2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
10 #include <linux/init.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/sysctl.h>
19 #include <asm/pgalloc.h>
21 #include <asm/tlbflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/machdep.h>
24 #include <asm/cputable.h>
27 #define PAGE_SHIFT_64K 16
28 #define PAGE_SHIFT_16M 24
29 #define PAGE_SHIFT_16G 34
31 #define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT)
32 #define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
33 #define MAX_NUMBER_GPAGES 1024
35 /* Tracks the 16G pages after the device tree is scanned and before the
36 * huge_boot_pages list is ready. */
37 static unsigned long gpage_freearray
[MAX_NUMBER_GPAGES
];
38 static unsigned nr_gpages
;
40 /* Array of valid huge page sizes - non-zero value(hugepte_shift) is
41 * stored for the huge page sizes that are valid.
43 unsigned int mmu_huge_psizes
[MMU_PAGE_COUNT
] = { }; /* initialize all to 0 */
45 #define hugepte_shift mmu_huge_psizes
46 #define PTRS_PER_HUGEPTE(psize) (1 << hugepte_shift[psize])
47 #define HUGEPTE_TABLE_SIZE(psize) (sizeof(pte_t) << hugepte_shift[psize])
49 #define HUGEPD_SHIFT(psize) (mmu_psize_to_shift(psize) \
50 + hugepte_shift[psize])
51 #define HUGEPD_SIZE(psize) (1UL << HUGEPD_SHIFT(psize))
52 #define HUGEPD_MASK(psize) (~(HUGEPD_SIZE(psize)-1))
54 /* Subtract one from array size because we don't need a cache for 4K since
55 * is not a huge page size */
56 #define HUGE_PGTABLE_INDEX(psize) (HUGEPTE_CACHE_NUM + psize - 1)
57 #define HUGEPTE_CACHE_NAME(psize) (huge_pgtable_cache_name[psize])
59 static const char *huge_pgtable_cache_name
[MMU_PAGE_COUNT
] = {
60 "unused_4K", "hugepte_cache_64K", "unused_64K_AP",
61 "hugepte_cache_1M", "hugepte_cache_16M", "hugepte_cache_16G"
64 /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
65 * will choke on pointers to hugepte tables, which is handy for
66 * catching screwups early. */
69 typedef struct { unsigned long pd
; } hugepd_t
;
71 #define hugepd_none(hpd) ((hpd).pd == 0)
73 static inline int shift_to_mmu_psize(unsigned int shift
)
76 #ifndef CONFIG_PPC_64K_PAGES
88 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize
)
90 if (mmu_psize_defs
[mmu_psize
].shift
)
91 return mmu_psize_defs
[mmu_psize
].shift
;
95 static inline pte_t
*hugepd_page(hugepd_t hpd
)
97 BUG_ON(!(hpd
.pd
& HUGEPD_OK
));
98 return (pte_t
*)(hpd
.pd
& ~HUGEPD_OK
);
101 static inline pte_t
*hugepte_offset(hugepd_t
*hpdp
, unsigned long addr
,
102 struct hstate
*hstate
)
104 unsigned int shift
= huge_page_shift(hstate
);
105 int psize
= shift_to_mmu_psize(shift
);
106 unsigned long idx
= ((addr
>> shift
) & (PTRS_PER_HUGEPTE(psize
)-1));
107 pte_t
*dir
= hugepd_page(*hpdp
);
112 static int __hugepte_alloc(struct mm_struct
*mm
, hugepd_t
*hpdp
,
113 unsigned long address
, unsigned int psize
)
115 pte_t
*new = kmem_cache_zalloc(pgtable_cache
[HUGE_PGTABLE_INDEX(psize
)],
116 GFP_KERNEL
|__GFP_REPEAT
);
121 spin_lock(&mm
->page_table_lock
);
122 if (!hugepd_none(*hpdp
