4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/kernel.h>
18 #include <linux/kexec.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
33 #include <linux/compat.h>
34 #include <linux/syscalls.h>
35 #include <linux/kprobes.h>
37 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
41 #ifndef SET_UNALIGN_CTL
42 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
44 #ifndef GET_UNALIGN_CTL
45 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
48 # define SET_FPEMU_CTL(a,b) (-EINVAL)
51 # define GET_FPEMU_CTL(a,b) (-EINVAL)
54 # define SET_FPEXC_CTL(a,b) (-EINVAL)
57 # define GET_FPEXC_CTL(a,b) (-EINVAL)
60 # define GET_ENDIAN(a,b) (-EINVAL)
63 # define SET_ENDIAN(a,b) (-EINVAL)
67 * this is where the system-wide overflow UID and GID are defined, for
68 * architectures that now have 32-bit UID/GID but didn't in the past
71 int overflowuid
= DEFAULT_OVERFLOWUID
;
72 int overflowgid
= DEFAULT_OVERFLOWGID
;
75 EXPORT_SYMBOL(overflowuid
);
76 EXPORT_SYMBOL(overflowgid
);
80 * the same as above, but for filesystems which can only store a 16-bit
81 * UID and GID. as such, this is needed on all architectures
84 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
85 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
87 EXPORT_SYMBOL(fs_overflowuid
);
88 EXPORT_SYMBOL(fs_overflowgid
);
91 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
98 * Notifier list for kernel code which wants to be called
99 * at shutdown. This is used to stop any idling DMA operations
103 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list
);
106 * Notifier chain core routines. The exported routines below
107 * are layered on top of these, with appropriate locking added.
110 static int notifier_chain_register(struct notifier_block
**nl
,
111 struct notifier_block
*n
)
113 while ((*nl
) != NULL
) {
114 if (n
->priority
> (*nl
)->priority
)
119 rcu_assign_pointer(*nl
, n
);
123 static int notifier_chain_unregister(struct notifier_block
**nl
,
124 struct notifier_block
*n
)
126 while ((*nl
) != NULL
) {
128 rcu_assign_pointer(*nl
, n
->next
);
136 static int __kprobes
notifier_call_chain(struct notifier_block
**nl
,
137 unsigned long val
, void *v
)
139 int ret
= NOTIFY_DONE
;
140 struct notifier_block
*nb
, *next_nb
;
142 nb
= rcu_dereference(*nl
);
144 next_nb
= rcu_dereference(nb
->next
);
145 ret
= nb
->notifier_call(nb
, val
, v
);
146 if ((ret
& NOTIFY_STOP_MASK
) == NOTIFY_STOP_MASK
)
154 * Atomic notifier chain routines. Registration and unregistration
155 * use a mutex, and call_chain is synchronized by RCU (no locks).
159 * atomic_notifier_chain_register - Add notifier to an atomic notifier chain
160 * @nh: Pointer to head of the atomic notifier chain
161 * @n: New entry in notifier chain
163 * Adds a notifier to an atomic notifier chain.
165 * Currently always returns zero.
168 int atomic_notifier_chain_register(struct atomic_notifier_head
*nh
,
169 struct notifier_block
*n
)
174 spin_lock_irqsave(&nh
->lock
, flags
);
175 ret
= notifier_chain_register(&nh
->head
, n
);
176 spin_unlock_irqrestore(&nh
->lock
, flags
);
180 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register
);
183 * atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
184 * @nh: Pointer to head of the atomic notifier chain
185 * @n: Entry to remove from notifier chain
187 * Removes a notifier from an atomic notifier chain.
189 * Returns zero on success or %-ENOENT on failure.
191 int atomic_notifier_chain_unregister(struct atomic_notifier_head
*nh
,
192 struct notifier_block
*n
)
197 spin_lock_irqsave(&nh
->lock
, flags
);
198 ret
= notifier_chain_unregister(&nh
->head
, n
);
199 spin_unlock_irqrestore(&nh
->lock
, flags
);
204 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister
);
207 * atomic_notifier_call_chain - Call functions in an atomic notifier chain
208 * @nh: Pointer to head of the atomic notifier chain
209 * @val: Value passed unmodified to notifier function
210 * @v: Pointer passed unmodified to notifier function
212 * Calls each function in a notifier chain in turn. The functions
213 * run in an atomic context, so they must not block.
214 * This routine uses RCU to synchronize with changes to the chain.
216 * If the return value of the notifier can be and'ed
217 * with %NOTIFY_STOP_MASK then atomic_notifier_call_chain
218 * will return immediately, with the return value of
219 * the notifier function which halted execution.
220 * Otherwise the return value is the return value
221 * of the last notifier function called.
224 int atomic_notifier_call_chain(struct atomic_notifier_head
*nh
,
225 unsigned long val
, void *v
)
230 ret
= notifier_call_chain(&nh
->head
, val
, v
);
235 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain
);
238 * Blocking notifier chain routines. All access to the chain is
239 * synchronized by an rwsem.
243 * blocking_notifier_chain_register - Add notifier to a blocking notifier chain
244 * @nh: Pointer to head of the blocking notifier chain
245 * @n: New entry in notifier chain
247 * Adds a notifier to a blocking notifier chain.
248 * Must be called in process context.
250 * Currently always returns zero.
253 int blocking_notifier_chain_register(struct blocking_notifier_head
*nh
,
254 struct notifier_block
*n
)
259 * This code gets used during boot-up, when task switching is
260 * not yet working and interrupts must remain disabled. At
261 * such times we must not call down_write().
263 if (unlikely(system_state
== SYSTEM_BOOTING
))
264 return notifier_chain_register(&nh
->head
, n
);
266 down_write(&nh
->rwsem
);
267 ret
= notifier_chain_register(&nh
->head
, n
);
268 up_write(&nh
->rwsem
);
272 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register
);
275 * blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
276 * @nh: Pointer to head of the blocking notifier chain
277 * @n: Entry to remove from notifier chain
279 * Removes a notifier from a blocking notifier chain.
280 * Must be called from process context.
282 * Returns zero on success or %-ENOENT on failure.
284 int blocking_notifier_chain_unregister(struct blocking_notifier_head
*nh
,
285 struct notifier_block
*n
)
290 * This code gets used during boot-up, when task switching is
291 * not yet working and interrupts must remain disabled. At
292 * such times we must not call down_write().
