quota: Fix possible dq_flags corruption
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / rds / iw_rdma.c
blob9eda11cca9566fbeb96e56e6f3ae9566fa152d99
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
35 #include "rds.h"
36 #include "rdma.h"
37 #include "iw.h"
41 * This is stored as mr->r_trans_private.
43 struct rds_iw_mr {
44 struct rds_iw_device *device;
45 struct rds_iw_mr_pool *pool;
46 struct rdma_cm_id *cm_id;
48 struct ib_mr *mr;
49 struct ib_fast_reg_page_list *page_list;
51 struct rds_iw_mapping mapping;
52 unsigned char remap_count;
56 * Our own little MR pool
58 struct rds_iw_mr_pool {
59 struct rds_iw_device *device; /* back ptr to the device that owns us */
61 struct mutex flush_lock; /* serialize fmr invalidate */
62 struct work_struct flush_worker; /* flush worker */
64 spinlock_t list_lock; /* protect variables below */
65 atomic_t item_count; /* total # of MRs */
66 atomic_t dirty_count; /* # dirty of MRs */
67 struct list_head dirty_list; /* dirty mappings */
68 struct list_head clean_list; /* unused & unamapped MRs */
69 atomic_t free_pinned; /* memory pinned by free MRs */
70 unsigned long max_message_size; /* in pages */
71 unsigned long max_items;
72 unsigned long max_items_soft;
73 unsigned long max_free_pinned;
74 int max_pages;
77 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
78 static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
79 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
80 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
81 struct rds_iw_mr *ibmr,
82 struct scatterlist *sg, unsigned int nents);
83 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
84 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
85 struct list_head *unmap_list,
86 struct list_head *kill_list);
87 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
89 static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id)
91 struct rds_iw_device *iwdev;
92 struct rds_iw_cm_id *i_cm_id;
94 *rds_iwdev = NULL;
95 *cm_id = NULL;
97 list_for_each_entry(iwdev, &rds_iw_devices, list) {
98 spin_lock_irq(&iwdev->spinlock);
99 list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
100 struct sockaddr_in *src_addr, *dst_addr;
102 src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
103 dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
105 rdsdebug("local ipaddr = %x port %d, "
106 "remote ipaddr = %x port %d"
107 "..looking for %x port %d, "
108 "remote ipaddr = %x port %d\n",
109 src_addr->sin_addr.s_addr,
110 src_addr->sin_port,
111 dst_addr->sin_addr.s_addr,
112 dst_addr->sin_port,
113 rs->rs_bound_addr,
114 rs->rs_bound_port,
115 rs->rs_conn_addr,
116 rs->rs_conn_port);
117 #ifdef WORKING_TUPLE_DETECTION
118 if (src_addr->sin_addr.s_addr == rs->rs_bound_addr &&
119 src_addr->sin_port == rs->rs_bound_port &&
120 dst_addr->sin_addr.s_addr == rs->rs_conn_addr &&
121 dst_addr->sin_port == rs->rs_conn_port) {
122 #else
123 /* FIXME - needs to compare the local and remote
124 * ipaddr/port tuple, but the ipaddr is the only
125 * available infomation in the rds_sock (as the rest are
126 * zero'ed. It doesn't appear to be properly populated
127 * during connection setup...
