4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/init_task.h>
50 #include <trace/sched.h>
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
56 #include "cred-internals.h"
58 DEFINE_TRACE(sched_process_free
);
59 DEFINE_TRACE(sched_process_exit
);
60 DEFINE_TRACE(sched_process_wait
);
62 static void exit_mm(struct task_struct
* tsk
);
64 static inline int task_detached(struct task_struct
*p
)
66 return p
->exit_signal
== -1;
69 static void __unhash_process(struct task_struct
*p
)
72 detach_pid(p
, PIDTYPE_PID
);
73 if (thread_group_leader(p
)) {
74 detach_pid(p
, PIDTYPE_PGID
);
75 detach_pid(p
, PIDTYPE_SID
);
77 list_del_rcu(&p
->tasks
);
78 __get_cpu_var(process_counts
)--;
80 list_del_rcu(&p
->thread_group
);
81 list_del_init(&p
->sibling
);
85 * This function expects the tasklist_lock write-locked.
87 static void __exit_signal(struct task_struct
*tsk
)
89 struct signal_struct
*sig
= tsk
->signal
;
90 struct sighand_struct
*sighand
;
93 BUG_ON(!atomic_read(&sig
->count
));
95 sighand
= rcu_dereference(tsk
->sighand
);
96 spin_lock(&sighand
->siglock
);
98 posix_cpu_timers_exit(tsk
);
99 if (atomic_dec_and_test(&sig
->count
))
100 posix_cpu_timers_exit_group(tsk
);
103 * If there is any task waiting for the group exit
106 if (sig
->group_exit_task
&& atomic_read(&sig
->count
) == sig
->notify_count
)
107 wake_up_process(sig
->group_exit_task
);
109 if (tsk
== sig
->curr_target
)
110 sig
->curr_target
= next_thread(tsk
);
112 * Accumulate here the counters for all threads but the
113 * group leader as they die, so they can be added into
114 * the process-wide totals when those are taken.
115 * The group leader stays around as a zombie as long
116 * as there are other threads. When it gets reaped,
117 * the exit.c code will add its counts into these totals.
118 * We won't ever get here for the group leader, since it
119 * will have been the last reference on the signal_struct.
121 sig
->utime
= cputime_add(sig
->utime
, task_utime(tsk
));
122 sig
->stime
= cputime_add(sig
->stime
, task_stime(tsk
));
123 sig
->gtime
= cputime_add(sig
->gtime
, task_gtime(tsk
));
124 sig
->min_flt
+= tsk
->min_flt
;
125 sig
->maj_flt
+= tsk
->maj_flt
;
126 sig
->nvcsw
+= tsk
->nvcsw
;
127 sig
->nivcsw
+= tsk
->nivcsw
;
128 sig
->inblock
+= task_io_get_inblock(tsk
);
129 sig
->oublock
+= task_io_get_oublock(tsk
);
130 task_io_accounting_add(&sig
->ioac
, &tsk
->ioac
);
131 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
132 sig
= NULL
; /* Marker for below. */
135 __unhash_process(tsk
);
138 * Do this under ->siglock, we can race with another thread
139 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
141 flush_sigqueue(&tsk
->pending
);
145 spin_unlock(&sighand
->siglock
);
147 __cleanup_sighand(sighand
);
148 clear_tsk_thread_flag(tsk
,TIF_SIGPENDING
);
150 flush_sigqueue(&sig
->shared_pending
);
151 taskstats_tgid_free(sig
);
153 * Make sure ->signal can't go away under rq->lock,
154 * see account_group_exec_runtime().
156 task_rq_unlock_wait(tsk
);
157 __cleanup_signal(sig
);
161 static void delayed_put_task_struct(struct rcu_head
*rhp
)
163 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
165 trace_sched_process_free(tsk
);
166 put_task_struct(tsk
);
170 void release_task(struct task_struct
* p
)
172 struct task_struct
*leader
;
175 tracehook_prepare_release_task(p
);
176 /* don't need to get the RCU readlock here - the process is dead and
177 * can't be modifying its own credentials */
178 atomic_dec(&__task_cred(p
)->user
->processes
);
181 write_lock_irq(&tasklist_lock
);
182 tracehook_finish_release_task(p
);
186 * If we are the last non-leader member of the thread
187 * group, and the leader is zombie, then notify the
188 * group leader's parent process. (if it wants notification.)
191 leader
= p
->group_leader
;
192 if (leader
!= p
&& thread_group_empty(leader
) && leader
->exit_state
== EXIT_ZOMBIE
) {
193 BUG_ON(task_detached(leader
));
194 do_notify_parent(leader
, leader
->exit_signal
);
196 * If we were the last child thread and the leader has
197 * exited already, and the leader's parent ignores SIGCHLD,
198 * then we are the one who should release the leader.
200 * do_notify_parent() will have marked it self-reaping in
203 zap_leader
= task_detached(leader
);
206 * This maintains the invariant that release_task()
207 * only runs on a task in EXIT_DEAD, just for sanity.
210 leader
->exit_state
= EXIT_DEAD
;
213 write_unlock_irq(&tasklist_lock
);
215 call_rcu(&p
->rcu
, delayed_put_task_struct
);
218 if (unlikely(zap_leader
))
223 * This checks not only the pgrp, but falls back on the pid if no
224 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
227 * The caller must hold rcu lock or the tasklist lock.
229 struct pid
*session_of_pgrp(struct pid
*pgrp
)
231 struct task_struct
*p
;
232 struct pid
*sid
= NULL
;
234 p
= pid_task(pgrp
, PIDTYPE_PGID
);
236 p
= pid_task(pgrp
, PIDTYPE_PID
);
238 sid
= task_session(p
);
244 * Determine if a process group is "orphaned", according to the POSIX
245 * definition in 2.2.2.52. Orphaned process groups are not to be affected
246 * by terminal-generated stop signals. Newly orphaned process groups are
247 * to receive a SIGHUP and a SIGCONT.