))
123 kmem_cache_free(pgtable_cache
[HUGE_PGTABLE_INDEX(psize
)], new);
125 hpdp
->pd
= (unsigned long)new | HUGEPD_OK
;
126 spin_unlock(&mm
->page_table_lock
);
131 static pud_t
*hpud_offset(pgd_t
*pgd
, unsigned long addr
, struct hstate
*hstate
)
133 if (huge_page_shift(hstate
) < PUD_SHIFT
)
134 return pud_offset(pgd
, addr
);
136 return (pud_t
*) pgd
;
138 static pud_t
*hpud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long addr
,
139 struct hstate
*hstate
)
141 if (huge_page_shift(hstate
) < PUD_SHIFT
)
142 return pud_alloc(mm
, pgd
, addr
);
144 return (pud_t
*) pgd
;
146 static pmd_t
*hpmd_offset(pud_t
*pud
, unsigned long addr
, struct hstate
*hstate
)
148 if (huge_page_shift(hstate
) < PMD_SHIFT
)
149 return pmd_offset(pud
, addr
);
151 return (pmd_t
*) pud
;
153 static pmd_t
*hpmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long addr
,
154 struct hstate
*hstate
)
156 if (huge_page_shift(hstate
) < PMD_SHIFT
)
157 return pmd_alloc(mm
, pud
, addr
);
159 return (pmd_t
*) pud
;
162 /* Build list of addresses of gigantic pages. This function is used in early
163 * boot before the buddy or bootmem allocator is setup.
165 void add_gpage(unsigned long addr
, unsigned long page_size
,
166 unsigned long number_of_pages
)
170 while (number_of_pages
> 0) {
171 gpage_freearray
[nr_gpages
] = addr
;
178 /* Moves the gigantic page addresses from the temporary list to the
179 * huge_boot_pages list.
181 int alloc_bootmem_huge_page(struct hstate
*hstate
)
183 struct huge_bootmem_page
*m
;
186 m
= phys_to_virt(gpage_freearray
[--nr_gpages
]);
187 gpage_freearray
[nr_gpages
] = 0;
188 list_add(&m
->list
, &huge_boot_pages
);
194 /* Modelled after find_linux_pte() */
195 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
204 struct hstate
*hstate
;
205 psize
= get_slice_psize(mm
, addr
);
206 shift
= mmu_psize_to_shift(psize
);
207 sz
= ((1UL) << shift
);
208 hstate
= size_to_hstate(sz
);
210 addr
&= hstate
->mask
;
212 pg
= pgd_offset(mm
, addr
);
213 if (!pgd_none(*pg
)) {
214 pu
= hpud_offset(pg
, addr
, hstate
);
215 if (!pud_none(*pu
)) {
216 pm
= hpmd_offset(pu
, addr
, hstate
);
218 return hugepte_offset((hugepd_t
*)pm
, addr
,
226 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
227 unsigned long addr
, unsigned long sz
)
232 hugepd_t
*hpdp
= NULL
;
233 struct hstate
*hstate
;
235 hstate
= size_to_hstate(sz
);
237 psize
= get_slice_psize(mm
, addr
);
238 BUG_ON(!mmu_huge_psizes
[psize
]);
240 addr
&= hstate
->mask
;
242 pg
= pgd_offset(mm
, addr
);
243 pu
= hpud_alloc(mm
, pg
, addr
, hstate
);
246 pm
= hpmd_alloc(mm
, pu
, addr
, hstate
);
248 hpdp
= (hugepd_t
*)pm
;
254 if (hugepd_none(*hpdp
) && __hugepte_alloc(mm
, hpdp
, addr
, psize
))
257 return hugepte_offset(hpdp
, addr
, hstate
);
260 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
265 static void free_hugepte_range(struct mmu_gather
*tlb
, hugepd_t
*hpdp
,
268 pte_t
*hugepte
= hugepd_page(*hpdp
);
272 pgtable_free_tlb(tlb
, pgtable_free_cache(hugepte