129 if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) {
130 #endif
131 spin_unlock_irq(&iwdev->spinlock);
132 *rds_iwdev = iwdev;
133 *cm_id = i_cm_id->cm_id;
134 return 0;
137 spin_unlock_irq(&iwdev->spinlock);
140 return 1;
143 static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
145 struct rds_iw_cm_id *i_cm_id;
147 i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
148 if (!i_cm_id)
149 return -ENOMEM;
151 i_cm_id->cm_id = cm_id;
153 spin_lock_irq(&rds_iwdev->spinlock);
154 list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
155 spin_unlock_irq(&rds_iwdev->spinlock);
157 return 0;
160 void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
162 struct rds_iw_cm_id *i_cm_id;
164 spin_lock_irq(&rds_iwdev->spinlock);
165 list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
166 if (i_cm_id->cm_id == cm_id) {
167 list_del(&i_cm_id->list);
168 kfree(i_cm_id);
169 break;
172 spin_unlock_irq(&rds_iwdev->spinlock);
176 int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
178 struct sockaddr_in *src_addr, *dst_addr;
179 struct rds_iw_device *rds_iwdev_old;
180 struct rds_sock rs;
181 struct rdma_cm_id *pcm_id;
182 int rc;
184 src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
185 dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
187 rs.rs_bound_addr = src_addr->sin_addr.s_addr;
188 rs.rs_bound_port = src_addr->sin_port;
189 rs.rs_conn_addr = dst_addr->sin_addr.s_addr;
190 rs.rs_conn_port = dst_addr->sin_port;
192 rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id);
193 if (rc)
194 rds_iw_remove_cm_id(rds_iwdev, cm_id);
196 return rds_iw_add_cm_id(rds_iwdev, cm_id);
199 void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
201 struct rds_iw_connection *ic = conn->c_transport_data;
203 /* conn was previously on the nodev_conns_list */
204 spin_lock_irq(&iw_nodev_conns_lock);
205 BUG_ON(list_empty(&iw_nodev_conns));
206 BUG_ON(list_empty(&ic->iw_node));
207 list_del(&ic->iw_node);
209 spin_lock_irq(&rds_iwdev->spinlock);
210 list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
211 spin_unlock_irq(&rds_iwdev->spinlock);
212 spin_unlock_irq(&iw_nodev_conns_lock);
214 ic->rds_iwdev = rds_iwdev;
217 void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
219 struct rds_iw_connection *ic = conn->c_transport_data;
221 /* place conn on nodev_conns_list */
222 spin_lock(&iw_nodev_conns_lock);
224 spin_lock_irq(&rds_iwdev->spinlock);
225 BUG_ON(list_empty(&ic->iw_node));
226 list_del(&ic->iw_node);
227 spin_unlock_irq(&rds_iwdev->spinlock);
229 list_add_tail(&ic->iw_node, &iw_nodev_conns);
231 spin_unlock(&iw_nodev_conns_lock);
233 rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
234 ic->rds_iwdev = NULL;
237 void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
239 struct rds_iw_connection *ic, *_ic;
240 LIST_HEAD(tmp_list);
242 /* avoid calling conn_destroy with irqs off */
243 spin_lock_irq(list_lock);
244 list_splice(list, &tmp_list);
245 INIT_LIST_HEAD(list);
246 spin_unlock_irq(list_lock);
248 list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
249 rds_conn_destroy(ic->conn);
252 static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
253 struct scatterlist *list, unsigned int sg_len)
255 sg->list = list;
256 sg->len = sg_len;
257 sg->dma_len = 0;
258 sg->dma_npages = 0;
259 sg->bytes = 0;
262 static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
263 struct rds_iw_scatterlist *sg)
265 struct ib_device *dev = rds_iwdev->dev;
266 u64 *dma_pages = NULL;
267 int i, j, ret;
269 WARN_ON(sg->dma_len);
271 sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
272 if (unlikely(!sg->dma_len)) {
273 printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
274 return ERR_PTR(-EBUSY);
277 sg->bytes = 0;
278 sg->dma_npages = 0;
280 ret = -EINVAL;
281 for (i = 0; i < sg->dma_len; ++i) {
282 unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
283 u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
284 u64 end_addr;
286 sg->bytes += dma_len;
288 end_addr = dma_addr + dma_len;
289 if (dma_addr & PAGE_MASK) {
290 if (i > 0)
291 goto out_unmap;
292 dma_addr &= ~PAGE_MASK;
294 if (end_addr & PAGE_MASK) {
295 if (i < sg->dma_len - 1)
296 goto out_unmap;
297 end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
300 sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
303 /* Now gather the dma addrs into one list */
304 if (sg->dma_npages > fastreg_message_size)
305 goto out_unmap;
307 dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
308 if (!dma_pages) {
309 ret = -ENOMEM;
310 goto out_unmap;
313 for (i = j = 0; i < sg->dma_len; ++i) {
