thinkpad-acpi: support the second fan on the X61
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / fork.c
blob8727a5aaf44f8aacfaad9533e67d08e6e889236b
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <trace/sched.h>
65 #include <asm/pgtable.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/mmu_context.h>
69 #include <asm/cacheflush.h>
70 #include <asm/tlbflush.h>
73 * Protected counters by write_lock_irq(&tasklist_lock)
75 unsigned long total_forks; /* Handle normal Linux uptimes. */
76 int nr_threads; /* The idle threads do not count.. */
78 int max_threads; /* tunable limit on nr_threads */
80 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
82 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
84 DEFINE_TRACE(sched_process_fork);
86 int nr_processes(void)
88 int cpu;
89 int total = 0;
91 for_each_online_cpu(cpu)
92 total += per_cpu(process_counts, cpu);
94 return total;
97 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
98 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
99 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
100 static struct kmem_cache *task_struct_cachep;
101 #endif
103 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
104 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
106 #ifdef CONFIG_DEBUG_STACK_USAGE
107 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
108 #else
109 gfp_t mask = GFP_KERNEL;
110 #endif
111 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
114 static inline void free_thread_info(struct thread_info *ti)
116 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
118 #endif
120 /* SLAB cache for signal_struct structures (tsk->signal) */
121 static struct kmem_cache *signal_cachep;
123 /* SLAB cache for sighand_struct structures (tsk->sighand) */
124 struct kmem_cache *sighand_cachep;
126 /* SLAB cache for files_struct structures (tsk->files) */
127 struct kmem_cache *files_cachep;
129 /* SLAB cache for fs_struct structures (tsk->fs) */
130 struct kmem_cache *fs_cachep;
132 /* SLAB cache for vm_area_struct structures */
133 struct kmem_cache *vm_area_cachep;
135 /* SLAB cache for mm_struct structures (tsk->mm) */
136 static struct kmem_cache *mm_cachep;
138 void free_task(struct task_struct *tsk)
140 prop_local_destroy_single(&tsk->dirties);
141 free_thread_info(tsk->stack);
142 rt_mutex_debug_task_free(tsk);
143 ftrace_graph_exit_task(tsk);
144 free_task_struct(tsk);
146 EXPORT_SYMBOL(free_task);
148 void __put_task_struct(struct task_struct *tsk)
150 WARN_ON(!tsk->exit_state);
151 WARN_ON(atomic_read(&tsk->usage));
152 WARN_ON(tsk == current);
154 put_cred(tsk->real_cred);
155 put_cred(tsk->cred);
156 delayacct_tsk_free(tsk);
158 if (!profile_handoff_task(tsk))
159 free_task(tsk);
163 * macro override instead of weak attribute alias, to workaround
164 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
166 #ifndef arch_task_cache_init
167 #define arch_task_cache_init()
168 #endif
170 void __init fork_init(unsigned long mempages)
172 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
173 #ifndef ARCH_MIN_TASKALIGN
174 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
175 #endif
176 /* create a slab on which task_structs can be allocated */
177 task_struct_cachep =
178 kmem_cache_create("task_struct", sizeof(struct task_struct),
179 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
180 #endif
182 /* do the arch specific task caches init */
183 arch_task_cache_init();
186 * The default maximum number of threads is set to a safe
187 * value: the thread structures can take up at most half
188 * of memory.
190 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
193 * we need to allow at least 20 threads to boot a system
195 if(max_threads < 20)
196 max_threads = 20;
198 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
199 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
200 init_task.signal->rlim[RLIMIT_SIGPENDING] =
201 init_task.signal->rlim[RLIMIT_NPROC];
204 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
205 struct task_struct *src)
207 *dst = *src;
208 return 0;
211 static struct task_struct *dup_task_struct(struct task_struct *orig)
213 struct task_struct *tsk;
214 struct thread_info *ti;
215 int err;
217 prepare_to_copy(orig);
219 tsk = alloc_task_struct();
220 if (!tsk)
221 return NULL;
223 ti = alloc_thread_info(tsk);
224 if (!ti) {
225 free_task_struct(tsk);
226 return NULL;
229 err = arch_dup_task_struct(tsk, orig);
230 if (err)
231 goto out;
233 tsk->stack = ti;
235 err = prop_local_init_single(&tsk->dirties);
236 if (err)
237 goto out;
239 setup_thread_stack(tsk, orig);
241 #ifdef CONFIG_CC_STACKPROTECTOR
242 tsk->stack_canary = get_random_int();
243 #endif
245 /* One for us, one for whoever does the "release_task()" (usually parent) */
246 atomic_set(&tsk->usage,2);
247 atomic_set(&tsk->fs_excl, 0);
248 #ifdef CONFIG_BLK_DEV_IO_TRACE
249 tsk->btrace_seq = 0;
250 #endif
251 tsk->splice_pipe = NULL;
252 return tsk;
254 out:
255 free_thread_info(ti);
256 free_task_struct(tsk);
257 return NULL;
260 #ifdef CONFIG_MMU
261 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
263 struct vm_area_struct *mpnt, *tmp, **pprev;
264 struct rb_node **rb_link, *rb_parent;
265 int retval;