294 if (unlikely(system_state
== SYSTEM_BOOTING
))
295 return notifier_chain_unregister(&nh
->head
, n
);
297 down_write(&nh
->rwsem
);
298 ret
= notifier_chain_unregister(&nh
->head
, n
);
299 up_write(&nh
->rwsem
);
303 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister
);
306 * blocking_notifier_call_chain - Call functions in a blocking notifier chain
307 * @nh: Pointer to head of the blocking notifier chain
308 * @val: Value passed unmodified to notifier function
309 * @v: Pointer passed unmodified to notifier function
311 * Calls each function in a notifier chain in turn. The functions
312 * run in a process context, so they are allowed to block.
314 * If the return value of the notifier can be and'ed
315 * with %NOTIFY_STOP_MASK then blocking_notifier_call_chain
316 * will return immediately, with the return value of
317 * the notifier function which halted execution.
318 * Otherwise the return value is the return value
319 * of the last notifier function called.
322 int blocking_notifier_call_chain(struct blocking_notifier_head
*nh
,
323 unsigned long val
, void *v
)
327 down_read(&nh
->rwsem
);
328 ret
= notifier_call_chain(&nh
->head
, val
, v
);
333 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain
);
336 * Raw notifier chain routines. There is no protection;
337 * the caller must provide it. Use at your own risk!
341 * raw_notifier_chain_register - Add notifier to a raw notifier chain
342 * @nh: Pointer to head of the raw notifier chain
343 * @n: New entry in notifier chain
345 * Adds a notifier to a raw notifier chain.
346 * All locking must be provided by the caller.
348 * Currently always returns zero.
351 int raw_notifier_chain_register(struct raw_notifier_head
*nh
,
352 struct notifier_block
*n
)
354 return notifier_chain_register(&nh
->head
, n
);
357 EXPORT_SYMBOL_GPL(raw_notifier_chain_register
);
360 * raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
361 * @nh: Pointer to head of the raw notifier chain
362 * @n: Entry to remove from notifier chain
364 * Removes a notifier from a raw notifier chain.
365 * All locking must be provided by the caller.
367 * Returns zero on success or %-ENOENT on failure.
369 int raw_notifier_chain_unregister(struct raw_notifier_head
*nh
,
370 struct notifier_block
*n
)
372 return notifier_chain_unregister(&nh
->head
, n
);
375 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister
);
378 * raw_notifier_call_chain - Call functions in a raw notifier chain
379 * @nh: Pointer to head of the raw notifier chain
380 * @val: Value passed unmodified to notifier function
381 * @v: Pointer passed unmodified to notifier function
383 * Calls each function in a notifier chain in turn. The functions
384 * run in an undefined context.
385 * All locking must be provided by the caller.
387 * If the return value of the notifier can be and'ed
388 * with %NOTIFY_STOP_MASK then raw_notifier_call_chain
389 * will return immediately, with the return value of
390 * the notifier function which halted execution.
391 * Otherwise the return value is the return value
392 * of the last notifier function called.
395 int raw_notifier_call_chain(struct raw_notifier_head
*nh
,
396 unsigned long val
, void *v
)
398 return notifier_call_chain(&nh
->head
, val
, v
);
401 EXPORT_SYMBOL_GPL(raw_notifier_call_chain
);
404 * register_reboot_notifier - Register function to be called at reboot time
405 * @nb: Info about notifier function to be called
407 * Registers a function with the list of functions
408 * to be called at reboot time.
410 * Currently always returns zero, as blocking_notifier_chain_register
411 * always returns zero.
414 int register_reboot_notifier(struct notifier_block
* nb
)
416 return blocking_notifier_chain_register(&reboot_notifier_list
, nb
);
419 EXPORT_SYMBOL(register_reboot_notifier
);
422 * unregister_reboot_notifier - Unregister previously registered reboot notifier
423 * @nb: Hook to be unregistered
425 * Unregisters a previously registered reboot
428 * Returns zero on success, or %-ENOENT on failure.
431 int unregister_reboot_notifier(struct notifier_block
* nb
)
433 return blocking_notifier_chain_unregister(&reboot_notifier_list
, nb
);
436 EXPORT_SYMBOL(unregister_reboot_notifier
);
438 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
442 if (p
->uid
!= current
->euid
&&
443 p
->euid
!= current
->euid
&& !capable(CAP_SYS_NICE
)) {
447 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
451 no_nice
= security_task_setnice(p
, niceval
);
458 set_user_nice(p
, niceval
);
463 asmlinkage
long sys_setpriority(int which
, int who
, int niceval
)
465 struct task_struct
*g
, *p
;
466 struct user_struct
*user
;
469 if (which
> 2 || which
< 0)
472 /* normalize: avoid signed division (rounding problems) */
479 read_lock(&tasklist_lock
);
484 p
= find_task_by_pid(who
);
486 error
= set_one_prio(p
, niceval
, error
);
490 who
= process_group(current
);
491 do_each_task_pid(who
, PIDTYPE_PGID
, p
) {
492 error
= set_one_prio(p
, niceval
, error
);
493 } while_each_task_pid(who
, PIDTYPE_PGID
, p
);
496 user
= current
->user
;
500 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
501 goto out_unlock
; /* No processes for this user */
505 error
= set_one_prio(p
, niceval
, error
);
506 while_each_thread(g
, p
);
507 if (who
!= current
->uid
)
508 free_uid(user
); /* For find_user() */
512 read_unlock(&tasklist_lock
);
518 * Ugh. To avoid negative return values, "getpriority()" will
519 * not return the normal nice-value, but a negated value that
520 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
521 * to stay compatible.