314 unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
315 u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
316 u64 end_addr;
318 end_addr = dma_addr + dma_len;
319 dma_addr &= ~PAGE_MASK;
320 for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
321 dma_pages[j++] = dma_addr;
322 BUG_ON(j > sg->dma_npages);
325 return dma_pages;
327 out_unmap:
328 ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
329 sg->dma_len = 0;
330 kfree(dma_pages);
331 return ERR_PTR(ret);
335 struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
337 struct rds_iw_mr_pool *pool;
339 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
340 if (!pool) {
341 printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
342 return ERR_PTR(-ENOMEM);
345 pool->device = rds_iwdev;
346 INIT_LIST_HEAD(&pool->dirty_list);
347 INIT_LIST_HEAD(&pool->clean_list);
348 mutex_init(&pool->flush_lock);
349 spin_lock_init(&pool->list_lock);
350 INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
352 pool->max_message_size = fastreg_message_size;
353 pool->max_items = fastreg_pool_size;
354 pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
355 pool->max_pages = fastreg_message_size;
357 /* We never allow more than max_items MRs to be allocated.
358 * When we exceed more than max_items_soft, we start freeing
359 * items more aggressively.
360 * Make sure that max_items > max_items_soft > max_items / 2
362 pool->max_items_soft = pool->max_items * 3 / 4;
364 return pool;
367 void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
369 struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
371 iinfo->rdma_mr_max = pool->max_items;
372 iinfo->rdma_mr_size = pool->max_pages;
375 void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
377 flush_workqueue(rds_wq);
378 rds_iw_flush_mr_pool(pool, 1);
379 BUG_ON(atomic_read(&pool->item_count));
380 BUG_ON(atomic_read(&pool->free_pinned));
381 kfree(pool);
384 static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
386 struct rds_iw_mr *ibmr = NULL;
387 unsigned long flags;
389 spin_lock_irqsave(&pool->list_lock, flags);
390 if (!list_empty(&pool->clean_list)) {
391 ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
392 list_del_init(&ibmr->mapping.m_list);
394 spin_unlock_irqrestore(&pool->list_lock, flags);
396 return ibmr;
399 static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
401 struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
402 struct rds_iw_mr *ibmr = NULL;
403 int err = 0, iter = 0;
405 while (1) {
406 ibmr = rds_iw_reuse_fmr(pool);
407 if (ibmr)
408 return ibmr;
410 /* No clean MRs - now we have the choice of either
411 * allocating a fresh MR up to the limit imposed by the
412 * driver, or flush any dirty unused MRs.
413 * We try to avoid stalling in the send path if possible,
414 * so we allocate as long as we're allowed to.
416 * We're fussy with enforcing the FMR limit, though. If the driver
417 * tells us we can't use more than N fmrs, we shouldn't start
418 * arguing with it */
419 if (atomic_inc_return(&pool->item_count) <= pool->max_items)
420 break;
422 atomic_dec(&pool->item_count);
424 if (++iter > 2) {
425 rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
426 return ERR_PTR(-EAGAIN);
429 /* We do have some empty MRs. Flush them out. */
430 rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
431 rds_iw_flush_mr_pool(pool, 0);
434 ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
435 if (!ibmr) {
436 err = -ENOMEM;
437 goto out_no_cigar;
440 spin_lock_init(&ibmr->mapping.m_lock);
441 INIT_LIST_HEAD(&ibmr->mapping.m_list);
442 ibmr->mapping.m_mr = ibmr;
444 err = rds_iw_init_fastreg(pool, ibmr);
445 if (err)
446 goto out_no_cigar;
448 rds_iw_stats_inc(s_iw_rdma_mr_alloc);
449 return ibmr;
451 out_no_cigar:
452 if (ibmr) {
453 rds_iw_destroy_fastreg(pool, ibmr);
454 kfree(ibmr);
456 atomic_dec(&pool->item_count);
457 return ERR_PTR(err);
460 void rds_iw_sync_mr(void *trans_private, int direction)
462 struct rds_iw_mr *ibmr = trans_private;
463 struct rds_iw_device *rds_iwdev = ibmr->device;
465 switch (direction) {
466 case DMA_FROM_DEVICE:
467 ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
468 ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
469 break;
470 case DMA_TO_DEVICE:
471 ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
472 ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
473 break;
477 static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all)
479 unsigned int item_count;
481 item_count = atomic_read(&pool->item_count);
482 if (free_all)
483 return item_count;
485 return 0;
489 * Flush our pool of MRs.