266 unsigned long charge;
267 struct mempolicy *pol;
269 down_write(&oldmm->mmap_sem);
270 flush_cache_dup_mm(oldmm);
272 * Not linked in yet - no deadlock potential:
274 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
276 mm->locked_vm = 0;
277 mm->mmap = NULL;
278 mm->mmap_cache = NULL;
279 mm->free_area_cache = oldmm->mmap_base;
280 mm->cached_hole_size = ~0UL;
281 mm->map_count = 0;
282 cpus_clear(mm->cpu_vm_mask);
283 mm->mm_rb = RB_ROOT;
284 rb_link = &mm->mm_rb.rb_node;
285 rb_parent = NULL;
286 pprev = &mm->mmap;
288 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
289 struct file *file;
291 if (mpnt->vm_flags & VM_DONTCOPY) {
292 long pages = vma_pages(mpnt);
293 mm->total_vm -= pages;
294 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
295 -pages);
296 continue;
298 charge = 0;
299 if (mpnt->vm_flags & VM_ACCOUNT) {
300 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
301 if (security_vm_enough_memory(len))
302 goto fail_nomem;
303 charge = len;
305 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
306 if (!tmp)
307 goto fail_nomem;
308 *tmp = *mpnt;
309 pol = mpol_dup(vma_policy(mpnt));
310 retval = PTR_ERR(pol);
311 if (IS_ERR(pol))
312 goto fail_nomem_policy;
313 vma_set_policy(tmp, pol);
314 tmp->vm_flags &= ~VM_LOCKED;
315 tmp->vm_mm = mm;
316 tmp->vm_next = NULL;
317 anon_vma_link(tmp);
318 file = tmp->vm_file;
319 if (file) {
320 struct inode *inode = file->f_path.dentry->d_inode;
321 struct address_space *mapping = file->f_mapping;
323 get_file(file);
324 if (tmp->vm_flags & VM_DENYWRITE)
325 atomic_dec(&inode->i_writecount);
326 spin_lock(&mapping->i_mmap_lock);
327 if (tmp->vm_flags & VM_SHARED)
328 mapping->i_mmap_writable++;
329 tmp->vm_truncate_count = mpnt->vm_truncate_count;
330 flush_dcache_mmap_lock(mapping);
331 /* insert tmp into the share list, just after mpnt */
332 vma_prio_tree_add(tmp, mpnt);
333 flush_dcache_mmap_unlock(mapping);
334 spin_unlock(&mapping->i_mmap_lock);
338 * Clear hugetlb-related page reserves for children. This only
339 * affects MAP_PRIVATE mappings. Faults generated by the child
340 * are not guaranteed to succeed, even if read-only
342 if (is_vm_hugetlb_page(tmp))
343 reset_vma_resv_huge_pages(tmp);
346 * Link in the new vma and copy the page table entries.
348 *pprev = tmp;
349 pprev = &tmp->vm_next;
351 __vma_link_rb(mm, tmp, rb_link, rb_parent);
352 rb_link = &tmp->vm_rb.rb_right;
353 rb_parent = &tmp->vm_rb;
355 mm->map_count++;
356 retval = copy_page_range(mm, oldmm, mpnt);
358 if (tmp->vm_ops && tmp->vm_ops->open)
359 tmp->vm_ops->open(tmp);
361 if (retval)
362 goto out;
364 /* a new mm has just been created */
365 arch_dup_mmap(oldmm, mm);
366 retval = 0;
367 out:
368 up_write(&mm->mmap_sem);
369 flush_tlb_mm(oldmm);
370 up_write(&oldmm->mmap_sem);
371 return retval;
372 fail_nomem_policy:
373 kmem_cache_free(vm_area_cachep, tmp);
374 fail_nomem:
375 retval = -ENOMEM;
376 vm_unacct_memory(charge);
377 goto out;
380 static inline int mm_alloc_pgd(struct mm_struct * mm)
382 mm->pgd = pgd_alloc(mm);
383 if (unlikely(!mm->pgd))
384 return -ENOMEM;
385 return 0;
388 static inline void mm_free_pgd(struct mm_struct * mm)
390 pgd_free(mm, mm->pgd);
392 #else
393 #define dup_mmap(mm, oldmm) (0)
394 #define mm_alloc_pgd(mm) (0)
395 #define mm_free_pgd(mm)
396 #endif /* CONFIG_MMU */
398 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
400 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
401 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
403 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
405 static int __init coredump_filter_setup(char *s)
407 default_dump_filter =
408 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
409 MMF_DUMP_FILTER_MASK;
410 return 1;
413 __setup("coredump_filter=", coredump_filter_setup);
415 #include <linux/init_task.h>
417 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
419 atomic_set(&mm->mm_users, 1);
420 atomic_set(&mm->mm_count, 1);
421 init_rwsem(&mm->mmap_sem);
422 INIT_LIST_HEAD(&mm->mmlist);
423 mm->flags = (current->mm) ? current->mm->flags : default_dump_filter;
424 mm->core_state = NULL;
425 mm->nr_ptes = 0;
426 set_mm_counter(mm, file_rss, 0);
427 set_mm_counter(mm, anon_rss, 0);
428 spin_lock_init(&mm->page_table_lock);
429 spin_lock_init(&mm->ioctx_lock);
430 INIT_HLIST_HEAD(&mm->ioctx_list);
431 mm->free_area_cache = TASK_UNMAPPED_BASE;
432 mm->cached_hole_size = ~0UL;
433 mm_init_owner(mm, p);
435 if (likely(!mm_alloc_pgd(mm))) {
436 mm->def_flags = 0;
437 mmu_notifier_mm_init(mm);
438 return mm;
441 free_mm(mm);
442 return NULL;
446 * Allocate and initialize an mm_struct.
448 struct mm_struct * mm_alloc(void)
450 struct mm_struct * mm;
452 mm = allocate_mm();
453 if (mm) {
454 memset(mm, 0, sizeof(*mm));
455 mm = mm_init(mm, current);
457 return mm;
461 * Called when the last reference to the mm
462 * is dropped: either by a lazy thread or by
463 * mmput. Free the page directory and the mm.
465 void __mmdrop(struct mm_struct *mm)
467 BUG_ON(mm == &init_mm);
468 mm_free_pgd(mm);
469 destroy_context(mm);
470 mmu_notifier_mm_destroy(mm);
471 free_mm(mm);
473 EXPORT_SYMBOL_GPL(__mmdrop);
476 * Decrement the use count and release all resources for an mm.
