
5132 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
5133 struct ata_port
*ap
= qc
->ap
;
5134 struct ata_eh_info
*ehi
= &qc
->dev
->link
->eh_info
;
5135 struct scatterlist
*sg
;
5138 unsigned int offset
, count
;
5142 if (unlikely(!sg
)) {
5144 * The end of qc->sg is reached and the device expects
5145 * more data to transfer. In order not to overrun qc->sg
5146 * and fulfill length specified in the byte count register,
5147 * - for read case, discard trailing data from the device
5148 * - for write case, padding zero data to the device
5150 u16 pad_buf
[1] = { 0 };
5153 if (bytes
> qc
->curbytes
- qc
->nbytes
+ ATAPI_MAX_DRAIN
) {
5154 ata_ehi_push_desc(ehi
, "too much trailing data "
5155 "buf=%u cur=%u bytes=%u",
5156 qc
->nbytes
, qc
->curbytes
, bytes
);
5160 /* overflow is exptected for misc ATAPI commands */
5161 if (bytes
&& !atapi_qc_may_overflow(qc
))
5162 ata_dev_printk(qc
->dev
, KERN_WARNING
, "ATAPI %u bytes "
5163 "trailing data (cdb=%02x nbytes=%u)\n",
5164 bytes
, qc
->cdb
[0], qc
->nbytes
);
5166 for (i
= 0; i
< (bytes
+ 1) / 2; i
++)
5167 ap
->ops
->data_xfer(qc
->dev
, (unsigned char *)pad_buf
, 2, do_write
);
5169 qc
->curbytes
+= bytes
;
5175 offset
= sg
->offset
+ qc
->cursg_ofs
;
5177 /* get the current page and offset */
5178 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
5179 offset
%= PAGE_SIZE
;
5181 /* don't overrun current sg */
5182 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
5184 /* don't cross page boundaries */
5185 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
5187 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
5189 if (PageHighMem(page
)) {
5190 unsigned long flags
;
5192 /* FIXME: use bounce buffer */
5193 local_irq_save(flags
);
5194 buf
= kmap_atomic(page
, KM_IRQ0
);
5196 /* do the actual data transfer */
5197 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
5199 kunmap_atomic(buf
, KM_IRQ0
);
5200 local_irq_restore(flags
);
5202 buf
= page_address(page
);
5203 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
5207 if ((count
& 1) && bytes
)
5209 qc
->curbytes
+= count
;
5210 qc
->cursg_ofs
+= count
;
5212 if (qc
->cursg_ofs
== sg
->length
) {
5213 qc
->cursg
= sg_next(qc
->cursg
);
5224 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5225 * @qc: Command on going
5227 * Transfer Transfer data from/to the ATAPI device.
5230 * Inherited from caller.
5233 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
5235 struct ata_port
*ap
= qc
->ap
;
5236 struct ata_device
*dev
= qc
->dev
;
5237 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
5238 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
5240 /* Abuse qc->result_tf for temp storage of intermediate TF
5241 * here to save some kernel stack usage.
5242 * For normal completion, qc->result_tf is not relevant. For
5243 * error, qc->result_tf is later overwritten by ata_qc_complete().
5244 * So, the correctness of qc->result_tf is not affected.
5246 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
5247 ireason
= qc
->result_tf
.nsect
;
5248 bc_lo
= qc
->result_tf
.lbam
;
5249 bc_hi
= qc
->result_tf
.lbah
;
5250 bytes
= (bc_hi
<< 8) | bc_lo
;
5252 /* shall be cleared to zero, indicating xfer of data */
5253 if (unlikely(ireason
& (1 << 0)))
5256 /* make sure transfer direction matches expected */
5257 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
5258 if (unlikely(do_write
!= i_write
))
5261 if (unlikely(!bytes
))
5264 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
5266 if (__atapi_pio_bytes(qc
, bytes
))
5268 ata_altstatus(ap
); /* flush */
5273 ata_dev_printk(dev
, KERN_INFO
, "ATAPI check failed\n");
5274 qc
->err_mask
|= AC_ERR_HSM
;
5275 ap
->hsm_task_state
= HSM_ST_ERR
;
5279 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5280 * @ap: the target ata_port
5284 * 1 if ok in workqueue, 0 otherwise.
5287 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
5289 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5292 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
5293 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
5294 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
5297 if (ata_is_atapi(qc
->tf
.protocol
) &&
5298 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5306 * ata_hsm_qc_complete - finish a qc running on standard HSM
5307 * @qc: Command to complete
5308 * @in_wq: 1 if called from workqueue, 0 otherwise
5310 * Finish @qc which is running on standard HSM.
5313 * If @in_wq is zero, spin_lock_irqsave(host lock).
5314 * Otherwise, none on entry and grabs host lock.
5316 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
5318 struct ata_port
*ap
= qc
->ap
;
5319 unsigned long flags
;
5321 if (ap
->ops
->error_handler
) {
5323 spin_lock_irqsave(ap
->lock
, flags
);
5325 /* EH might have kicked in while host lock is
5328 qc
= ata_qc_from_tag(ap
, qc
->tag
);
5330 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
5331 ap
->ops
->irq_on(ap
);
5332 ata_qc_complete(qc
);
5334 ata_port_freeze(ap
);
5337 spin_unlock_irqrestore(ap
->lock
, flags
);
5339 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
5340 ata_qc_complete(qc
);
5342 ata_port_freeze(ap
);
5346 spin_lock_irqsave(ap
->lock
, flags
);
5347 ap
->ops
->irq_on(ap
);
5348 ata_qc_complete(qc
);
5349 spin_unlock_irqrestore(ap
->lock
, flags
);
5351 ata_qc_complete(qc
);
5356 * ata_hsm_move - move the HSM to the next state.
5357 * @ap: the target ata_port
5359 * @status: current device status
5360 * @in_wq: 1 if called from workqueue, 0 otherwise
5363 * 1 when poll next status needed, 0 otherwise.
5365 int ata_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
5366 u8 status
, int in_wq
)
5368 unsigned long flags
= 0;
5371 WARN_ON((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
5373 /* Make sure ata_qc_issue_prot() does not throw things
5374 * like DMA polling into the workqueue. Notice that
5375 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5377 WARN_ON(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
5380 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5381 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
5383 switch (ap
->hsm_task_state
) {
5385 /* Send first data block or PACKET CDB */
5387 /* If polling, we will stay in the work queue after
5388 * sending the data. Otherwise, interrupt handler
5389 * takes over after sending the data.
5391 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5393 /* check device status */
5394 if (unlikely((status
& ATA_DRQ
) == 0)) {
5395 /* handle BSY=0, DRQ=0 as error */
5396 if (likely(status
& (ATA_ERR
| ATA_DF
)))
5397 /* device stops HSM for abort/error */
5398 qc
->err_mask
|= AC_ERR_DEV
;
5400 /* HSM violation. Let EH handle this */
5401 qc
->err_mask
|= AC_ERR_HSM
;
5403 ap
->hsm_task_state
= HSM_ST_ERR
;
5407 /* Device should not ask for data transfer (DRQ=1)
5408 * when it finds something wrong.
5409 * We ignore DRQ here and stop the HSM by
5410 * changing hsm_task_state to HSM_ST_ERR and
5411 * let the EH abort the command or reset the device.
5413 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
5414 /* Some ATAPI tape drives forget to clear the ERR bit
5415 * when doing the next command (mostly request sense).
5416 * We ignore ERR here to workaround and proceed sending
5419 if (!(qc
->dev
->horkage
& ATA_HORKAGE_STUCK_ERR
)) {
5420 ata_port_printk(ap
, KERN_WARNING
,
5421 "DRQ=1 with device error, "
5422 "dev_stat 0x%X\n", status
);
5423 qc
->err_mask
|= AC_ERR_HSM
;
5424 ap
->hsm_task_state
= HSM_ST_ERR
;
5429 /* Send the CDB (atapi) or the first data block (ata pio out).
