4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
42 #include <linux/compat.h>
43 #include <linux/syscalls.h>
44 #include <linux/kprobes.h>
45 #include <linux/user_namespace.h>
47 #include <linux/kmsg_dump.h>
49 #include <asm/uaccess.h>
51 #include <asm/unistd.h>
53 #ifndef SET_UNALIGN_CTL
54 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
56 #ifndef GET_UNALIGN_CTL
57 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
60 # define SET_FPEMU_CTL(a,b) (-EINVAL)
63 # define GET_FPEMU_CTL(a,b) (-EINVAL)
66 # define SET_FPEXC_CTL(a,b) (-EINVAL)
69 # define GET_FPEXC_CTL(a,b) (-EINVAL)
72 # define GET_ENDIAN(a,b) (-EINVAL)
75 # define SET_ENDIAN(a,b) (-EINVAL)
78 # define GET_TSC_CTL(a) (-EINVAL)
81 # define SET_TSC_CTL(a) (-EINVAL)
85 * this is where the system-wide overflow UID and GID are defined, for
86 * architectures that now have 32-bit UID/GID but didn't in the past
89 int overflowuid
= DEFAULT_OVERFLOWUID
;
90 int overflowgid
= DEFAULT_OVERFLOWGID
;
93 EXPORT_SYMBOL(overflowuid
);
94 EXPORT_SYMBOL(overflowgid
);
98 * the same as above, but for filesystems which can only store a 16-bit
99 * UID and GID. as such, this is needed on all architectures
102 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
103 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
105 EXPORT_SYMBOL(fs_overflowuid
);
106 EXPORT_SYMBOL(fs_overflowgid
);
109 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
114 EXPORT_SYMBOL(cad_pid
);
117 * If set, this is used for preparing the system to power off.
120 void (*pm_power_off_prepare
)(void);
123 * Returns true if current's euid is same as p's uid or euid,
124 * or has CAP_SYS_NICE to p's user_ns.
126 * Called with rcu_read_lock, creds are safe
128 static bool set_one_prio_perm(struct task_struct
*p
)
130 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
132 if (pcred
->user
->user_ns
== cred
->user
->user_ns
&&
133 (pcred
->uid
== cred
->euid
||
134 pcred
->euid
== cred
->euid
))
136 if (ns_capable(pcred
->user
->user_ns
, CAP_SYS_NICE
))
142 * set the priority of a task
143 * - the caller must hold the RCU read lock
145 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
149 if (!set_one_prio_perm(p
)) {
153 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
157 no_nice
= security_task_setnice(p
, niceval
);
164 set_user_nice(p
, niceval
);
169 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
171 struct task_struct
*g
, *p
;
172 struct user_struct
*user
;
173 const struct cred
*cred
= current_cred();
177 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
180 /* normalize: avoid signed division (rounding problems) */
188 read_lock(&tasklist_lock
);
192 p
= find_task_by_vpid(who
);
196 error
= set_one_prio(p
, niceval
, error
);
200 pgrp
= find_vpid(who
);
202 pgrp
= task_pgrp(current
);
203 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
204 error
= set_one_prio(p
, niceval
, error
);
205 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
208 user
= (struct user_struct
*) cred
->user
;
211 else if ((who
!= cred
->uid
) &&
212 !(user
= find_user(who
)))
213 goto out_unlock
; /* No processes for this user */
215 do_each_thread(g
, p
) {
216 if (__task_cred(p
)->uid
== who
)
217 error
= set_one_prio(p
, niceval
, error
);
218 } while_each_thread(g
, p
);
219 if (who
!= cred
->uid
)
220 free_uid(user
); /* For find_user() */
224 read_unlock(&tasklist_lock
);
231 * Ugh. To avoid negative return values, "getpriority()" will
232 * not return the normal nice-value, but a negated value that
233 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
234 * to stay compatible.