478 void mmput(struct mm_struct *mm)
480 might_sleep();
482 if (atomic_dec_and_test(&mm->mm_users)) {
483 exit_aio(mm);
484 exit_mmap(mm);
485 set_mm_exe_file(mm, NULL);
486 if (!list_empty(&mm->mmlist)) {
487 spin_lock(&mmlist_lock);
488 list_del(&mm->mmlist);
489 spin_unlock(&mmlist_lock);
491 put_swap_token(mm);
492 mmdrop(mm);
495 EXPORT_SYMBOL_GPL(mmput);
498 * get_task_mm - acquire a reference to the task's mm
500 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
501 * this kernel workthread has transiently adopted a user mm with use_mm,
502 * to do its AIO) is not set and if so returns a reference to it, after
503 * bumping up the use count. User must release the mm via mmput()
504 * after use. Typically used by /proc and ptrace.
506 struct mm_struct *get_task_mm(struct task_struct *task)
508 struct mm_struct *mm;
510 task_lock(task);
511 mm = task->mm;
512 if (mm) {
513 if (task->flags & PF_KTHREAD)
514 mm = NULL;
515 else
516 atomic_inc(&mm->mm_users);
518 task_unlock(task);
519 return mm;
521 EXPORT_SYMBOL_GPL(get_task_mm);
523 /* Please note the differences between mmput and mm_release.
524 * mmput is called whenever we stop holding onto a mm_struct,
525 * error success whatever.
527 * mm_release is called after a mm_struct has been removed
528 * from the current process.
530 * This difference is important for error handling, when we
531 * only half set up a mm_struct for a new process and need to restore
532 * the old one. Because we mmput the new mm_struct before
533 * restoring the old one. . .
534 * Eric Biederman 10 January 1998
536 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
538 struct completion *vfork_done = tsk->vfork_done;
540 /* Get rid of any futexes when releasing the mm */
541 #ifdef CONFIG_FUTEX
542 if (unlikely(tsk->robust_list))
543 exit_robust_list(tsk);
544 #ifdef CONFIG_COMPAT
545 if (unlikely(tsk->compat_robust_list))
546 compat_exit_robust_list(tsk);
547 #endif
548 #endif
550 /* Get rid of any cached register state */
551 deactivate_mm(tsk, mm);
553 /* notify parent sleeping on vfork() */
554 if (vfork_done) {
555 tsk->vfork_done = NULL;
556 complete(vfork_done);
560 * If we're exiting normally, clear a user-space tid field if
561 * requested. We leave this alone when dying by signal, to leave
562 * the value intact in a core dump, and to save the unnecessary
563 * trouble otherwise. Userland only wants this done for a sys_exit.
565 if (tsk->clear_child_tid
566 && !(tsk->flags & PF_SIGNALED)
567 && atomic_read(&mm->mm_users) > 1) {
568 u32 __user * tidptr = tsk->clear_child_tid;
569 tsk->clear_child_tid = NULL;
572 * We don't check the error code - if userspace has
573 * not set up a proper pointer then tough luck.
575 put_user(0, tidptr);
576 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
581 * Allocate a new mm structure and copy contents from the
582 * mm structure of the passed in task structure.
584 struct mm_struct *dup_mm(struct task_struct *tsk)
586 struct mm_struct *mm, *oldmm = current->mm;
587 int err;
589 if (!oldmm)
590 return NULL;
592 mm = allocate_mm();
593 if (!mm)
594 goto fail_nomem;
596 memcpy(mm, oldmm, sizeof(*mm));
598 /* Initializing for Swap token stuff */
599 mm->token_priority = 0;
600 mm->last_interval = 0;
602 if (!mm_init(mm, tsk))
603 goto fail_nomem;
605 if (init_new_context(tsk, mm))
606 goto fail_nocontext;
608 dup_mm_exe_file(oldmm, mm);
610 err = dup_mmap(mm, oldmm);
611 if (err)
612 goto free_pt;
614 mm->hiwater_rss = get_mm_rss(mm);
615 mm->hiwater_vm = mm->total_vm;
617 return mm;
619 free_pt:
620 mmput(mm);
622 fail_nomem:
623 return NULL;
625 fail_nocontext:
627 * If init_new_context() failed, we cannot use mmput() to free the mm
628 * because it calls destroy_context()
630 mm_free_pgd(mm);
631 free_mm(mm);
632 return NULL;
635 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
637 struct mm_struct * mm, *oldmm;
638 int retval;
640 tsk->min_flt = tsk->maj_flt = 0;
641 tsk->nvcsw = tsk->nivcsw = 0;
643 tsk->mm = NULL;
644 tsk->active_mm = NULL;
647 * Are we cloning a kernel thread?
649 * We need to steal a active VM for that..
651 oldmm = current->mm;
652 if (!oldmm)
653 return 0;
655 if (clone_flags & CLONE_VM) {
656 atomic_inc(&oldmm->mm_users);
657 mm = oldmm;
658 goto good_mm;
661 retval = -ENOMEM;
662 mm = dup_mm(tsk);
663 if (!mm)
664 goto fail_nomem;
666 good_mm:
667 /* Initializing for Swap token stuff */
668 mm->token_priority = 0;
669 mm->last_interval = 0;
671 tsk->mm = mm;
672 tsk->active_mm = mm;
673 return 0;
675 fail_nomem:
676 return retval;
679 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
681 struct fs_struct *fs = current->fs;
682 if (clone_flags & CLONE_FS) {
683 /* tsk->fs is already what we want */
684 write_lock(&fs->lock);
685 if (fs->in_exec) {
686 write_unlock(&fs->lock);
687 return -EAGAIN;
689 fs->users++;
690 write_unlock(&fs->lock);
691 return 0;
693 tsk->fs = copy_fs_struct(fs);
694 if (!tsk->fs)
695 return -ENOMEM;
696 return 0;
699 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
701 struct files_struct *oldf, *newf;
702 int error = 0;
705 * A background process may not have any files ...