5430 * During the state transition, interrupt handler shouldn't
5431 * be invoked before the data transfer is complete and
5432 * hsm_task_state is changed. Hence, the following locking.
5435 spin_lock_irqsave(ap
->lock
, flags
);
5437 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
5438 /* PIO data out protocol.
5439 * send first data block.
5442 /* ata_pio_sectors() might change the state
5443 * to HSM_ST_LAST. so, the state is changed here
5444 * before ata_pio_sectors().
5446 ap
->hsm_task_state
= HSM_ST
;
5447 ata_pio_sectors(qc
);
5450 atapi_send_cdb(ap
, qc
);
5453 spin_unlock_irqrestore(ap
->lock
, flags
);
5455 /* if polling, ata_pio_task() handles the rest.
5456 * otherwise, interrupt handler takes over from here.
5461 /* complete command or read/write the data register */
5462 if (qc
->tf
.protocol
== ATAPI_PROT_PIO
) {
5463 /* ATAPI PIO protocol */
5464 if ((status
& ATA_DRQ
) == 0) {
5465 /* No more data to transfer or device error.
5466 * Device error will be tagged in HSM_ST_LAST.
5468 ap
->hsm_task_state
= HSM_ST_LAST
;
5472 /* Device should not ask for data transfer (DRQ=1)
5473 * when it finds something wrong.
5474 * We ignore DRQ here and stop the HSM by
5475 * changing hsm_task_state to HSM_ST_ERR and
5476 * let the EH abort the command or reset the device.
5478 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
5479 ata_port_printk(ap
, KERN_WARNING
, "DRQ=1 with "
5480 "device error, dev_stat 0x%X\n",
5482 qc
->err_mask
|= AC_ERR_HSM
;
5483 ap
->hsm_task_state
= HSM_ST_ERR
;
5487 atapi_pio_bytes(qc
);
5489 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
5490 /* bad ireason reported by device */
5494 /* ATA PIO protocol */
5495 if (unlikely((status
& ATA_DRQ
) == 0)) {
5496 /* handle BSY=0, DRQ=0 as error */
5497 if (likely(status
& (ATA_ERR
| ATA_DF
)))
5498 /* device stops HSM for abort/error */
5499 qc
->err_mask
|= AC_ERR_DEV
;
5501 /* HSM violation. Let EH handle this.
5502 * Phantom devices also trigger this
5503 * condition. Mark hint.
5505 qc
->err_mask
|= AC_ERR_HSM
|
5508 ap
->hsm_task_state
= HSM_ST_ERR
;
5512 /* For PIO reads, some devices may ask for
5513 * data transfer (DRQ=1) alone with ERR=1.
5514 * We respect DRQ here and transfer one
5515 * block of junk data before changing the
5516 * hsm_task_state to HSM_ST_ERR.
5518 * For PIO writes, ERR=1 DRQ=1 doesn't make
5519 * sense since the data block has been
5520 * transferred to the device.
5522 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
5523 /* data might be corrputed */
5524 qc
->err_mask
|= AC_ERR_DEV
;
5526 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
5527 ata_pio_sectors(qc
);
5528 status
= ata_wait_idle(ap
);
5531 if (status
& (ATA_BUSY
| ATA_DRQ
))
5532 qc
->err_mask
|= AC_ERR_HSM
;
5534 /* ata_pio_sectors() might change the
5535 * state to HSM_ST_LAST. so, the state
5536 * is changed after ata_pio_sectors().
5538 ap
->hsm_task_state
= HSM_ST_ERR
;
5542 ata_pio_sectors(qc
);
5544 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
5545 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
5547 status
= ata_wait_idle(ap
);
5556 if (unlikely(!ata_ok(status
))) {
5557 qc
->err_mask
|= __ac_err_mask(status
);
5558 ap
->hsm_task_state
= HSM_ST_ERR
;
5562 /* no more data to transfer */
5563 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5564 ap
->print_id
, qc
->dev
->devno
, status
);
5566 WARN_ON(qc
->err_mask
);
5568 ap
->hsm_task_state
= HSM_ST_IDLE
;
5570 /* complete taskfile transaction */
5571 ata_hsm_qc_complete(qc
, in_wq
);
5577 /* make sure qc->err_mask is available to
5578 * know what's wrong and recover
5580 WARN_ON(qc
->err_mask
== 0);
5582 ap
->hsm_task_state
= HSM_ST_IDLE
;
5584 /* complete taskfile transaction */
5585 ata_hsm_qc_complete(qc
, in_wq
);
5597 static void ata_pio_task(struct work_struct
*work
)
5599 struct ata_port
*ap
=
5600 container_of(work
, struct ata_port
, port_task
.work
);
5601 struct ata_queued_cmd
*qc
= ap
->port_task_data
;
5606 WARN_ON(ap
->hsm_task_state
== HSM_ST_IDLE
);
5609 * This is purely heuristic. This is a fast path.
5610 * Sometimes when we enter, BSY will be cleared in
5611 * a chk-status or two. If not, the drive is probably seeking
5612 * or something. Snooze for a couple msecs, then
5613 * chk-status again. If still busy, queue delayed work.
5615 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
5616 if (status
& ATA_BUSY
) {
5618 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
5619 if (status
& ATA_BUSY
) {
5620 ata_pio_queue_task(ap
, qc
, ATA_SHORT_PAUSE
);
5626 poll_next
= ata_hsm_move(ap
, qc
, status
, 1);
5628 /* another command or interrupt handler
5629 * may be running at this point.
5636 * ata_qc_new - Request an available ATA command, for queueing
5637 * @ap: Port associated with device @dev
5638 * @dev: Device from whom we request an available command structure
5644 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
5646 struct ata_queued_cmd
*qc
= NULL
;
5649 /* no command while frozen */
5650 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
5653 /* the last tag is reserved for internal command. */
5654 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
5655 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
5656 qc
= __ata_qc_from_tag(ap
, i
);
5667 * ata_qc_new_init - Request an available ATA command, and initialize it
5668 * @dev: Device from whom we request an available command structure
5674 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
5676 struct ata_port
*ap
= dev
->link
->ap
;
5677 struct ata_queued_cmd
*qc
;
5679 qc
= ata_qc_new(ap
);
5692 * ata_qc_free - free unused ata_queued_cmd
5693 * @qc: Command to complete
5695 * Designed to free unused ata_queued_cmd object
5696 * in case something prevents using it.
5699 * spin_lock_irqsave(host lock)
5701 void ata_qc_free(struct ata_queued_cmd
*qc
)
5703 struct ata_port
*ap
= qc
->ap
;
5706 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5710 if (likely(ata_tag_valid(tag
))) {
5711 qc
->tag
= ATA_TAG_POISON
;
5712 clear_bit(tag
, &ap
->qc_allocated
);
5716 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
5718 struct ata_port
*ap
= qc
->ap
;
5719 struct ata_link
*link
= qc
->dev
->link
;
5721 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5722 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
5724 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
5727 /* command should be marked inactive atomically with qc completion */
5728 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
5729 link
->sactive
&= ~(1 << qc
->tag
);
5731 ap
->nr_active_links
--;
5733 link
->active_tag
= ATA_TAG_POISON
;
5734 ap
->nr_active_links
--;
5737 /* clear exclusive status */
5738 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
5739 ap
->excl_link
== link
))
5740 ap
->excl_link
= NULL
;
5742 /* atapi: mark qc as inactive to prevent the interrupt handler
5743 * from completing the command twice later, before the error handler
5744 * is called. (when rc != 0 and atapi request sense is needed)
5746 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
5747 ap
->qc_active
&= ~(1 << qc
->tag
);
5749 /* call completion callback */
5750 qc
->complete_fn(qc
);
5753 static void fill_result_tf(struct ata_queued_cmd
*qc
)
5755 struct ata_port
*ap
= qc
->ap
;
5757 qc
->result_tf
.flags
= qc
->tf
.flags
;
5758 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
5761 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
5763 struct ata_device
*dev
= qc
->dev
;
5765 if (ata_tag_internal(qc
->tag
))
5768 if (ata_is_nodata(qc
->tf
.protocol
))
5771 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
5774 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
5778 * ata_qc_complete - Complete an active ATA command
5779 * @qc: Command to complete
5780 * @err_mask: ATA Status register contents
5782 * Indicate to the mid and upper layers that an ATA
5783 * command has completed, with either an ok or not-ok status.