236 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
238 struct task_struct
*g
, *p
;
239 struct user_struct
*user
;
240 const struct cred
*cred
= current_cred();
241 long niceval
, retval
= -ESRCH
;
244 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
248 read_lock(&tasklist_lock
);
252 p
= find_task_by_vpid(who
);
256 niceval
= 20 - task_nice(p
);
257 if (niceval
> retval
)
263 pgrp
= find_vpid(who
);
265 pgrp
= task_pgrp(current
);
266 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
267 niceval
= 20 - task_nice(p
);
268 if (niceval
> retval
)
270 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
273 user
= (struct user_struct
*) cred
->user
;
276 else if ((who
!= cred
->uid
) &&
277 !(user
= find_user(who
)))
278 goto out_unlock
; /* No processes for this user */
280 do_each_thread(g
, p
) {
281 if (__task_cred(p
)->uid
== who
) {
282 niceval
= 20 - task_nice(p
);
283 if (niceval
> retval
)
286 } while_each_thread(g
, p
);
287 if (who
!= cred
->uid
)
288 free_uid(user
); /* for find_user() */
292 read_unlock(&tasklist_lock
);
299 * emergency_restart - reboot the system
301 * Without shutting down any hardware or taking any locks
302 * reboot the system. This is called when we know we are in
303 * trouble so this is our best effort to reboot. This is
304 * safe to call in interrupt context.
306 void emergency_restart(void)
308 kmsg_dump(KMSG_DUMP_EMERG
);
309 machine_emergency_restart();
311 EXPORT_SYMBOL_GPL(emergency_restart
);
313 void kernel_restart_prepare(char *cmd
)
315 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
316 system_state
= SYSTEM_RESTART
;
323 * kernel_restart - reboot the system
324 * @cmd: pointer to buffer containing command to execute for restart
327 * Shutdown everything and perform a clean reboot.
328 * This is not safe to call in interrupt context.
330 void kernel_restart(char *cmd
)
332 kernel_restart_prepare(cmd
);
334 printk(KERN_EMERG
"Restarting system.\n");
336 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
337 kmsg_dump(KMSG_DUMP_RESTART
);
338 machine_restart(cmd
);
340 EXPORT_SYMBOL_GPL(kernel_restart
);
342 static void kernel_shutdown_prepare(enum system_states state
)
344 blocking_notifier_call_chain(&reboot_notifier_list
,
345 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
346 system_state
= state
;
350 * kernel_halt - halt the system
352 * Shutdown everything and perform a clean system halt.
354 void kernel_halt(void)
356 kernel_shutdown_prepare(SYSTEM_HALT
);
359 printk(KERN_EMERG
"System halted.\n");
360 kmsg_dump(KMSG_DUMP_HALT
);
364 EXPORT_SYMBOL_GPL(kernel_halt
);
367 * kernel_power_off - power_off the system
369 * Shutdown everything and perform a clean system power_off.
371 void kernel_power_off(void)
373 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
374 if (pm_power_off_prepare
)
375 pm_power_off_prepare();
376 disable_nonboot_cpus();
379 printk(KERN_EMERG
"Power down.\n");
380 kmsg_dump(KMSG_DUMP_POWEROFF
);
383 EXPORT_SYMBOL_GPL(kernel_power_off
);
385 static DEFINE_MUTEX(reboot_mutex
);
388 * Reboot system call: for obvious reasons only root may call it,
389 * and even root needs to set up some magic numbers in the registers
390 * so that some mistake won't make this reboot the whole machine.
391 * You can also set the meaning of the ctrl-alt-del-key here.
393 * reboot doesn't sync: do that yourself before calling this.
395 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
401 /* We only trust the superuser with rebooting the system. */
402 if (!capable(CAP_SYS_BOOT
))
405 /* For safety, we require "magic" arguments. */
406 if (magic1
!= LINUX_REBOOT_MAGIC1
||
407 (magic2
!= LINUX_REBOOT_MAGIC2
&&
408 magic2
!= LINUX_REBOOT_MAGIC2A
&&
409 magic2
!= LINUX_REBOOT_MAGIC2B
&&
410 magic2
!= LINUX_REBOOT_MAGIC2C
))
413 /* Instead of trying to make the power_off code look like
414 * halt when pm_power_off is not set do it the easy way.
