[SCSI] aacraid: correct use of cmd->timeout field
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / aacraid / aachba.c
blob8e3493587299d2de8ae6e503be0b02d01f473522
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/sched.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/completion.h>
34 #include <linux/blkdev.h>
35 #include <asm/semaphore.h>
36 #include <asm/uaccess.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
43 #include "aacraid.h"
45 /* values for inqd_pdt: Peripheral device type in plain English */
46 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
47 #define INQD_PDT_PROC 0x03 /* Processor device */
48 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
49 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
50 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
51 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
53 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
54 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
57 * Sense codes
60 #define SENCODE_NO_SENSE 0x00
61 #define SENCODE_END_OF_DATA 0x00
62 #define SENCODE_BECOMING_READY 0x04
63 #define SENCODE_INIT_CMD_REQUIRED 0x04
64 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
65 #define SENCODE_INVALID_COMMAND 0x20
66 #define SENCODE_LBA_OUT_OF_RANGE 0x21
67 #define SENCODE_INVALID_CDB_FIELD 0x24
68 #define SENCODE_LUN_NOT_SUPPORTED 0x25
69 #define SENCODE_INVALID_PARAM_FIELD 0x26
70 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
71 #define SENCODE_PARAM_VALUE_INVALID 0x26
72 #define SENCODE_RESET_OCCURRED 0x29
73 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
74 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
75 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
76 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
77 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
78 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
79 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
80 #define SENCODE_OVERLAPPED_COMMAND 0x4E
83 * Additional sense codes
86 #define ASENCODE_NO_SENSE 0x00
87 #define ASENCODE_END_OF_DATA 0x05
88 #define ASENCODE_BECOMING_READY 0x01
89 #define ASENCODE_INIT_CMD_REQUIRED 0x02
90 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
91 #define ASENCODE_INVALID_COMMAND 0x00
92 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
93 #define ASENCODE_INVALID_CDB_FIELD 0x00
94 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
95 #define ASENCODE_INVALID_PARAM_FIELD 0x00
96 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
97 #define ASENCODE_PARAM_VALUE_INVALID 0x02
98 #define ASENCODE_RESET_OCCURRED 0x00
99 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
100 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
101 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
102 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
103 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
104 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
105 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
106 #define ASENCODE_OVERLAPPED_COMMAND 0x00
108 #define BYTE0(x) (unsigned char)(x)
109 #define BYTE1(x) (unsigned char)((x) >> 8)
110 #define BYTE2(x) (unsigned char)((x) >> 16)
111 #define BYTE3(x) (unsigned char)((x) >> 24)
113 /*------------------------------------------------------------------------------
114 * S T R U C T S / T Y P E D E F S
115 *----------------------------------------------------------------------------*/
116 /* SCSI inquiry data */
117 struct inquiry_data {
118 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
119 u8 inqd_dtq; /* RMB | Device Type Qualifier */
120 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
121 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
122 u8 inqd_len; /* Additional length (n-4) */
123 u8 inqd_pad1[2];/* Reserved - must be zero */
124 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
125 u8 inqd_vid[8]; /* Vendor ID */
126 u8 inqd_pid[16];/* Product ID */
127 u8 inqd_prl[4]; /* Product Revision Level */
131 * M O D U L E G L O B A L S
134 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
135 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
136 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
137 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
138 #ifdef AAC_DETAILED_STATUS_INFO
139 static char *aac_get_status_string(u32 status);
140 #endif
143 * Non dasd selection is handled entirely in aachba now
146 static int nondasd = -1;
147 static int dacmode = -1;
149 static int commit = -1;
151 module_param(nondasd, int, 0);
152 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on");
153 module_param(dacmode, int, 0);
154 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on");
155 module_param(commit, int, 0);
156 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on");
158 int numacb = -1;
159 module_param(numacb, int, S_IRUGO|S_IWUSR);
160 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid\nvalues are 512 and down. Default is to use suggestion from Firmware.");
162 int acbsize = -1;
163 module_param(acbsize, int, S_IRUGO|S_IWUSR);
164 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512,\n2048, 4096 and 8192. Default is to use suggestion from Firmware.");
166 * aac_get_config_status - check the adapter configuration
167 * @common: adapter to query
169 * Query config status, and commit the configuration if needed.
171 int aac_get_config_status(struct aac_dev *dev)
173 int status = 0;
174 struct fib * fibptr;
176 if (!(fibptr = fib_alloc(dev)))
177 return -ENOMEM;
179 fib_init(fibptr);
181 struct aac_get_config_status *dinfo;
182 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
184 dinfo->command = cpu_to_le32(VM_ContainerConfig);
185 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
186 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
189 status = fib_send(ContainerCommand,
190 fibptr,
191 sizeof (struct aac_get_config_status),
192 FsaNormal,
193 1, 1,
194 NULL, NULL);
195 if (status < 0 ) {
196 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
197 } else {
198 struct aac_get_config_status_resp *reply
199 = (struct aac_get_config_status_resp *) fib_data(fibptr);
200 dprintk((KERN_WARNING
201 "aac_get_config_status: response=%d status=%d action=%d\n",
202 le32_to_cpu(reply->response),
203 le32_to_cpu(reply->status),
204 le32_to_cpu(reply->data.action)));
205 if ((le32_to_cpu(reply->response) != ST_OK) ||
206 (le32_to_cpu(reply->status) != CT_OK) ||
207 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
208 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
209 status = -EINVAL;
212 fib_complete(fibptr);
213 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
214 if (status >= 0) {
215 if (commit == 1) {
216 struct aac_commit_config * dinfo;
217 fib_init(fibptr);
218 dinfo = (struct aac_commit_config *) fib_data(fibptr);
220 dinfo->command = cpu_to_le32(VM_ContainerConfig);
221 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
223 status = fib_send(ContainerCommand,
224 fibptr,
225 sizeof (struct aac_commit_config),
226 FsaNormal,
227 1, 1,
228 NULL, NULL);
229 fib_complete(fibptr);
230 } else if (commit == 0) {
231 printk(KERN_WARNING
232 "aac_get_config_status: Foreign device configurations are being ignored\n");
235 fib_free(fibptr);
236 return status;
240 * aac_get_containers - list containers
241 * @common: adapter to probe
243 * Make a list of all containers on this controller
245 int aac_get_containers(struct aac_dev *dev)
247 struct fsa_dev_info *fsa_dev_ptr;
248 u32 index;
249 int status = 0;
250 struct fib * fibptr;
251 unsigned instance;
252 struct aac_get_container_count *dinfo;
253 struct aac_get_container_count_resp *dresp;
254 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
256 instance = dev->scsi_host_ptr->unique_id;
258 if (!(fibptr = fib_alloc(dev)))
259 return -ENOMEM;
261 fib_init(fibptr);
262 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
263 dinfo->command = cpu_to_le32(VM_ContainerConfig);
264 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
266 status = fib_send(ContainerCommand,
267 fibptr,
268 sizeof (struct aac_get_container_count),
269 FsaNormal,
270 1, 1,
271 NULL, NULL);
272 if (status >= 0) {
273 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
274 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
275 fib_complete(fibptr);
278 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
279 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
280 fsa_dev_ptr = (struct fsa_dev_info *) kmalloc(
281 sizeof(*fsa_dev_ptr) * maximum_num_containers, GFP_KERNEL);
282 if (!fsa_dev_ptr) {
283 fib_free(fibptr);
284 return -ENOMEM;
286 memset(fsa_dev_ptr, 0, sizeof(*fsa_dev_ptr) * maximum_num_containers);
288 dev->fsa_dev = fsa_dev_ptr;
289 dev->maximum_num_containers = maximum_num_containers;
291 for (index = 0; index < dev->maximum_num_containers; index++) {
292 struct aac_query_mount *dinfo;
293 struct aac_mount *dresp;
295 fsa_dev_ptr[index].devname[0] = '\0';
297 fib_init(fibptr);
298 dinfo = (struct aac_query_mount *) fib_data(fibptr);
300 dinfo->command = cpu_to_le32(VM_NameServe);
301 dinfo->count = cpu_to_le32(index);
302 dinfo->type = cpu_to_le32(FT_FILESYS);
304 status = fib_send(ContainerCommand,
305 fibptr,
306 sizeof (struct aac_query_mount),
307 FsaNormal,
308 1, 1,
309 NULL, NULL);
310 if (status < 0 ) {
311 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
312 break;
314 dresp = (struct aac_mount *)fib_data(fibptr);
316 dprintk ((KERN_DEBUG
317 "VM_NameServe cid=%d status=%d vol=%d state=%d cap=%u\n",
318 (int)index, (int)le32_to_cpu(dresp->status),
319 (int)le32_to_cpu(dresp->mnt[0].vol),
320 (int)le32_to_cpu(dresp->mnt[0].state),
321 (unsigned)le32_to_cpu(dresp->mnt[0].capacity)));
322 if ((le32_to_cpu(dresp->status) == ST_OK) &&
323 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
324 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
325 fsa_dev_ptr[index].valid = 1;
326 fsa_dev_ptr[index].type = le32_to_cpu(dresp->mnt[0].vol);
327 fsa_dev_ptr[index].size = le32_to_cpu(dresp->mnt[0].capacity);
328 if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
329 fsa_dev_ptr[index].ro = 1;
331 fib_complete(fibptr);
333 * If there are no more containers, then stop asking.