5786 * spin_lock_irqsave(host lock)
5788 void ata_qc_complete(struct ata_queued_cmd
*qc
)
5790 struct ata_port
*ap
= qc
->ap
;
5792 /* XXX: New EH and old EH use different mechanisms to
5793 * synchronize EH with regular execution path.
5795 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5796 * Normal execution path is responsible for not accessing a
5797 * failed qc. libata core enforces the rule by returning NULL
5798 * from ata_qc_from_tag() for failed qcs.
5800 * Old EH depends on ata_qc_complete() nullifying completion
5801 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5802 * not synchronize with interrupt handler. Only PIO task is
5805 if (ap
->ops
->error_handler
) {
5806 struct ata_device
*dev
= qc
->dev
;
5807 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
5809 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
5811 if (unlikely(qc
->err_mask
))
5812 qc
->flags
|= ATA_QCFLAG_FAILED
;
5814 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
5815 if (!ata_tag_internal(qc
->tag
)) {
5816 /* always fill result TF for failed qc */
5818 ata_qc_schedule_eh(qc
);
5823 /* read result TF if requested */
5824 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5827 /* Some commands need post-processing after successful
5830 switch (qc
->tf
.command
) {
5831 case ATA_CMD_SET_FEATURES
:
5832 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
5833 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
5836 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
5837 case ATA_CMD_SET_MULTI
: /* multi_count changed */
5838 /* revalidate device */
5839 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
5840 ata_port_schedule_eh(ap
);
5844 dev
->flags
|= ATA_DFLAG_SLEEPING
;
5848 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
5849 ata_verify_xfer(qc
);
5851 __ata_qc_complete(qc
);
5853 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
5856 /* read result TF if failed or requested */
5857 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5860 __ata_qc_complete(qc
);
5865 * ata_qc_complete_multiple - Complete multiple qcs successfully
5866 * @ap: port in question
5867 * @qc_active: new qc_active mask
5868 * @finish_qc: LLDD callback invoked before completing a qc
5870 * Complete in-flight commands. This functions is meant to be
5871 * called from low-level driver's interrupt routine to complete
5872 * requests normally. ap->qc_active and @qc_active is compared
5873 * and commands are completed accordingly.
5876 * spin_lock_irqsave(host lock)
5879 * Number of completed commands on success, -errno otherwise.
5881 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
,
5882 void (*finish_qc
)(struct ata_queued_cmd
*))
5888 done_mask
= ap
->qc_active
^ qc_active
;
5890 if (unlikely(done_mask
& qc_active
)) {
5891 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
5892 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
5896 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
5897 struct ata_queued_cmd
*qc
;
5899 if (!(done_mask
& (1 << i
)))
5902 if ((qc
= ata_qc_from_tag(ap
, i
))) {
5905 ata_qc_complete(qc
);
5914 * ata_qc_issue - issue taskfile to device
5915 * @qc: command to issue to device
5917 * Prepare an ATA command to submission to device.
5918 * This includes mapping the data into a DMA-able
5919 * area, filling in the S/G table, and finally
5920 * writing the taskfile to hardware, starting the command.
5923 * spin_lock_irqsave(host lock)
5925 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5927 struct ata_port
*ap
= qc
->ap
;
5928 struct ata_link
*link
= qc
->dev
->link
;
5929 u8 prot
= qc
->tf
.protocol
;
5931 /* Make sure only one non-NCQ command is outstanding. The
5932 * check is skipped for old EH because it reuses active qc to
5933 * request ATAPI sense.
5935 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
5937 if (ata_is_ncq(prot
)) {
5938 WARN_ON(link
->sactive
& (1 << qc
->tag
));
5941 ap
->nr_active_links
++;
5942 link
->sactive
|= 1 << qc
->tag
;
5944 WARN_ON(link
->sactive
);
5946 ap
->nr_active_links
++;
5947 link
->active_tag
= qc
->tag
;
5950 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5951 ap
->qc_active
|= 1 << qc
->tag
;
5953 /* We guarantee to LLDs that they will have at least one
5954 * non-zero sg if the command is a data command.
5956 BUG_ON(ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
));
5958 /* ata_sg_setup() may update nbytes */
5959 qc
->raw_nbytes
= qc
->nbytes
;
5961 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
5962 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
5963 if (ata_sg_setup(qc
))
5966 /* if device is sleeping, schedule softreset and abort the link */
5967 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
5968 link
->eh_info
.action
|= ATA_EH_SOFTRESET
;
5969 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
5970 ata_link_abort(link
);
5974 ap
->ops
->qc_prep(qc
);
5976 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5977 if (unlikely(qc
->err_mask
))
5982 qc
->err_mask
|= AC_ERR_SYSTEM
;
5984 ata_qc_complete(qc
);
5988 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5989 * @qc: command to issue to device
5991 * Using various libata functions and hooks, this function
5992 * starts an ATA command. ATA commands are grouped into
5993 * classes called "protocols", and issuing each type of protocol
5994 * is slightly different.
5996 * May be used as the qc_issue() entry in ata_port_operations.
5999 * spin_lock_irqsave(host lock)
6002 * Zero on success, AC_ERR_* mask on failure
6005 unsigned int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
6007 struct ata_port
*ap
= qc
->ap
;
6009 /* Use polling pio if the LLD doesn't handle
6010 * interrupt driven pio and atapi CDB interrupt.
6012 if (ap
->flags
& ATA_FLAG_PIO_POLLING
) {
6013 switch (qc
->tf
.protocol
) {
6015 case ATA_PROT_NODATA
:
6016 case ATAPI_PROT_PIO
:
6017 case ATAPI_PROT_NODATA
:
6018 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
6020 case ATAPI_PROT_DMA
:
6021 if (qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)
6022 /* see ata_dma_blacklisted() */
6030 /* select the device */
6031 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
6033 /* start the command */
6034 switch (qc
->tf
.protocol
) {
6035 case ATA_PROT_NODATA
:
6036 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6037 ata_qc_set_polling(qc
);
6039 ata_tf_to_host(ap
, &qc
->tf
);
6040 ap
->hsm_task_state
= HSM_ST_LAST
;
6042 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6043 ata_pio_queue_task(ap
, qc
, 0);
6048 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
6050 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
6051 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
6052 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
6053 ap
->hsm_task_state
= HSM_ST_LAST
;
6057 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6058 ata_qc_set_polling(qc
);
6060 ata_tf_to_host(ap
, &qc
->tf
);
6062 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
6063 /* PIO data out protocol */
6064 ap
->hsm_task_state
= HSM_ST_FIRST
;
6065 ata_pio_queue_task(ap
, qc
, 0);
6067 /* always send first data block using
6068 * the ata_pio_task() codepath.
6071 /* PIO data in protocol */
6072 ap
->hsm_task_state
= HSM_ST
;
6074 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6075 ata_pio_queue_task(ap
, qc
, 0);
6077 /* if polling, ata_pio_task() handles the rest.
6078 * otherwise, interrupt handler takes over from here.
6084 case ATAPI_PROT_PIO
:
6085 case ATAPI_PROT_NODATA
:
6086 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6087 ata_qc_set_polling(qc
);
6089 ata_tf_to_host(ap
, &qc
->tf
);
6091 ap
->hsm_task_state
= HSM_ST_FIRST
;
6093 /* send cdb by polling if no cdb interrupt */
6094 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
6095 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
6096 ata_pio_queue_task(ap
, qc
, 0);
6099 case ATAPI_PROT_DMA
:
6100 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
6102 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
6103 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
6104 ap
->hsm_task_state
= HSM_ST_FIRST
;
6106 /* send cdb by polling if no cdb interrupt */
6107 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
6108 ata_pio_queue_task(ap
, qc
, 0);
6113 return AC_ERR_SYSTEM
;
6120 * ata_host_intr - Handle host interrupt for given (port, task)
6121 * @ap: Port on which interrupt arrived (possibly...)