,
273 HUGEPTE_CACHE_NUM
+psize
-1,
277 static void hugetlb_free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
278 unsigned long addr
, unsigned long end
,
279 unsigned long floor
, unsigned long ceiling
,
287 pmd
= pmd_offset(pud
, addr
);
289 next
= pmd_addr_end(addr
, end
);
292 free_hugepte_range(tlb
, (hugepd_t
*)pmd
, psize
);
293 } while (pmd
++, addr
= next
, addr
!= end
);
303 if (end
- 1 > ceiling
- 1)
306 pmd
= pmd_offset(pud
, start
);
308 pmd_free_tlb(tlb
, pmd
);
311 static void hugetlb_free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
312 unsigned long addr
, unsigned long end
,
313 unsigned long floor
, unsigned long ceiling
)
319 unsigned int psize
= get_slice_psize(tlb
->mm
, addr
);
320 shift
= mmu_psize_to_shift(psize
);
323 pud
= pud_offset(pgd
, addr
);
325 next
= pud_addr_end(addr
, end
);
326 if (shift
< PMD_SHIFT
) {
327 if (pud_none_or_clear_bad(pud
))
329 hugetlb_free_pmd_range(tlb
, pud
, addr
, next
, floor
,
334 free_hugepte_range(tlb
, (hugepd_t
*)pud
, psize
);
336 } while (pud
++, addr
= next
, addr
!= end
);
342 ceiling
&= PGDIR_MASK
;
346 if (end
- 1 > ceiling
- 1)
349 pud
= pud_offset(pgd
, start
);
351 pud_free_tlb(tlb
, pud
);
355 * This function frees user-level page tables of a process.
357 * Must be called with pagetable lock held.
359 void hugetlb_free_pgd_range(struct mmu_gather
*tlb
,
360 unsigned long addr
, unsigned long end
,
361 unsigned long floor
, unsigned long ceiling
)
368 * Comments below take from the normal free_pgd_range(). They
369 * apply here too. The tests against HUGEPD_MASK below are
370 * essential, because we *don't* test for this at the bottom
371 * level. Without them we'll attempt to free a hugepte table
372 * when we unmap just part of it, even if there are other
373 * active mappings using it.
375 * The next few lines have given us lots of grief...
377 * Why are we testing HUGEPD* at this top level? Because
378 * often there will be no work to do at all, and we'd prefer
379 * not to go all the way down to the bottom just to discover
382 * Why all these "- 1"s? Because 0 represents both the bottom
383 * of the address space and the top of it (using -1 for the
384 * top wouldn't help much: the masks would do the wrong thing).
385 * The rule is that addr 0 and floor 0 refer to the bottom of
386 * the address space, but end 0 and ceiling 0 refer to the top
387 * Comparisons need to use "end - 1" and "ceiling - 1" (though
388 * that end 0 case should be mythical).
390 * Wherever addr is brought up or ceiling brought down, we
391 * must be careful to reject "the opposite 0" before it
392 * confuses the subsequent tests. But what about where end is
393 * brought down by HUGEPD_SIZE below? no, end can't go down to
396 * Whereas we round start (addr) and ceiling down, by different
397 * masks at different levels, in order to test whether a table
398 * now has no other vmas using it, so can be freed, we don't
399 * bother to round floor or end up - the tests don't need that.