335 if ((index + 1) >= le32_to_cpu(dresp->count)){
336 break;
339 fib_free(fibptr);
340 return status;
343 static void aac_io_done(struct scsi_cmnd * scsicmd)
345 unsigned long cpu_flags;
346 struct Scsi_Host *host = scsicmd->device->host;
347 spin_lock_irqsave(host->host_lock, cpu_flags);
348 scsicmd->scsi_done(scsicmd);
349 spin_unlock_irqrestore(host->host_lock, cpu_flags);
352 static void get_container_name_callback(void *context, struct fib * fibptr)
354 struct aac_get_name_resp * get_name_reply;
355 struct scsi_cmnd * scsicmd;
357 scsicmd = (struct scsi_cmnd *) context;
359 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
360 if (fibptr == NULL)
361 BUG();
363 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
364 /* Failure is irrelevant, using default value instead */
365 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
366 && (get_name_reply->data[0] != '\0')) {
367 int count;
368 char * dp;
369 char * sp = get_name_reply->data;
370 sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
371 while (*sp == ' ')
372 ++sp;
373 count = sizeof(((struct inquiry_data *)NULL)->inqd_pid);
374 dp = ((struct inquiry_data *)scsicmd->request_buffer)->inqd_pid;
375 if (*sp) do {
376 *dp++ = (*sp) ? *sp++ : ' ';
377 } while (--count > 0);
379 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
381 fib_complete(fibptr);
382 fib_free(fibptr);
383 aac_io_done(scsicmd);
387 * aac_get_container_name - get container name, none blocking.
389 static int aac_get_container_name(struct scsi_cmnd * scsicmd, int cid)
391 int status;
392 struct aac_get_name *dinfo;
393 struct fib * cmd_fibcontext;
394 struct aac_dev * dev;
396 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
398 if (!(cmd_fibcontext = fib_alloc(dev)))
399 return -ENOMEM;
401 fib_init(cmd_fibcontext);
402 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
404 dinfo->command = cpu_to_le32(VM_ContainerConfig);
405 dinfo->type = cpu_to_le32(CT_READ_NAME);
406 dinfo->cid = cpu_to_le32(cid);
407 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
409 status = fib_send(ContainerCommand,
410 cmd_fibcontext,
411 sizeof (struct aac_get_name),
412 FsaNormal,
413 0, 1,
414 (fib_callback) get_container_name_callback,
415 (void *) scsicmd);
418 * Check that the command queued to the controller
420 if (status == -EINPROGRESS)
421 return 0;
423 printk(KERN_WARNING "aac_get_container_name: fib_send failed with status: %d.\n", status);
424 fib_complete(cmd_fibcontext);
425 fib_free(cmd_fibcontext);
426 return -1;
430 * probe_container - query a logical volume
431 * @dev: device to query
432 * @cid: container identifier
434 * Queries the controller about the given volume. The volume information
435 * is updated in the struct fsa_dev_info structure rather than returned.
438 static int probe_container(struct aac_dev *dev, int cid)
440 struct fsa_dev_info *fsa_dev_ptr;
441 int status;
442 struct aac_query_mount *dinfo;
443 struct aac_mount *dresp;
444 struct fib * fibptr;
445 unsigned instance;
447 fsa_dev_ptr = dev->fsa_dev;
448 instance = dev->scsi_host_ptr->unique_id;
450 if (!(fibptr = fib_alloc(dev)))
451 return -ENOMEM;
453 fib_init(fibptr);
455 dinfo = (struct aac_query_mount *)fib_data(fibptr);
457 dinfo->command = cpu_to_le32(VM_NameServe);
458 dinfo->count = cpu_to_le32(cid);
459 dinfo->type = cpu_to_le32(FT_FILESYS);
461 status = fib_send(ContainerCommand,
462 fibptr,
463 sizeof(struct aac_query_mount),
464 FsaNormal,
465 1, 1,
466 NULL, NULL);
467 if (status < 0) {
468 printk(KERN_WARNING "aacraid: probe_container query failed.\n");
469 goto error;
472 dresp = (struct aac_mount *) fib_data(fibptr);
474 if ((le32_to_cpu(dresp->status) == ST_OK) &&
475 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
476 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
477 fsa_dev_ptr[cid].valid = 1;
478 fsa_dev_ptr[cid].type = le32_to_cpu(dresp->mnt[0].vol);
479 fsa_dev_ptr[cid].size = le32_to_cpu(dresp->mnt[0].capacity);
480 if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
481 fsa_dev_ptr[cid].ro = 1;
484 error:
485 fib_complete(fibptr);
486 fib_free(fibptr);
488 return status;
491 /* Local Structure to set SCSI inquiry data strings */
492 struct scsi_inq {
493 char vid[8]; /* Vendor ID */
494 char pid[16]; /* Product ID */
495 char prl[4]; /* Product Revision Level */
499 * InqStrCopy - string merge
500 * @a: string to copy from
501 * @b: string to copy to
503 * Copy a String from one location to another
504 * without copying \0
507 static void inqstrcpy(char *a, char *b)
510 while(*a != (char)0)
511 *b++ = *a++;
514 static char *container_types[] = {
515 "None",
516 "Volume",
517 "Mirror",
518 "Stripe",
519 "RAID5",
520 "SSRW",
521 "SSRO",
522 "Morph",
523 "Legacy",
524 "RAID4",
525 "RAID10",
526 "RAID00",
527 "V-MIRRORS",
528 "PSEUDO R4",
529 "RAID50",
530 "RAID5D",
531 "RAID5D0",
532 "RAID1E",
533 "RAID6",
534 "RAID60",
535 "Unknown"
540 /* Function: setinqstr
542 * Arguments: [1] pointer to void [1] int
544 * Purpose: Sets SCSI inquiry data strings for vendor, product
545 * and revision level. Allows strings to be set in platform dependant
546 * files instead of in OS dependant driver source.