6122 * @qc: Taskfile currently active in engine
6124 * Handle host interrupt for given queued command. Currently,
6125 * only DMA interrupts are handled. All other commands are
6126 * handled via polling with interrupts disabled (nIEN bit).
6129 * spin_lock_irqsave(host lock)
6132 * One if interrupt was handled, zero if not (shared irq).
6135 inline unsigned int ata_host_intr(struct ata_port
*ap
,
6136 struct ata_queued_cmd
*qc
)
6138 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
6139 u8 status
, host_stat
= 0;
6141 VPRINTK("ata%u: protocol %d task_state %d\n",
6142 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
6144 /* Check whether we are expecting interrupt in this state */
6145 switch (ap
->hsm_task_state
) {
6147 /* Some pre-ATAPI-4 devices assert INTRQ
6148 * at this state when ready to receive CDB.
6151 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6152 * The flag was turned on only for atapi devices. No
6153 * need to check ata_is_atapi(qc->tf.protocol) again.
6155 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
6159 if (qc
->tf
.protocol
== ATA_PROT_DMA
||
6160 qc
->tf
.protocol
== ATAPI_PROT_DMA
) {
6161 /* check status of DMA engine */
6162 host_stat
= ap
->ops
->bmdma_status(ap
);
6163 VPRINTK("ata%u: host_stat 0x%X\n",
6164 ap
->print_id
, host_stat
);
6166 /* if it's not our irq... */
6167 if (!(host_stat
& ATA_DMA_INTR
))
6170 /* before we do anything else, clear DMA-Start bit */
6171 ap
->ops
->bmdma_stop(qc
);
6173 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
6174 /* error when transfering data to/from memory */
6175 qc
->err_mask
|= AC_ERR_HOST_BUS
;
6176 ap
->hsm_task_state
= HSM_ST_ERR
;
6186 /* check altstatus */
6187 status
= ata_altstatus(ap
);
6188 if (status
& ATA_BUSY
)
6191 /* check main status, clearing INTRQ */
6192 status
= ata_chk_status(ap
);
6193 if (unlikely(status
& ATA_BUSY
))
6196 /* ack bmdma irq events */
6197 ap
->ops
->irq_clear(ap
);
6199 ata_hsm_move(ap
, qc
, status
, 0);
6201 if (unlikely(qc
->err_mask
) && (qc
->tf
.protocol
== ATA_PROT_DMA
||
6202 qc
->tf
.protocol
== ATAPI_PROT_DMA
))
6203 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
6205 return 1; /* irq handled */
6208 ap
->stats
.idle_irq
++;
6211 if ((ap
->stats
.idle_irq
% 1000) == 0) {
6213 ap
->ops
->irq_clear(ap
);
6214 ata_port_printk(ap
, KERN_WARNING
, "irq trap\n");
6218 return 0; /* irq not handled */
6222 * ata_interrupt - Default ATA host interrupt handler
6223 * @irq: irq line (unused)
6224 * @dev_instance: pointer to our ata_host information structure
6226 * Default interrupt handler for PCI IDE devices. Calls
6227 * ata_host_intr() for each port that is not disabled.
6230 * Obtains host lock during operation.
6233 * IRQ_NONE or IRQ_HANDLED.
6236 irqreturn_t
ata_interrupt(int irq
, void *dev_instance
)
6238 struct ata_host
*host
= dev_instance
;
6240 unsigned int handled
= 0;
6241 unsigned long flags
;
6243 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6244 spin_lock_irqsave(&host
->lock
, flags
);
6246 for (i
= 0; i
< host
->n_ports
; i
++) {
6247 struct ata_port
*ap
;
6249 ap
= host
->ports
[i
];
6251 !(ap
->flags
& ATA_FLAG_DISABLED
)) {
6252 struct ata_queued_cmd
*qc
;
6254 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
6255 if (qc
&& (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
)) &&
6256 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
6257 handled
|= ata_host_intr(ap
, qc
);
6261 spin_unlock_irqrestore(&host
->lock
, flags
);
6263 return IRQ_RETVAL(handled
);
6267 * sata_scr_valid - test whether SCRs are accessible
6268 * @link: ATA link to test SCR accessibility for
6270 * Test whether SCRs are accessible for @link.
6276 * 1 if SCRs are accessible, 0 otherwise.
6278 int sata_scr_valid(struct ata_link
*link
)
6280 struct ata_port
*ap
= link
->ap
;
6282 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
6286 * sata_scr_read - read SCR register of the specified port
6287 * @link: ATA link to read SCR for
6289 * @val: Place to store read value
6291 * Read SCR register @reg of @link into *@val. This function is
6292 * guaranteed to succeed if @link is ap->link, the cable type of
6293 * the port is SATA and the port implements ->scr_read.
6296 * None if @link is ap->link. Kernel thread context otherwise.
6299 * 0 on success, negative errno on failure.
6301 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
6303 if (ata_is_host_link(link
)) {
6304 struct ata_port
*ap
= link
->ap
;
6306 if (sata_scr_valid(link
))
6307 return ap
->ops
->scr_read(ap
, reg
, val
);
6311 return sata_pmp_scr_read(link
, reg
, val
);
6315 * sata_scr_write - write SCR register of the specified port
6316 * @link: ATA link to write SCR for
6317 * @reg: SCR to write
6318 * @val: value to write
6320 * Write @val to SCR register @reg of @link. This function is
6321 * guaranteed to succeed if @link is ap->link, the cable type of
6322 * the port is SATA and the port implements ->scr_read.
6325 * None if @link is ap->link. Kernel thread context otherwise.
6328 * 0 on success, negative errno on failure.
6330 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
6332 if (ata_is_host_link(link
)) {
6333 struct ata_port
*ap
= link
->ap
;
6335 if (sata_scr_valid(link
))
6336 return ap
->ops
->scr_write(ap
, reg
, val
);
6340 return sata_pmp_scr_write(link
, reg
, val
);
6344 * sata_scr_write_flush - write SCR register of the specified port and flush
6345 * @link: ATA link to write SCR for
6346 * @reg: SCR to write
6347 * @val: value to write
6349 * This function is identical to sata_scr_write() except that this
6350 * function performs flush after writing to the register.
6353 * None if @link is ap->link. Kernel thread context otherwise.
6356 * 0 on success, negative errno on failure.
6358 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
6360 if (ata_is_host_link(link
)) {
6361 struct ata_port
*ap
= link
->ap
;
6364 if (sata_scr_valid(link
)) {
6365 rc
= ap
->ops
->scr_write(ap
, reg
, val
);
6367 rc
= ap
->ops
->scr_read(ap
, reg
, &val
);
6373 return sata_pmp_scr_write(link
, reg
, val
);
6377 * ata_link_online - test whether the given link is online
6378 * @link: ATA link to test
6380 * Test whether @link is online. Note that this function returns
6381 * 0 if online status of @link cannot be obtained, so
6382 * ata_link_online(link) != !ata_link_offline(link).
6388 * 1 if the port online status is available and online.
6390 int ata_link_online(struct ata_link
*link
)
6394 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
6395 (sstatus
& 0xf) == 0x3)
6401 * ata_link_offline - test whether the given link is offline
6402 * @link: ATA link to test
6404 * Test whether @link is offline. Note that this function
6405 * returns 0 if offline status of @link cannot be obtained, so
6406 * ata_link_online(link) != !ata_link_offline(link).
6412 * 1 if the port offline status is available and offline.