401 unsigned int psize
= get_slice_psize(tlb
->mm
, addr
);
403 addr
&= HUGEPD_MASK(psize
);
405 addr
+= HUGEPD_SIZE(psize
);
410 ceiling
&= HUGEPD_MASK(psize
);
414 if (end
- 1 > ceiling
- 1)
415 end
-= HUGEPD_SIZE(psize
);
420 pgd
= pgd_offset(tlb
->mm
, addr
);
422 psize
= get_slice_psize(tlb
->mm
, addr
);
423 BUG_ON(!mmu_huge_psizes
[psize
]);
424 next
= pgd_addr_end(addr
, end
);
425 if (mmu_psize_to_shift(psize
) < PUD_SHIFT
) {
426 if (pgd_none_or_clear_bad(pgd
))
428 hugetlb_free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
432 free_hugepte_range(tlb
, (hugepd_t
*)pgd
, psize
);
434 } while (pgd
++, addr
= next
, addr
!= end
);
437 void set_huge_pte_at(struct mm_struct
*mm
, unsigned long addr
,
438 pte_t
*ptep
, pte_t pte
)
440 if (pte_present(*ptep
)) {
441 /* We open-code pte_clear because we need to pass the right
442 * argument to hpte_need_flush (huge / !huge). Might not be
443 * necessary anymore if we make hpte_need_flush() get the
444 * page size from the slices
446 unsigned int psize
= get_slice_psize(mm
, addr
);
447 unsigned int shift
= mmu_psize_to_shift(psize
);
448 unsigned long sz
= ((1UL) << shift
);
449 struct hstate
*hstate
= size_to_hstate(sz
);
450 pte_update(mm
, addr
& hstate
->mask
, ptep
, ~0UL, 1);
452 *ptep
= __pte(pte_val(pte
) & ~_PAGE_HPTEFLAGS
);
455 pte_t
huge_ptep_get_and_clear(struct mm_struct
*mm
, unsigned long addr
,
458 unsigned long old
= pte_update(mm
, addr
, ptep
, ~0UL, 1);
463 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
, int write
)
467 unsigned int mmu_psize
= get_slice_psize(mm
, address
);
469 /* Verify it is a huge page else bail. */
470 if (!mmu_huge_psizes
[mmu_psize
])
471 return ERR_PTR(-EINVAL
);
473 ptep
= huge_pte_offset(mm
, address
);
474 page
= pte_page(*ptep
);
476 unsigned int shift
= mmu_psize_to_shift(mmu_psize
);
477 unsigned long sz
= ((1UL) << shift
);
478 page
+= (address
% sz
) / PAGE_SIZE
;
484 int pmd_huge(pmd_t pmd
)
489 int pud_huge(pud_t pud
)
495 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
496 pmd_t
*pmd
, int write
)
503 unsigned long hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
504 unsigned long len
, unsigned long pgoff
,
507 struct hstate
*hstate
= hstate_file(file
);
508 int mmu_psize
= shift_to_mmu_psize(huge_page_shift(hstate
));
509 return slice_get_unmapped_area(addr
, len
, flags
, mmu_psize
, 1, 0);
513 * Called by asm hashtable.S for doing lazy icache flush
515 static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags
,
516 pte_t pte
, int trap
, unsigned long sz
)
521 if (!pfn_valid(pte_pfn(pte
)))
524 page
= pte_page(pte
);
527 if (!test_bit(PG_arch_1
, &page
->flags
) && !PageReserved(page
)) {
529 for (i
= 0; i
< (sz
/ PAGE_SIZE
); i
++)
530 __flush_dcache_icache(page_address(page
+i
));
531 set_bit(PG_arch_1
, &page
->flags
);
539 int hash_huge_page(struct mm_struct
*mm
, unsigned long access
,
540 unsigned long ea
, unsigned long vsid
, int local
,
544 unsigned long old_pte
, new_pte
;
545 unsigned long va
, rflags
, pa
, sz
;
548 int ssize
= user_segment_size(ea
);
549 unsigned int mmu_psize
;
551 mmu_psize
= get_slice_psize(mm
, ea
);
553 if (!mmu_huge_psizes
[mmu_psize
])
555 ptep
= huge_pte_offset(mm
, ea
);
557 /* Search the Linux page table for a match with va */
558 va
= hpt_va(ea
, vsid
, ssize
);
561 * If no pte found or not present, send the problem up to
564 if (unlikely(!ptep
|| pte_none(*ptep
)))
568 * Check the user's access rights to the page. If access should be
569 * prevented then send the problem up to do_page_fault.