249 * "I ask you, have you ever known what it is to be an orphan?"
251 static int will_become_orphaned_pgrp(struct pid
*pgrp
, struct task_struct
*ignored_task
)
253 struct task_struct
*p
;
255 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
256 if ((p
== ignored_task
) ||
257 (p
->exit_state
&& thread_group_empty(p
)) ||
258 is_global_init(p
->real_parent
))
261 if (task_pgrp(p
->real_parent
) != pgrp
&&
262 task_session(p
->real_parent
) == task_session(p
))
264 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
269 int is_current_pgrp_orphaned(void)
273 read_lock(&tasklist_lock
);
274 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
275 read_unlock(&tasklist_lock
);
280 static int has_stopped_jobs(struct pid
*pgrp
)
283 struct task_struct
*p
;
285 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
286 if (!task_is_stopped(p
))
290 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
295 * Check to see if any process groups have become orphaned as
296 * a result of our exiting, and if they have any stopped jobs,
297 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
300 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
302 struct pid
*pgrp
= task_pgrp(tsk
);
303 struct task_struct
*ignored_task
= tsk
;
306 /* exit: our father is in a different pgrp than
307 * we are and we were the only connection outside.
309 parent
= tsk
->real_parent
;
311 /* reparent: our child is in a different pgrp than
312 * we are, and it was the only connection outside.
316 if (task_pgrp(parent
) != pgrp
&&
317 task_session(parent
) == task_session(tsk
) &&
318 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
319 has_stopped_jobs(pgrp
)) {
320 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
321 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
326 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
328 * If a kernel thread is launched as a result of a system call, or if
329 * it ever exits, it should generally reparent itself to kthreadd so it
330 * isn't in the way of other processes and is correctly cleaned up on exit.
332 * The various task state such as scheduling policy and priority may have
333 * been inherited from a user process, so we reset them to sane values here.
335 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
337 static void reparent_to_kthreadd(void)
339 write_lock_irq(&tasklist_lock
);
341 ptrace_unlink(current
);
342 /* Reparent to init */
343 current
->real_parent
= current
->parent
= kthreadd_task
;
344 list_move_tail(¤t
->sibling
, ¤t
->real_parent
->children
);
346 /* Set the exit signal to SIGCHLD so we signal init on exit */
347 current
->exit_signal
= SIGCHLD
;
349 if (task_nice(current
) < 0)
350 set_user_nice(current
, 0);
354 memcpy(current
->signal
->rlim
, init_task
.signal
->rlim
,
355 sizeof(current
->signal
->rlim
));
357 atomic_inc(&init_cred
.usage
);
358 commit_creds(&init_cred
);
359 write_unlock_irq(&tasklist_lock
);
362 void __set_special_pids(struct pid
*pid
)
364 struct task_struct
*curr
= current
->group_leader
;
365 pid_t nr
= pid_nr(pid
);
367 if (task_session(curr
) != pid
) {
368 change_pid(curr
, PIDTYPE_SID
, pid
);
369 set_task_session(curr
, nr
);
371 if (task_pgrp(curr
) != pid
) {
372 change_pid(curr
, PIDTYPE_PGID
, pid
);
373 set_task_pgrp(curr
, nr
);
377 static void set_special_pids(struct pid
*pid
)
379 write_lock_irq(&tasklist_lock
);
380 __set_special_pids(pid
);
381 write_unlock_irq(&tasklist_lock
);
385 * Let kernel threads use this to say that they
386 * allow a certain signal (since daemonize() will
387 * have disabled all of them by default).
389 int allow_signal(int sig
)
391 if (!valid_signal(sig
) || sig
< 1)
394 spin_lock_irq(¤t
->sighand
->siglock
);
395 sigdelset(¤t
->blocked
, sig
);
397 /* Kernel threads handle their own signals.
398 Let the signal code know it'll be handled, so
399 that they don't get converted to SIGKILL or
400 just silently dropped */
401 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= (void __user
*)2;
404 spin_unlock_irq(¤t
->sighand
->siglock
);
408 EXPORT_SYMBOL(allow_signal
);
410 int disallow_signal(int sig
)
412 if (!valid_signal(sig
) || sig
< 1)
415 spin_lock_irq(¤t
->sighand
->siglock
);
416 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= SIG_IGN
;
418 spin_unlock_irq(¤t
->sighand
->siglock
);
422 EXPORT_SYMBOL(disallow_signal
);
425 * Put all the gunge required to become a kernel thread without
426 * attached user resources in one place where it belongs.
429 void daemonize(const char *name
, ...)
434 va_start(args
, name
);
435 vsnprintf(current
->comm
, sizeof(current
->comm
), name
, args
);
439 * If we were started as result of loading a module, close all of the
440 * user space pages. We don't need them, and if we didn't close them
441 * they would be locked into memory.
445 * We don't want to have TIF_FREEZE set if the system-wide hibernation
446 * or suspend transition begins right now.
448 current
->flags
|= (PF_NOFREEZE
| PF_KTHREAD
);
450 if (current
->nsproxy
!= &init_nsproxy
) {
451 get_nsproxy(&init_nsproxy
);
452 switch_task_namespaces(current
, &init_nsproxy
);
454 set_special_pids(&init_struct_pid
);
455 proc_clear_tty(current
);
457 /* Block and flush all signals */
458 sigfillset(&blocked
);
459 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
460 flush_signals(current
);
462 /* Become as one with the init task */
464 daemonize_fs_struct();
466 current
->files
= init_task
.files
;
467 atomic_inc(¤t
->files
->count
);
469 reparent_to_kthreadd();
472 EXPORT_SYMBOL(daemonize
);
474 static void close_files(struct files_struct
* files
)
482 * It is safe to dereference the fd table without RCU or
483 * ->file_lock because this is the last reference to the
486 fdt
= files_fdtable(files
);
490 if (i
>= fdt
->max_fds
)
492 set
= fdt
->open_fds
->fds_bits
[j
++];
495 struct file
* file
= xchg(&fdt
->fd
[i
], NULL
);
497 filp_close(file
, files
);
507 struct files_struct
*get_files_struct(struct task_struct
*task
)
509 struct files_struct
*files
;
514 atomic_inc(&files
->count
);
520 void put_files_struct(struct files_struct
*files
)
524 if (atomic_dec_and_test(&files
->count
)) {
527 * Free the fd and fdset arrays if we expanded them.