549 static void setinqstr(int devtype, void *data, int tindex)
551 struct scsi_inq *str;
552 struct aac_driver_ident *mp;
554 mp = aac_get_driver_ident(devtype);
556 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
558 inqstrcpy (mp->vname, str->vid);
559 inqstrcpy (mp->model, str->pid); /* last six chars reserved for vol type */
561 if (tindex < (sizeof(container_types)/sizeof(char *))){
562 char *findit = str->pid;
564 for ( ; *findit != ' '; findit++); /* walk till we find a space */
565 /* RAID is superfluous in the context of a RAID device */
566 if (memcmp(findit-4, "RAID", 4) == 0)
567 *(findit -= 4) = ' ';
568 inqstrcpy (container_types[tindex], findit + 1);
570 inqstrcpy ("V1.0", str->prl);
573 static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code,
574 u8 a_sense_code, u8 incorrect_length,
575 u8 bit_pointer, u16 field_pointer,
576 u32 residue)
578 sense_buf[0] = 0xF0; /* Sense data valid, err code 70h (current error) */
579 sense_buf[1] = 0; /* Segment number, always zero */
581 if (incorrect_length) {
582 sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */
583 sense_buf[3] = BYTE3(residue);
584 sense_buf[4] = BYTE2(residue);
585 sense_buf[5] = BYTE1(residue);
586 sense_buf[6] = BYTE0(residue);
587 } else
588 sense_buf[2] = sense_key; /* Sense key */
590 if (sense_key == ILLEGAL_REQUEST)
591 sense_buf[7] = 10; /* Additional sense length */
592 else
593 sense_buf[7] = 6; /* Additional sense length */
595 sense_buf[12] = sense_code; /* Additional sense code */
596 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
597 if (sense_key == ILLEGAL_REQUEST) {
598 sense_buf[15] = 0;
600 if (sense_code == SENCODE_INVALID_PARAM_FIELD)
601 sense_buf[15] = 0x80;/* Std sense key specific field */
602 /* Illegal parameter is in the parameter block */
604 if (sense_code == SENCODE_INVALID_CDB_FIELD)
605 sense_buf[15] = 0xc0;/* Std sense key specific field */
606 /* Illegal parameter is in the CDB block */
607 sense_buf[15] |= bit_pointer;
608 sense_buf[16] = field_pointer >> 8; /* MSB */
609 sense_buf[17] = field_pointer; /* LSB */
613 int aac_get_adapter_info(struct aac_dev* dev)
615 struct fib* fibptr;
616 int rcode;
617 u32 tmp;
618 struct aac_adapter_info *info;
619 struct aac_bus_info *command;
620 struct aac_bus_info_response *bus_info;
622 if (!(fibptr = fib_alloc(dev)))
623 return -ENOMEM;
625 fib_init(fibptr);
626 info = (struct aac_adapter_info *) fib_data(fibptr);
627 memset(info,0,sizeof(*info));
629 rcode = fib_send(RequestAdapterInfo,
630 fibptr,
631 sizeof(*info),
632 FsaNormal,
633 1, 1,
634 NULL,
635 NULL);
637 if (rcode < 0) {
638 fib_complete(fibptr);
639 fib_free(fibptr);
640 return rcode;
642 memcpy(&dev->adapter_info, info, sizeof(*info));
644 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
645 struct aac_supplement_adapter_info * info;
647 fib_init(fibptr);
649 info = (struct aac_supplement_adapter_info *) fib_data(fibptr);
651 memset(info,0,sizeof(*info));
653 rcode = fib_send(RequestSupplementAdapterInfo,
654 fibptr,
655 sizeof(*info),
656 FsaNormal,
657 1, 1,
658 NULL,
659 NULL);
661 if (rcode >= 0)
662 memcpy(&dev->supplement_adapter_info, info, sizeof(*info));
667 * GetBusInfo
670 fib_init(fibptr);
672 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
674 memset(bus_info, 0, sizeof(*bus_info));
676 command = (struct aac_bus_info *)bus_info;
678 command->Command = cpu_to_le32(VM_Ioctl);
679 command->ObjType = cpu_to_le32(FT_DRIVE);
680 command->MethodId = cpu_to_le32(1);
681 command->CtlCmd = cpu_to_le32(GetBusInfo);
683 rcode = fib_send(ContainerCommand,
684 fibptr,
685 sizeof (*bus_info),
686 FsaNormal,
687 1, 1,
688 NULL, NULL);
690 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
691 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
692 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
695 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
696 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
697 dev->name,
698 dev->id,
699 tmp>>24,
700 (tmp>>16)&0xff,
701 tmp&0xff,
702 le32_to_cpu(dev->adapter_info.kernelbuild),
703 (int)sizeof(dev->supplement_adapter_info.BuildDate),
704 dev->supplement_adapter_info.BuildDate);
705 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
706 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
707 dev->name, dev->id,
708 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
709 le32_to_cpu(dev->adapter_info.monitorbuild));
710 tmp = le32_to_cpu(dev->adapter_info.biosrev);
711 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
712 dev->name, dev->id,
713 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
714 le32_to_cpu(dev->adapter_info.biosbuild));
715 if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
716 printk(KERN_INFO "%s%d: serial %x\n",
717 dev->name, dev->id,
718 le32_to_cpu(dev->adapter_info.serial[0]));
720 dev->nondasd_support = 0;
721 dev->raid_scsi_mode = 0;
722 if(dev->adapter_info.options & AAC_OPT_NONDASD){
723 dev->nondasd_support = 1;
727 * If the firmware supports ROMB RAID/SCSI mode and we are currently
728 * in RAID/SCSI mode, set the flag. For now if in this mode we will
729 * force nondasd support on. If we decide to allow the non-dasd flag
730 * additional changes changes will have to be made to support
731 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
732 * changed to support the new dev->raid_scsi_mode flag instead of
733 * leaching off of the dev->nondasd_support flag. Also in linit.c the
734 * function aac_detect will have to be modified where it sets up the
735 * max number of channels based on the aac->nondasd_support flag only.
737 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
738 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
739 dev->nondasd_support = 1;
740 dev->raid_scsi_mode = 1;
742 if (dev->raid_scsi_mode != 0)
743 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
744 dev->name, dev->id);
746 if(nondasd != -1) {
747 dev->nondasd_support = (nondasd!=0);
749 if(dev->nondasd_support != 0){
750 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
753 dev->dac_support = 0;
754 if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
755 printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id);
756 dev->dac_support = 1;
759 if(dacmode != -1) {
760 dev->dac_support = (dacmode!=0);
762 if(dev->dac_support != 0) {
763 if (!pci_set_dma_mask(dev->pdev, 0xFFFFFFFFFFFFFFFFULL) &&
764 !pci_set_consistent_dma_mask(dev->pdev, 0xFFFFFFFFFFFFFFFFULL)) {
765 printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
766 dev->name, dev->id);
767 } else if (!pci_set_dma_mask(dev->pdev, 0xFFFFFFFFULL) &&
768 !pci_set_consistent_dma_mask(dev->pdev, 0xFFFFFFFFULL)) {
769 printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
770 dev->name, dev->id);
771 dev->dac_support = 0;
772 } else {
773 printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
774 dev->name, dev->id);
775 rcode = -ENOMEM;
779 * 57 scatter gather elements
781 if (!(dev->raw_io_interface)) {
782 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
783 sizeof(struct aac_fibhdr) -
784 sizeof(struct aac_write) + sizeof(struct sgmap)) /
785 sizeof(struct sgmap);
786 if (dev->dac_support) {
788 * 38 scatter gather elements
790 dev->scsi_host_ptr->sg_tablesize =
791 (dev->max_fib_size -
792 sizeof(struct aac_fibhdr) -
793 sizeof(struct aac_write64) +
794 sizeof(struct sgmap64)) /
795 sizeof(struct sgmap64);
797 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
798 if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
800 * Worst case size that could cause sg overflow when
801 * we break up SG elements that are larger than 64KB.
802 * Would be nice if we could tell the SCSI layer what
803 * the maximum SG element size can be. Worst case is
804 * (sg_tablesize-1) 4KB elements with one 64KB
805 * element.