571 if (unlikely(access
& ~pte_val(*ptep
)))
574 * At this point, we have a pte (old_pte) which can be used to build
575 * or update an HPTE. There are 2 cases:
577 * 1. There is a valid (present) pte with no associated HPTE (this is
578 * the most common case)
579 * 2. There is a valid (present) pte with an associated HPTE. The
580 * current values of the pp bits in the HPTE prevent access
581 * because we are doing software DIRTY bit management and the
582 * page is currently not DIRTY.
587 old_pte
= pte_val(*ptep
);
588 if (old_pte
& _PAGE_BUSY
)
590 new_pte
= old_pte
| _PAGE_BUSY
| _PAGE_ACCESSED
;
591 } while(old_pte
!= __cmpxchg_u64((unsigned long *)ptep
,
594 rflags
= 0x2 | (!(new_pte
& _PAGE_RW
));
595 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
596 rflags
|= ((new_pte
& _PAGE_EXEC
) ? 0 : HPTE_R_N
);
597 shift
= mmu_psize_to_shift(mmu_psize
);
598 sz
= ((1UL) << shift
);
599 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE
))
600 /* No CPU has hugepages but lacks no execute, so we
601 * don't need to worry about that case */
602 rflags
= hash_huge_page_do_lazy_icache(rflags
, __pte(old_pte
),
605 /* Check if pte already has an hpte (case 2) */
606 if (unlikely(old_pte
& _PAGE_HASHPTE
)) {
607 /* There MIGHT be an HPTE for this pte */
608 unsigned long hash
, slot
;
610 hash
= hpt_hash(va
, shift
, ssize
);
611 if (old_pte
& _PAGE_F_SECOND
)
613 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
614 slot
+= (old_pte
& _PAGE_F_GIX
) >> 12;
616 if (ppc_md
.hpte_updatepp(slot
, rflags
, va
, mmu_psize
,
618 old_pte
&= ~_PAGE_HPTEFLAGS
;
621 if (likely(!(old_pte
& _PAGE_HASHPTE
))) {
622 unsigned long hash
= hpt_hash(va
, shift
, ssize
);
623 unsigned long hpte_group
;
625 pa
= pte_pfn(__pte(old_pte
)) << PAGE_SHIFT
;
628 hpte_group
= ((hash
& htab_hash_mask
) *
629 HPTES_PER_GROUP
) & ~0x7UL
;
631 /* clear HPTE slot informations in new PTE */
632 #ifdef CONFIG_PPC_64K_PAGES
633 new_pte
= (new_pte
& ~_PAGE_HPTEFLAGS
) | _PAGE_HPTE_SUB0
;
635 new_pte
= (new_pte
& ~_PAGE_HPTEFLAGS
) | _PAGE_HASHPTE
;
637 /* Add in WIMG bits */
638 rflags
|= (new_pte
& (_PAGE_WRITETHRU
| _PAGE_NO_CACHE
|
639 _PAGE_COHERENT
| _PAGE_GUARDED
));
641 /* Insert into the hash table, primary slot */
642 slot
= ppc_md
.hpte_insert(hpte_group
, va
, pa
, rflags
, 0,
645 /* Primary is full, try the secondary */
646 if (unlikely(slot
== -1)) {
647 hpte_group
= ((~hash
& htab_hash_mask
) *
648 HPTES_PER_GROUP
) & ~0x7UL
;
649 slot
= ppc_md
.hpte_insert(hpte_group
, va
, pa
, rflags
,
654 hpte_group
= ((hash
& htab_hash_mask
) *
655 HPTES_PER_GROUP
)&~0x7UL
;
657 ppc_md
.hpte_remove(hpte_group
);
662 if (unlikely(slot
== -2))
663 panic("hash_huge_page: pte_insert failed\n");
665 new_pte
|= (slot