528 * If the fdtable was embedded, pass files for freeing
529 * at the end of the RCU grace period. Otherwise,
530 * you can free files immediately.
532 fdt
= files_fdtable(files
);
533 if (fdt
!= &files
->fdtab
)
534 kmem_cache_free(files_cachep
, files
);
539 void reset_files_struct(struct files_struct
*files
)
541 struct task_struct
*tsk
= current
;
542 struct files_struct
*old
;
548 put_files_struct(old
);
551 void exit_files(struct task_struct
*tsk
)
553 struct files_struct
* files
= tsk
->files
;
559 put_files_struct(files
);
563 #ifdef CONFIG_MM_OWNER
565 * Task p is exiting and it owned mm, lets find a new owner for it
568 mm_need_new_owner(struct mm_struct
*mm
, struct task_struct
*p
)
571 * If there are other users of the mm and the owner (us) is exiting
572 * we need to find a new owner to take on the responsibility.
574 if (atomic_read(&mm
->mm_users
) <= 1)
581 void mm_update_next_owner(struct mm_struct
*mm
)
583 struct task_struct
*c
, *g
, *p
= current
;
586 if (!mm_need_new_owner(mm
, p
))
589 read_lock(&tasklist_lock
);
591 * Search in the children
593 list_for_each_entry(c
, &p
->children
, sibling
) {
595 goto assign_new_owner
;
599 * Search in the siblings
601 list_for_each_entry(c
, &p
->parent
->children
, sibling
) {
603 goto assign_new_owner
;
607 * Search through everything else. We should not get
610 do_each_thread(g
, c
) {
612 goto assign_new_owner
;
613 } while_each_thread(g
, c
);
615 read_unlock(&tasklist_lock
);
617 * We found no owner yet mm_users > 1: this implies that we are
618 * most likely racing with swapoff (try_to_unuse()) or /proc or
619 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
628 * The task_lock protects c->mm from changing.
629 * We always want mm->owner->mm == mm
633 * Delay read_unlock() till we have the task_lock()
634 * to ensure that c does not slip away underneath us
636 read_unlock(&tasklist_lock
);
646 #endif /* CONFIG_MM_OWNER */
649 * Turn us into a lazy TLB process if we
652 static void exit_mm(struct task_struct
* tsk
)
654 struct mm_struct
*mm
= tsk
->mm
;
655 struct core_state
*core_state
;
661 * Serialize with any possible pending coredump.
662 * We must hold mmap_sem around checking core_state
663 * and clearing tsk->mm. The core-inducing thread
664 * will increment ->nr_threads for each thread in the
665 * group with ->mm != NULL.
667 down_read(&mm
->mmap_sem
);
668 core_state
= mm
->core_state
;
670 struct core_thread self
;
671 up_read(&mm
->mmap_sem
);
674 self
.next
= xchg(&core_state
->dumper
.next
, &self
);
676 * Implies mb(), the result of xchg() must be visible
677 * to core_state->dumper.
679 if (atomic_dec_and_test(&core_state
->nr_threads
))
680 complete(&core_state
->startup
);
683 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
684 if (!self
.task
) /* see coredump_finish() */
688 __set_task_state(tsk
, TASK_RUNNING
);
689 down_read(&mm
->mmap_sem
);
691 atomic_inc(&mm
->mm_count
);
692 BUG_ON(mm
!= tsk
->active_mm
);
693 /* more a memory barrier than a real lock */
696 up_read(&mm
->mmap_sem
);
697 enter_lazy_tlb(mm
, current
);
698 /* We don't want this task to be frozen prematurely */
699 clear_freeze_flag(tsk
);
701 mm_update_next_owner(mm
);
706 * Called with irqs disabled, returns true if childs should reap themselves.
708 static int ignoring_children(struct sighand_struct
*sigh
)
711 spin_lock(&sigh
->siglock
);
712 ret
= (sigh
->action
[SIGCHLD
-1].sa
.sa_handler
== SIG_IGN
) ||
713 (sigh
->action
[SIGCHLD
-1].sa
.sa_flags
& SA_NOCLDWAIT
);
714 spin_unlock(&sigh
->siglock
);
718 /* Returns nonzero if the tracee should be released. */
719 int __ptrace_detach(struct task_struct
*tracer
, struct task_struct
*p
)
723 if (p
->exit_state
!= EXIT_ZOMBIE
)
726 * If it's a zombie, our attachedness prevented normal
727 * parent notification or self-reaping. Do notification
728 * now if it would have happened earlier. If it should
729 * reap itself we return true.
731 * If it's our own child, there is no notification to do.
732 * But if our normal children self-reap, then this child
733 * was prevented by ptrace and we must reap it now.
735 if (!task_detached(p
) && thread_group_empty(p
)) {
736 if (!same_thread_group(p
->real_parent
, tracer
))
737 do_notify_parent(p
, p
->exit_signal
);
738 else if (ignoring_children(tracer
->sighand
))
742 if (!task_detached(p
))
745 /* Mark it as in the process of being reaped. */
746 p
->exit_state
= EXIT_DEAD
;
751 * Detach all tasks we were using ptrace on.
752 * Any that need to be release_task'd are put on the @dead list.
754 * Called with write_lock(&tasklist_lock) held.