416 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
417 cmd
= LINUX_REBOOT_CMD_HALT
;
419 mutex_lock(&reboot_mutex
);
421 case LINUX_REBOOT_CMD_RESTART
:
422 kernel_restart(NULL
);
425 case LINUX_REBOOT_CMD_CAD_ON
:
429 case LINUX_REBOOT_CMD_CAD_OFF
:
433 case LINUX_REBOOT_CMD_HALT
:
436 panic("cannot halt");
438 case LINUX_REBOOT_CMD_POWER_OFF
:
443 case LINUX_REBOOT_CMD_RESTART2
:
444 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
448 buffer
[sizeof(buffer
) - 1] = '\0';
450 kernel_restart(buffer
);
454 case LINUX_REBOOT_CMD_KEXEC
:
455 ret
= kernel_kexec();
459 #ifdef CONFIG_HIBERNATION
460 case LINUX_REBOOT_CMD_SW_SUSPEND
:
469 mutex_unlock(&reboot_mutex
);
473 static void deferred_cad(struct work_struct
*dummy
)
475 kernel_restart(NULL
);
479 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
480 * As it's called within an interrupt, it may NOT sync: the only choice
481 * is whether to reboot at once, or just ignore the ctrl-alt-del.
483 void ctrl_alt_del(void)
485 static DECLARE_WORK(cad_work
, deferred_cad
);
488 schedule_work(&cad_work
);
490 kill_cad_pid(SIGINT
, 1);
494 * Unprivileged users may change the real gid to the effective gid
495 * or vice versa. (BSD-style)
497 * If you set the real gid at all, or set the effective gid to a value not
498 * equal to the real gid, then the saved gid is set to the new effective gid.
500 * This makes it possible for a setgid program to completely drop its
501 * privileges, which is often a useful assertion to make when you are doing
502 * a security audit over a program.
504 * The general idea is that a program which uses just setregid() will be
505 * 100% compatible with BSD. A program which uses just setgid() will be
506 * 100% compatible with POSIX with saved IDs.
508 * SMP: There are not races, the GIDs are checked only by filesystem
509 * operations (as far as semantic preservation is concerned).
511 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
513 const struct cred
*old
;
517 new = prepare_creds();
520 old
= current_cred();
523 if (rgid
!= (gid_t
) -1) {
524 if (old
->gid
== rgid
||
526 nsown_capable(CAP_SETGID
))
531 if (egid
!= (gid_t
) -1) {
532 if (old
->gid
== egid
||
535 nsown_capable(CAP_SETGID
))
541 if (rgid
!= (gid_t
) -1 ||
542 (egid
!= (gid_t
) -1 && egid
!= old
->gid
))
543 new->sgid
= new->egid
;
544 new->fsgid
= new->egid
;
546 return commit_creds(new);
554 * setgid() is implemented like SysV w/ SAVED_IDS
556 * SMP: Same implicit races as above.
558 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
560 const struct cred
*old
;
564 new = prepare_creds();
567 old
= current_cred();
570 if (nsown_capable(CAP_SETGID
))
571 new->gid
= new->egid
= new->sgid
= new->fsgid
= gid
;
572 else if (gid
== old
->gid
|| gid
== old
->sgid
)
573 new->egid
= new->fsgid
= gid
;
577 return commit_creds(new);
585 * change the user struct in a credentials set to match the new UID
587 static int set_user(struct cred
*new)
589 struct user_struct
*new_user
;
591 new_user
= alloc_uid(current_user_ns(), new->uid
);
595 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
596 new_user
!= INIT_USER
) {
602 new->user
= new_user
;
607 * Unprivileged users may change the real uid to the effective uid
608 * or vice versa. (BSD-style)
610 * If you set the real uid at all, or set the effective uid to a value not
611 * equal to the real uid, then the saved uid is set to the new effective uid.
613 * This makes it possible for a setuid program to completely drop its
614 * privileges, which is often a useful assertion to make when you are doing
615 * a security audit over a program.