6414 int ata_link_offline(struct ata_link
*link
)
6418 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
6419 (sstatus
& 0xf) != 0x3)
6424 int ata_flush_cache(struct ata_device
*dev
)
6426 unsigned int err_mask
;
6429 if (!ata_try_flush_cache(dev
))
6432 if (dev
->flags
& ATA_DFLAG_FLUSH_EXT
)
6433 cmd
= ATA_CMD_FLUSH_EXT
;
6435 cmd
= ATA_CMD_FLUSH
;
6437 /* This is wrong. On a failed flush we get back the LBA of the lost
6438 sector and we should (assuming it wasn't aborted as unknown) issue
6439 a further flush command to continue the writeback until it
6441 err_mask
= ata_do_simple_cmd(dev
, cmd
);
6443 ata_dev_printk(dev
, KERN_ERR
, "failed to flush cache\n");
6451 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
6452 unsigned int action
, unsigned int ehi_flags
,
6455 unsigned long flags
;
6458 for (i
= 0; i
< host
->n_ports
; i
++) {
6459 struct ata_port
*ap
= host
->ports
[i
];
6460 struct ata_link
*link
;
6462 /* Previous resume operation might still be in
6463 * progress. Wait for PM_PENDING to clear.
6465 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
6466 ata_port_wait_eh(ap
);
6467 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
6470 /* request PM ops to EH */
6471 spin_lock_irqsave(ap
->lock
, flags
);
6476 ap
->pm_result
= &rc
;
6479 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
6480 __ata_port_for_each_link(link
, ap
) {
6481 link
->eh_info
.action
|= action
;
6482 link
->eh_info
.flags
|= ehi_flags
;
6485 ata_port_schedule_eh(ap
);
6487 spin_unlock_irqrestore(ap
->lock
, flags
);
6489 /* wait and check result */
6491 ata_port_wait_eh(ap
);
6492 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
6502 * ata_host_suspend - suspend host
6503 * @host: host to suspend
6506 * Suspend @host. Actual operation is performed by EH. This
6507 * function requests EH to perform PM operations and waits for EH
6511 * Kernel thread context (may sleep).
6514 * 0 on success, -errno on failure.
6516 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
6521 * disable link pm on all ports before requesting
6524 ata_lpm_enable(host
);
6526 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
6528 host
->dev
->power
.power_state
= mesg
;
6533 * ata_host_resume - resume host
6534 * @host: host to resume
6536 * Resume @host. Actual operation is performed by EH. This
6537 * function requests EH to perform PM operations and returns.
6538 * Note that all resume operations are performed parallely.
6541 * Kernel thread context (may sleep).
6543 void ata_host_resume(struct ata_host
*host
)
6545 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_SOFTRESET
,
6546 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
6547 host
->dev
->power
.power_state
= PMSG_ON
;
6549 /* reenable link pm */
6550 ata_lpm_disable(host
);
6555 * ata_port_start - Set port up for dma.
6556 * @ap: Port to initialize
6558 * Called just after data structures for each port are
6559 * initialized. Allocates space for PRD table.
6561 * May be used as the port_start() entry in ata_port_operations.
6564 * Inherited from caller.
6566 int ata_port_start(struct ata_port
*ap
)
6568 struct device
*dev
= ap
->dev
;
6571 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
6576 rc
= ata_pad_alloc(ap
, dev
);
6580 DPRINTK("prd alloc, virt %p, dma %llx\n", ap
->prd
,
6581 (unsigned long long)ap
->prd_dma
);
6586 * ata_dev_init - Initialize an ata_device structure
6587 * @dev: Device structure to initialize
6589 * Initialize @dev in preparation for probing.
6592 * Inherited from caller.
6594 void ata_dev_init(struct ata_device
*dev
)
6596 struct ata_link
*link
= dev
->link
;
6597 struct ata_port
*ap
= link
->ap
;
6598 unsigned long flags
;
6600 /* SATA spd limit is bound to the first device */
6601 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
6604 /* High bits of dev->flags are used to record warm plug
6605 * requests which occur asynchronously. Synchronize using
6608 spin_lock_irqsave(ap
->lock
, flags
);
6609 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
6611 spin_unlock_irqrestore(ap
->lock
, flags
);
6613 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
6614 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
6615 dev
->pio_mask
= UINT_MAX
;
6616 dev
->mwdma_mask
= UINT_MAX
;
6617 dev
->udma_mask
= UINT_MAX
;
6621 * ata_link_init - Initialize an ata_link structure
6622 * @ap: ATA port link is attached to
6623 * @link: Link structure to initialize
6624 * @pmp: Port multiplier port number
6629 * Kernel thread context (may sleep)
6631 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
6635 /* clear everything except for devices */
6636 memset(link
, 0, offsetof(struct ata_link
, device
[0]));
6640 link
->active_tag
= ATA_TAG_POISON
;
6641 link
->hw_sata_spd_limit
= UINT_MAX
;
6643 /* can't use iterator, ap isn't initialized yet */
6644 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
6645 struct ata_device
*dev
= &link
->device
[i
];
6648 dev
->devno
= dev
- link
->device
;
6654 * sata_link_init_spd - Initialize link->sata_spd_limit
6655 * @link: Link to configure sata_spd_limit for
6657 * Initialize @link->[hw_]sata_spd_limit to the currently
6661 * Kernel thread context (may sleep).
6664 * 0 on success, -errno on failure.
6666 int sata_link_init_spd(struct ata_link
*link
)
6671 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
6675 spd
= (scontrol
>> 4) & 0xf;
6677 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
6679 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
6685 * ata_port_alloc - allocate and initialize basic ATA port resources
6686 * @host: ATA host this allocated port belongs to
6688 * Allocate and initialize basic ATA port resources.
6691 * Allocate ATA port on success, NULL on failure.
6694 * Inherited from calling layer (may sleep).
6696 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
6698 struct ata_port
*ap
;
6702 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
6706 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
6707 ap
->lock
= &host
->lock
;
6708 ap
->flags
= ATA_FLAG_DISABLED
;
6710 ap
->ctl
= ATA_DEVCTL_OBS
;
6712 ap
->dev
= host
->dev
;
6713 ap
->last_ctl
= 0xFF;
6715 #if defined(ATA_VERBOSE_DEBUG)
6716 /* turn on all debugging levels */
6717 ap
->msg_enable
= 0x00FF;
6718 #elif defined(ATA_DEBUG)
6719 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
6721 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
6724 INIT_DELAYED_WORK(&ap
->port_task
, ata_pio_task
);
6725 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
6726 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
6727 INIT_LIST_HEAD(&ap
->eh_done_q
);
6728 init_waitqueue_head(&ap
->eh_wait_q
);
6729 init_timer_deferrable(&ap
->fastdrain_timer
);
6730 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
6731 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
6733 ap
->cbl
= ATA_CBL_NONE
;
6735 ata_link_init(ap
, &ap
->link
, 0);
6738 ap
->stats
.unhandled_irq
= 1;
6739 ap
->stats
.idle_irq
= 1;
6744 static void ata_host_release(struct device
*gendev
, void *res
)
6746 struct ata_host
*host
= dev_get_drvdata(gendev
);
6749 for (i
= 0; i
< host
->n_ports
; i
++) {
6750 struct ata_port
*ap
= host
->ports
[i
];
6756 scsi_host_put(ap
->scsi_host
);
6758 kfree(ap
->pmp_link
);
6760 host
->ports
[i
] = NULL
;
6763 dev_set_drvdata(gendev
, NULL
);
6767 * ata_host_alloc - allocate and init basic ATA host resources
6768 * @dev: generic device this host is associated with
6769 * @max_ports: maximum number of ATA ports associated with this host
6771 * Allocate and initialize basic ATA host resources. LLD calls
6772 * this function to allocate a host, initializes it fully and
6773 * attaches it using ata_host_register().
6775 * @max_ports ports are allocated and host->n_ports is
6776 * initialized to @max_ports. The caller is allowed to decrease
6777 * host->n_ports before calling ata_host_register(). The unused
6778 * ports will be automatically freed on registration.
6781 * Allocate ATA host on success, NULL on failure.
6784 * Inherited from calling layer (may sleep).