707 oldf = current->files;
708 if (!oldf)
709 goto out;
711 if (clone_flags & CLONE_FILES) {
712 atomic_inc(&oldf->count);
713 goto out;
716 newf = dup_fd(oldf, &error);
717 if (!newf)
718 goto out;
720 tsk->files = newf;
721 error = 0;
722 out:
723 return error;
726 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
728 #ifdef CONFIG_BLOCK
729 struct io_context *ioc = current->io_context;
731 if (!ioc)
732 return 0;
734 * Share io context with parent, if CLONE_IO is set
736 if (clone_flags & CLONE_IO) {
737 tsk->io_context = ioc_task_link(ioc);
738 if (unlikely(!tsk->io_context))
739 return -ENOMEM;
740 } else if (ioprio_valid(ioc->ioprio)) {
741 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
742 if (unlikely(!tsk->io_context))
743 return -ENOMEM;
745 tsk->io_context->ioprio = ioc->ioprio;
747 #endif
748 return 0;
751 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
753 struct sighand_struct *sig;
755 if (clone_flags & CLONE_SIGHAND) {
756 atomic_inc(&current->sighand->count);
757 return 0;
759 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
760 rcu_assign_pointer(tsk->sighand, sig);
761 if (!sig)
762 return -ENOMEM;
763 atomic_set(&sig->count, 1);
764 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
765 return 0;
768 void __cleanup_sighand(struct sighand_struct *sighand)
770 if (atomic_dec_and_test(&sighand->count))
771 kmem_cache_free(sighand_cachep, sighand);
776 * Initialize POSIX timer handling for a thread group.
778 static void posix_cpu_timers_init_group(struct signal_struct *sig)
780 /* Thread group counters. */
781 thread_group_cputime_init(sig);
783 /* Expiration times and increments. */
784 sig->it_virt_expires = cputime_zero;
785 sig->it_virt_incr = cputime_zero;
786 sig->it_prof_expires = cputime_zero;
787 sig->it_prof_incr = cputime_zero;
789 /* Cached expiration times. */
790 sig->cputime_expires.prof_exp = cputime_zero;
791 sig->cputime_expires.virt_exp = cputime_zero;
792 sig->cputime_expires.sched_exp = 0;
794 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
795 sig->cputime_expires.prof_exp =
796 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
797 sig->cputimer.running = 1;
800 /* The timer lists. */
801 INIT_LIST_HEAD(&sig->cpu_timers[0]);
802 INIT_LIST_HEAD(&sig->cpu_timers[1]);
803 INIT_LIST_HEAD(&sig->cpu_timers[2]);
806 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
808 struct signal_struct *sig;
810 if (clone_flags & CLONE_THREAD) {
811 atomic_inc(&current->signal->count);
812 atomic_inc(&current->signal->live);
813 return 0;
816 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
817 tsk->signal = sig;
818 if (!sig)
819 return -ENOMEM;
821 atomic_set(&sig->count, 1);
822 atomic_set(&sig->live, 1);
823 init_waitqueue_head(&sig->wait_chldexit);
824 sig->flags = 0;
825 sig->group_exit_code = 0;
826 sig->group_exit_task = NULL;
827 sig->group_stop_count = 0;
828 sig->curr_target = tsk;
829 init_sigpending(&sig->shared_pending);
830 INIT_LIST_HEAD(&sig->posix_timers);
832 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
833 sig->it_real_incr.tv64 = 0;
834 sig->real_timer.function = it_real_fn;
836 sig->leader = 0; /* session leadership doesn't inherit */
837 sig->tty_old_pgrp = NULL;
838 sig->tty = NULL;
840 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
841 sig->gtime = cputime_zero;
842 sig->cgtime = cputime_zero;
843 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
844 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
845 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
846 task_io_accounting_init(&sig->ioac);
847 sig->sum_sched_runtime = 0;
848 taskstats_tgid_init(sig);
850 task_lock(current->group_leader);
851 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
852 task_unlock(current->group_leader);
854 posix_cpu_timers_init_group(sig);
856 acct_init_pacct(&sig->pacct);
858 tty_audit_fork(sig);
860 return 0;
863 void __cleanup_signal(struct signal_struct *sig)
865 thread_group_cputime_free(sig);
866 tty_kref_put(sig->tty);
867 kmem_cache_free(signal_cachep, sig);
870 static void cleanup_signal(struct task_struct *tsk)
872 struct signal_struct *sig = tsk->signal;
874 atomic_dec(&sig->live);
876 if (atomic_dec_and_test(&sig->count))
877 __cleanup_signal(sig);
880 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
882 unsigned long new_flags = p->flags;
884 new_flags &= ~PF_SUPERPRIV;
885 new_flags |= PF_FORKNOEXEC;
886 new_flags |= PF_STARTING;
887 p->flags = new_flags;
888 clear_freeze_flag(p);
891 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
893 current->clear_child_tid = tidptr;
895 return task_pid_vnr(current);
898 static void rt_mutex_init_task(struct task_struct *p)
900 spin_lock_init(&p->pi_lock);
901 #ifdef CONFIG_RT_MUTEXES
902 plist_head_init(&p->pi_waiters, &p->pi_lock);
903 p->pi_blocked_on = NULL;
904 #endif
907 #ifdef CONFIG_MM_OWNER
908 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
910 mm->owner = p;
912 #endif /* CONFIG_MM_OWNER */
915 * Initialize POSIX timer handling for a single task.
917 static void posix_cpu_timers_init(struct task_struct *tsk)
919 tsk->cputime_expires.prof_exp = cputime_zero;
920 tsk->cputime_expires.virt_exp = cputime_zero;
921 tsk->cputime_expires.sched_exp = 0;
922 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
923 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
924 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
928 * This creates a new process as a copy of the old one,
929 * but does not actually start it yet.
931 * It copies the registers, and all the appropriate
932 * parts of the process environment (as per the clone
933 * flags). The actual kick-off is left to the caller.
935 static struct task_struct *copy_process(unsigned long clone_flags,
936 unsigned long stack_start,
937 struct pt_regs *regs,
938 unsigned long stack_size,
939 int __user *child_tidptr,
940 struct pid *pid,
941 int trace)
943 int retval;
944 struct task_struct *p;
945 int cgroup_callbacks_done = 0;
947 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
948 return ERR_PTR(-EINVAL);
951 * Thread groups must share signals as well, and detached threads
952 * can only be started up within the thread group.