756 static void ptrace_exit(struct task_struct
*parent
, struct list_head
*dead
)
758 struct task_struct
*p
, *n
;
760 list_for_each_entry_safe(p
, n
, &parent
->ptraced
, ptrace_entry
) {
761 if (__ptrace_detach(parent
, p
))
762 list_add(&p
->ptrace_entry
, dead
);
767 * Finish up exit-time ptrace cleanup.
769 * Called without locks.
771 static void ptrace_exit_finish(struct task_struct
*parent
,
772 struct list_head
*dead
)
774 struct task_struct
*p
, *n
;
776 BUG_ON(!list_empty(&parent
->ptraced
));
778 list_for_each_entry_safe(p
, n
, dead
, ptrace_entry
) {
779 list_del_init(&p
->ptrace_entry
);
784 static void reparent_thread(struct task_struct
*p
, struct task_struct
*father
)
786 if (p
->pdeath_signal
)
787 /* We already hold the tasklist_lock here. */
788 group_send_sig_info(p
->pdeath_signal
, SEND_SIG_NOINFO
, p
);
790 list_move_tail(&p
->sibling
, &p
->real_parent
->children
);
792 /* If this is a threaded reparent there is no need to
793 * notify anyone anything has happened.
795 if (same_thread_group(p
->real_parent
, father
))
798 /* We don't want people slaying init. */
799 if (!task_detached(p
))
800 p
->exit_signal
= SIGCHLD
;
802 /* If we'd notified the old parent about this child's death,
803 * also notify the new parent.
805 if (!ptrace_reparented(p
) &&
806 p
->exit_state
== EXIT_ZOMBIE
&&
807 !task_detached(p
) && thread_group_empty(p
))
808 do_notify_parent(p
, p
->exit_signal
);
810 kill_orphaned_pgrp(p
, father
);
814 * When we die, we re-parent all our children.
815 * Try to give them to another thread in our thread
816 * group, and if no such member exists, give it to
817 * the child reaper process (ie "init") in our pid
820 static struct task_struct
*find_new_reaper(struct task_struct
*father
)
822 struct pid_namespace
*pid_ns
= task_active_pid_ns(father
);
823 struct task_struct
*thread
;
826 while_each_thread(father
, thread
) {
827 if (thread
->flags
& PF_EXITING
)
829 if (unlikely(pid_ns
->child_reaper
== father
))
830 pid_ns
->child_reaper
= thread
;
834 if (unlikely(pid_ns
->child_reaper
== father
)) {
835 write_unlock_irq(&tasklist_lock
);
836 if (unlikely(pid_ns
== &init_pid_ns
))
837 panic("Attempted to kill init!");
839 zap_pid_ns_processes(pid_ns
);
840 write_lock_irq(&tasklist_lock
);
842 * We can not clear ->child_reaper or leave it alone.
843 * There may by stealth EXIT_DEAD tasks on ->children,
844 * forget_original_parent() must move them somewhere.
846 pid_ns
->child_reaper
= init_pid_ns
.child_reaper
;
849 return pid_ns
->child_reaper
;
852 static void forget_original_parent(struct task_struct
*father
)
854 struct task_struct
*p
, *n
, *reaper
;
855 LIST_HEAD(ptrace_dead
);
857 write_lock_irq(&tasklist_lock
);
858 reaper
= find_new_reaper(father
);
860 * First clean up ptrace if we were using it.
862 ptrace_exit(father
, &ptrace_dead
);
864 list_for_each_entry_safe(p
, n
, &father
->children
, sibling
) {
865 p
->real_parent
= reaper
;
866 if (p
->parent
== father
) {
868 p
->parent
= p
->real_parent
;
870 reparent_thread(p
, father
);
873 write_unlock_irq(&tasklist_lock
);
874 BUG_ON(!list_empty(&father
->children
));
876 ptrace_exit_finish(father
, &ptrace_dead
);
880 * Send signals to all our closest relatives so that they know
881 * to properly mourn us..
883 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
889 * This does two things:
891 * A. Make init inherit all the child processes
892 * B. Check to see if any process groups have become orphaned
893 * as a result of our exiting, and if they have any stopped
894 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
896 forget_original_parent(tsk
);
897 exit_task_namespaces(tsk
);
899 write_lock_irq(&tasklist_lock
);
901 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
903 /* Let father know we died
905 * Thread signals are configurable, but you aren't going to use
906 * that to send signals to arbitary processes.
907 * That stops right now.
909 * If the parent exec id doesn't match the exec id we saved
910 * when we started then we know the parent has changed security
913 * If our self_exec id doesn't match our parent_exec_id then
914 * we have changed execution domain as these two values started
915 * the same after a fork.