523 asmlinkage
long sys_getpriority(int which
, int who
)
525 struct task_struct
*g
, *p
;
526 struct user_struct
*user
;
527 long niceval
, retval
= -ESRCH
;
529 if (which
> 2 || which
< 0)
532 read_lock(&tasklist_lock
);
537 p
= find_task_by_pid(who
);
539 niceval
= 20 - task_nice(p
);
540 if (niceval
> retval
)
546 who
= process_group(current
);
547 do_each_task_pid(who
, PIDTYPE_PGID
, p
) {
548 niceval
= 20 - task_nice(p
);
549 if (niceval
> retval
)
551 } while_each_task_pid(who
, PIDTYPE_PGID
, p
);
554 user
= current
->user
;
558 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
559 goto out_unlock
; /* No processes for this user */
563 niceval
= 20 - task_nice(p
);
564 if (niceval
> retval
)
567 while_each_thread(g
, p
);
568 if (who
!= current
->uid
)
569 free_uid(user
); /* for find_user() */
573 read_unlock(&tasklist_lock
);
579 * emergency_restart - reboot the system
581 * Without shutting down any hardware or taking any locks
582 * reboot the system. This is called when we know we are in
583 * trouble so this is our best effort to reboot. This is
584 * safe to call in interrupt context.
586 void emergency_restart(void)
588 machine_emergency_restart();
590 EXPORT_SYMBOL_GPL(emergency_restart
);
592 static void kernel_restart_prepare(char *cmd
)
594 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
595 system_state
= SYSTEM_RESTART
;
600 * kernel_restart - reboot the system
601 * @cmd: pointer to buffer containing command to execute for restart
604 * Shutdown everything and perform a clean reboot.
605 * This is not safe to call in interrupt context.
607 void kernel_restart(char *cmd
)
609 kernel_restart_prepare(cmd
);
611 printk(KERN_EMERG
"Restarting system.\n");
613 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
616 machine_restart(cmd
);
618 EXPORT_SYMBOL_GPL(kernel_restart
);
621 * kernel_kexec - reboot the system
623 * Move into place and start executing a preloaded standalone
624 * executable. If nothing was preloaded return an error.
626 static void kernel_kexec(void)
629 struct kimage
*image
;
630 image
= xchg(&kexec_image
, NULL
);
634 kernel_restart_prepare(NULL
);
635 printk(KERN_EMERG
"Starting new kernel\n");
637 machine_kexec(image
);
641 void kernel_shutdown_prepare(enum system_states state
)
643 blocking_notifier_call_chain(&reboot_notifier_list
,
644 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
645 system_state
= state
;
649 * kernel_halt - halt the system
651 * Shutdown everything and perform a clean system halt.
653 void kernel_halt(void)
655 kernel_shutdown_prepare(SYSTEM_HALT
);
656 printk(KERN_EMERG
"System halted.\n");
660 EXPORT_SYMBOL_GPL(kernel_halt
);
663 * kernel_power_off - power_off the system
665 * Shutdown everything and perform a clean system power_off.
667 void kernel_power_off(void)
669 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
670 printk(KERN_EMERG
"Power down.\n");
673 EXPORT_SYMBOL_GPL(kernel_power_off
);
675 * Reboot system call: for obvious reasons only root may call it,
676 * and even root needs to set up some magic numbers in the registers
677 * so that some mistake won't make this reboot the whole machine.
678 * You can also set the meaning of the ctrl-alt-del-key here.
680 * reboot doesn't sync: do that yourself before calling this.
682 asmlinkage
long sys_reboot(int magic1
, int magic2
, unsigned int cmd
, void __user
* arg
)
686 /* We only trust the superuser with rebooting the system. */
687 if (!capable(CAP_SYS_BOOT
))
690 /* For safety, we require "magic" arguments. */
691 if (magic1
!= LINUX_REBOOT_MAGIC1
||
692 (magic2
!= LINUX_REBOOT_MAGIC2
&&
693 magic2
!= LINUX_REBOOT_MAGIC2A
&&
694 magic2
!= LINUX_REBOOT_MAGIC2B
&&
695 magic2
!= LINUX_REBOOT_MAGIC2C
))
698 /* Instead of trying to make the power_off code look like
699 * halt when pm_power_off is not set do it the easy way.
701 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
702 cmd
= LINUX_REBOOT_CMD_HALT
;
706 case LINUX_REBOOT_CMD_RESTART
:
707 kernel_restart(NULL
);
710 case LINUX_REBOOT_CMD_CAD_ON
:
714 case LINUX_REBOOT_CMD_CAD_OFF
:
718 case LINUX_REBOOT_CMD_HALT
:
724 case LINUX_REBOOT_CMD_POWER_OFF
:
730 case LINUX_REBOOT_CMD_RESTART2
:
731 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
735 buffer
[sizeof(buffer
) - 1] = '\0';
737 kernel_restart(buffer
);
740 case LINUX_REBOOT_CMD_KEXEC
:
745 #ifdef CONFIG_SOFTWARE_SUSPEND
746 case LINUX_REBOOT_CMD_SW_SUSPEND
:
748 int ret
= software_suspend();
762 static void deferred_cad(void *dummy
)
764 kernel_restart(NULL
);
768 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
769 * As it's called within an interrupt, it may NOT sync: the only choice
770 * is whether to reboot at once, or just ignore the ctrl-alt-del.
772 void ctrl_alt_del(void)
774 static DECLARE_WORK(cad_work
, deferred_cad
, NULL
);
777 schedule_work(&cad_work
);
779 kill_proc(cad_pid
, SIGINT
, 1);
784 * Unprivileged users may change the real gid to the effective gid
785 * or vice versa. (BSD-style)
787 * If you set the real gid at all, or set the effective gid to a value not
788 * equal to the real gid, then the saved gid is set to the new effective gid.
790 * This makes it possible for a setgid program to completely drop its
791 * privileges, which is often a useful assertion to make when you are doing
792 * a security audit over a program.
794 * The general idea is that a program which uses just setregid() will be
795 * 100% compatible with BSD. A program which uses just setgid() will be
796 * 100% compatible with POSIX with saved IDs.
798 * SMP: There are not races, the GIDs are checked only by filesystem
799 * operations (as far as semantic preservation is concerned).