617 * The general idea is that a program which uses just setreuid() will be
618 * 100% compatible with BSD. A program which uses just setuid() will be
619 * 100% compatible with POSIX with saved IDs.
621 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
623 const struct cred
*old
;
627 new = prepare_creds();
630 old
= current_cred();
633 if (ruid
!= (uid_t
) -1) {
635 if (old
->uid
!= ruid
&&
637 !nsown_capable(CAP_SETUID
))
641 if (euid
!= (uid_t
) -1) {
643 if (old
->uid
!= euid
&&
646 !nsown_capable(CAP_SETUID
))
650 if (new->uid
!= old
->uid
) {
651 retval
= set_user(new);
655 if (ruid
!= (uid_t
) -1 ||
656 (euid
!= (uid_t
) -1 && euid
!= old
->uid
))
657 new->suid
= new->euid
;
658 new->fsuid
= new->euid
;
660 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
664 return commit_creds(new);
672 * setuid() is implemented like SysV with SAVED_IDS
674 * Note that SAVED_ID's is deficient in that a setuid root program
675 * like sendmail, for example, cannot set its uid to be a normal
676 * user and then switch back, because if you're root, setuid() sets
677 * the saved uid too. If you don't like this, blame the bright people
678 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
679 * will allow a root program to temporarily drop privileges and be able to
680 * regain them by swapping the real and effective uid.
682 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
684 const struct cred
*old
;
688 new = prepare_creds();
691 old
= current_cred();
694 if (nsown_capable(CAP_SETUID
)) {
695 new->suid
= new->uid
= uid
;
696 if (uid
!= old
->uid
) {
697 retval
= set_user(new);
701 } else if (uid
!= old
->uid
&& uid
!= new->suid
) {
705 new->fsuid
= new->euid
= uid
;
707 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
711 return commit_creds(new);
720 * This function implements a generic ability to update ruid, euid,
721 * and suid. This allows you to implement the 4.4 compatible seteuid().
723 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
725 const struct cred
*old
;
729 new = prepare_creds();
733 old
= current_cred();
736 if (!nsown_capable(CAP_SETUID
)) {
737 if (ruid
!= (uid_t
) -1 && ruid
!= old
->uid
&&
738 ruid
!= old
->euid
&& ruid
!= old
->suid
)
740 if (euid
!= (uid_t
) -1 && euid
!= old
->uid
&&
741 euid
!= old
->euid
&& euid
!= old
->suid
)
743 if (suid
!= (uid_t
) -1 && suid
!= old
->uid
&&
744 suid
!= old
->euid
&& suid
!= old
->suid
)
748 if (ruid
!= (uid_t
) -1) {
750 if (ruid
!= old
->uid
) {
751 retval
= set_user(new);
756 if (euid
!= (uid_t
) -1)
758 if (suid
!= (uid_t
) -1)
760 new->fsuid
= new->euid
;
762 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
766 return commit_creds(new);
773 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruid
, uid_t __user
*, euid
, uid_t __user
*, suid
)
775 const struct cred
*cred
= current_cred();
778 if (!(retval
= put_user(cred
->uid
, ruid
)) &&
779 !(retval
= put_user(cred
->euid
, euid
)))
780 retval
= put_user(cred
->suid
, suid
);
786 * Same as above, but for rgid, egid, sgid.
788 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
790 const struct cred
*old
;
794 new = prepare_creds();
797 old
= current_cred();
800 if (!nsown_capable(CAP_SETGID
)) {
801 if (rgid
!= (gid_t
) -1 && rgid
!= old
->gid
&&
802 rgid
!= old
->egid
&& rgid
!= old
->sgid
)
804 if (egid
!= (gid_t
) -1 && egid
!= old
->gid
&&
805 egid
!= old
->egid
&& egid
!= old
->sgid
)
807 if (sgid
!= (gid_t
) -1 && sgid
!= old
->gid
&&
808 sgid
!= old
->egid
&& sgid
!= old
->sgid
)
812 if (rgid
!= (gid_t
) -1)
814 if (egid
!= (gid_t
) -1)
816 if (sgid
!= (gid_t
) -1)
818 new->fsgid
= new->egid
;
820 return commit_creds(new);
827 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgid
, gid_t __user
*, egid
, gid_t __user
*, sgid
)
829 const struct cred
*cred
= current_cred();
832 if (!(retval
= put_user(cred
->gid
, rgid
)) &&
833 !(retval
= put_user(cred
->egid
, egid
)))
834 retval
= put_user(cred
->sgid
, sgid
);
841 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
842 * is used for "access()" and for the NFS daemon (letting nfsd stay at
843 * whatever uid it wants to). It normally shadows "euid", except when
844 * explicitly set by setfsuid() or for access..