806 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
808 dev->scsi_host_ptr->max_sectors =
809 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
813 fib_complete(fibptr);
814 fib_free(fibptr);
816 return rcode;
820 static void io_callback(void *context, struct fib * fibptr)
822 struct aac_dev *dev;
823 struct aac_read_reply *readreply;
824 struct scsi_cmnd *scsicmd;
825 u32 cid;
827 scsicmd = (struct scsi_cmnd *) context;
829 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
830 cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun);
832 dprintk((KERN_DEBUG "io_callback[cpu %d]: lba = %u, t = %ld.\n", smp_processor_id(), ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3], jiffies));
834 if (fibptr == NULL)
835 BUG();
837 if(scsicmd->use_sg)
838 pci_unmap_sg(dev->pdev,
839 (struct scatterlist *)scsicmd->buffer,
840 scsicmd->use_sg,
841 scsicmd->sc_data_direction);
842 else if(scsicmd->request_bufflen)
843 pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle,
844 scsicmd->request_bufflen,
845 scsicmd->sc_data_direction);
846 readreply = (struct aac_read_reply *)fib_data(fibptr);
847 if (le32_to_cpu(readreply->status) == ST_OK)
848 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
849 else {
850 #ifdef AAC_DETAILED_STATUS_INFO
851 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
852 le32_to_cpu(readreply->status));
853 #endif
854 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
855 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
856 HARDWARE_ERROR,
857 SENCODE_INTERNAL_TARGET_FAILURE,
858 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
859 0, 0);
860 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
861 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
862 ? sizeof(scsicmd->sense_buffer)
863 : sizeof(dev->fsa_dev[cid].sense_data));
865 fib_complete(fibptr);
866 fib_free(fibptr);
868 aac_io_done(scsicmd);
871 static int aac_read(struct scsi_cmnd * scsicmd, int cid)
873 u32 lba;
874 u32 count;
875 int status;
877 u16 fibsize;
878 struct aac_dev *dev;
879 struct fib * cmd_fibcontext;
881 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
883 * Get block address and transfer length
885 if (scsicmd->cmnd[0] == READ_6) /* 6 byte command */
887 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", cid));
889 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
890 count = scsicmd->cmnd[4];
892 if (count == 0)
893 count = 256;
894 } else {
895 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", cid));
897 lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
898 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
900 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %u, t = %ld.\n",
901 smp_processor_id(), (unsigned long long)lba, jiffies));
903 * Alocate and initialize a Fib
905 if (!(cmd_fibcontext = fib_alloc(dev))) {
906 return -1;
909 fib_init(cmd_fibcontext);
911 if (dev->raw_io_interface) {
912 struct aac_raw_io *readcmd;
913 readcmd = (struct aac_raw_io *) fib_data(cmd_fibcontext);
914 readcmd->block[0] = cpu_to_le32(lba);
915 readcmd->block[1] = 0;
916 readcmd->count = cpu_to_le32(count<<9);
917 readcmd->cid = cpu_to_le16(cid);
918 readcmd->flags = cpu_to_le16(1);
919 readcmd->bpTotal = 0;
920 readcmd->bpComplete = 0;
922 aac_build_sgraw(scsicmd, &readcmd->sg);
923 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
924 if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))
925 BUG();
927 * Now send the Fib to the adapter
929 status = fib_send(ContainerRawIo,
930 cmd_fibcontext,
931 fibsize,
932 FsaNormal,
933 0, 1,
934 (fib_callback) io_callback,
935 (void *) scsicmd);
936 } else if (dev->dac_support == 1) {
937 struct aac_read64 *readcmd;
938 readcmd = (struct aac_read64 *) fib_data(cmd_fibcontext);
939 readcmd->command = cpu_to_le32(VM_CtHostRead64);
940 readcmd->cid = cpu_to_le16(cid);
941 readcmd->sector_count = cpu_to_le16(count);
942 readcmd->block = cpu_to_le32(lba);
943 readcmd->pad = 0;
944 readcmd->flags = 0;
946 aac_build_sg64(scsicmd, &readcmd->sg);
947 fibsize = sizeof(struct aac_read64) +
948 ((le32_to_cpu(readcmd->sg.count) - 1) *
949 sizeof (struct sgentry64));
950 BUG_ON (fibsize > (sizeof(struct hw_fib) -
951 sizeof(struct aac_fibhdr)));
953 * Now send the Fib to the adapter
955 status = fib_send(ContainerCommand64,
956 cmd_fibcontext,
957 fibsize,
958 FsaNormal,
959 0, 1,
960 (fib_callback) io_callback,
961 (void *) scsicmd);
962 } else {
963 struct aac_read *readcmd;
964 readcmd = (struct aac_read *) fib_data(cmd_fibcontext);
965 readcmd->command = cpu_to_le32(VM_CtBlockRead);
966 readcmd->cid = cpu_to_le32(cid);
967 readcmd->block = cpu_to_le32(lba);
968 readcmd->count = cpu_to_le32(count * 512);
970 aac_build_sg(scsicmd, &readcmd->sg);
971 fibsize = sizeof(struct aac_read) +
972 ((le32_to_cpu(readcmd->sg.count) - 1) *
973 sizeof (struct sgentry));
974 BUG_ON (fibsize > (dev->max_fib_size -
975 sizeof(struct aac_fibhdr)));
977 * Now send the Fib to the adapter
979 status = fib_send(ContainerCommand,
980 cmd_fibcontext,
981 fibsize,
982 FsaNormal,
983 0, 1,
984 (fib_callback) io_callback,
985 (void *) scsicmd);
991 * Check that the command queued to the controller
993 if (status == -EINPROGRESS)
994 return 0;
996 printk(KERN_WARNING "aac_read: fib_send failed with status: %d.\n", status);
998 * For some reason, the Fib didn't queue, return QUEUE_FULL
1000 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1001 aac_io_done(scsicmd);
1002 fib_complete(cmd_fibcontext);
1003 fib_free(cmd_fibcontext);
1004 return 0;
1007 static int aac_write(struct scsi_cmnd * scsicmd, int cid)
1009 u32 lba;
1010 u32 count;
1011 int status;
1012 u16 fibsize;
1013 struct aac_dev *dev;
1014 struct fib * cmd_fibcontext;
1016 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1018 * Get block address and transfer length
1020 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
1022 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1023 count = scsicmd->cmnd[4];
1024 if (count == 0)
1025 count = 256;
1026 } else {
1027 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", cid));
1028 lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1029 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1031 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %u, t = %ld.\n",
1032 smp_processor_id(), (unsigned long long)lba, jiffies));
1034 * Allocate and initialize a Fib then setup a BlockWrite command
1036 if (!(cmd_fibcontext = fib_alloc(dev))) {
1037 scsicmd->result = DID_ERROR << 16;
1038 aac_io_done(scsicmd);
1039 return 0;
1041 fib_init(cmd_fibcontext);
1043 if (dev->raw_io_interface) {
1044 struct aac_raw_io *writecmd;
1045 writecmd = (struct aac_raw_io *) fib_data(cmd_fibcontext);
1046 writecmd->block[0] = cpu_to_le32(lba);
1047 writecmd->block[1] = 0;
1048 writecmd->count = cpu_to_le32(count<<9);
1049 writecmd->cid = cpu_to_le16(cid);
1050 writecmd->flags = 0;
1051 writecmd->bpTotal = 0;
1052 writecmd->bpComplete = 0;
1054 aac_build_sgraw(scsicmd, &writecmd->sg);
1055 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
1056 if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))
1057 BUG();
1059 * Now send the Fib to the adapter
1061 status = fib_send(ContainerRawIo,
1062 cmd_fibcontext,
1063 fibsize,
1064 FsaNormal,
1065 0, 1,
1066 (fib_callback) io_callback,
1067 (void *) scsicmd);
1068 } else if (dev->dac_support == 1) {
1069 struct aac_write64 *writecmd;
1070 writecmd = (struct aac_write64 *) fib_data(cmd_fibcontext);
1071 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1072 writecmd->cid = cpu_to_le16(cid);
1073 writecmd->sector_count = cpu_to_le16(count);
1074 writecmd->block = cpu_to_le32(lba);
1075 writecmd->pad = 0;
1076 writecmd->flags = 0;
1078 aac_build_sg64(scsicmd, &writecmd->sg);
1079 fibsize = sizeof(struct aac_write64) +
1080 ((le32_to_cpu(writecmd->sg.count) - 1) *
1081 sizeof (struct sgentry64));
1082 BUG_ON (fibsize > (dev->max_fib_size -
1083 sizeof(struct aac_fibhdr)));
1085 * Now send the Fib to the adapter
1087 status = fib_send(ContainerCommand64,
1088 cmd_fibcontext,
1089 fibsize,
1090 FsaNormal,
1091 0, 1,
1092 (fib_callback) io_callback,
1093 (void *) scsicmd);
1094 } else {
1095 struct aac_write *writecmd;
1096 writecmd = (struct aac_write *) fib_data(cmd_fibcontext);
1097 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1098 writecmd->cid = cpu_to_le32(cid);
1099 writecmd->block = cpu_to_le32(lba);
1100 writecmd->count = cpu_to_le32(count * 512);
1101 writecmd->sg.count = cpu_to_le32(1);
1102 /* ->stable is not used - it did mean which type of write */
1104 aac_build_sg(scsicmd, &writecmd->sg);
1105 fibsize = sizeof(struct aac_write) +
1106 ((le32_to_cpu(writecmd->sg.count) - 1) *
1107 sizeof (struct sgentry));
1108 BUG_ON (fibsize > (dev->max_fib_size -
1109 sizeof(struct aac_fibhdr)));
1111 * Now send the Fib to the adapter
1113 status = fib_send(ContainerCommand,
1114 cmd_fibcontext,
1115 fibsize,
1116 FsaNormal,
1117 0, 1,
1118 (fib_callback) io_callback,
1119 (void *) scsicmd);
1123 * Check that the command queued to the controller
1125 if (status == -EINPROGRESS)
1127 return 0;
1130 printk(KERN_WARNING "aac_write: fib_send failed with status: %d\n", status);
1132 * For some reason, the Fib didn't queue, return QUEUE_FULL
1134 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1135 aac_io_done(scsicmd);
1137 fib_complete(cmd_fibcontext);
1138 fib_free(cmd_fibcontext);
1139 return 0;
1142 static void synchronize_callback(void *context, struct fib *fibptr)
1144 struct aac_synchronize_reply *synchronizereply;
1145 struct scsi_cmnd *cmd;
1147 cmd = context;
1149 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1150 smp_processor_id(), jiffies));
1151 BUG_ON(fibptr == NULL);
1154 synchronizereply = fib_data(fibptr);
1155 if (le32_to_cpu(synchronizereply->status) == CT_OK)
1156 cmd->result = DID_OK << 16 |
1157 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1158 else {
1159 struct scsi_device *sdev = cmd->device;
1160 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
1161 u32 cid = ID_LUN_TO_CONTAINER(sdev->id, sdev->lun);
1162 printk(KERN_WARNING
1163 "synchronize_callback: synchronize failed, status = %d\n",
1164 le32_to_cpu(synchronizereply->status));
1165 cmd->result = DID_OK << 16 |
1166 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1167 set_sense((u8 *)&dev->fsa_dev[cid].sense_data,
1168 HARDWARE_ERROR,
1169 SENCODE_INTERNAL_TARGET_FAILURE,
1170 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1171 0, 0);
1172 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1173 min(sizeof(dev->fsa_dev[cid].sense_data),
1174 sizeof(cmd->sense_buffer)));
1177 fib_complete(fibptr);
1178 fib_free(fibptr);
1179 aac_io_done(cmd);
1182 static int aac_synchronize(struct scsi_cmnd *scsicmd, int cid)
1184 int status;
1185 struct fib *cmd_fibcontext;
1186 struct aac_synchronize *synchronizecmd;
1187 struct scsi_cmnd *cmd;
1188 struct scsi_device *sdev = scsicmd->device;
1189 int active = 0;
1190 unsigned long flags;
1193 * Wait for all commands to complete to this specific
1194 * target (block).