801 asmlinkage
long sys_setregid(gid_t rgid
, gid_t egid
)
803 int old_rgid
= current
->gid
;
804 int old_egid
= current
->egid
;
805 int new_rgid
= old_rgid
;
806 int new_egid
= old_egid
;
809 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
813 if (rgid
!= (gid_t
) -1) {
814 if ((old_rgid
== rgid
) ||
815 (current
->egid
==rgid
) ||
821 if (egid
!= (gid_t
) -1) {
822 if ((old_rgid
== egid
) ||
823 (current
->egid
== egid
) ||
824 (current
->sgid
== egid
) ||
831 if (new_egid
!= old_egid
)
833 current
->mm
->dumpable
= suid_dumpable
;
836 if (rgid
!= (gid_t
) -1 ||
837 (egid
!= (gid_t
) -1 && egid
!= old_rgid
))
838 current
->sgid
= new_egid
;
839 current
->fsgid
= new_egid
;
840 current
->egid
= new_egid
;
841 current
->gid
= new_rgid
;
842 key_fsgid_changed(current
);
843 proc_id_connector(current
, PROC_EVENT_GID
);
848 * setgid() is implemented like SysV w/ SAVED_IDS
850 * SMP: Same implicit races as above.
852 asmlinkage
long sys_setgid(gid_t gid
)
854 int old_egid
= current
->egid
;
857 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
861 if (capable(CAP_SETGID
))
865 current
->mm
->dumpable
= suid_dumpable
;
868 current
->gid
= current
->egid
= current
->sgid
= current
->fsgid
= gid
;
870 else if ((gid
== current
->gid
) || (gid
== current
->sgid
))
874 current
->mm
->dumpable
= suid_dumpable
;
877 current
->egid
= current
->fsgid
= gid
;
882 key_fsgid_changed(current
);
883 proc_id_connector(current
, PROC_EVENT_GID
);
887 static int set_user(uid_t new_ruid
, int dumpclear
)
889 struct user_struct
*new_user
;
891 new_user
= alloc_uid(new_ruid
);
895 if (atomic_read(&new_user
->processes
) >=
896 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
897 new_user
!= &root_user
) {
902 switch_uid(new_user
);
906 current
->mm
->dumpable
= suid_dumpable
;
909 current
->uid
= new_ruid
;
914 * Unprivileged users may change the real uid to the effective uid
915 * or vice versa. (BSD-style)
917 * If you set the real uid at all, or set the effective uid to a value not
918 * equal to the real uid, then the saved uid is set to the new effective uid.
920 * This makes it possible for a setuid program to completely drop its
921 * privileges, which is often a useful assertion to make when you are doing
922 * a security audit over a program.
924 * The general idea is that a program which uses just setreuid() will be
925 * 100% compatible with BSD. A program which uses just setuid() will be
926 * 100% compatible with POSIX with saved IDs.
928 asmlinkage
long sys_setreuid(uid_t ruid
, uid_t euid
)
930 int old_ruid
, old_euid
, old_suid
, new_ruid
, new_euid
;
933 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
937 new_ruid
= old_ruid
= current
->uid
;
938 new_euid
= old_euid
= current
->euid
;
939 old_suid
= current
->suid
;
941 if (ruid
!= (uid_t
) -1) {
943 if ((old_ruid
!= ruid
) &&
944 (current
->euid
!= ruid
) &&
945 !capable(CAP_SETUID
))
949 if (euid
!= (uid_t
) -1) {
951 if ((old_ruid
!= euid
) &&
952 (current
->euid
!= euid
) &&
953 (current
->suid
!= euid
) &&
954 !capable(CAP_SETUID
))
958 if (new_ruid
!= old_ruid
&& set_user(new_ruid
, new_euid
!= old_euid
) < 0)
961 if (new_euid
!= old_euid
)
963 current
->mm
->dumpable
= suid_dumpable
;
966 current
->fsuid
= current
->euid
= new_euid
;
967 if (ruid
!= (uid_t
) -1 ||
968 (euid
!= (uid_t
) -1 && euid
!= old_ruid
))
969 current
->suid
= current
->euid
;
970 current
->fsuid
= current
->euid
;
972 key_fsuid_changed(current
);
973 proc_id_connector(current
, PROC_EVENT_UID
);
975 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RE
);
981 * setuid() is implemented like SysV with SAVED_IDS
983 * Note that SAVED_ID's is deficient in that a setuid root program
984 * like sendmail, for example, cannot set its uid to be a normal
985 * user and then switch back, because if you're root, setuid() sets
986 * the saved uid too. If you don't like this, blame the bright people
987 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
988 * will allow a root program to temporarily drop privileges and be able to
989 * regain them by swapping the real and effective uid.
991 asmlinkage
long sys_setuid(uid_t uid
)
993 int old_euid
= current
->euid
;
994 int old_ruid
, old_suid
, new_ruid
, new_suid
;
997 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
1001 old_ruid
= new_ruid
= current
->uid
;
1002 old_suid
= current
->suid
;
1003 new_suid
= old_suid
;
1005 if (capable(CAP_SETUID
)) {
1006 if (uid
!= old_ruid
&& set_user(uid
, old_euid
!= uid
) < 0)
1009 } else if ((uid
!= current
->uid
) && (uid
!= new_suid
))
1012 if (old_euid
!= uid
)
1014 current
->mm
->dumpable
= suid_dumpable
;
1017 current
->fsuid
= current
->euid
= uid
;
1018 current
->suid
= new_suid
;
1020 key_fsuid_changed(current
);
1021 proc_id_connector(current
, PROC_EVENT_UID
);
1023 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_ID
);
1028 * This function implements a generic ability to update ruid, euid,
1029 * and suid. This allows you to implement the 4.4 compatible seteuid().
1031 asmlinkage
long sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
1033 int old_ruid
= current
->uid
;
1034 int old_euid
= current
->euid
;
1035 int old_suid
= current
->suid
;
1038 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
1042 if (!capable(CAP_SETUID
)) {
1043 if ((ruid
!= (uid_t
) -1) && (ruid
!= current
->uid
) &&
1044 (ruid
!= current
->euid
) && (ruid
!= current
->suid
))
1046 if ((euid
!= (uid_t
) -1) && (euid
!= current
->uid
) &&
1047 (euid
!= current
->euid
) && (euid
!= current
->suid
))
1049 if ((suid
!= (uid_t
) -1) && (suid
!= current
->uid
) &&
1050 (suid
!= current
->euid
) && (suid
!= current
->suid
))
1053 if (ruid
!= (uid_t
) -1) {
1054 if (ruid
!= current
->uid
&& set_user(ruid
, euid
!= current
->euid
) < 0)
1057 if (euid
!= (uid_t
) -1) {
1058 if (euid
!= current
->euid
)
1060 current
->mm
->dumpable
= suid_dumpable
;
1063 current
->euid
= euid
;
1065 current
->fsuid
= current
->euid
;
1066 if (suid
!= (uid_t
) -1)
1067 current
->suid
= suid
;
1069 key_fsuid_changed(current
);
1070 proc_id_connector(current
, PROC_EVENT_UID
);
1072 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RES
);
1075 asmlinkage
long sys_getresuid(uid_t __user
*ruid
, uid_t __user
*euid
, uid_t __user
*suid
)
1079 if (!(retval
= put_user(current
->uid
, ruid
)) &&
1080 !(retval
= put_user(current
->euid
, euid
)))
1081 retval
= put_user(current
->suid
, suid
);
1087 * Same as above, but for rgid, egid, sgid.