954 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
955 return ERR_PTR(-EINVAL);
958 * Shared signal handlers imply shared VM. By way of the above,
959 * thread groups also imply shared VM. Blocking this case allows
960 * for various simplifications in other code.
962 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
963 return ERR_PTR(-EINVAL);
965 retval = security_task_create(clone_flags);
966 if (retval)
967 goto fork_out;
969 retval = -ENOMEM;
970 p = dup_task_struct(current);
971 if (!p)
972 goto fork_out;
974 rt_mutex_init_task(p);
976 #ifdef CONFIG_PROVE_LOCKING
977 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
978 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
979 #endif
980 retval = -EAGAIN;
981 if (atomic_read(&p->real_cred->user->processes) >=
982 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
983 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
984 p->real_cred->user != INIT_USER)
985 goto bad_fork_free;
988 retval = copy_creds(p, clone_flags);
989 if (retval < 0)
990 goto bad_fork_free;
993 * If multiple threads are within copy_process(), then this check
994 * triggers too late. This doesn't hurt, the check is only there
995 * to stop root fork bombs.
997 retval = -EAGAIN;
998 if (nr_threads >= max_threads)
999 goto bad_fork_cleanup_count;
1001 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1002 goto bad_fork_cleanup_count;
1004 if (p->binfmt && !try_module_get(p->binfmt->module))
1005 goto bad_fork_cleanup_put_domain;
1007 p->did_exec = 0;
1008 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1009 copy_flags(clone_flags, p);
1010 INIT_LIST_HEAD(&p->children);
1011 INIT_LIST_HEAD(&p->sibling);
1012 #ifdef CONFIG_PREEMPT_RCU
1013 p->rcu_read_lock_nesting = 0;
1014 p->rcu_flipctr_idx = 0;
1015 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1016 p->vfork_done = NULL;
1017 spin_lock_init(&p->alloc_lock);
1019 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1020 init_sigpending(&p->pending);
1022 p->utime = cputime_zero;
1023 p->stime = cputime_zero;
1024 p->gtime = cputime_zero;
1025 p->utimescaled = cputime_zero;
1026 p->stimescaled = cputime_zero;
1027 p->prev_utime = cputime_zero;
1028 p->prev_stime = cputime_zero;
1030 p->default_timer_slack_ns = current->timer_slack_ns;
1032 #ifdef CONFIG_DETECT_SOFTLOCKUP
1033 p->last_switch_count = 0;
1034 p->last_switch_timestamp = 0;
1035 #endif
1037 task_io_accounting_init(&p->ioac);
1038 acct_clear_integrals(p);
1040 posix_cpu_timers_init(p);
1042 p->lock_depth = -1; /* -1 = no lock */
1043 do_posix_clock_monotonic_gettime(&p->start_time);
1044 p->real_start_time = p->start_time;
1045 monotonic_to_bootbased(&p->real_start_time);
1046 p->io_context = NULL;
1047 p->audit_context = NULL;
1048 cgroup_fork(p);
1049 #ifdef CONFIG_NUMA
1050 p->mempolicy = mpol_dup(p->mempolicy);
1051 if (IS_ERR(p->mempolicy)) {
1052 retval = PTR_ERR(p->mempolicy);
1053 p->mempolicy = NULL;
1054 goto bad_fork_cleanup_cgroup;
1056 mpol_fix_fork_child_flag(p);
1057 #endif
1058 #ifdef CONFIG_TRACE_IRQFLAGS
1059 p->irq_events = 0;
1060 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1061 p->hardirqs_enabled = 1;
1062 #else
1063 p->hardirqs_enabled = 0;
1064 #endif
1065 p->hardirq_enable_ip = 0;
1066 p->hardirq_enable_event = 0;
1067 p->hardirq_disable_ip = _THIS_IP_;
1068 p->hardirq_disable_event = 0;
1069 p->softirqs_enabled = 1;
1070 p->softirq_enable_ip = _THIS_IP_;
1071 p->softirq_enable_event = 0;
1072 p->softirq_disable_ip = 0;
1073 p->softirq_disable_event = 0;
1074 p->hardirq_context = 0;
1075 p->softirq_context = 0;
1076 #endif
1077 #ifdef CONFIG_LOCKDEP
1078 p->lockdep_depth = 0; /* no locks held yet */
1079 p->curr_chain_key = 0;
1080 p->lockdep_recursion = 0;
1081 #endif
1083 #ifdef CONFIG_DEBUG_MUTEXES
1084 p->blocked_on = NULL; /* not blocked yet */
1085 #endif
1086 if (unlikely(current->ptrace))
1087 ptrace_fork(p, clone_flags);
1089 /* Perform scheduler related setup. Assign this task to a CPU. */
1090 sched_fork(p, clone_flags);
1092 if ((retval = audit_alloc(p)))
1093 goto bad_fork_cleanup_policy;
1094 /* copy all the process information */
1095 if ((retval = copy_semundo(clone_flags, p)))
1096 goto bad_fork_cleanup_audit;
1097 if ((retval = copy_files(clone_flags, p)))
1098 goto bad_fork_cleanup_semundo;
1099 if ((retval = copy_fs(clone_flags, p)))
1100 goto bad_fork_cleanup_files;
1101 if ((retval = copy_sighand(clone_flags, p)))
1102 goto bad_fork_cleanup_fs;
1103 if ((retval = copy_signal(clone_flags, p)))
1104 goto bad_fork_cleanup_sighand;
1105 if ((retval = copy_mm(clone_flags, p)))
1106 goto bad_fork_cleanup_signal;
1107 if ((retval = copy_namespaces(clone_flags, p)))
1108 goto bad_fork_cleanup_mm;
1109 if ((retval = copy_io(clone_flags, p)))
1110 goto bad_fork_cleanup_namespaces;
1111 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1112 if (retval)
1113 goto bad_fork_cleanup_io;
1115 if (pid != &init_struct_pid) {
1116 retval = -ENOMEM;
1117 pid = alloc_pid(p->nsproxy->pid_ns);
1118 if (!pid)
1119 goto bad_fork_cleanup_io;
1121 if (clone_flags & CLONE_NEWPID) {
1122 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1123 if (retval < 0)
1124 goto bad_fork_free_pid;
1128 ftrace_graph_init_task(p);
1130 p->pid = pid_nr(pid);
1131 p->tgid = p->pid;
1132 if (clone_flags & CLONE_THREAD)
1133 p->tgid = current->tgid;
1135 if (current->nsproxy != p->nsproxy) {
1136 retval = ns_cgroup_clone(p, pid);
1137 if (retval)
1138 goto bad_fork_free_graph;
1141 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1143 * Clear TID on mm_release()?