1196 spin_lock_irqsave(&sdev->list_lock, flags);
1197 list_for_each_entry(cmd, &sdev->cmd_list, list)
1198 if (cmd != scsicmd && cmd->serial_number != 0) {
1199 ++active;
1200 break;
1203 spin_unlock_irqrestore(&sdev->list_lock, flags);
1206 * Yield the processor (requeue for later)
1208 if (active)
1209 return SCSI_MLQUEUE_DEVICE_BUSY;
1212 * Allocate and initialize a Fib
1214 if (!(cmd_fibcontext =
1215 fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata)))
1216 return SCSI_MLQUEUE_HOST_BUSY;
1218 fib_init(cmd_fibcontext);
1220 synchronizecmd = fib_data(cmd_fibcontext);
1221 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1222 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1223 synchronizecmd->cid = cpu_to_le32(cid);
1224 synchronizecmd->count =
1225 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1228 * Now send the Fib to the adapter
1230 status = fib_send(ContainerCommand,
1231 cmd_fibcontext,
1232 sizeof(struct aac_synchronize),
1233 FsaNormal,
1234 0, 1,
1235 (fib_callback)synchronize_callback,
1236 (void *)scsicmd);
1239 * Check that the command queued to the controller
1241 if (status == -EINPROGRESS)
1242 return 0;
1244 printk(KERN_WARNING
1245 "aac_synchronize: fib_send failed with status: %d.\n", status);
1246 fib_complete(cmd_fibcontext);
1247 fib_free(cmd_fibcontext);
1248 return SCSI_MLQUEUE_HOST_BUSY;
1252 * aac_scsi_cmd() - Process SCSI command
1253 * @scsicmd: SCSI command block
1255 * Emulate a SCSI command and queue the required request for the
1256 * aacraid firmware.
1259 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1261 u32 cid = 0;
1262 struct Scsi_Host *host = scsicmd->device->host;
1263 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
1264 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
1265 int cardtype = dev->cardtype;
1266 int ret;
1269 * If the bus, id or lun is out of range, return fail
1270 * Test does not apply to ID 16, the pseudo id for the controller
1271 * itself.
1273 if (scsicmd->device->id != host->this_id) {
1274 if ((scsicmd->device->channel == 0) ){
1275 if( (scsicmd->device->id >= dev->maximum_num_containers) || (scsicmd->device->lun != 0)){
1276 scsicmd->result = DID_NO_CONNECT << 16;
1277 scsicmd->scsi_done(scsicmd);
1278 return 0;
1280 cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun);
1283 * If the target container doesn't exist, it may have
1284 * been newly created
1286 if ((fsa_dev_ptr[cid].valid & 1) == 0) {
1287 switch (scsicmd->cmnd[0]) {
1288 case INQUIRY:
1289 case READ_CAPACITY:
1290 case TEST_UNIT_READY:
1291 spin_unlock_irq(host->host_lock);
1292 probe_container(dev, cid);
1293 spin_lock_irq(host->host_lock);
1294 if (fsa_dev_ptr[cid].valid == 0) {
1295 scsicmd->result = DID_NO_CONNECT << 16;
1296 scsicmd->scsi_done(scsicmd);
1297 return 0;
1299 default:
1300 break;
1304 * If the target container still doesn't exist,
1305 * return failure
1307 if (fsa_dev_ptr[cid].valid == 0) {
1308 scsicmd->result = DID_BAD_TARGET << 16;
1309 scsicmd->scsi_done(scsicmd);
1310 return 0;
1312 } else { /* check for physical non-dasd devices */
1313 if(dev->nondasd_support == 1){
1314 return aac_send_srb_fib(scsicmd);
1315 } else {
1316 scsicmd->result = DID_NO_CONNECT << 16;
1317 scsicmd->scsi_done(scsicmd);
1318 return 0;
1323 * else Command for the controller itself
1325 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
1326 (scsicmd->cmnd[0] != TEST_UNIT_READY))
1328 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
1329 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1330 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1331 ILLEGAL_REQUEST,
1332 SENCODE_INVALID_COMMAND,
1333 ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1334 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1335 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1336 ? sizeof(scsicmd->sense_buffer)
1337 : sizeof(dev->fsa_dev[cid].sense_data));
1338 scsicmd->scsi_done(scsicmd);
1339 return 0;
1343 /* Handle commands here that don't really require going out to the adapter */
1344 switch (scsicmd->cmnd[0]) {
1345 case INQUIRY:
1347 struct inquiry_data *inq_data_ptr;
1349 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", scsicmd->device->id));
1350 inq_data_ptr = (struct inquiry_data *)scsicmd->request_buffer;
1351 memset(inq_data_ptr, 0, sizeof (struct inquiry_data));
1353 inq_data_ptr->inqd_ver = 2; /* claim compliance to SCSI-2 */
1354 inq_data_ptr->inqd_dtq = 0x80; /* set RMB bit to one indicating that the medium is removable */
1355 inq_data_ptr->inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
1356 inq_data_ptr->inqd_len = 31;
1357 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
1358 inq_data_ptr->inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
1360 * Set the Vendor, Product, and Revision Level
1361 * see: <vendor>.c i.e. aac.c
1363 if (scsicmd->device->id == host->this_id) {
1364 setinqstr(cardtype, (void *) (inq_data_ptr->inqd_vid), (sizeof(container_types)/sizeof(char *)));
1365 inq_data_ptr->inqd_pdt = INQD_PDT_PROC; /* Processor device */
1366 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1367 scsicmd->scsi_done(scsicmd);
1368 return 0;
1370 setinqstr(cardtype, (void *) (inq_data_ptr->inqd_vid), fsa_dev_ptr[cid].type);
1371 inq_data_ptr->inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
1372 return aac_get_container_name(scsicmd, cid);
1374 case READ_CAPACITY:
1376 u32 capacity;
1377 char *cp;
1379 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
1380 if (fsa_dev_ptr[cid].size <= 0x100000000LL)
1381 capacity = fsa_dev_ptr[cid].size - 1;
1382 else
1383 capacity = (u32)-1;
1384 cp = scsicmd->request_buffer;
1385 cp[0] = (capacity >> 24) & 0xff;
1386 cp[1] = (capacity >> 16) & 0xff;
1387 cp[2] = (capacity >> 8) & 0xff;
1388 cp[3] = (capacity >> 0) & 0xff;
1389 cp[4] = 0;
1390 cp[5] = 0;
1391 cp[6] = 2;
1392 cp[7] = 0;
1394 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1395 scsicmd->scsi_done(scsicmd);
1397 return 0;
1400 case MODE_SENSE:
1402 char *mode_buf;
1404 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
1405 mode_buf = scsicmd->request_buffer;
1406 mode_buf[0] = 3; /* Mode data length */
1407 mode_buf[1] = 0; /* Medium type - default */
1408 mode_buf[2] = 0; /* Device-specific param, bit 8: 0/1 = write enabled/protected */
1409 mode_buf[3] = 0; /* Block descriptor length */
1411 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1412 scsicmd->scsi_done(scsicmd);
1414 return 0;
1416 case MODE_SENSE_10:
1418 char *mode_buf;
1420 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
1421 mode_buf = scsicmd->request_buffer;
1422 mode_buf[0] = 0; /* Mode data length (MSB) */
1423 mode_buf[1] = 6; /* Mode data length (LSB) */
1424 mode_buf[2] = 0; /* Medium type - default */
1425 mode_buf[3] = 0; /* Device-specific param, bit 8: 0/1 = write enabled/protected */
1426 mode_buf[4] = 0; /* reserved */
1427 mode_buf[5] = 0; /* reserved */
1428 mode_buf[6] = 0; /* Block descriptor length (MSB) */