6786 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
6788 struct ata_host
*host
;
6794 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
6797 /* alloc a container for our list of ATA ports (buses) */
6798 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
6799 /* alloc a container for our list of ATA ports (buses) */
6800 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
6804 devres_add(dev
, host
);
6805 dev_set_drvdata(dev
, host
);
6807 spin_lock_init(&host
->lock
);
6809 host
->n_ports
= max_ports
;
6811 /* allocate ports bound to this host */
6812 for (i
= 0; i
< max_ports
; i
++) {
6813 struct ata_port
*ap
;
6815 ap
= ata_port_alloc(host
);
6820 host
->ports
[i
] = ap
;
6823 devres_remove_group(dev
, NULL
);
6827 devres_release_group(dev
, NULL
);
6832 * ata_host_alloc_pinfo - alloc host and init with port_info array
6833 * @dev: generic device this host is associated with
6834 * @ppi: array of ATA port_info to initialize host with
6835 * @n_ports: number of ATA ports attached to this host
6837 * Allocate ATA host and initialize with info from @ppi. If NULL
6838 * terminated, @ppi may contain fewer entries than @n_ports. The
6839 * last entry will be used for the remaining ports.
6842 * Allocate ATA host on success, NULL on failure.
6845 * Inherited from calling layer (may sleep).
6847 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
6848 const struct ata_port_info
* const * ppi
,
6851 const struct ata_port_info
*pi
;
6852 struct ata_host
*host
;
6855 host
= ata_host_alloc(dev
, n_ports
);
6859 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
6860 struct ata_port
*ap
= host
->ports
[i
];
6865 ap
->pio_mask
= pi
->pio_mask
;
6866 ap
->mwdma_mask
= pi
->mwdma_mask
;
6867 ap
->udma_mask
= pi
->udma_mask
;
6868 ap
->flags
|= pi
->flags
;
6869 ap
->link
.flags
|= pi
->link_flags
;
6870 ap
->ops
= pi
->port_ops
;
6872 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
6873 host
->ops
= pi
->port_ops
;
6874 if (!host
->private_data
&& pi
->private_data
)
6875 host
->private_data
= pi
->private_data
;
6881 static void ata_host_stop(struct device
*gendev
, void *res
)
6883 struct ata_host
*host
= dev_get_drvdata(gendev
);
6886 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
6888 for (i
= 0; i
< host
->n_ports
; i
++) {
6889 struct ata_port
*ap
= host
->ports
[i
];
6891 if (ap
->ops
->port_stop
)
6892 ap
->ops
->port_stop(ap
);
6895 if (host
->ops
->host_stop
)
6896 host
->ops
->host_stop(host
);
6900 * ata_host_start - start and freeze ports of an ATA host
6901 * @host: ATA host to start ports for
6903 * Start and then freeze ports of @host. Started status is
6904 * recorded in host->flags, so this function can be called
6905 * multiple times. Ports are guaranteed to get started only
6906 * once. If host->ops isn't initialized yet, its set to the
6907 * first non-dummy port ops.
6910 * Inherited from calling layer (may sleep).
6913 * 0 if all ports are started successfully, -errno otherwise.
6915 int ata_host_start(struct ata_host
*host
)
6918 void *start_dr
= NULL
;
6921 if (host
->flags
& ATA_HOST_STARTED
)
6924 for (i
= 0; i
< host
->n_ports
; i
++) {
6925 struct ata_port
*ap
= host
->ports
[i
];
6927 if (!host
->ops
&& !ata_port_is_dummy(ap
))
6928 host
->ops
= ap
->ops
;
6930 if (ap
->ops
->port_stop
)
6934 if (host
->ops
->host_stop
)
6938 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
6943 for (i
= 0; i
< host
->n_ports
; i
++) {
6944 struct ata_port
*ap
= host
->ports
[i
];
6946 if (ap
->ops
->port_start
) {
6947 rc
= ap
->ops
->port_start(ap
);
6950 dev_printk(KERN_ERR
, host
->dev
,
6951 "failed to start port %d "
6952 "(errno=%d)\n", i
, rc
);
6956 ata_eh_freeze_port(ap
);
6960 devres_add(host
->dev
, start_dr
);
6961 host
->flags
|= ATA_HOST_STARTED
;
6966 struct ata_port
*ap
= host
->ports
[i
];
6968 if (ap
->ops
->port_stop
)
6969 ap
->ops
->port_stop(ap
);
6971 devres_free(start_dr
);
6976 * ata_sas_host_init - Initialize a host struct
6977 * @host: host to initialize
6978 * @dev: device host is attached to
6979 * @flags: host flags
6983 * PCI/etc. bus probe sem.
6986 /* KILLME - the only user left is ipr */
6987 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
6988 unsigned long flags
, const struct ata_port_operations
*ops
)
6990 spin_lock_init(&host
->lock
);
6992 host
->flags
= flags
;
6997 * ata_host_register - register initialized ATA host
6998 * @host: ATA host to register
6999 * @sht: template for SCSI host
7001 * Register initialized ATA host. @host is allocated using
7002 * ata_host_alloc() and fully initialized by LLD. This function
7003 * starts ports, registers @host with ATA and SCSI layers and
7004 * probe registered devices.
7007 * Inherited from calling layer (may sleep).
7010 * 0 on success, -errno otherwise.
7012 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
7016 /* host must have been started */
7017 if (!(host
->flags
& ATA_HOST_STARTED
)) {
7018 dev_printk(KERN_ERR
, host
->dev
,
7019 "BUG: trying to register unstarted host\n");
7024 /* Blow away unused ports. This happens when LLD can't
7025 * determine the exact number of ports to allocate at
7028 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
7029 kfree(host
->ports
[i
]);
7031 /* give ports names and add SCSI hosts */
7032 for (i
= 0; i
< host
->n_ports
; i
++)
7033 host
->ports
[i
]->print_id
= ata_print_id
++;
7035 rc
= ata_scsi_add_hosts(host
, sht
);
7039 /* associate with ACPI nodes */
7040 ata_acpi_associate(host
);
7042 /* set cable, sata_spd_limit and report */
7043 for (i
= 0; i
< host
->n_ports
; i
++) {
7044 struct ata_port
*ap
= host
->ports
[i
];
7045 unsigned long xfer_mask
;
7047 /* set SATA cable type if still unset */
7048 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
7049 ap
->cbl
= ATA_CBL_SATA
;
7051 /* init sata_spd_limit to the current value */
7052 sata_link_init_spd(&ap
->link
);
7054 /* print per-port info to dmesg */
7055 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
7058 if (!ata_port_is_dummy(ap
)) {
7059 ata_port_printk(ap
, KERN_INFO
,
7060 "%cATA max %s %s\n",
7061 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
7062 ata_mode_string(xfer_mask
),
7063 ap
->link
.eh_info
.desc
);
7064 ata_ehi_clear_desc(&ap
->link
.eh_info
);
7066 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
7069 /* perform each probe synchronously */
7070 DPRINTK("probe begin\n");
7071 for (i
= 0; i
< host
->n_ports
; i
++) {
7072 struct ata_port
*ap
= host
->ports
[i
];
7076 if (ap
->ops
->error_handler
) {
7077 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
7078 unsigned long flags
;
7082 /* kick EH for boot probing */
7083 spin_lock_irqsave(ap
->lock
, flags
);
7086 (1 << ata_link_max_devices(&ap
->link
)) - 1;
7087 ehi
->action
|= ATA_EH_SOFTRESET
;
7088 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
7090 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
7091 ap
->pflags
|= ATA_PFLAG_LOADING
;
7092 ata_port_schedule_eh(ap
);
7094 spin_unlock_irqrestore(ap
->lock
, flags
);
7096 /* wait for EH to finish */
7097 ata_port_wait_eh(ap
);
7099 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
7100 rc
= ata_bus_probe(ap
);
7101 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
7104 /* FIXME: do something useful here?