846 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
848 const struct cred
*old
;
852 new = prepare_creds();
854 return current_fsuid();
855 old
= current_cred();
856 old_fsuid
= old
->fsuid
;
858 if (uid
== old
->uid
|| uid
== old
->euid
||
859 uid
== old
->suid
|| uid
== old
->fsuid
||
860 nsown_capable(CAP_SETUID
)) {
861 if (uid
!= old_fsuid
) {
863 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
877 * Samma på svenska..
879 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
881 const struct cred
*old
;
885 new = prepare_creds();
887 return current_fsgid();
888 old
= current_cred();
889 old_fsgid
= old
->fsgid
;
891 if (gid
== old
->gid
|| gid
== old
->egid
||
892 gid
== old
->sgid
|| gid
== old
->fsgid
||
893 nsown_capable(CAP_SETGID
)) {
894 if (gid
!= old_fsgid
) {
908 void do_sys_times(struct tms
*tms
)
910 cputime_t tgutime
, tgstime
, cutime
, cstime
;
912 spin_lock_irq(¤t
->sighand
->siglock
);
913 thread_group_times(current
, &tgutime
, &tgstime
);
914 cutime
= current
->signal
->cutime
;
915 cstime
= current
->signal
->cstime
;
916 spin_unlock_irq(¤t
->sighand
->siglock
);
917 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
918 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
919 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
920 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
923 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
929 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
932 force_successful_syscall_return();
933 return (long) jiffies_64_to_clock_t(get_jiffies_64());
937 * This needs some heavy checking ...
938 * I just haven't the stomach for it. I also don't fully
939 * understand sessions/pgrp etc. Let somebody who does explain it.
941 * OK, I think I have the protection semantics right.... this is really
942 * only important on a multi-user system anyway, to make sure one user
943 * can't send a signal to a process owned by another. -TYT, 12/12/91
945 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
948 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
950 struct task_struct
*p
;
951 struct task_struct
*group_leader
= current
->group_leader
;
956 pid
= task_pid_vnr(group_leader
);
963 /* From this point forward we keep holding onto the tasklist lock
964 * so that our parent does not change from under us. -DaveM
966 write_lock_irq(&tasklist_lock
);
969 p
= find_task_by_vpid(pid
);
974 if (!thread_group_leader(p
))
977 if (same_thread_group(p
->real_parent
, group_leader
)) {
979 if (task_session(p
) != task_session(group_leader
))
986 if (p
!= group_leader
)
991 if (p
->signal
->leader
)
996 struct task_struct
*g
;
998 pgrp
= find_vpid(pgid
);
999 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1000 if (!g
|| task_session(g
) != task_session(group_leader
))
1004 err
= security_task_setpgid(p
, pgid
);
1008 if (task_pgrp(p
) != pgrp
)
1009 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1013 /* All paths lead to here, thus we are safe. -DaveM */
1014 write_unlock_irq(&tasklist_lock
);
1019 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1021 struct task_struct
*p
;
1027 grp
= task_pgrp(current
);
1030 p
= find_task_by_vpid(pid
);
1037 retval
= security_task_getpgid(p
);
1041 retval
= pid_vnr(grp
);
1047 #ifdef __ARCH_WANT_SYS_GETPGRP
1049 SYSCALL_DEFINE0(getpgrp
)
1051 return sys_getpgid(0);
1056 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1058 struct task_struct
*p
;
1064 sid
= task_session(current
);
1067 p
= find_task_by_vpid(pid
);
1070 sid
= task_session(p
);
1074 retval
= security_task_getsid(p
);
1078 retval
= pid_vnr(sid
);
1084 SYSCALL_DEFINE0(setsid
)
1086 struct task_struct
*group_leader
= current
->group_leader
;
1087 struct pid
*sid
= task_pid(group_leader
);
1088 pid_t session
= pid_vnr(sid
);
1091 write_lock_irq(&tasklist_lock
);
1092 /* Fail if I am already a session leader */
1093 if (group_leader
->signal
->leader
)
1096 /* Fail if a process group id already exists that equals the
1097 * proposed session id.