1429 mode_buf[7] = 0; /* Block descriptor length (LSB) */
1431 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1432 scsicmd->scsi_done(scsicmd);
1434 return 0;
1436 case REQUEST_SENSE:
1437 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
1438 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
1439 memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
1440 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1441 scsicmd->scsi_done(scsicmd);
1442 return 0;
1444 case ALLOW_MEDIUM_REMOVAL:
1445 dprintk((KERN_DEBUG "LOCK command.\n"));
1446 if (scsicmd->cmnd[4])
1447 fsa_dev_ptr[cid].locked = 1;
1448 else
1449 fsa_dev_ptr[cid].locked = 0;
1451 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1452 scsicmd->scsi_done(scsicmd);
1453 return 0;
1455 * These commands are all No-Ops
1457 case TEST_UNIT_READY:
1458 case RESERVE:
1459 case RELEASE:
1460 case REZERO_UNIT:
1461 case REASSIGN_BLOCKS:
1462 case SEEK_10:
1463 case START_STOP:
1464 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1465 scsicmd->scsi_done(scsicmd);
1466 return 0;
1469 switch (scsicmd->cmnd[0])
1471 case READ_6:
1472 case READ_10:
1474 * Hack to keep track of ordinal number of the device that
1475 * corresponds to a container. Needed to convert
1476 * containers to /dev/sd device names
1479 spin_unlock_irq(host->host_lock);
1480 if (scsicmd->request->rq_disk)
1481 memcpy(fsa_dev_ptr[cid].devname,
1482 scsicmd->request->rq_disk->disk_name,
1485 ret = aac_read(scsicmd, cid);
1486 spin_lock_irq(host->host_lock);
1487 return ret;
1489 case WRITE_6:
1490 case WRITE_10:
1491 spin_unlock_irq(host->host_lock);
1492 ret = aac_write(scsicmd, cid);
1493 spin_lock_irq(host->host_lock);
1494 return ret;
1496 case SYNCHRONIZE_CACHE:
1497 /* Issue FIB to tell Firmware to flush it's cache */
1498 return aac_synchronize(scsicmd, cid);
1500 default:
1502 * Unhandled commands
1504 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
1505 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1506 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1507 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
1508 ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1509 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1510 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1511 ? sizeof(scsicmd->sense_buffer)
1512 : sizeof(dev->fsa_dev[cid].sense_data));
1513 scsicmd->scsi_done(scsicmd);
1514 return 0;
1518 static int query_disk(struct aac_dev *dev, void __user *arg)
1520 struct aac_query_disk qd;
1521 struct fsa_dev_info *fsa_dev_ptr;
1523 fsa_dev_ptr = dev->fsa_dev;
1524 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
1525 return -EFAULT;
1526 if (qd.cnum == -1)
1527 qd.cnum = ID_LUN_TO_CONTAINER(qd.id, qd.lun);
1528 else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
1530 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
1531 return -EINVAL;
1532 qd.instance = dev->scsi_host_ptr->host_no;
1533 qd.bus = 0;
1534 qd.id = CONTAINER_TO_ID(qd.cnum);
1535 qd.lun = CONTAINER_TO_LUN(qd.cnum);
1537 else return -EINVAL;
1539 qd.valid = fsa_dev_ptr[qd.cnum].valid;
1540 qd.locked = fsa_dev_ptr[qd.cnum].locked;
1541 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
1543 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
1544 qd.unmapped = 1;
1545 else
1546 qd.unmapped = 0;
1548 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
1549 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
1551 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
1552 return -EFAULT;
1553 return 0;
1556 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
1558 struct aac_delete_disk dd;
1559 struct fsa_dev_info *fsa_dev_ptr;
1561 fsa_dev_ptr = dev->fsa_dev;
1563 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
1564 return -EFAULT;
1566 if (dd.cnum >= dev->maximum_num_containers)
1567 return -EINVAL;
1569 * Mark this container as being deleted.
1571 fsa_dev_ptr[dd.cnum].deleted = 1;
1573 * Mark the container as no longer valid
1575 fsa_dev_ptr[dd.cnum].valid = 0;
1576 return 0;
1579 static int delete_disk(struct aac_dev *dev, void __user *arg)
1581 struct aac_delete_disk dd;
1582 struct fsa_dev_info *fsa_dev_ptr;
1584 fsa_dev_ptr = dev->fsa_dev;
1586 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
1587 return -EFAULT;
1589 if (dd.cnum >= dev->maximum_num_containers)
1590 return -EINVAL;
1592 * If the container is locked, it can not be deleted by the API.
1594 if (fsa_dev_ptr[dd.cnum].locked)
1595 return -EBUSY;
1596 else {
1598 * Mark the container as no longer being valid.
1600 fsa_dev_ptr[dd.cnum].valid = 0;
1601 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
1602 return 0;
1606 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
1608 switch (cmd) {
1609 case FSACTL_QUERY_DISK:
1610 return query_disk(dev, arg);
1611 case FSACTL_DELETE_DISK:
1612 return delete_disk(dev, arg);
1613 case FSACTL_FORCE_DELETE_DISK:
1614 return force_delete_disk(dev, arg);
1615 case FSACTL_GET_CONTAINERS:
1616 return aac_get_containers(dev);
1617 default:
1618 return -ENOTTY;
1624 * aac_srb_callback
1625 * @context: the context set in the fib - here it is scsi cmd
1626 * @fibptr: pointer to the fib
1628 * Handles the completion of a scsi command to a non dasd device
1632 static void aac_srb_callback(void *context, struct fib * fibptr)
1634 struct aac_dev *dev;
1635 struct aac_srb_reply *srbreply;
1636 struct scsi_cmnd *scsicmd;
1638 scsicmd = (struct scsi_cmnd *) context;
1639 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1641 if (fibptr == NULL)
1642 BUG();
1644 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
1646 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
1648 * Calculate resid for sg
1651 scsicmd->resid = scsicmd->request_bufflen -
1652 le32_to_cpu(srbreply->data_xfer_length);
1654 if(scsicmd->use_sg)
1655 pci_unmap_sg(dev->pdev,
1656 (struct scatterlist *)scsicmd->buffer,
1657 scsicmd->use_sg,
1658 scsicmd->sc_data_direction);
1659 else if(scsicmd->request_bufflen)
1660 pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle, scsicmd->request_bufflen,
1661 scsicmd->sc_data_direction);
1664 * First check the fib status
1667 if (le32_to_cpu(srbreply->status) != ST_OK){
1668 int len;
1669 printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
1670 len = (le32_to_cpu(srbreply->sense_data_size) >
1671 sizeof(scsicmd->sense_buffer)) ?
1672 sizeof(scsicmd->sense_buffer) :
1673 le32_to_cpu(srbreply->sense_data_size);
1674 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1675 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
1679 * Next check the srb status
1681 switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
1682 case SRB_STATUS_ERROR_RECOVERY:
1683 case SRB_STATUS_PENDING:
1684 case SRB_STATUS_SUCCESS:
1685 if(scsicmd->cmnd[0] == INQUIRY ){
1686 u8 b;
1687 u8 b1;
1688 /* We can't expose disk devices because we can't tell whether they
1689 * are the raw container drives or stand alone drives. If they have
1690 * the removable bit set then we should expose them though.