1145 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1146 #ifdef CONFIG_FUTEX
1147 p->robust_list = NULL;
1148 #ifdef CONFIG_COMPAT
1149 p->compat_robust_list = NULL;
1150 #endif
1151 INIT_LIST_HEAD(&p->pi_state_list);
1152 p->pi_state_cache = NULL;
1153 #endif
1155 * sigaltstack should be cleared when sharing the same VM
1157 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1158 p->sas_ss_sp = p->sas_ss_size = 0;
1161 * Syscall tracing should be turned off in the child regardless
1162 * of CLONE_PTRACE.
1164 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1165 #ifdef TIF_SYSCALL_EMU
1166 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1167 #endif
1168 clear_all_latency_tracing(p);
1170 /* ok, now we should be set up.. */
1171 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1172 p->pdeath_signal = 0;
1173 p->exit_state = 0;
1176 * Ok, make it visible to the rest of the system.
1177 * We dont wake it up yet.
1179 p->group_leader = p;
1180 INIT_LIST_HEAD(&p->thread_group);
1182 /* Now that the task is set up, run cgroup callbacks if
1183 * necessary. We need to run them before the task is visible
1184 * on the tasklist. */
1185 cgroup_fork_callbacks(p);
1186 cgroup_callbacks_done = 1;
1188 /* Need tasklist lock for parent etc handling! */
1189 write_lock_irq(&tasklist_lock);
1192 * The task hasn't been attached yet, so its cpus_allowed mask will
1193 * not be changed, nor will its assigned CPU.
1195 * The cpus_allowed mask of the parent may have changed after it was
1196 * copied first time - so re-copy it here, then check the child's CPU
1197 * to ensure it is on a valid CPU (and if not, just force it back to
1198 * parent's CPU). This avoids alot of nasty races.
1200 p->cpus_allowed = current->cpus_allowed;
1201 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1202 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1203 !cpu_online(task_cpu(p))))
1204 set_task_cpu(p, smp_processor_id());
1206 /* CLONE_PARENT re-uses the old parent */
1207 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1208 p->real_parent = current->real_parent;
1209 p->parent_exec_id = current->parent_exec_id;
1210 } else {
1211 p->real_parent = current;
1212 p->parent_exec_id = current->self_exec_id;
1215 spin_lock(&current->sighand->siglock);
1218 * Process group and session signals need to be delivered to just the
1219 * parent before the fork or both the parent and the child after the
1220 * fork. Restart if a signal comes in before we add the new process to
1221 * it's process group.
1222 * A fatal signal pending means that current will exit, so the new
1223 * thread can't slip out of an OOM kill (or normal SIGKILL).
1225 recalc_sigpending();
1226 if (signal_pending(current)) {
1227 spin_unlock(&current->sighand->siglock);
1228 write_unlock_irq(&tasklist_lock);
1229 retval = -ERESTARTNOINTR;
1230 goto bad_fork_free_graph;
1233 if (clone_flags & CLONE_THREAD) {
1234 p->group_leader = current->group_leader;
1235 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1238 if (likely(p->pid)) {
1239 list_add_tail(&p->sibling, &p->real_parent->children);
1240 tracehook_finish_clone(p, clone_flags, trace);
1242 if (thread_group_leader(p)) {
1243 if (clone_flags & CLONE_NEWPID)
1244 p->nsproxy->pid_ns->child_reaper = p;
1246 p->signal->leader_pid = pid;
1247 tty_kref_put(p->signal->tty);
1248 p->signal->tty = tty_kref_get(current->signal->tty);
1249 set_task_pgrp(p, task_pgrp_nr(current));
1250 set_task_session(p, task_session_nr(current));
1251 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1252 attach_pid(p, PIDTYPE_SID, task_session(current));
1253 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1254 __get_cpu_var(process_counts)++;
1256 attach_pid(p, PIDTYPE_PID, pid);
1257 nr_threads++;
1260 total_forks++;
1261 spin_unlock(&current->sighand->siglock);
1262 write_unlock_irq(&tasklist_lock);
1263 proc_fork_connector(p);
1264 cgroup_post_fork(p);
1265 return p;
1267 bad_fork_free_graph:
1268 ftrace_graph_exit_task(p);
1269 bad_fork_free_pid:
1270 if (pid != &init_struct_pid)
1271 free_pid(pid);
1272 bad_fork_cleanup_io:
1273 put_io_context(p->io_context);
1274 bad_fork_cleanup_namespaces:
1275 exit_task_namespaces(p);
1276 bad_fork_cleanup_mm:
1277 if (p->mm)
1278 mmput(p->mm);
1279 bad_fork_cleanup_signal:
1280 cleanup_signal(p);
1281 bad_fork_cleanup_sighand:
1282 __cleanup_sighand(p->sighand);
1283 bad_fork_cleanup_fs:
1284 exit_fs(p); /* blocking */
1285 bad_fork_cleanup_files:
1286 exit_files(p); /* blocking */
1287 bad_fork_cleanup_semundo:
1288 exit_sem(p);
1289 bad_fork_cleanup_audit:
1290 audit_free(p);
1291 bad_fork_cleanup_policy:
1292 #ifdef CONFIG_NUMA
1293 mpol_put(p->mempolicy);
1294 bad_fork_cleanup_cgroup:
1295 #endif
1296 cgroup_exit(p, cgroup_callbacks_done);
1297 delayacct_tsk_free(p);
1298 if (p->binfmt)
1299 module_put(p->binfmt->module);
1300 bad_fork_cleanup_put_domain:
1301 module_put(task_thread_info(p)->exec_domain->module);
1302 bad_fork_cleanup_count:
1303 atomic_dec(&p->cred->user->processes);
1304 put_cred(p->real_cred);
1305 put_cred(p->cred);
1306 bad_fork_free:
1307 free_task(p);
1308 fork_out:
1309 return ERR_PTR(retval);
1312 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1314 memset(regs, 0, sizeof(struct pt_regs));
1315 return regs;
1318 struct task_struct * __cpuinit fork_idle(int cpu)
1320 struct task_struct *task;
1321 struct pt_regs regs;
1323 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1324 &init_struct_pid, 0);
1325 if (!IS_ERR(task))
1326 init_idle(task, cpu);
1328 return task;
1332 * Ok, this is the main fork-routine.