1089 asmlinkage
long sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
1093 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
1097 if (!capable(CAP_SETGID
)) {
1098 if ((rgid
!= (gid_t
) -1) && (rgid
!= current
->gid
) &&
1099 (rgid
!= current
->egid
) && (rgid
!= current
->sgid
))
1101 if ((egid
!= (gid_t
) -1) && (egid
!= current
->gid
) &&
1102 (egid
!= current
->egid
) && (egid
!= current
->sgid
))
1104 if ((sgid
!= (gid_t
) -1) && (sgid
!= current
->gid
) &&
1105 (sgid
!= current
->egid
) && (sgid
!= current
->sgid
))
1108 if (egid
!= (gid_t
) -1) {
1109 if (egid
!= current
->egid
)
1111 current
->mm
->dumpable
= suid_dumpable
;
1114 current
->egid
= egid
;
1116 current
->fsgid
= current
->egid
;
1117 if (rgid
!= (gid_t
) -1)
1118 current
->gid
= rgid
;
1119 if (sgid
!= (gid_t
) -1)
1120 current
->sgid
= sgid
;
1122 key_fsgid_changed(current
);
1123 proc_id_connector(current
, PROC_EVENT_GID
);
1127 asmlinkage
long sys_getresgid(gid_t __user
*rgid
, gid_t __user
*egid
, gid_t __user
*sgid
)
1131 if (!(retval
= put_user(current
->gid
, rgid
)) &&
1132 !(retval
= put_user(current
->egid
, egid
)))
1133 retval
= put_user(current
->sgid
, sgid
);
1140 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1141 * is used for "access()" and for the NFS daemon (letting nfsd stay at
1142 * whatever uid it wants to). It normally shadows "euid", except when
1143 * explicitly set by setfsuid() or for access..
1145 asmlinkage
long sys_setfsuid(uid_t uid
)
1149 old_fsuid
= current
->fsuid
;
1150 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
))
1153 if (uid
== current
->uid
|| uid
== current
->euid
||
1154 uid
== current
->suid
|| uid
== current
->fsuid
||
1155 capable(CAP_SETUID
))
1157 if (uid
!= old_fsuid
)
1159 current
->mm
->dumpable
= suid_dumpable
;
1162 current
->fsuid
= uid
;
1165 key_fsuid_changed(current
);
1166 proc_id_connector(current
, PROC_EVENT_UID
);
1168 security_task_post_setuid(old_fsuid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
);
1174 * Samma på svenska..
1176 asmlinkage
long sys_setfsgid(gid_t gid
)
1180 old_fsgid
= current
->fsgid
;
1181 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
1184 if (gid
== current
->gid
|| gid
== current
->egid
||
1185 gid
== current
->sgid
|| gid
== current
->fsgid
||
1186 capable(CAP_SETGID
))
1188 if (gid
!= old_fsgid
)
1190 current
->mm
->dumpable
= suid_dumpable
;
1193 current
->fsgid
= gid
;
1194 key_fsgid_changed(current
);
1195 proc_id_connector(current
, PROC_EVENT_GID
);
1200 asmlinkage
long sys_times(struct tms __user
* tbuf
)
1203 * In the SMP world we might just be unlucky and have one of
1204 * the times increment as we use it. Since the value is an
1205 * atomically safe type this is just fine. Conceptually its
1206 * as if the syscall took an instant longer to occur.
1210 struct task_struct
*tsk
= current
;
1211 struct task_struct
*t
;
1212 cputime_t utime
, stime
, cutime
, cstime
;
1214 spin_lock_irq(&tsk
->sighand
->siglock
);
1215 utime
= tsk
->signal
->utime
;
1216 stime
= tsk
->signal
->stime
;
1219 utime
= cputime_add(utime
, t
->utime
);
1220 stime
= cputime_add(stime
, t
->stime
);
1224 cutime
= tsk
->signal
->cutime
;
1225 cstime
= tsk
->signal
->cstime
;
1226 spin_unlock_irq(&tsk
->sighand
->siglock
);
1228 tmp
.tms_utime
= cputime_to_clock_t(utime
);
1229 tmp
.tms_stime
= cputime_to_clock_t(stime
);
1230 tmp
.tms_cutime
= cputime_to_clock_t(cutime
);
1231 tmp
.tms_cstime
= cputime_to_clock_t(cstime
);
1232 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
1235 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1239 * This needs some heavy checking ...
1240 * I just haven't the stomach for it. I also don't fully
1241 * understand sessions/pgrp etc. Let somebody who does explain it.