917 if (tsk
->exit_signal
!= SIGCHLD
&& !task_detached(tsk
) &&
918 (tsk
->parent_exec_id
!= tsk
->real_parent
->self_exec_id
||
919 tsk
->self_exec_id
!= tsk
->parent_exec_id
))
920 tsk
->exit_signal
= SIGCHLD
;
922 signal
= tracehook_notify_death(tsk
, &cookie
, group_dead
);
924 signal
= do_notify_parent(tsk
, signal
);
926 tsk
->exit_state
= signal
== DEATH_REAP
? EXIT_DEAD
: EXIT_ZOMBIE
;
928 /* mt-exec, de_thread() is waiting for us */
929 if (thread_group_leader(tsk
) &&
930 tsk
->signal
->group_exit_task
&&
931 tsk
->signal
->notify_count
< 0)
932 wake_up_process(tsk
->signal
->group_exit_task
);
934 write_unlock_irq(&tasklist_lock
);
936 tracehook_report_death(tsk
, signal
, cookie
, group_dead
);
938 /* If the process is dead, release it - nobody will wait for it */
939 if (signal
== DEATH_REAP
)
943 #ifdef CONFIG_DEBUG_STACK_USAGE
944 static void check_stack_usage(void)
946 static DEFINE_SPINLOCK(low_water_lock
);
947 static int lowest_to_date
= THREAD_SIZE
;
948 unsigned long *n
= end_of_stack(current
);
953 free
= (unsigned long)n
- (unsigned long)end_of_stack(current
);
955 if (free
>= lowest_to_date
)
958 spin_lock(&low_water_lock
);
959 if (free
< lowest_to_date
) {
960 printk(KERN_WARNING
"%s used greatest stack depth: %lu bytes "
962 current
->comm
, free
);
963 lowest_to_date
= free
;
965 spin_unlock(&low_water_lock
);
968 static inline void check_stack_usage(void) {}
971 NORET_TYPE
void do_exit(long code
)
973 struct task_struct
*tsk
= current
;
976 profile_task_exit(tsk
);
978 WARN_ON(atomic_read(&tsk
->fs_excl
));
980 if (unlikely(in_interrupt()))
981 panic("Aiee, killing interrupt handler!");
982 if (unlikely(!tsk
->pid
))
983 panic("Attempted to kill the idle task!");
985 tracehook_report_exit(&code
);
988 * We're taking recursive faults here in do_exit. Safest is to just
989 * leave this task alone and wait for reboot.
991 if (unlikely(tsk
->flags
& PF_EXITING
)) {
993 "Fixing recursive fault but reboot is needed!\n");
995 * We can do this unlocked here. The futex code uses
996 * this flag just to verify whether the pi state
997 * cleanup has been done or not. In the worst case it
998 * loops once more. We pretend that the cleanup was
999 * done as there is no way to return. Either the
1000 * OWNER_DIED bit is set by now or we push the blocked
1001 * task into the wait for ever nirwana as well.
1003 tsk
->flags
|= PF_EXITPIDONE
;
1004 set_current_state(TASK_UNINTERRUPTIBLE
);
1008 exit_signals(tsk
); /* sets PF_EXITING */
1010 * tsk->flags are checked in the futex code to protect against
1011 * an exiting task cleaning up the robust pi futexes.
1014 spin_unlock_wait(&tsk
->pi_lock
);
1016 if (unlikely(in_atomic()))
1017 printk(KERN_INFO
"note: %s[%d] exited with preempt_count %d\n",
1018 current
->comm
, task_pid_nr(current
),
1021 acct_update_integrals(tsk
);
1023 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
1025 hrtimer_cancel(&tsk
->signal
->real_timer
);
1026 exit_itimers(tsk
->signal
);
1028 acct_collect(code
, group_dead
);
1031 if (unlikely(tsk
->audit_context
))
1034 tsk
->exit_code
= code
;
1035 taskstats_exit(tsk
, group_dead
);
1041 trace_sched_process_exit(tsk
);
1046 check_stack_usage();
1048 cgroup_exit(tsk
, 1);
1050 if (group_dead
&& tsk
->signal
->leader
)
1051 disassociate_ctty(1);
1053 module_put(task_thread_info(tsk
)->exec_domain
->module
);
1055 module_put(tsk
->binfmt
->module
);
1057 proc_exit_connector(tsk
);
1058 exit_notify(tsk
, group_dead
);
1060 mpol_put(tsk
->mempolicy
);
1061 tsk
->mempolicy
= NULL
;
1065 * This must happen late, after the PID is not
1068 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
1069 exit_pi_state_list(tsk
);
1070 if (unlikely(current
->pi_state_cache
))
1071 kfree(current
->pi_state_cache
);
1074 * Make sure we are holding no locks:
1076 debug_check_no_locks_held(tsk
);
1078 * We can do this unlocked here. The futex code uses this flag
1079 * just to verify whether the pi state cleanup has been done
1080 * or not. In the worst case it loops once more.
1082 tsk
->flags
|= PF_EXITPIDONE
;
1084 if (tsk
->io_context
)
1087 if (tsk
->splice_pipe
)
1088 __free_pipe_info(tsk
->splice_pipe
);
1091 /* causes final put_task_struct in finish_task_switch(). */
1092 tsk
->state
= TASK_DEAD
;
1095 /* Avoid "noreturn function does return". */
1097 cpu_relax(); /* For when BUG is null */
1100 EXPORT_SYMBOL_GPL(do_exit
);
1102 NORET_TYPE
void complete_and_exit(struct completion
*comp
, long code
)
1110 EXPORT_SYMBOL(complete_and_exit
);
1112 SYSCALL_DEFINE1(exit
, int, error_code
)
1114 do_exit((error_code
&0xff)<<8);
1118 * Take down every thread in the group. This is called by fatal signals
1119 * as well as by sys_exit_group (below).
1122 do_group_exit(int exit_code
)
1124 struct signal_struct
*sig
= current
->signal
;
1126 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
1128 if (signal_group_exit(sig
))
1129 exit_code
= sig
->group_exit_code
;
1130 else if (!thread_group_empty(current
)) {
1131 struct sighand_struct
*const sighand
= current
->sighand
;
1132 spin_lock_irq(&sighand
->siglock
);
1133 if (signal_group_exit(sig
))
1134 /* Another thread got here before we took the lock. */
1135 exit_code
= sig
->group_exit_code
;
1137 sig
->group_exit_code
= exit_code
;
1138 sig
->flags
= SIGNAL_GROUP_EXIT
;
1139 zap_other_threads(current
);
1141 spin_unlock_irq(&sighand
->siglock
);
1149 * this kills every thread in the thread group. Note that any externally
1150 * wait4()-ing process will get the correct exit code - even if this
1151 * thread is not the thread group leader.