1334 * It copies the process, and if successful kick-starts
1335 * it and waits for it to finish using the VM if required.
1337 long do_fork(unsigned long clone_flags,
1338 unsigned long stack_start,
1339 struct pt_regs *regs,
1340 unsigned long stack_size,
1341 int __user *parent_tidptr,
1342 int __user *child_tidptr)
1344 struct task_struct *p;
1345 int trace = 0;
1346 long nr;
1349 * Do some preliminary argument and permissions checking before we
1350 * actually start allocating stuff
1352 if (clone_flags & CLONE_NEWUSER) {
1353 if (clone_flags & CLONE_THREAD)
1354 return -EINVAL;
1355 /* hopefully this check will go away when userns support is
1356 * complete
1358 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1359 !capable(CAP_SETGID))
1360 return -EPERM;
1364 * We hope to recycle these flags after 2.6.26
1366 if (unlikely(clone_flags & CLONE_STOPPED)) {
1367 static int __read_mostly count = 100;
1369 if (count > 0 && printk_ratelimit()) {
1370 char comm[TASK_COMM_LEN];
1372 count--;
1373 printk(KERN_INFO "fork(): process `%s' used deprecated "
1374 "clone flags 0x%lx\n",
1375 get_task_comm(comm, current),
1376 clone_flags & CLONE_STOPPED);
1381 * When called from kernel_thread, don't do user tracing stuff.
1383 if (likely(user_mode(regs)))
1384 trace = tracehook_prepare_clone(clone_flags);
1386 p = copy_process(clone_flags, stack_start, regs, stack_size,
1387 child_tidptr, NULL, trace);
1389 * Do this prior waking up the new thread - the thread pointer
1390 * might get invalid after that point, if the thread exits quickly.
1392 if (!IS_ERR(p)) {
1393 struct completion vfork;
1395 trace_sched_process_fork(current, p);
1397 nr = task_pid_vnr(p);
1399 if (clone_flags & CLONE_PARENT_SETTID)
1400 put_user(nr, parent_tidptr);
1402 if (clone_flags & CLONE_VFORK) {
1403 p->vfork_done = &vfork;
1404 init_completion(&vfork);
1407 audit_finish_fork(p);
1408 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1411 * We set PF_STARTING at creation in case tracing wants to
1412 * use this to distinguish a fully live task from one that
1413 * hasn't gotten to tracehook_report_clone() yet. Now we
1414 * clear it and set the child going.
1416 p->flags &= ~PF_STARTING;
1418 if (unlikely(clone_flags & CLONE_STOPPED)) {
1420 * We'll start up with an immediate SIGSTOP.
1422 sigaddset(&p->pending.signal, SIGSTOP);
1423 set_tsk_thread_flag(p, TIF_SIGPENDING);
1424 __set_task_state(p, TASK_STOPPED);
1425 } else {
1426 wake_up_new_task(p, clone_flags);
1429 tracehook_report_clone_complete(trace, regs,
1430 clone_flags, nr, p);
1432 if (clone_flags & CLONE_VFORK) {
1433 freezer_do_not_count();
1434 wait_for_completion(&vfork);
1435 freezer_count();
1436 tracehook_report_vfork_done(p, nr);
1438 } else {
1439 nr = PTR_ERR(p);
1441 return nr;
1444 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1445 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1446 #endif
1448 static void sighand_ctor(void *data)
1450 struct sighand_struct *sighand = data;
1452 spin_lock_init(&sighand->siglock);
1453 init_waitqueue_head(&sighand->signalfd_wqh);
1456 void __init proc_caches_init(void)
1458 sighand_cachep = kmem_cache_create("sighand_cache",
1459 sizeof(struct sighand_struct), 0,
1460 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1461 sighand_ctor);
1462 signal_cachep = kmem_cache_create("signal_cache",
1463 sizeof(struct signal_struct), 0,
1464 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1465 files_cachep = kmem_cache_create("files_cache",
1466 sizeof(struct files_struct), 0,
1467 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1468 fs_cachep = kmem_cache_create("fs_cache",
1469 sizeof(struct fs_struct), 0,
1470 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1471 mm_cachep = kmem_cache_create("mm_struct",
1472 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1473 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1474 mmap_init();
1478 * Check constraints on flags passed to the unshare system call and
1479 * force unsharing of additional process context as appropriate.
1481 static void check_unshare_flags(unsigned long *flags_ptr)
1484 * If unsharing a thread from a thread group, must also
1485 * unshare vm.
1487 if (*flags_ptr & CLONE_THREAD)
1488 *flags_ptr |= CLONE_VM;
1491 * If unsharing vm, must also unshare signal handlers.