490 * At a minimum, all currently unused MRs are unmapped.
491 * If the number of MRs allocated exceeds the limit, we also try
492 * to free as many MRs as needed to get back to this limit.
494 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
496 struct rds_iw_mr *ibmr, *next;
497 LIST_HEAD(unmap_list);
498 LIST_HEAD(kill_list);
499 unsigned long flags;
500 unsigned int nfreed = 0, ncleaned = 0, free_goal;
501 int ret = 0;
503 rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
505 mutex_lock(&pool->flush_lock);
507 spin_lock_irqsave(&pool->list_lock, flags);
508 /* Get the list of all mappings to be destroyed */
509 list_splice_init(&pool->dirty_list, &unmap_list);
510 if (free_all)
511 list_splice_init(&pool->clean_list, &kill_list);
512 spin_unlock_irqrestore(&pool->list_lock, flags);
514 free_goal = rds_iw_flush_goal(pool, free_all);
516 /* Batched invalidate of dirty MRs.
517 * For FMR based MRs, the mappings on the unmap list are
518 * actually members of an ibmr (ibmr->mapping). They either
519 * migrate to the kill_list, or have been cleaned and should be
520 * moved to the clean_list.
521 * For fastregs, they will be dynamically allocated, and
522 * will be destroyed by the unmap function.
524 if (!list_empty(&unmap_list)) {
525 ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list);
526 /* If we've been asked to destroy all MRs, move those
527 * that were simply cleaned to the kill list */
528 if (free_all)
529 list_splice_init(&unmap_list, &kill_list);
532 /* Destroy any MRs that are past their best before date */
533 list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
534 rds_iw_stats_inc(s_iw_rdma_mr_free);
535 list_del(&ibmr->mapping.m_list);
536 rds_iw_destroy_fastreg(pool, ibmr);
537 kfree(ibmr);
538 nfreed++;
541 /* Anything that remains are laundered ibmrs, which we can add
542 * back to the clean list. */
543 if (!list_empty(&unmap_list)) {
544 spin_lock_irqsave(&pool->list_lock, flags);
545 list_splice(&unmap_list, &pool->clean_list);
546 spin_unlock_irqrestore(&pool->list_lock, flags);
549 atomic_sub(ncleaned, &pool->dirty_count);
550 atomic_sub(nfreed, &pool->item_count);
552 mutex_unlock(&pool->flush_lock);
553 return ret;
556 static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
558 struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
560 rds_iw_flush_mr_pool(pool, 0);
563 void rds_iw_free_mr(void *trans_private, int invalidate)
565 struct rds_iw_mr *ibmr = trans_private;
566 struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
568 rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
569 if (!pool)
570 return;
572 /* Return it to the pool's free list */
573 rds_iw_free_fastreg(pool, ibmr);
575 /* If we've pinned too many pages, request a flush */
576 if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
577 atomic_read(&pool->dirty_count) >= pool->max_items / 10)
578 queue_work(rds_wq, &pool->flush_worker);
580 if (invalidate) {
581 if (likely(!in_interrupt())) {
582 rds_iw_flush_mr_pool(pool, 0);
583 } else {
584 /* We get here if the user created a MR marked
585 * as use_once and invalidate at the same time. */
586 queue_work(rds_wq, &pool->flush_worker);
591 void rds_iw_flush_mrs(void)
593 struct rds_iw_device *rds_iwdev;