1243 * OK, I think I have the protection semantics right.... this is really
1244 * only important on a multi-user system anyway, to make sure one user
1245 * can't send a signal to a process owned by another. -TYT, 12/12/91
1247 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1251 asmlinkage
long sys_setpgid(pid_t pid
, pid_t pgid
)
1253 struct task_struct
*p
;
1254 struct task_struct
*group_leader
= current
->group_leader
;
1258 pid
= group_leader
->pid
;
1264 /* From this point forward we keep holding onto the tasklist lock
1265 * so that our parent does not change from under us. -DaveM
1267 write_lock_irq(&tasklist_lock
);
1270 p
= find_task_by_pid(pid
);
1275 if (!thread_group_leader(p
))
1278 if (p
->real_parent
== group_leader
) {
1280 if (p
->signal
->session
!= group_leader
->signal
->session
)
1287 if (p
!= group_leader
)
1292 if (p
->signal
->leader
)
1296 struct task_struct
*p
;
1298 do_each_task_pid(pgid
, PIDTYPE_PGID
, p
) {
1299 if (p
->signal
->session
== group_leader
->signal
->session
)
1301 } while_each_task_pid(pgid
, PIDTYPE_PGID
, p
);
1306 err
= security_task_setpgid(p
, pgid
);
1310 if (process_group(p
) != pgid
) {
1311 detach_pid(p
, PIDTYPE_PGID
);
1312 p
->signal
->pgrp
= pgid
;
1313 attach_pid(p
, PIDTYPE_PGID
, pgid
);
1318 /* All paths lead to here, thus we are safe. -DaveM */
1319 write_unlock_irq(&tasklist_lock
);
1323 asmlinkage
long sys_getpgid(pid_t pid
)
1326 return process_group(current
);
1329 struct task_struct
*p
;
1331 read_lock(&tasklist_lock
);
1332 p
= find_task_by_pid(pid
);
1336 retval
= security_task_getpgid(p
);
1338 retval
= process_group(p
);
1340 read_unlock(&tasklist_lock
);
1345 #ifdef __ARCH_WANT_SYS_GETPGRP
1347 asmlinkage
long sys_getpgrp(void)
1349 /* SMP - assuming writes are word atomic this is fine */
1350 return process_group(current
);
1355 asmlinkage
long sys_getsid(pid_t pid
)
1358 return current
->signal
->session
;
1361 struct task_struct
*p
;
1363 read_lock(&tasklist_lock
);
1364 p
= find_task_by_pid(pid
);
1368 retval
= security_task_getsid(p
);
1370 retval
= p
->signal
->session
;
1372 read_unlock(&tasklist_lock
);
1377 asmlinkage
long sys_setsid(void)
1379 struct task_struct
*group_leader
= current
->group_leader
;
1383 mutex_lock(&tty_mutex
);
1384 write_lock_irq(&tasklist_lock
);
1386 /* Fail if I am already a session leader */
1387 if (group_leader
->signal
->leader
)
1390 session
= group_leader
->pid
;
1391 /* Fail if a process group id already exists that equals the
1392 * proposed session id.
1394 * Don't check if session id == 1 because kernel threads use this
1395 * session id and so the check will always fail and make it so
1396 * init cannot successfully call setsid.
1398 if (session
> 1 && find_task_by_pid_type(PIDTYPE_PGID
, session
))
1401 group_leader
->signal
->leader
= 1;
1402 __set_special_pids(session
, session
);
1403 group_leader
->signal
->tty
= NULL
;
1404 group_leader
->signal
->tty_old_pgrp
= 0;
1405 err
= process_group(group_leader
);
1407 write_unlock_irq(&tasklist_lock
);
1408 mutex_unlock(&tty_mutex
);
1413 * Supplementary group IDs
1416 /* init to 2 - one for init_task, one to ensure it is never freed */
1417 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1419 struct group_info
*groups_alloc(int gidsetsize
)
1421 struct group_info
*group_info
;
1425 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1426 /* Make sure we always allocate at least one indirect block pointer */
1427 nblocks
= nblocks
? : 1;
1428 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1431 group_info
->ngroups
= gidsetsize
;
1432 group_info
->nblocks
= nblocks
;
1433 atomic_set(&group_info
->usage
, 1);
1435 if (gidsetsize
<= NGROUPS_SMALL
) {
1436 group_info
->blocks
[0] = group_info
->small_block
;
1438 for (i
= 0; i
< nblocks
; i
++) {
1440 b
= (void *)__get_free_page(GFP_USER
);
1442 goto out_undo_partial_alloc
;
1443 group_info
->blocks
[i
] = b
;
1448 out_undo_partial_alloc
:
1450 free_page((unsigned long)group_info
->blocks
[i
]);
1456 EXPORT_SYMBOL(groups_alloc
);
1458 void groups_free(struct group_info
*group_info
)
1460 if (group_info
->blocks
[0] != group_info
->small_block
) {
1462 for (i
= 0; i
< group_info
->nblocks
; i
++)
1463 free_page((unsigned long)group_info
->blocks
[i
]);
1468 EXPORT_SYMBOL(groups_free
);
1470 /* export the group_info to a user-space array */
1471 static int groups_to_user(gid_t __user
*grouplist
,
1472 struct group_info
*group_info
)
1475 int count
= group_info
->ngroups
;
1477 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1478 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1479 int off
= i
* NGROUPS_PER_BLOCK
;
1480 int len
= cp_count
* sizeof(*grouplist
);
1482 if (copy_to_user(grouplist
+off
, group_info
->blocks
[i
], len
))
1490 /* fill a group_info from a user-space array - it must be allocated already */
1491 static int groups_from_user(struct group_info
*group_info
,
1492 gid_t __user
*grouplist
)
1495 int count
= group_info
->ngroups
;
1497 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1498 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1499 int off
= i
* NGROUPS_PER_BLOCK
;
1500 int len
= cp_count
* sizeof(*grouplist
);
1502 if (copy_from_user(group_info
->blocks
[i
], grouplist
+off
, len
))
1510 /* a simple Shell sort */
1511 static void groups_sort(struct group_info
*group_info
)
1513 int base
, max
, stride
;
1514 int gidsetsize
= group_info
->ngroups
;
1516 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1521 max
= gidsetsize
- stride
;
1522 for (base
= 0; base
< max
; base
++) {
1524 int right
= left
+ stride
;
1525 gid_t tmp
= GROUP_AT(group_info
, right
);
1527 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1528 GROUP_AT(group_info
, right
) =
1529 GROUP_AT(group_info
, left
);
1533 GROUP_AT(group_info
, right
) = tmp
;
1539 /* a simple bsearch */
1540 int groups_search(struct group_info
*group_info
, gid_t grp
)
1542 unsigned int left
, right
;
1548 right
= group_info
->ngroups
;
1549 while (left
< right
) {
1550 unsigned int mid
= (left
+right
)/2;
1551 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1562 /* validate and set current->group_info */
1563 int set_current_groups(struct group_info
*group_info
)
1566 struct group_info
*old_info
;
1568 retval
= security_task_setgroups(group_info
);
1572 groups_sort(group_info
);
1573 get_group_info(group_info
);
1576 old_info
= current
->group_info
;
1577 current
->group_info
= group_info
;
1578 task_unlock(current
);
1580 put_group_info(old_info
);
1585 EXPORT_SYMBOL(set_current_groups
);
1587 asmlinkage
long sys_getgroups(int gidsetsize
, gid_t __user
*grouplist
)
1592 * SMP: Nobody else can change our grouplist. Thus we are
1599 /* no need to grab task_lock here; it cannot change */
1600 i
= current
->group_info
->ngroups
;
1602 if (i
> gidsetsize
) {
1606 if (groups_to_user(grouplist
, current
->group_info
)) {
1616 * SMP: Our groups are copy-on-write. We can set them safely
1617 * without another task interfering.