1493 if (*flags_ptr & CLONE_VM)
1494 *flags_ptr |= CLONE_SIGHAND;
1497 * If unsharing signal handlers and the task was created
1498 * using CLONE_THREAD, then must unshare the thread
1500 if ((*flags_ptr & CLONE_SIGHAND) &&
1501 (atomic_read(&current->signal->count) > 1))
1502 *flags_ptr |= CLONE_THREAD;
1505 * If unsharing namespace, must also unshare filesystem information.
1507 if (*flags_ptr & CLONE_NEWNS)
1508 *flags_ptr |= CLONE_FS;
1512 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1514 static int unshare_thread(unsigned long unshare_flags)
1516 if (unshare_flags & CLONE_THREAD)
1517 return -EINVAL;
1519 return 0;
1523 * Unshare the filesystem structure if it is being shared
1525 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1527 struct fs_struct *fs = current->fs;
1529 if (!(unshare_flags & CLONE_FS) || !fs)
1530 return 0;
1532 /* don't need lock here; in the worst case we'll do useless copy */
1533 if (fs->users == 1)
1534 return 0;
1536 *new_fsp = copy_fs_struct(fs);
1537 if (!*new_fsp)
1538 return -ENOMEM;
1540 return 0;
1544 * Unsharing of sighand is not supported yet
1546 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1548 struct sighand_struct *sigh = current->sighand;
1550 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1551 return -EINVAL;
1552 else
1553 return 0;
1557 * Unshare vm if it is being shared
1559 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1561 struct mm_struct *mm = current->mm;
1563 if ((unshare_flags & CLONE_VM) &&
1564 (mm && atomic_read(&mm->mm_users) > 1)) {
1565 return -EINVAL;
1568 return 0;
1572 * Unshare file descriptor table if it is being shared
1574 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1576 struct files_struct *fd = current->files;
1577 int error = 0;
1579 if ((unshare_flags & CLONE_FILES) &&
1580 (fd && atomic_read(&fd->count) > 1)) {
1581 *new_fdp = dup_fd(fd, &error);
1582 if (!*new_fdp)
1583 return error;
1586 return 0;
1590 * unshare allows a process to 'unshare' part of the process
1591 * context which was originally shared using clone. copy_*
1592 * functions used by do_fork() cannot be used here directly
1593 * because they modify an inactive task_struct that is being
1594 * constructed. Here we are modifying the current, active,
1595 * task_struct.
1597 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1599 int err = 0;
1600 struct fs_struct *fs, *new_fs = NULL;
1601 struct sighand_struct *new_sigh = NULL;
1602 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1603 struct files_struct *fd, *new_fd = NULL;
1604 struct nsproxy *new_nsproxy = NULL;
1605 int do_sysvsem = 0;
1607 check_unshare_flags(&unshare_flags);
1609 /* Return -EINVAL for all unsupported flags */
1610 err = -EINVAL;
1611 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1612 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1613 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1614 goto bad_unshare_out;
1617 * CLONE_NEWIPC must also detach from the undolist: after switching
1618 * to a new ipc namespace, the semaphore arrays from the old
1619 * namespace are unreachable.
1621 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1622 do_sysvsem = 1;
1623 if ((err = unshare_thread(unshare_flags)))
1624 goto bad_unshare_out;
1625 if ((err = unshare_fs(unshare_flags, &new_fs)))
1626 goto bad_unshare_cleanup_thread;
1627 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1628 goto bad_unshare_cleanup_fs;
1629 if ((err = unshare_vm(unshare_flags, &new_mm)))
1630 goto bad_unshare_cleanup_sigh;
1631 if ((err = unshare_fd(unshare_flags, &new_fd)))
1632 goto bad_unshare_cleanup_vm;
1633 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1634 new_fs)))
1635 goto bad_unshare_cleanup_fd;
1637 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1638 if (do_sysvsem) {
1640 * CLONE_SYSVSEM is equivalent to sys_exit().
1642 exit_sem(current);
1645 if (new_nsproxy) {
1646 switch_task_namespaces(current, new_nsproxy);
1647 new_nsproxy = NULL;
1650 task_lock(current);
1652 if (new_fs) {
1653 fs = current->fs;
1654 write_lock(&fs->lock);
1655 current->fs = new_fs;
1656 if (--fs->users)
1657 new_fs = NULL;
1658 else
1659 new_fs = fs;
1660 write_unlock(&fs->lock);
1663 if (new_mm) {
1664 mm = current->mm;
1665 active_mm = current->active_mm;
1666 current->mm = new_mm;
1667 current->active_mm = new_mm;
1668 activate_mm(active_mm, new_mm);
1669 new_mm = mm;
1672 if (new_fd) {
1673 fd = current->files;
1674 current->files = new_fd;
1675 new_fd = fd;
1678 task_unlock(current);
1681 if (new_nsproxy)
1682 put_nsproxy(new_nsproxy);
1684 bad_unshare_cleanup_fd:
1685 if (new_fd)
1686 put_files_struct(new_fd);
1688 bad_unshare_cleanup_vm:
1689 if (new_mm)
1690 mmput(new_mm);
1692 bad_unshare_cleanup_sigh:
1693 if (new_sigh)
1694 if (atomic_dec_and_test(&new_sigh->count))
1695 kmem_cache_free(sighand_cachep, new_sigh);
1697 bad_unshare_cleanup_fs:
1698 if (new_fs)
1699 free_fs_struct(new_fs);
1701 bad_unshare_cleanup_thread:
1702 bad_unshare_out:
1703 return err;
1707 * Helper to unshare the files of the current task.
1708 * We don't want to expose copy_files internals to
1709 * the exec layer of the kernel.
1712 int unshare_files(struct files_struct **displaced)
1714 struct task_struct *task = current;
1715 struct files_struct *copy = NULL;
1716 int error;
1718 error = unshare_fd(CLONE_FILES, &copy);
1719 if (error || !copy) {
1720 *displaced = NULL;
1721 return error;
1723 *displaced = task->files;
1724 task_lock(task);
1725 task->files = copy;
1726 task_unlock(task);
1727 return 0;