595 list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
596 struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
598 if (pool)
599 rds_iw_flush_mr_pool(pool, 0);
603 void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
604 struct rds_sock *rs, u32 *key_ret)
606 struct rds_iw_device *rds_iwdev;
607 struct rds_iw_mr *ibmr = NULL;
608 struct rdma_cm_id *cm_id;
609 int ret;
611 ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id);
612 if (ret || !cm_id) {
613 ret = -ENODEV;
614 goto out;
617 if (!rds_iwdev->mr_pool) {
618 ret = -ENODEV;
619 goto out;
622 ibmr = rds_iw_alloc_mr(rds_iwdev);
623 if (IS_ERR(ibmr))
624 return ibmr;
626 ibmr->cm_id = cm_id;
627 ibmr->device = rds_iwdev;
629 ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
630 if (ret == 0)
631 *key_ret = ibmr->mr->rkey;
632 else
633 printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
635 out:
636 if (ret) {
637 if (ibmr)
638 rds_iw_free_mr(ibmr, 0);
639 ibmr = ERR_PTR(ret);
641 return ibmr;
645 * iWARP fastreg handling
647 * The life cycle of a fastreg registration is a bit different from
648 * FMRs.
649 * The idea behind fastreg is to have one MR, to which we bind different
650 * mappings over time. To avoid stalling on the expensive map and invalidate
651 * operations, these operations are pipelined on the same send queue on
652 * which we want to send the message containing the r_key.
654 * This creates a bit of a problem for us, as we do not have the destination
655 * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
656 * RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit
657 * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
658 * before queuing the SEND. When completions for these arrive, they are
659 * dispatched to the MR has a bit set showing that RDMa can be performed.
661 * There is another interesting aspect that's related to invalidation.
662 * The application can request that a mapping is invalidated in FREE_MR.
663 * The expectation there is that this invalidation step includes ALL
664 * PREVIOUSLY FREED MRs.
666 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
667 struct rds_iw_mr *ibmr)
669 struct rds_iw_device *rds_iwdev = pool->device;
670 struct ib_fast_reg_page_list *page_list = NULL;
671 struct ib_mr *mr;
672 int err;
674 mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
675 if (IS_ERR(mr)) {
676 err = PTR_ERR(mr);
678 printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
679 return err;
682 /* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
683 * is not filled in.
685 page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
686 if (IS_ERR(page_list)) {
687 err = PTR_ERR(page_list);
689 printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
690 ib_dereg_mr(mr);
691 return err;
694 ibmr->page_list = page_list;
695 ibmr->mr = mr;
696 return 0;
699 static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
701 struct rds_iw_mr *ibmr = mapping->m_mr;
702 struct ib_send_wr f_wr, *failed_wr;
703 int ret;
706 * Perform a WR for the fast_reg_mr. Each individual page
707 * in the sg list is added to the fast reg page list and placed
708 * inside the fast_reg_mr WR. The key used is a rolling 8bit
709 * counter, which should guarantee uniqueness.