1692 b = (*(u8*)scsicmd->buffer)&0x1f;
1693 b1 = ((u8*)scsicmd->buffer)[1];
1694 if( b==TYPE_TAPE || b==TYPE_WORM || b==TYPE_ROM || b==TYPE_MOD|| b==TYPE_MEDIUM_CHANGER
1695 || (b==TYPE_DISK && (b1&0x80)) ){
1696 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1698 * We will allow disk devices if in RAID/SCSI mode and
1699 * the channel is 2
1701 } else if ((dev->raid_scsi_mode) &&
1702 (scsicmd->device->channel == 2)) {
1703 scsicmd->result = DID_OK << 16 |
1704 COMMAND_COMPLETE << 8;
1705 } else {
1706 scsicmd->result = DID_NO_CONNECT << 16 |
1707 COMMAND_COMPLETE << 8;
1709 } else {
1710 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1712 break;
1713 case SRB_STATUS_DATA_OVERRUN:
1714 switch(scsicmd->cmnd[0]){
1715 case READ_6:
1716 case WRITE_6:
1717 case READ_10:
1718 case WRITE_10:
1719 case READ_12:
1720 case WRITE_12:
1721 if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
1722 printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
1723 } else {
1724 printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
1726 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
1727 break;
1728 case INQUIRY: {
1729 u8 b;
1730 u8 b1;
1731 /* We can't expose disk devices because we can't tell whether they
1732 * are the raw container drives or stand alone drives
1734 b = (*(u8*)scsicmd->buffer)&0x0f;
1735 b1 = ((u8*)scsicmd->buffer)[1];
1736 if( b==TYPE_TAPE || b==TYPE_WORM || b==TYPE_ROM || b==TYPE_MOD|| b==TYPE_MEDIUM_CHANGER
1737 || (b==TYPE_DISK && (b1&0x80)) ){
1738 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1740 * We will allow disk devices if in RAID/SCSI mode and
1741 * the channel is 2
1743 } else if ((dev->raid_scsi_mode) &&
1744 (scsicmd->device->channel == 2)) {
1745 scsicmd->result = DID_OK << 16 |
1746 COMMAND_COMPLETE << 8;
1747 } else {
1748 scsicmd->result = DID_NO_CONNECT << 16 |
1749 COMMAND_COMPLETE << 8;
1751 break;
1753 default:
1754 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1755 break;
1757 break;
1758 case SRB_STATUS_ABORTED:
1759 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
1760 break;
1761 case SRB_STATUS_ABORT_FAILED:
1762 // Not sure about this one - but assuming the hba was trying to abort for some reason
1763 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
1764 break;
1765 case SRB_STATUS_PARITY_ERROR:
1766 scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
1767 break;
1768 case SRB_STATUS_NO_DEVICE:
1769 case SRB_STATUS_INVALID_PATH_ID:
1770 case SRB_STATUS_INVALID_TARGET_ID:
1771 case SRB_STATUS_INVALID_LUN:
1772 case SRB_STATUS_SELECTION_TIMEOUT:
1773 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
1774 break;
1776 case SRB_STATUS_COMMAND_TIMEOUT:
1777 case SRB_STATUS_TIMEOUT:
1778 scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
1779 break;
1781 case SRB_STATUS_BUSY:
1782 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
1783 break;
1785 case SRB_STATUS_BUS_RESET:
1786 scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
1787 break;
1789 case SRB_STATUS_MESSAGE_REJECTED:
1790 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
1791 break;
1792 case SRB_STATUS_REQUEST_FLUSHED:
1793 case SRB_STATUS_ERROR:
1794 case SRB_STATUS_INVALID_REQUEST:
1795 case SRB_STATUS_REQUEST_SENSE_FAILED:
1796 case SRB_STATUS_NO_HBA:
1797 case SRB_STATUS_UNEXPECTED_BUS_FREE:
1798 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
1799 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
1800 case SRB_STATUS_DELAYED_RETRY:
1801 case SRB_STATUS_BAD_FUNCTION:
1802 case SRB_STATUS_NOT_STARTED:
1803 case SRB_STATUS_NOT_IN_USE:
1804 case SRB_STATUS_FORCE_ABORT:
1805 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
1806 default:
1807 #ifdef AAC_DETAILED_STATUS_INFO
1808 printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
1809 le32_to_cpu(srbreply->srb_status) & 0x3F,
1810 aac_get_status_string(
1811 le32_to_cpu(srbreply->srb_status) & 0x3F),
1812 scsicmd->cmnd[0],
1813 le32_to_cpu(srbreply->scsi_status));
1814 #endif
1815 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
1816 break;
1818 if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){ // Check Condition
1819 int len;
1820 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
1821 len = (le32_to_cpu(srbreply->sense_data_size) >
1822 sizeof(scsicmd->sense_buffer)) ?
1823 sizeof(scsicmd->sense_buffer) :
1824 le32_to_cpu(srbreply->sense_data_size);
1825 #ifdef AAC_DETAILED_STATUS_INFO
1826 dprintk((KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
1827 le32_to_cpu(srbreply->status), len));
1828 #endif
1829 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
1833 * OR in the scsi status (already shifted up a bit)
1835 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
1837 fib_complete(fibptr);
1838 fib_free(fibptr);
1839 aac_io_done(scsicmd);
1844 * aac_send_scb_fib
1845 * @scsicmd: the scsi command block
1847 * This routine will form a FIB and fill in the aac_srb from the
1848 * scsicmd passed in.
1851 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
1853 struct fib* cmd_fibcontext;
1854 struct aac_dev* dev;
1855 int status;
1856 struct aac_srb *srbcmd;
1857 u16 fibsize;
1858 u32 flag;
1859 u32 timeout;
1861 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1862 if (scsicmd->device->id >= dev->maximum_num_physicals ||
1863 scsicmd->device->lun > 7) {
1864 scsicmd->result = DID_NO_CONNECT << 16;
1865 scsicmd->scsi_done(scsicmd);
1866 return 0;
1869 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1870 switch(scsicmd->sc_data_direction){
1871 case DMA_TO_DEVICE:
1872 flag = SRB_DataOut;
1873 break;
1874 case DMA_BIDIRECTIONAL:
1875 flag = SRB_DataIn | SRB_DataOut;
1876 break;
1877 case DMA_FROM_DEVICE:
1878 flag = SRB_DataIn;
1879 break;
1880 case DMA_NONE:
1881 default: /* shuts up some versions of gcc */
1882 flag = SRB_NoDataXfer;
1883 break;
1888 * Allocate and initialize a Fib then setup a BlockWrite command
1890 if (!(cmd_fibcontext = fib_alloc(dev))) {
1891 return -1;
1893 fib_init(cmd_fibcontext);
1895 srbcmd = (struct aac_srb*) fib_data(cmd_fibcontext);
1896 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1897 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scsicmd->device->channel));
1898 srbcmd->id = cpu_to_le32(scsicmd->device->id);
1899 srbcmd->lun = cpu_to_le32(scsicmd->device->lun);
1900 srbcmd->flags = cpu_to_le32(flag);
1901 timeout = scsicmd->timeout_per_command/HZ;
1902 if(timeout == 0){
1903 timeout = 1;
1905 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1906 srbcmd->retry_limit = 0; /* Obsolete parameter */
1907 srbcmd->cdb_size = cpu_to_le32(scsicmd->cmd_len);
1909 if( dev->dac_support == 1 ) {
1910 aac_build_sg64(scsicmd, (struct sgmap64*) &srbcmd->sg);
1911 srbcmd->count = cpu_to_le32(scsicmd->request_bufflen);
1913 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1914 memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len);
1916 * Build Scatter/Gather list
1918 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1919 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1920 sizeof (struct sgentry64));
1921 BUG_ON (fibsize > (dev->max_fib_size -
1922 sizeof(struct aac_fibhdr)));
1925 * Now send the Fib to the adapter
1927 status = fib_send(ScsiPortCommand64, cmd_fibcontext,
1928 fibsize, FsaNormal, 0, 1,
1929 (fib_callback) aac_srb_callback,
1930 (void *) scsicmd);
1931 } else {
1932 aac_build_sg(scsicmd, (struct sgmap*)&srbcmd->sg);
1933 srbcmd->count = cpu_to_le32(scsicmd->request_bufflen);
1935 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1936 memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len);
1938 * Build Scatter/Gather list
1940 fibsize = sizeof (struct aac_srb) +
1941 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1942 sizeof (struct sgentry));
1943 BUG_ON (fibsize > (dev->max_fib_size -
1944 sizeof(struct aac_fibhdr)));
1947 * Now send the Fib to the adapter
1949 status = fib_send(ScsiPortCommand, cmd_fibcontext, fibsize, FsaNormal, 0, 1,
1950 (fib_callback) aac_srb_callback, (void *) scsicmd);
1953 * Check that the command queued to the controller
1955 if (status == -EINPROGRESS){