1620 asmlinkage
long sys_setgroups(int gidsetsize
, gid_t __user
*grouplist
)
1622 struct group_info
*group_info
;
1625 if (!capable(CAP_SETGID
))
1627 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1630 group_info
= groups_alloc(gidsetsize
);
1633 retval
= groups_from_user(group_info
, grouplist
);
1635 put_group_info(group_info
);
1639 retval
= set_current_groups(group_info
);
1640 put_group_info(group_info
);
1646 * Check whether we're fsgid/egid or in the supplemental group..
1648 int in_group_p(gid_t grp
)
1651 if (grp
!= current
->fsgid
) {
1652 retval
= groups_search(current
->group_info
, grp
);
1657 EXPORT_SYMBOL(in_group_p
);
1659 int in_egroup_p(gid_t grp
)
1662 if (grp
!= current
->egid
) {
1663 retval
= groups_search(current
->group_info
, grp
);
1668 EXPORT_SYMBOL(in_egroup_p
);
1670 DECLARE_RWSEM(uts_sem
);
1672 EXPORT_SYMBOL(uts_sem
);
1674 asmlinkage
long sys_newuname(struct new_utsname __user
* name
)
1678 down_read(&uts_sem
);
1679 if (copy_to_user(name
,&system_utsname
,sizeof *name
))
1685 asmlinkage
long sys_sethostname(char __user
*name
, int len
)
1688 char tmp
[__NEW_UTS_LEN
];
1690 if (!capable(CAP_SYS_ADMIN
))
1692 if (len
< 0 || len
> __NEW_UTS_LEN
)
1694 down_write(&uts_sem
);
1696 if (!copy_from_user(tmp
, name
, len
)) {
1697 memcpy(system_utsname
.nodename
, tmp
, len
);
1698 system_utsname
.nodename
[len
] = 0;
1705 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1707 asmlinkage
long sys_gethostname(char __user
*name
, int len
)
1713 down_read(&uts_sem
);
1714 i
= 1 + strlen(system_utsname
.nodename
);
1718 if (copy_to_user(name
, system_utsname
.nodename
, i
))
1727 * Only setdomainname; getdomainname can be implemented by calling
1730 asmlinkage
long sys_setdomainname(char __user
*name
, int len
)
1733 char tmp
[__NEW_UTS_LEN
];
1735 if (!capable(CAP_SYS_ADMIN
))
1737 if (len
< 0 || len
> __NEW_UTS_LEN
)
1740 down_write(&uts_sem
);
1742 if (!copy_from_user(tmp
, name
, len
)) {
1743 memcpy(system_utsname
.domainname
, tmp
, len
);
1744 system_utsname
.domainname
[len
] = 0;
1751 asmlinkage
long sys_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1753 if (resource
>= RLIM_NLIMITS
)
1756 struct rlimit value
;
1757 task_lock(current
->group_leader
);
1758 value
= current
->signal
->rlim
[resource
];
1759 task_unlock(current
->group_leader
);
1760 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1764 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1767 * Back compatibility for getrlimit. Needed for some apps.
1770 asmlinkage
long sys_old_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1773 if (resource
>= RLIM_NLIMITS
)
1776 task_lock(current
->group_leader
);
1777 x
= current
->signal
->rlim
[resource
];
1778 task_unlock(current
->group_leader
);
1779 if(x
.rlim_cur
> 0x7FFFFFFF)
1780 x
.rlim_cur
= 0x7FFFFFFF;
1781 if(x
.rlim_max
> 0x7FFFFFFF)
1782 x
.rlim_max
= 0x7FFFFFFF;
1783 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1788 asmlinkage
long sys_setrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1790 struct rlimit new_rlim
, *old_rlim
;
1791 unsigned long it_prof_secs
;
1794 if (resource
>= RLIM_NLIMITS
)
1796 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1798 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1800 old_rlim
= current
->signal
->rlim
+ resource
;
1801 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1802 !capable(CAP_SYS_RESOURCE
))
1804 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> NR_OPEN
)
1807 retval
= security_task_setrlimit(resource
, &new_rlim
);
1811 task_lock(current
->group_leader
);
1812 *old_rlim
= new_rlim
;
1813 task_unlock(current
->group_leader
);
1815 if (resource
!= RLIMIT_CPU
)
1819 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1820 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1821 * very long-standing error, and fixing it now risks breakage of
1822 * applications, so we live with it
1824 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
1827 it_prof_secs
= cputime_to_secs(current
->signal
->it_prof_expires
);
1828 if (it_prof_secs
== 0 || new_rlim
.rlim_cur
<= it_prof_secs
) {
1829 unsigned long rlim_cur
= new_rlim
.rlim_cur
;
1832 if (rlim_cur
== 0) {
1834 * The caller is asking for an immediate RLIMIT_CPU
1835 * expiry. But we use the zero value to mean "it was
1836 * never set". So let's cheat and make it one second
1841 cputime
= secs_to_cputime(rlim_cur
);
1842 read_lock(&tasklist_lock
);
1843 spin_lock_irq(¤t
->sighand
->siglock
);
1844 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
1845 spin_unlock_irq(¤t
->sighand
->siglock
);
1846 read_unlock(&tasklist_lock
);
1853 * It would make sense to put struct rusage in the task_struct,
1854 * except that would make the task_struct be *really big*. After
1855 * task_struct gets moved into malloc'ed memory, it would
1856 * make sense to do this. It will make moving the rest of the information
1857 * a lot simpler! (Which we're not doing right now because we're not
1858 * measuring them yet).