1099 if (pid_task(sid
, PIDTYPE_PGID
))
1102 group_leader
->signal
->leader
= 1;
1103 __set_special_pids(sid
);
1105 proc_clear_tty(group_leader
);
1109 write_unlock_irq(&tasklist_lock
);
1111 proc_sid_connector(group_leader
);
1112 sched_autogroup_create_attach(group_leader
);
1117 DECLARE_RWSEM(uts_sem
);
1119 #ifdef COMPAT_UTS_MACHINE
1120 #define override_architecture(name) \
1121 (personality(current->personality) == PER_LINUX32 && \
1122 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1123 sizeof(COMPAT_UTS_MACHINE)))
1125 #define override_architecture(name) 0
1128 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1132 down_read(&uts_sem
);
1133 if (copy_to_user(name
, utsname(), sizeof *name
))
1137 if (!errno
&& override_architecture(name
))
1142 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1146 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1153 down_read(&uts_sem
);
1154 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1158 if (!error
&& override_architecture(name
))
1163 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1169 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1172 down_read(&uts_sem
);
1173 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1175 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1176 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1178 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1179 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1181 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1182 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1184 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1185 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1187 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1190 if (!error
&& override_architecture(name
))
1192 return error
? -EFAULT
: 0;
1196 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1199 char tmp
[__NEW_UTS_LEN
];
1201 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1204 if (len
< 0 || len
> __NEW_UTS_LEN
)
1206 down_write(&uts_sem
);
1208 if (!copy_from_user(tmp
, name
, len
)) {
1209 struct new_utsname
*u
= utsname();
1211 memcpy(u
->nodename
, tmp
, len
);
1212 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1219 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1221 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1224 struct new_utsname
*u
;
1228 down_read(&uts_sem
);
1230 i
= 1 + strlen(u
->nodename
);
1234 if (copy_to_user(name
, u
->nodename
, i
))
1243 * Only setdomainname; getdomainname can be implemented by calling
1246 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1249 char tmp
[__NEW_UTS_LEN
];
1251 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1253 if (len
< 0 || len
> __NEW_UTS_LEN
)
1256 down_write(&uts_sem
);
1258 if (!copy_from_user(tmp
, name
, len
)) {
1259 struct new_utsname
*u
= utsname();
1261 memcpy(u
->domainname
, tmp
, len
);
1262 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1269 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1271 struct rlimit value
;
1274 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1276 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1281 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1284 * Back compatibility for getrlimit. Needed for some apps.