7105 * Current libata behavior will
7106 * tear down everything when
7107 * the module is removed
7108 * or the h/w is unplugged.
7114 /* probes are done, now scan each port's disk(s) */
7115 DPRINTK("host probe begin\n");
7116 for (i
= 0; i
< host
->n_ports
; i
++) {
7117 struct ata_port
*ap
= host
->ports
[i
];
7119 ata_scsi_scan_host(ap
, 1);
7120 ata_lpm_schedule(ap
, ap
->pm_policy
);
7127 * ata_host_activate - start host, request IRQ and register it
7128 * @host: target ATA host
7129 * @irq: IRQ to request
7130 * @irq_handler: irq_handler used when requesting IRQ
7131 * @irq_flags: irq_flags used when requesting IRQ
7132 * @sht: scsi_host_template to use when registering the host
7134 * After allocating an ATA host and initializing it, most libata
7135 * LLDs perform three steps to activate the host - start host,
7136 * request IRQ and register it. This helper takes necessasry
7137 * arguments and performs the three steps in one go.
7139 * An invalid IRQ skips the IRQ registration and expects the host to
7140 * have set polling mode on the port. In this case, @irq_handler
7144 * Inherited from calling layer (may sleep).
7147 * 0 on success, -errno otherwise.
7149 int ata_host_activate(struct ata_host
*host
, int irq
,
7150 irq_handler_t irq_handler
, unsigned long irq_flags
,
7151 struct scsi_host_template
*sht
)
7155 rc
= ata_host_start(host
);
7159 /* Special case for polling mode */
7161 WARN_ON(irq_handler
);
7162 return ata_host_register(host
, sht
);
7165 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
7166 dev_driver_string(host
->dev
), host
);
7170 for (i
= 0; i
< host
->n_ports
; i
++)
7171 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
7173 rc
= ata_host_register(host
, sht
);
7174 /* if failed, just free the IRQ and leave ports alone */
7176 devm_free_irq(host
->dev
, irq
, host
);
7182 * ata_port_detach - Detach ATA port in prepration of device removal
7183 * @ap: ATA port to be detached
7185 * Detach all ATA devices and the associated SCSI devices of @ap;
7186 * then, remove the associated SCSI host. @ap is guaranteed to
7187 * be quiescent on return from this function.
7190 * Kernel thread context (may sleep).
7192 static void ata_port_detach(struct ata_port
*ap
)
7194 unsigned long flags
;
7195 struct ata_link
*link
;
7196 struct ata_device
*dev
;
7198 if (!ap
->ops
->error_handler
)
7201 /* tell EH we're leaving & flush EH */
7202 spin_lock_irqsave(ap
->lock
, flags
);
7203 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
7204 spin_unlock_irqrestore(ap
->lock
, flags
);
7206 ata_port_wait_eh(ap
);
7208 /* EH is now guaranteed to see UNLOADING - EH context belongs
7209 * to us. Disable all existing devices.
7211 ata_port_for_each_link(link
, ap
) {
7212 ata_link_for_each_dev(dev
, link
)
7213 ata_dev_disable(dev
);
7216 /* Final freeze & EH. All in-flight commands are aborted. EH
7217 * will be skipped and retrials will be terminated with bad
7220 spin_lock_irqsave(ap
->lock
, flags
);
7221 ata_port_freeze(ap
); /* won't be thawed */
7222 spin_unlock_irqrestore(ap
->lock
, flags
);
7224 ata_port_wait_eh(ap
);
7225 cancel_rearming_delayed_work(&ap
->hotplug_task
);
7228 /* remove the associated SCSI host */
7229 scsi_remove_host(ap
->scsi_host
);
7233 * ata_host_detach - Detach all ports of an ATA host
7234 * @host: Host to detach
7236 * Detach all ports of @host.
7239 * Kernel thread context (may sleep).
7241 void ata_host_detach(struct ata_host
*host
)
7245 for (i
= 0; i
< host
->n_ports
; i
++)
7246 ata_port_detach(host
->ports
[i
]);
7248 /* the host is dead now, dissociate ACPI */
7249 ata_acpi_dissociate(host
);
7253 * ata_std_ports - initialize ioaddr with standard port offsets.
7254 * @ioaddr: IO address structure to be initialized
7256 * Utility function which initializes data_addr, error_addr,
7257 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7258 * device_addr, status_addr, and command_addr to standard offsets
7259 * relative to cmd_addr.
7261 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7264 void ata_std_ports(struct ata_ioports
*ioaddr
)
7266 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
7267 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
7268 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
7269 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
7270 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
7271 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
7272 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
7273 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
7274 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
7275 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
7282 * ata_pci_remove_one - PCI layer callback for device removal
7283 * @pdev: PCI device that was removed
7285 * PCI layer indicates to libata via this hook that hot-unplug or
7286 * module unload event has occurred. Detach all ports. Resource
7287 * release is handled via devres.
7290 * Inherited from PCI layer (may sleep).
7292 void ata_pci_remove_one(struct pci_dev
*pdev
)
7294 struct device
*dev
= &pdev
->dev
;
7295 struct ata_host
*host
= dev_get_drvdata(dev
);
7297 ata_host_detach(host
);
7300 /* move to PCI subsystem */
7301 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
7303 unsigned long tmp
= 0;
7305 switch (bits
->width
) {
7308 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
7314 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
7320 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
7331 return (tmp
== bits
->val
) ? 1 : 0;
7335 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
7337 pci_save_state(pdev
);
7338 pci_disable_device(pdev
);
7340 if (mesg
.event
== PM_EVENT_SUSPEND
)
7341 pci_set_power_state(pdev
, PCI_D3hot
);
7344 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
7348 pci_set_power_state(pdev
, PCI_D0
);
7349 pci_restore_state(pdev
);
7351 rc
= pcim_enable_device(pdev
);
7353 dev_printk(KERN_ERR
, &pdev
->dev
,
7354 "failed to enable device after resume (%d)\n", rc
);
7358 pci_set_master(pdev
);
7362 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
7364 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
7367 rc
= ata_host_suspend(host
, mesg
);
7371 ata_pci_device_do_suspend(pdev
, mesg
);
7376 int ata_pci_device_resume(struct pci_dev
*pdev
)
7378 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
7381 rc
= ata_pci_device_do_resume(pdev
);
7383 ata_host_resume(host
);
7386 #endif /* CONFIG_PM */
7388 #endif /* CONFIG_PCI */
7391 static int __init
ata_init(void)
7393 ata_probe_timeout
*= HZ
;
7394 ata_wq
= create_workqueue("ata");
7398 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
7400 destroy_workqueue(ata_wq
);
7404 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
7408 static void __exit
ata_exit(void)
7410 destroy_workqueue(ata_wq
);
7411 destroy_workqueue(ata_aux_wq
);
7414 subsys_initcall(ata_init
);
7415 module_exit(ata_exit
);
7417 static unsigned long ratelimit_time
;
7418 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
7420 int ata_ratelimit(void)
7423 unsigned long flags
;
7425 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
7427 if (time_after(jiffies
, ratelimit_time
)) {
7429 ratelimit_time
= jiffies
+ (HZ
/5);
7433 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
7439 * ata_wait_register - wait until register value changes
7440 * @reg: IO-mapped register
7441 * @mask: Mask to apply to read register value
7442 * @val: Wait condition
7443 * @interval_msec: polling interval in milliseconds
7444 * @timeout_msec: timeout in milliseconds
7446 * Waiting for some bits of register to change is a common
7447 * operation for ATA controllers. This function reads 32bit LE
7448 * IO-mapped register @reg and tests for the following condition.
7450 * (*@reg & mask) != val
7452 * If the condition is met, it returns; otherwise, the process is
7453 * repeated after @interval_msec until timeout.
7456 * Kernel thread context (may sleep)
7459 * The final register value.
7461 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
7462 unsigned long interval_msec
,
7463 unsigned long timeout_msec
)
7465 unsigned long timeout
;
7468 tmp
= ioread32(reg
);
7470 /* Calculate timeout _after_ the first read to make sure
7471 * preceding writes reach the controller before starting to
7472 * eat away the timeout.