711 ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
712 mapping->m_rkey = ibmr->mr->rkey;
714 memset(&f_wr, 0, sizeof(f_wr));
715 f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
716 f_wr.opcode = IB_WR_FAST_REG_MR;
717 f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
718 f_wr.wr.fast_reg.rkey = mapping->m_rkey;
719 f_wr.wr.fast_reg.page_list = ibmr->page_list;
720 f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
721 f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
722 f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
723 IB_ACCESS_REMOTE_READ |
724 IB_ACCESS_REMOTE_WRITE;
725 f_wr.wr.fast_reg.iova_start = 0;
726 f_wr.send_flags = IB_SEND_SIGNALED;
728 failed_wr = &f_wr;
729 ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
730 BUG_ON(failed_wr != &f_wr);
731 if (ret && printk_ratelimit())
732 printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
733 __func__, __LINE__, ret);
734 return ret;
737 static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
739 struct ib_send_wr s_wr, *failed_wr;
740 int ret = 0;
742 if (!ibmr->cm_id->qp || !ibmr->mr)
743 goto out;
745 memset(&s_wr, 0, sizeof(s_wr));
746 s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
747 s_wr.opcode = IB_WR_LOCAL_INV;
748 s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
749 s_wr.send_flags = IB_SEND_SIGNALED;
751 failed_wr = &s_wr;
752 ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
753 if (ret && printk_ratelimit()) {
754 printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
755 __func__, __LINE__, ret);
756 goto out;
758 out:
759 return ret;
762 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
763 struct rds_iw_mr *ibmr,
764 struct scatterlist *sg,
765 unsigned int sg_len)
767 struct rds_iw_device *rds_iwdev = pool->device;
768 struct rds_iw_mapping *mapping = &ibmr->mapping;
769 u64 *dma_pages;
770 int i, ret = 0;
772 rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
774 dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
775 if (IS_ERR(dma_pages)) {
776 ret = PTR_ERR(dma_pages);
777 dma_pages = NULL;
778 goto out;
781 if (mapping->m_sg.dma_len > pool->max_message_size) {
782 ret = -EMSGSIZE;
783 goto out;
786 for (i = 0; i < mapping->m_sg.dma_npages; ++i)
787 ibmr->page_list->page_list[i] = dma_pages[i];
789 ret = rds_iw_rdma_build_fastreg(mapping);
790 if (ret)
791 goto out;
793 rds_iw_stats_inc(s_iw_rdma_mr_used);
795 out:
796 kfree(dma_pages);
798 return ret;
802 * "Free" a fastreg MR.
804 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
805 struct rds_iw_mr *ibmr)
807 unsigned long flags;
808 int ret;
810 if (!ibmr->mapping.m_sg.dma_len)
811 return;
813 ret = rds_iw_rdma_fastreg_inv(ibmr);
814 if (ret)
815 return;
817 /* Try to post the LOCAL_INV WR to the queue. */
818 spin_lock_irqsave(&pool->list_lock, flags);
820 list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
821 atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
822 atomic_inc(&pool->dirty_count);
824 spin_unlock_irqrestore(&pool->list_lock, flags);
827 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
828 struct list_head *unmap_list,
829 struct list_head *kill_list)
831 struct rds_iw_mapping *mapping, *next;
832 unsigned int ncleaned = 0;
833 LIST_HEAD(laundered);
835 /* Batched invalidation of fastreg MRs.
836 * Why do we do it this way, even though we could pipeline unmap
837 * and remap? The reason is the application semantics - when the
838 * application requests an invalidation of MRs, it expects all
839 * previously released R_Keys to become invalid.
841 * If we implement MR reuse naively, we risk memory corruption
842 * (this has actually been observed). So the default behavior
843 * requires that a MR goes through an explicit unmap operation before
844 * we can reuse it again.
846 * We could probably improve on this a little, by allowing immediate
847 * reuse of a MR on the same socket (eg you could add small
848 * cache of unused MRs to strct rds_socket - GET_MR could grab one
849 * of these without requiring an explicit invalidate).
851 while (!list_empty(unmap_list)) {
852 unsigned long flags;
854 spin_lock_irqsave(&pool->list_lock, flags);
855 list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
856 list_move(&mapping->m_list, &laundered);
857 ncleaned++;
859 spin_unlock_irqrestore(&pool->list_lock, flags);
862 /* Move all laundered mappings back to the unmap list.
863 * We do not kill any WRs right now - it doesn't seem the
864 * fastreg API has a max_remap limit. */
865 list_splice_init(&laundered, unmap_list);
867 return ncleaned;
870 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
871 struct rds_iw_mr *ibmr)
873 if (ibmr->page_list)
874 ib_free_fast_reg_page_list(ibmr->page_list);
875 if (ibmr->mr)
876 ib_dereg_mr(ibmr->mr);