1956 return 0;
1959 printk(KERN_WARNING "aac_srb: fib_send failed with status: %d\n", status);
1960 fib_complete(cmd_fibcontext);
1961 fib_free(cmd_fibcontext);
1963 return -1;
1966 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
1968 struct aac_dev *dev;
1969 unsigned long byte_count = 0;
1971 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1972 // Get rid of old data
1973 psg->count = 0;
1974 psg->sg[0].addr = 0;
1975 psg->sg[0].count = 0;
1976 if (scsicmd->use_sg) {
1977 struct scatterlist *sg;
1978 int i;
1979 int sg_count;
1980 sg = (struct scatterlist *) scsicmd->request_buffer;
1982 sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
1983 scsicmd->sc_data_direction);
1984 psg->count = cpu_to_le32(sg_count);
1986 byte_count = 0;
1988 for (i = 0; i < sg_count; i++) {
1989 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
1990 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
1991 byte_count += sg_dma_len(sg);
1992 sg++;
1994 /* hba wants the size to be exact */
1995 if(byte_count > scsicmd->request_bufflen){
1996 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
1997 (byte_count - scsicmd->request_bufflen);
1998 psg->sg[i-1].count = cpu_to_le32(temp);
1999 byte_count = scsicmd->request_bufflen;
2001 /* Check for command underflow */
2002 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2003 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2004 byte_count, scsicmd->underflow);
2007 else if(scsicmd->request_bufflen) {
2008 dma_addr_t addr;
2009 addr = pci_map_single(dev->pdev,
2010 scsicmd->request_buffer,
2011 scsicmd->request_bufflen,
2012 scsicmd->sc_data_direction);
2013 psg->count = cpu_to_le32(1);
2014 psg->sg[0].addr = cpu_to_le32(addr);
2015 psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
2016 scsicmd->SCp.dma_handle = addr;
2017 byte_count = scsicmd->request_bufflen;
2019 return byte_count;
2023 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2025 struct aac_dev *dev;
2026 unsigned long byte_count = 0;
2027 u64 addr;
2029 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2030 // Get rid of old data
2031 psg->count = 0;
2032 psg->sg[0].addr[0] = 0;
2033 psg->sg[0].addr[1] = 0;
2034 psg->sg[0].count = 0;
2035 if (scsicmd->use_sg) {
2036 struct scatterlist *sg;
2037 int i;
2038 int sg_count;
2039 sg = (struct scatterlist *) scsicmd->request_buffer;
2041 sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2042 scsicmd->sc_data_direction);
2043 psg->count = cpu_to_le32(sg_count);
2045 byte_count = 0;
2047 for (i = 0; i < sg_count; i++) {
2048 addr = sg_dma_address(sg);
2049 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2050 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2051 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2052 byte_count += sg_dma_len(sg);
2053 sg++;
2055 /* hba wants the size to be exact */
2056 if(byte_count > scsicmd->request_bufflen){
2057 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2058 (byte_count - scsicmd->request_bufflen);
2059 psg->sg[i-1].count = cpu_to_le32(temp);
2060 byte_count = scsicmd->request_bufflen;
2062 /* Check for command underflow */
2063 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2064 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2065 byte_count, scsicmd->underflow);
2068 else if(scsicmd->request_bufflen) {
2069 u64 addr;
2070 addr = pci_map_single(dev->pdev,
2071 scsicmd->request_buffer,
2072 scsicmd->request_bufflen,
2073 scsicmd->sc_data_direction);
2074 psg->count = cpu_to_le32(1);
2075 psg->sg[0].addr[0] = cpu_to_le32(addr & 0xffffffff);
2076 psg->sg[0].addr[1] = cpu_to_le32(addr >> 32);
2077 psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
2078 scsicmd->SCp.dma_handle = addr;
2079 byte_count = scsicmd->request_bufflen;
2081 return byte_count;
2084 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2086 struct Scsi_Host *host = scsicmd->device->host;
2087 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2088 unsigned long byte_count = 0;
2090 // Get rid of old data
2091 psg->count = 0;
2092 psg->sg[0].next = 0;
2093 psg->sg[0].prev = 0;
2094 psg->sg[0].addr[0] = 0;
2095 psg->sg[0].addr[1] = 0;
2096 psg->sg[0].count = 0;
2097 psg->sg[0].flags = 0;
2098 if (scsicmd->use_sg) {
2099 struct scatterlist *sg;
2100 int i;
2101 int sg_count;
2102 sg = (struct scatterlist *) scsicmd->request_buffer;
2104 sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2105 scsicmd->sc_data_direction);
2107 for (i = 0; i < sg_count; i++) {
2108 int count = sg_dma_len(sg);
2109 u64 addr = sg_dma_address(sg);
2110 psg->sg[i].next = 0;
2111 psg->sg[i].prev = 0;
2112 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2113 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2114 psg->sg[i].count = cpu_to_le32(count);
2115 psg->sg[i].flags = 0;
2116 byte_count += count;
2117 sg++;
2119 psg->count = cpu_to_le32(sg_count);
2120 /* hba wants the size to be exact */
2121 if(byte_count > scsicmd->request_bufflen){
2122 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2123 (byte_count - scsicmd->request_bufflen);
2124 psg->sg[i-1].count = cpu_to_le32(temp);
2125 byte_count = scsicmd->request_bufflen;
2127 /* Check for command underflow */
2128 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2129 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2130 byte_count, scsicmd->underflow);
2133 else if(scsicmd->request_bufflen) {
2134 int count;
2135 u64 addr;
2136 scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
2137 scsicmd->request_buffer,
2138 scsicmd->request_bufflen,
2139 scsicmd->sc_data_direction);
2140 addr = scsicmd->SCp.dma_handle;
2141 count = scsicmd->request_bufflen;
2142 psg->count = cpu_to_le32(1);
2143 psg->sg[0].next = 0;
2144 psg->sg[0].prev = 0;
2145 psg->sg[0].addr[1] = cpu_to_le32((u32)(addr>>32));
2146 psg->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2147 psg->sg[0].count = cpu_to_le32(count);
2148 psg->sg[0].flags = 0;
2149 byte_count = scsicmd->request_bufflen;
2151 return byte_count;
2154 #ifdef AAC_DETAILED_STATUS_INFO
2156 struct aac_srb_status_info {
2157 u32 status;
2158 char *str;
2162 static struct aac_srb_status_info srb_status_info[] = {
2163 { SRB_STATUS_PENDING, "Pending Status"},
2164 { SRB_STATUS_SUCCESS, "Success"},
2165 { SRB_STATUS_ABORTED, "Aborted Command"},
2166 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
2167 { SRB_STATUS_ERROR, "Error Event"},
2168 { SRB_STATUS_BUSY, "Device Busy"},
2169 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
2170 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
2171 { SRB_STATUS_NO_DEVICE, "No Device"},
2172 { SRB_STATUS_TIMEOUT, "Timeout"},
2173 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
2174 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
2175 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
2176 { SRB_STATUS_BUS_RESET, "Bus Reset"},
2177 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
2178 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2179 { SRB_STATUS_NO_HBA, "No HBA"},
2180 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
2181 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2182 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2183 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2184 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
2185 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
2186 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
2187 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
2188 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
2189 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
2190 { SRB_STATUS_NOT_STARTED, "Not Started"},
2191 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
2192 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
2193 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2194 { 0xff, "Unknown Error"}
2197 char *aac_get_status_string(u32 status)
2199 int i;
2201 for(i=0; i < (sizeof(srb_status_info)/sizeof(struct aac_srb_status_info)); i++ ){
2202 if(srb_status_info[i].status == status){
2203 return srb_status_info[i].str;
2207 return "Bad Status Code";
2210 #endif