7474 timeout
= jiffies
+ (timeout_msec
* HZ
) / 1000;
7476 while ((tmp
& mask
) == val
&& time_before(jiffies
, timeout
)) {
7477 msleep(interval_msec
);
7478 tmp
= ioread32(reg
);
7487 static void ata_dummy_noret(struct ata_port
*ap
) { }
7488 static int ata_dummy_ret0(struct ata_port
*ap
) { return 0; }
7489 static void ata_dummy_qc_noret(struct ata_queued_cmd
*qc
) { }
7491 static u8
ata_dummy_check_status(struct ata_port
*ap
)
7496 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
7498 return AC_ERR_SYSTEM
;
7501 const struct ata_port_operations ata_dummy_port_ops
= {
7502 .check_status
= ata_dummy_check_status
,
7503 .check_altstatus
= ata_dummy_check_status
,
7504 .dev_select
= ata_noop_dev_select
,
7505 .qc_prep
= ata_noop_qc_prep
,
7506 .qc_issue
= ata_dummy_qc_issue
,
7507 .freeze
= ata_dummy_noret
,
7508 .thaw
= ata_dummy_noret
,
7509 .error_handler
= ata_dummy_noret
,
7510 .post_internal_cmd
= ata_dummy_qc_noret
,
7511 .irq_clear
= ata_dummy_noret
,
7512 .port_start
= ata_dummy_ret0
,
7513 .port_stop
= ata_dummy_noret
,
7516 const struct ata_port_info ata_dummy_port_info
= {
7517 .port_ops
= &ata_dummy_port_ops
,
7521 * libata is essentially a library of internal helper functions for
7522 * low-level ATA host controller drivers. As such, the API/ABI is
7523 * likely to change as new drivers are added and updated.
7524 * Do not depend on ABI/API stability.
7526 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
7527 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
7528 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
7529 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
7530 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
7531 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
7532 EXPORT_SYMBOL_GPL(ata_std_ports
);
7533 EXPORT_SYMBOL_GPL(ata_host_init
);
7534 EXPORT_SYMBOL_GPL(ata_host_alloc
);
7535 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
7536 EXPORT_SYMBOL_GPL(ata_host_start
);
7537 EXPORT_SYMBOL_GPL(ata_host_register
);
7538 EXPORT_SYMBOL_GPL(ata_host_activate
);
7539 EXPORT_SYMBOL_GPL(ata_host_detach
);
7540 EXPORT_SYMBOL_GPL(ata_sg_init
);
7541 EXPORT_SYMBOL_GPL(ata_hsm_move
);
7542 EXPORT_SYMBOL_GPL(ata_qc_complete
);
7543 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
7544 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
7545 EXPORT_SYMBOL_GPL(ata_tf_load
);
7546 EXPORT_SYMBOL_GPL(ata_tf_read
);
7547 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
7548 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
7549 EXPORT_SYMBOL_GPL(sata_print_link_status
);
7550 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
7551 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
7552 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
7553 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
7554 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
7555 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
7556 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
7557 EXPORT_SYMBOL_GPL(ata_mode_string
);
7558 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
7559 EXPORT_SYMBOL_GPL(ata_check_status
);
7560 EXPORT_SYMBOL_GPL(ata_altstatus
);
7561 EXPORT_SYMBOL_GPL(ata_exec_command
);
7562 EXPORT_SYMBOL_GPL(ata_port_start
);
7563 EXPORT_SYMBOL_GPL(ata_sff_port_start
);
7564 EXPORT_SYMBOL_GPL(ata_interrupt
);
7565 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
7566 EXPORT_SYMBOL_GPL(ata_data_xfer
);
7567 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq
);
7568 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
7569 EXPORT_SYMBOL_GPL(ata_qc_prep
);
7570 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep
);
7571 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
7572 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
7573 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
7574 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
7575 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
7576 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
7577 EXPORT_SYMBOL_GPL(ata_bmdma_freeze
);
7578 EXPORT_SYMBOL_GPL(ata_bmdma_thaw
);
7579 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh
);
7580 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
7581 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
7582 EXPORT_SYMBOL_GPL(ata_port_probe
);
7583 EXPORT_SYMBOL_GPL(ata_dev_disable
);
7584 EXPORT_SYMBOL_GPL(sata_set_spd
);
7585 EXPORT_SYMBOL_GPL(sata_link_debounce
);
7586 EXPORT_SYMBOL_GPL(sata_link_resume
);
7587 EXPORT_SYMBOL_GPL(ata_bus_reset
);
7588 EXPORT_SYMBOL_GPL(ata_std_prereset
);
7589 EXPORT_SYMBOL_GPL(ata_std_softreset
);
7590 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
7591 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
7592 EXPORT_SYMBOL_GPL(ata_std_postreset
);
7593 EXPORT_SYMBOL_GPL(ata_dev_classify
);
7594 EXPORT_SYMBOL_GPL(ata_dev_pair
);
7595 EXPORT_SYMBOL_GPL(ata_port_disable
);
7596 EXPORT_SYMBOL_GPL(ata_ratelimit
);
7597 EXPORT_SYMBOL_GPL(ata_wait_register
);
7598 EXPORT_SYMBOL_GPL(ata_busy_sleep
);
7599 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
7600 EXPORT_SYMBOL_GPL(ata_wait_ready
);
7601 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
7602 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
7603 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
7604 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
7605 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
7606 EXPORT_SYMBOL_GPL(ata_host_intr
);
7607 EXPORT_SYMBOL_GPL(sata_scr_valid
);
7608 EXPORT_SYMBOL_GPL(sata_scr_read
);
7609 EXPORT_SYMBOL_GPL(sata_scr_write
);
7610 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
7611 EXPORT_SYMBOL_GPL(ata_link_online
);
7612 EXPORT_SYMBOL_GPL(ata_link_offline
);
7614 EXPORT_SYMBOL_GPL(ata_host_suspend
);
7615 EXPORT_SYMBOL_GPL(ata_host_resume
);
7616 #endif /* CONFIG_PM */
7617 EXPORT_SYMBOL_GPL(ata_id_string
);
7618 EXPORT_SYMBOL_GPL(ata_id_c_string
);
7619 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
7621 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
7622 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
7623 EXPORT_SYMBOL_GPL(ata_timing_compute
);
7624 EXPORT_SYMBOL_GPL(ata_timing_merge
);
7625 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
7628 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
7629 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host
);
7630 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma
);
7631 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host
);
7632 EXPORT_SYMBOL_GPL(ata_pci_activate_sff_host
);
7633 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
7634 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
7636 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
7637 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
7638 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
7639 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
7640 #endif /* CONFIG_PM */
7641 EXPORT_SYMBOL_GPL(ata_pci_default_filter
);
7642 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex
);
7643 #endif /* CONFIG_PCI */
7645 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch
);
7646 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset
);
7647 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset
);
7648 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset
);
7649 EXPORT_SYMBOL_GPL(sata_pmp_do_eh
);
7651 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
7652 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
7653 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
7654 EXPORT_SYMBOL_GPL(ata_port_desc
);
7656 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
7657 #endif /* CONFIG_PCI */
7658 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
7659 EXPORT_SYMBOL_GPL(ata_link_abort
);
7660 EXPORT_SYMBOL_GPL(ata_port_abort
);
7661 EXPORT_SYMBOL_GPL(ata_port_freeze
);
7662 EXPORT_SYMBOL_GPL(sata_async_notification
);
7663 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
7664 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
7665 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
7666 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
7667 EXPORT_SYMBOL_GPL(ata_do_eh
);
7668 EXPORT_SYMBOL_GPL(ata_irq_on
);
7669 EXPORT_SYMBOL_GPL(ata_dev_try_classify
);
7671 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
7672 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
7673 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
7674 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
7675 EXPORT_SYMBOL_GPL(ata_cable_sata
);