<< 12) & (_PAGE_F_SECOND
| _PAGE_F_GIX
);
669 * No need to use ldarx/stdcx here
671 *ptep
= __pte(new_pte
& ~_PAGE_BUSY
);
679 static void __init
set_huge_psize(int psize
)
681 /* Check that it is a page size supported by the hardware and
682 * that it fits within pagetable limits. */
683 if (mmu_psize_defs
[psize
].shift
&&
684 mmu_psize_defs
[psize
].shift
< SID_SHIFT_1T
&&
685 (mmu_psize_defs
[psize
].shift
> MIN_HUGEPTE_SHIFT
||
686 mmu_psize_defs
[psize
].shift
== PAGE_SHIFT_64K
||
687 mmu_psize_defs
[psize
].shift
== PAGE_SHIFT_16G
)) {
688 /* Return if huge page size has already been setup or is the
689 * same as the base page size. */
690 if (mmu_huge_psizes
[psize
] ||
691 mmu_psize_defs
[psize
].shift
== PAGE_SHIFT
)
693 hugetlb_add_hstate(mmu_psize_defs
[psize
].shift
- PAGE_SHIFT
);
695 switch (mmu_psize_defs
[psize
].shift
) {
697 /* We only allow 64k hpages with 4k base page,
698 * which was checked above, and always put them
700 hugepte_shift
[psize
] = PMD_SHIFT
;
703 /* 16M pages can be at two different levels
704 * of pagestables based on base page size */
705 if (PAGE_SHIFT
== PAGE_SHIFT_64K
)
706 hugepte_shift
[psize
] = PMD_SHIFT
;
707 else /* 4k base page */
708 hugepte_shift
[psize
] = PUD_SHIFT
;
711 /* 16G pages are always at PGD level */
712 hugepte_shift
[psize
] = PGDIR_SHIFT
;
715 hugepte_shift
[psize
] -= mmu_psize_defs
[psize
].shift
;
717 hugepte_shift
[psize
] = 0;
720 static int __init
hugepage_setup_sz(char *str
)
722 unsigned long long size
;
726 size
= memparse(str
, &str
);
729 mmu_psize
= shift_to_mmu_psize(shift
);
730 if (mmu_psize
>= 0 && mmu_psize_defs
[mmu_psize
].shift
)
731 set_huge_psize(mmu_psize
);
733 printk(KERN_WARNING
"Invalid huge page size specified(%llu)\n", size
);
737 __setup("hugepagesz=", hugepage_setup_sz
);
739 static int __init
hugetlbpage_init(void)
743 if (!cpu_has_feature(CPU_FTR_16M_PAGE
))
746 /* Add supported huge page sizes. Need to change HUGE_MAX_HSTATE
747 * and adjust PTE_NONCACHE_NUM if the number of supported huge page
750 set_huge_psize(MMU_PAGE_16M
);
751 set_huge_psize(MMU_PAGE_16G
);
753 /* Temporarily disable support for 64K huge pages when 64K SPU local
754 * store support is enabled as the current implementation conflicts.
756 #ifndef CONFIG_SPU_FS_64K_LS
757 set_huge_psize(MMU_PAGE_64K
);
760 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
761 if (mmu_huge_psizes
[psize
]) {
762 pgtable_cache
[HUGE_PGTABLE_INDEX(psize
)] =
764 HUGEPTE_CACHE_NAME(psize
),
765 HUGEPTE_TABLE_SIZE(psize
),
766 HUGEPTE_TABLE_SIZE(psize
),
769 if (!pgtable_cache
[HUGE_PGTABLE_INDEX(psize
)])
770 panic("hugetlbpage_init(): could not create %s"\
771 "\n", HUGEPTE_CACHE_NAME(psize
));
778 module_init(hugetlbpage_init
);