1153 SYSCALL_DEFINE1(exit_group
, int, error_code
)
1155 do_group_exit((error_code
& 0xff) << 8);
1160 static struct pid
*task_pid_type(struct task_struct
*task
, enum pid_type type
)
1162 struct pid
*pid
= NULL
;
1163 if (type
== PIDTYPE_PID
)
1164 pid
= task
->pids
[type
].pid
;
1165 else if (type
< PIDTYPE_MAX
)
1166 pid
= task
->group_leader
->pids
[type
].pid
;
1170 static int eligible_child(enum pid_type type
, struct pid
*pid
, int options
,
1171 struct task_struct
*p
)
1175 if (type
< PIDTYPE_MAX
) {
1176 if (task_pid_type(p
, type
) != pid
)
1180 /* Wait for all children (clone and not) if __WALL is set;
1181 * otherwise, wait for clone children *only* if __WCLONE is
1182 * set; otherwise, wait for non-clone children *only*. (Note:
1183 * A "clone" child here is one that reports to its parent
1184 * using a signal other than SIGCHLD.) */
1185 if (((p
->exit_signal
!= SIGCHLD
) ^ ((options
& __WCLONE
) != 0))
1186 && !(options
& __WALL
))
1189 err
= security_task_wait(p
);
1196 static int wait_noreap_copyout(struct task_struct
*p
, pid_t pid
, uid_t uid
,
1197 int why
, int status
,
1198 struct siginfo __user
*infop
,
1199 struct rusage __user
*rusagep
)
1201 int retval
= rusagep
? getrusage(p
, RUSAGE_BOTH
, rusagep
) : 0;
1205 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1207 retval
= put_user(0, &infop
->si_errno
);
1209 retval
= put_user((short)why
, &infop
->si_code
);
1211 retval
= put_user(pid
, &infop
->si_pid
);
1213 retval
= put_user(uid
, &infop
->si_uid
);
1215 retval
= put_user(status
, &infop
->si_status
);
1222 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1223 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1224 * the lock and this task is uninteresting. If we return nonzero, we have
1225 * released the lock and the system call should return.
1227 static int wait_task_zombie(struct task_struct
*p
, int options
,
1228 struct siginfo __user
*infop
,
1229 int __user
*stat_addr
, struct rusage __user
*ru
)
1231 unsigned long state
;
1232 int retval
, status
, traced
;
1233 pid_t pid
= task_pid_vnr(p
);
1234 uid_t uid
= __task_cred(p
)->uid
;
1236 if (!likely(options
& WEXITED
))
1239 if (unlikely(options
& WNOWAIT
)) {
1240 int exit_code
= p
->exit_code
;
1244 read_unlock(&tasklist_lock
);
1245 if ((exit_code
& 0x7f) == 0) {
1247 status
= exit_code
>> 8;
1249 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1250 status
= exit_code
& 0x7f;
1252 return wait_noreap_copyout(p
, pid
, uid
, why
,
1257 * Try to move the task's state to DEAD
1258 * only one thread is allowed to do this:
1260 state
= xchg(&p
->exit_state
, EXIT_DEAD
);
1261 if (state
!= EXIT_ZOMBIE
) {
1262 BUG_ON(state
!= EXIT_DEAD
);
1266 traced
= ptrace_reparented(p
);
1268 if (likely(!traced
)) {
1269 struct signal_struct
*psig
;
1270 struct signal_struct
*sig
;
1271 struct task_cputime cputime
;
1274 * The resource counters for the group leader are in its
1275 * own task_struct. Those for dead threads in the group
1276 * are in its signal_struct, as are those for the child
1277 * processes it has previously reaped. All these
1278 * accumulate in the parent's signal_struct c* fields.
1280 * We don't bother to take a lock here to protect these
1281 * p->signal fields, because they are only touched by
1282 * __exit_signal, which runs with tasklist_lock
1283 * write-locked anyway, and so is excluded here. We do
1284 * need to protect the access to p->parent->signal fields,
1285 * as other threads in the parent group can be right
1286 * here reaping other children at the same time.
1288 * We use thread_group_cputime() to get times for the thread
1289 * group, which consolidates times for all threads in the
1290 * group including the group leader.
1292 thread_group_cputime(p
, &cputime
);
1293 spin_lock_irq(&p
->parent
->sighand
->siglock
);
1294 psig
= p
->parent
->signal
;
1297 cputime_add(psig
->cutime
,
1298 cputime_add(cputime
.utime
,
1301 cputime_add(psig
->cstime
,
1302 cputime_add(cputime
.stime
,
1305 cputime_add(psig
->cgtime
,
1306 cputime_add(p
->gtime
,
1307 cputime_add(sig
->gtime
,
1310 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1312 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1314 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1316 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1318 task_io_get_inblock(p
) +
1319 sig
->inblock
+ sig
->cinblock
;
1321 task_io_get_oublock(p
) +
1322 sig
->oublock
+ sig
->coublock
;
1323 task_io_accounting_add(&psig
->ioac
, &p
->ioac
);
1324 task_io_accounting_add(&psig
->ioac
, &sig
->ioac
);
1325 spin_unlock_irq(&p
->parent
->sighand
->siglock
);
1329 * Now we are sure this task is interesting, and no other
1330 * thread can reap it because we set its state to EXIT_DEAD.
1332 read_unlock(&tasklist_lock
);
1334 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1335 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1336 ? p
->signal
->group_exit_code
: p
->exit_code
;
1337 if (!retval
&& stat_addr
)
1338 retval
= put_user(status
, stat_addr
);
1339 if (!retval
&& infop
)
1340 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1341 if (!retval
&& infop
)
1342 retval
= put_user(0, &infop
->si_errno
);
1343 if (!retval
&& infop
) {
1346 if ((status
& 0x7f) == 0) {
1350 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1353 retval
= put_user((short)why
, &infop
->si_code
);
1355 retval
= put_user(status
, &infop
->si_status
);
1357 if (!retval
&& infop
)
1358 retval
= put_user(pid
, &infop
->si_pid
);
1359 if (!retval
&& infop
)
1360 retval
= put_user(uid
, &infop
->si_uid
);
1365 write_lock_irq(&tasklist_lock
);
1366 /* We dropped tasklist, ptracer could die and untrace */
1369 * If this is not a detached task, notify the parent.