1287 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1288 struct rlimit __user
*, rlim
)
1291 if (resource
>= RLIM_NLIMITS
)
1294 task_lock(current
->group_leader
);
1295 x
= current
->signal
->rlim
[resource
];
1296 task_unlock(current
->group_leader
);
1297 if (x
.rlim_cur
> 0x7FFFFFFF)
1298 x
.rlim_cur
= 0x7FFFFFFF;
1299 if (x
.rlim_max
> 0x7FFFFFFF)
1300 x
.rlim_max
= 0x7FFFFFFF;
1301 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1306 static inline bool rlim64_is_infinity(__u64 rlim64
)
1308 #if BITS_PER_LONG < 64
1309 return rlim64
>= ULONG_MAX
;
1311 return rlim64
== RLIM64_INFINITY
;
1315 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1317 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1318 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1320 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1321 if (rlim
->rlim_max
== RLIM_INFINITY
)
1322 rlim64
->rlim_max
= RLIM64_INFINITY
;
1324 rlim64
->rlim_max
= rlim
->rlim_max
;
1327 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1329 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1330 rlim
->rlim_cur
= RLIM_INFINITY
;
1332 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1333 if (rlim64_is_infinity(rlim64
->rlim_max
))
1334 rlim
->rlim_max
= RLIM_INFINITY
;
1336 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1339 /* make sure you are allowed to change @tsk limits before calling this */
1340 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1341 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1343 struct rlimit
*rlim
;
1346 if (resource
>= RLIM_NLIMITS
)
1349 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1351 if (resource
== RLIMIT_NOFILE
&&
1352 new_rlim
->rlim_max
> sysctl_nr_open
)
1356 /* protect tsk->signal and tsk->sighand from disappearing */
1357 read_lock(&tasklist_lock
);
1358 if (!tsk
->sighand
) {
1363 rlim
= tsk
->signal
->rlim
+ resource
;
1364 task_lock(tsk
->group_leader
);
1366 /* Keep the capable check against init_user_ns until
1367 cgroups can contain all limits */
1368 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1369 !capable(CAP_SYS_RESOURCE
))
1372 retval
= security_task_setrlimit(tsk
->group_leader
,
1373 resource
, new_rlim
);
1374 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1376 * The caller is asking for an immediate RLIMIT_CPU
1377 * expiry. But we use the zero value to mean "it was
1378 * never set". So let's cheat and make it one second
1381 new_rlim
->rlim_cur
= 1;
1390 task_unlock(tsk
->group_leader
);
1393 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1394 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1395 * very long-standing error, and fixing it now risks breakage of
1396 * applications, so we live with it
1398 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1399 new_rlim
->rlim_cur
!= RLIM_INFINITY
)
1400 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1402 read_unlock(&tasklist_lock
);
1406 /* rcu lock must be held */
1407 static int check_prlimit_permission(struct task_struct
*task
)
1409 const struct cred
*cred
= current_cred(), *tcred
;
1411 if (current
== task
)
1414 tcred
= __task_cred(task
);
1415 if (cred
->user
->user_ns
== tcred
->user
->user_ns
&&
1416 (cred
->uid
== tcred
->euid
&&
1417 cred
->uid
== tcred
->suid
&&
1418 cred
->uid
== tcred
->uid
&&
1419 cred
->gid
== tcred
->egid
&&
1420 cred
->gid
== tcred
->sgid
&&
1421 cred
->gid
== tcred
->gid
))
1423 if (ns_capable(tcred
->user
->user_ns
, CAP_SYS_RESOURCE
))
1429 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1430 const struct rlimit64 __user
*, new_rlim
,
1431 struct rlimit64 __user
*, old_rlim
)
1433 struct rlimit64 old64
, new64
;
1434 struct rlimit old
, new;
1435 struct task_struct
*tsk
;
1439 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1441 rlim64_to_rlim(&new64
, &new);
1445 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1450 ret
= check_prlimit_permission(tsk
);
1455 get_task_struct(tsk
);
1458 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1459 old_rlim
? &old
: NULL
);
1461 if (!ret
&& old_rlim
) {
1462 rlim_to_rlim64(&old
, &old64
);
1463 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1467 put_task_struct(tsk
);
1471 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1473 struct rlimit new_rlim
;
1475 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1477 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1481 * It would make sense to put struct rusage in the task_struct,
1482 * except that would make the task_struct be *really big*. After
1483 * task_struct gets moved into malloc'ed memory, it would
1484 * make sense to do this. It will make moving the rest of the information
1485 * a lot simpler! (Which we're not doing right now because we're not
1486 * measuring them yet).
1488 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1489 * races with threads incrementing their own counters. But since word
1490 * reads are atomic, we either get new values or old values and we don't
1491 * care which for the sums. We always take the siglock to protect reading
1492 * the c* fields from p->signal from races with exit.c updating those
1493 * fields when reaping, so a sample either gets all the additions of a
1494 * given child after it's reaped, or none so this sample is before reaping.