1860 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1861 * races with threads incrementing their own counters. But since word
1862 * reads are atomic, we either get new values or old values and we don't
1863 * care which for the sums. We always take the siglock to protect reading
1864 * the c* fields from p->signal from races with exit.c updating those
1865 * fields when reaping, so a sample either gets all the additions of a
1866 * given child after it's reaped, or none so this sample is before reaping.
1869 * We need to take the siglock for CHILDEREN, SELF and BOTH
1870 * for the cases current multithreaded, non-current single threaded
1871 * non-current multithreaded. Thread traversal is now safe with
1873 * Strictly speaking, we donot need to take the siglock if we are current and
1874 * single threaded, as no one else can take our signal_struct away, no one
1875 * else can reap the children to update signal->c* counters, and no one else
1876 * can race with the signal-> fields. If we do not take any lock, the
1877 * signal-> fields could be read out of order while another thread was just
1878 * exiting. So we should place a read memory barrier when we avoid the lock.
1879 * On the writer side, write memory barrier is implied in __exit_signal
1880 * as __exit_signal releases the siglock spinlock after updating the signal->
1881 * fields. But we don't do this yet to keep things simple.
1885 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1887 struct task_struct
*t
;
1888 unsigned long flags
;
1889 cputime_t utime
, stime
;
1891 memset((char *) r
, 0, sizeof *r
);
1892 utime
= stime
= cputime_zero
;
1895 if (!lock_task_sighand(p
, &flags
)) {
1902 case RUSAGE_CHILDREN
:
1903 utime
= p
->signal
->cutime
;
1904 stime
= p
->signal
->cstime
;
1905 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1906 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1907 r
->ru_minflt
= p
->signal
->cmin_flt
;
1908 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1910 if (who
== RUSAGE_CHILDREN
)
1914 utime
= cputime_add(utime
, p
->signal
->utime
);
1915 stime
= cputime_add(stime
, p
->signal
->stime
);
1916 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1917 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1918 r
->ru_minflt
+= p
->signal
->min_flt
;
1919 r
->ru_majflt
+= p
->signal
->maj_flt
;
1922 utime
= cputime_add(utime
, t
->utime
);
1923 stime
= cputime_add(stime
, t
->stime
);
1924 r
->ru_nvcsw
+= t
->nvcsw
;
1925 r
->ru_nivcsw
+= t
->nivcsw
;
1926 r
->ru_minflt
+= t
->min_flt
;
1927 r
->ru_majflt
+= t
->maj_flt
;
1936 unlock_task_sighand(p
, &flags
);
1939 cputime_to_timeval(utime
, &r
->ru_utime
);
1940 cputime_to_timeval(stime
, &r
->ru_stime
);
1943 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1946 k_getrusage(p
, who
, &r
);
1947 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1950 asmlinkage
long sys_getrusage(int who
, struct rusage __user
*ru
)
1952 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
)
1954 return getrusage(current
, who
, ru
);
1957 asmlinkage
long sys_umask(int mask
)
1959 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1963 asmlinkage
long sys_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
1964 unsigned long arg4
, unsigned long arg5
)
1968 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1973 case PR_SET_PDEATHSIG
:
1974 if (!valid_signal(arg2
)) {
1978 current
->pdeath_signal
= arg2
;
1980 case PR_GET_PDEATHSIG
:
1981 error
= put_user(current
->pdeath_signal
, (int __user
*)arg2
);
1983 case PR_GET_DUMPABLE
:
1984 error
= current
->mm
->dumpable
;
1986 case PR_SET_DUMPABLE
:
1987 if (arg2
< 0 || arg2
> 1) {
1991 current
->mm
->dumpable
= arg2
;
1994 case PR_SET_UNALIGN
:
1995 error
= SET_UNALIGN_CTL(current
, arg2
);
1997 case PR_GET_UNALIGN
:
1998 error
= GET_UNALIGN_CTL(current
, arg2
);
2001 error
= SET_FPEMU_CTL(current
, arg2
);
2004 error
= GET_FPEMU_CTL(current
, arg2
);
2007 error
= SET_FPEXC_CTL(current
, arg2
);
2010 error
= GET_FPEXC_CTL(current
, arg2
);
2013 error
= PR_TIMING_STATISTICAL
;
2016 if (arg2
== PR_TIMING_STATISTICAL
)
2022 case PR_GET_KEEPCAPS
:
2023 if (current
->keep_capabilities
)
2026 case PR_SET_KEEPCAPS
:
2027 if (arg2
!= 0 && arg2
!= 1) {
2031 current
->keep_capabilities
= arg2
;
2034 struct task_struct
*me
= current
;
2035 unsigned char ncomm
[sizeof(me
->comm
)];
2037 ncomm
[sizeof(me
->comm
)-1] = 0;
2038 if (strncpy_from_user(ncomm
, (char __user
*)arg2
,
2039 sizeof(me
->comm
)-1) < 0)
2041 set_task_comm(me
, ncomm
);
2045 struct task_struct
*me
= current
;
2046 unsigned char tcomm
[sizeof(me
->comm
)];
2048 get_task_comm(tcomm
, me
);
2049 if (copy_to_user((char __user
*)arg2
, tcomm
, sizeof(tcomm
)))
2054 error
= GET_ENDIAN(current
, arg2
);
2057 error
= SET_ENDIAN(current
, arg2
);
2067 asmlinkage
long sys_getcpu(unsigned __user
*cpup
, unsigned __user
*nodep
,
2068 struct getcpu_cache __user
*cache
)
2071 int cpu
= raw_smp_processor_id();
2073 err
|= put_user(cpu
, cpup
);
2075 err
|= put_user(cpu_to_node(cpu
), nodep
);
2078 * The cache is not needed for this implementation,
2079 * but make sure user programs pass something
2080 * valid. vsyscall implementations can instead make
2081 * good use of the cache. Only use t0 and t1 because
2082 * these are available in both 32bit and 64bit ABI (no
2083 * need for a compat_getcpu). 32bit has enough
2086 unsigned long t0
, t1
;
2087 get_user(t0
, &cache
->t0
);
2088 get_user(t1
, &cache
->t1
);
2091 put_user(t0
, &cache
->t0
);
2092 put_user(t1
, &cache
->t1
);
2094 return err
? -EFAULT
: 0;