1370 * If it's still not detached after that, don't release
1373 if (!task_detached(p
)) {
1374 do_notify_parent(p
, p
->exit_signal
);
1375 if (!task_detached(p
)) {
1376 p
->exit_state
= EXIT_ZOMBIE
;
1380 write_unlock_irq(&tasklist_lock
);
1389 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1390 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1391 * the lock and this task is uninteresting. If we return nonzero, we have
1392 * released the lock and the system call should return.
1394 static int wait_task_stopped(int ptrace
, struct task_struct
*p
,
1395 int options
, struct siginfo __user
*infop
,
1396 int __user
*stat_addr
, struct rusage __user
*ru
)
1398 int retval
, exit_code
, why
;
1399 uid_t uid
= 0; /* unneeded, required by compiler */
1402 if (!(options
& WUNTRACED
))
1406 spin_lock_irq(&p
->sighand
->siglock
);
1408 if (unlikely(!task_is_stopped_or_traced(p
)))
1411 if (!ptrace
&& p
->signal
->group_stop_count
> 0)
1413 * A group stop is in progress and this is the group leader.
1414 * We won't report until all threads have stopped.
1418 exit_code
= p
->exit_code
;
1422 if (!unlikely(options
& WNOWAIT
))
1425 /* don't need the RCU readlock here as we're holding a spinlock */
1426 uid
= __task_cred(p
)->uid
;
1428 spin_unlock_irq(&p
->sighand
->siglock
);
1433 * Now we are pretty sure this task is interesting.
1434 * Make sure it doesn't get reaped out from under us while we
1435 * give up the lock and then examine it below. We don't want to
1436 * keep holding onto the tasklist_lock while we call getrusage and
1437 * possibly take page faults for user memory.
1440 pid
= task_pid_vnr(p
);
1441 why
= ptrace
? CLD_TRAPPED
: CLD_STOPPED
;
1442 read_unlock(&tasklist_lock
);
1444 if (unlikely(options
& WNOWAIT
))
1445 return wait_noreap_copyout(p
, pid
, uid
,
1449 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1450 if (!retval
&& stat_addr
)
1451 retval
= put_user((exit_code
<< 8) | 0x7f, stat_addr
);
1452 if (!retval
&& infop
)
1453 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1454 if (!retval
&& infop
)
1455 retval
= put_user(0, &infop
->si_errno
);
1456 if (!retval
&& infop
)
1457 retval
= put_user((short)why
, &infop
->si_code
);
1458 if (!retval
&& infop
)
1459 retval
= put_user(exit_code
, &infop
->si_status
);
1460 if (!retval
&& infop
)
1461 retval
= put_user(pid
, &infop
->si_pid
);
1462 if (!retval
&& infop
)
1463 retval
= put_user(uid
, &infop
->si_uid
);
1473 * Handle do_wait work for one task in a live, non-stopped state.
1474 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1475 * the lock and this task is uninteresting. If we return nonzero, we have
1476 * released the lock and the system call should return.
1478 static int wait_task_continued(struct task_struct
*p
, int options
,
1479 struct siginfo __user
*infop
,
1480 int __user
*stat_addr
, struct rusage __user
*ru
)
1486 if (!unlikely(options
& WCONTINUED
))
1489 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1492 spin_lock_irq(&p
->sighand
->siglock
);
1493 /* Re-check with the lock held. */
1494 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1495 spin_unlock_irq(&p
->sighand
->siglock
);
1498 if (!unlikely(options
& WNOWAIT
))
1499 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1500 uid
= __task_cred(p
)->uid
;
1501 spin_unlock_irq(&p
->sighand
->siglock
);
1503 pid
= task_pid_vnr(p
);
1505 read_unlock(&tasklist_lock
);
1508 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1510 if (!retval
&& stat_addr
)
1511 retval
= put_user(0xffff, stat_addr
);
1515 retval
= wait_noreap_copyout(p
, pid
, uid
,
1516 CLD_CONTINUED
, SIGCONT
,
1518 BUG_ON(retval
== 0);
1525 * Consider @p for a wait by @parent.
1527 * -ECHILD should be in *@notask_error before the first call.
1528 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1529 * Returns zero if the search for a child should continue;
1530 * then *@notask_error is 0 if @p is an eligible child,
1531 * or another error from security_task_wait(), or still -ECHILD.
1533 static int wait_consider_task(struct task_struct
*parent
, int ptrace
,
1534 struct task_struct
*p
, int *notask_error
,
1535 enum pid_type type
, struct pid
*pid
, int options
,
1536 struct siginfo __user
*infop
,
1537 int __user
*stat_addr
, struct rusage __user
*ru
)
1539 int ret
= eligible_child(type
, pid
, options
, p
);
1543 if (unlikely(ret
< 0)) {
1545 * If we have not yet seen any eligible child,
1546 * then let this error code replace -ECHILD.
1547 * A permission error will give the user a clue
1548 * to look for security policy problems, rather
1549 * than for mysterious wait bugs.
1552 *notask_error
= ret
;
1555 if (likely(!ptrace
) && unlikely(p
->ptrace
)) {
1557 * This child is hidden by ptrace.
1558 * We aren't allowed to see it now, but eventually we will.
1564 if (p
->exit_state
== EXIT_DEAD
)
1568 * We don't reap group leaders with subthreads.
1570 if (p
->exit_state
== EXIT_ZOMBIE
&& !delay_group_leader(p
))
1571 return wait_task_zombie(p
, options
, infop
, stat_addr
, ru
);
1574 * It's stopped or running now, so it might
1575 * later continue, exit, or stop again.
1579 if (task_is_stopped_or_traced(p
))
1580 return wait_task_stopped(ptrace
, p
, options
,
1581 infop
, stat_addr
, ru
);
1583 return wait_task_continued(p
, options
, infop
, stat_addr
, ru
);
1587 * Do the work of do_wait() for one thread in the group, @tsk.
1589 * -ECHILD should be in *@notask_error before the first call.
1590 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1591 * Returns zero if the search for a child should continue; then
1592 * *@notask_error is 0 if there were any eligible children,
1593 * or another error from security_task_wait(), or still -ECHILD.
1595 static int do_wait_thread(struct task_struct
*tsk
, int *notask_error
,
1596 enum pid_type type
, struct pid
*pid
, int options
,
1597 struct siginfo __user
*infop
, int __user
*stat_addr
,
1598 struct rusage __user
*ru
)
1600 struct task_struct
*p
;
1602 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1604 * Do not consider detached threads.
1606 if (!task_detached(p
)) {
1607 int ret
= wait_consider_task(tsk
, 0, p
, notask_error
,
1609 infop
, stat_addr
, ru
);
1618 static int ptrace_do_wait(struct task_struct
*tsk
, int *notask_error
,
1619 enum pid_type type
, struct pid
*pid
, int options
,
1620 struct siginfo __user
*infop
, int __user
*stat_addr
,
1621 struct rusage __user
*ru
)
1623 struct task_struct
*p
;
1626 * Traditionally we see ptrace'd stopped tasks regardless of options.
1628 options
|= WUNTRACED
;
1630 list_for_each_entry(p
, &tsk
->ptraced
, ptrace_entry
) {
1631 int ret
= wait_consider_task(tsk
, 1, p
, notask_error
,
1633 infop
, stat_addr
, ru
);
1641 static long do_wait(enum pid_type type
, struct pid
*pid
, int options
,
1642 struct siginfo __user
*infop
, int __user
*stat_addr
,
1643 struct rusage __user
*ru
)
1645 DECLARE_WAITQUEUE(wait
, current
);
1646 struct task_struct
*tsk
;
1649 trace_sched_process_wait(pid
);
1651 add_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1654 * If there is nothing that can match our critiera just get out.
1655 * We will clear @retval to zero if we see any child that might later
1656 * match our criteria, even if we are not able to reap it yet.
1659 if ((type
< PIDTYPE_MAX
) && (!pid
|| hlist_empty(&pid
->tasks
[type
])))
1662 current
->state
= TASK_INTERRUPTIBLE
;
1663 read_lock(&tasklist_lock
);
1666 int tsk_result
= do_wait_thread(tsk
, &retval
,
1668 infop
, stat_addr
, ru
);
1670 tsk_result
= ptrace_do_wait(tsk
, &retval
,
1672 infop
, stat_addr
, ru
);
1675 * tasklist_lock is unlocked and we have a final result.
1677 retval
= tsk_result
;
1681 if (options
& __WNOTHREAD
)
1683 tsk
= next_thread(tsk
);
1684 BUG_ON(tsk
->signal
!= current
->signal
);
1685 } while (tsk
!= current
);
1686 read_unlock(&tasklist_lock
);
1688 if (!retval
&& !(options
& WNOHANG
)) {
1689 retval
= -ERESTARTSYS
;
1690 if (!signal_pending(current
)) {
1697 current
->state
= TASK_RUNNING
;
1698 remove_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1704 * For a WNOHANG return, clear out all the fields
1705 * we would set so the user can easily tell the
1709 retval
= put_user(0, &infop
->si_signo
);
1711 retval
= put_user(0, &infop
->si_errno
);
1713 retval
= put_user(0, &infop
->si_code
);
1715 retval
= put_user(0, &infop
->si_pid
);
1717 retval
= put_user(0, &infop
->si_uid
);
1719 retval
= put_user(0, &infop
->si_status
);
1725 SYSCALL_DEFINE5(waitid
, int, which
, pid_t
, upid
, struct siginfo __user
*,
1726 infop
, int, options
, struct rusage __user
*, ru
)
1728 struct pid
*pid
= NULL
;
1732 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
))
1734 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1747 type
= PIDTYPE_PGID
;
1755 if (type
< PIDTYPE_MAX
)
1756 pid
= find_get_pid(upid
);
1757 ret
= do_wait(type
, pid
, options
, infop
, NULL
, ru
);
1760 /* avoid REGPARM breakage on x86: */
1761 asmlinkage_protect(5, ret
, which
, upid
, infop
, options
, ru
);
1765 SYSCALL_DEFINE4(wait4
, pid_t
, upid
, int __user
*, stat_addr
,
1766 int, options
, struct rusage __user
*, ru
)
1768 struct pid
*pid
= NULL
;
1772 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1773 __WNOTHREAD
|__WCLONE
|__WALL
))
1778 else if (upid
< 0) {
1779 type
= PIDTYPE_PGID
;
1780 pid
= find_get_pid(-upid
);
1781 } else if (upid
== 0) {
1782 type
= PIDTYPE_PGID
;
1783 pid
= get_pid(task_pgrp(current
));
1784 } else /* upid > 0 */ {
1786 pid
= find_get_pid(upid
);
1789 ret
= do_wait(type
, pid
, options
| WEXITED
, NULL
, stat_addr
, ru
);
1792 /* avoid REGPARM breakage on x86: */
1793 asmlinkage_protect(4, ret
, upid
, stat_addr
, options
, ru
);
1797 #ifdef __ARCH_WANT_SYS_WAITPID
1800 * sys_waitpid() remains for compatibility. waitpid() should be
1801 * implemented by calling sys_wait4() from libc.a.
1803 SYSCALL_DEFINE3(waitpid
, pid_t
, pid
, int __user
*, stat_addr
, int, options
)
1805 return sys_wait4(pid
, stat_addr
, options
, NULL
);