1497 * We need to take the siglock for CHILDEREN, SELF and BOTH
1498 * for the cases current multithreaded, non-current single threaded
1499 * non-current multithreaded. Thread traversal is now safe with
1501 * Strictly speaking, we donot need to take the siglock if we are current and
1502 * single threaded, as no one else can take our signal_struct away, no one
1503 * else can reap the children to update signal->c* counters, and no one else
1504 * can race with the signal-> fields. If we do not take any lock, the
1505 * signal-> fields could be read out of order while another thread was just
1506 * exiting. So we should place a read memory barrier when we avoid the lock.
1507 * On the writer side, write memory barrier is implied in __exit_signal
1508 * as __exit_signal releases the siglock spinlock after updating the signal->
1509 * fields. But we don't do this yet to keep things simple.
1513 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1515 r
->ru_nvcsw
+= t
->nvcsw
;
1516 r
->ru_nivcsw
+= t
->nivcsw
;
1517 r
->ru_minflt
+= t
->min_flt
;
1518 r
->ru_majflt
+= t
->maj_flt
;
1519 r
->ru_inblock
+= task_io_get_inblock(t
);
1520 r
->ru_oublock
+= task_io_get_oublock(t
);
1523 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1525 struct task_struct
*t
;
1526 unsigned long flags
;
1527 cputime_t tgutime
, tgstime
, utime
, stime
;
1528 unsigned long maxrss
= 0;
1530 memset((char *) r
, 0, sizeof *r
);
1531 utime
= stime
= cputime_zero
;
1533 if (who
== RUSAGE_THREAD
) {
1534 task_times(current
, &utime
, &stime
);
1535 accumulate_thread_rusage(p
, r
);
1536 maxrss
= p
->signal
->maxrss
;
1540 if (!lock_task_sighand(p
, &flags
))
1545 case RUSAGE_CHILDREN
:
1546 utime
= p
->signal
->cutime
;
1547 stime
= p
->signal
->cstime
;
1548 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1549 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1550 r
->ru_minflt
= p
->signal
->cmin_flt
;
1551 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1552 r
->ru_inblock
= p
->signal
->cinblock
;
1553 r
->ru_oublock
= p
->signal
->coublock
;
1554 maxrss
= p
->signal
->cmaxrss
;
1556 if (who
== RUSAGE_CHILDREN
)
1560 thread_group_times(p
, &tgutime
, &tgstime
);
1561 utime
= cputime_add(utime
, tgutime
);
1562 stime
= cputime_add(stime
, tgstime
);
1563 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1564 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1565 r
->ru_minflt
+= p
->signal
->min_flt
;
1566 r
->ru_majflt
+= p
->signal
->maj_flt
;
1567 r
->ru_inblock
+= p
->signal
->inblock
;
1568 r
->ru_oublock
+= p
->signal
->oublock
;
1569 if (maxrss
< p
->signal
->maxrss
)
1570 maxrss
= p
->signal
->maxrss
;
1573 accumulate_thread_rusage(t
, r
);
1581 unlock_task_sighand(p
, &flags
);
1584 cputime_to_timeval(utime
, &r
->ru_utime
);
1585 cputime_to_timeval(stime
, &r
->ru_stime
);
1587 if (who
!= RUSAGE_CHILDREN
) {
1588 struct mm_struct
*mm
= get_task_mm(p
);
1590 setmax_mm_hiwater_rss(&maxrss
, mm
);
1594 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1597 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1600 k_getrusage(p
, who
, &r
);
1601 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1604 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1606 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1607 who
!= RUSAGE_THREAD
)
1609 return getrusage(current
, who
, ru
);
1612 SYSCALL_DEFINE1(umask
, int, mask
)
1614 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1618 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
1619 unsigned long, arg4
, unsigned long, arg5
)
1621 struct task_struct
*me
= current
;
1622 unsigned char comm
[sizeof(me
->comm
)];
1625 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1626 if (error
!= -ENOSYS
)
1631 case PR_SET_PDEATHSIG
:
1632 if (!valid_signal(arg2
)) {
1636 me
->pdeath_signal
= arg2
;
1639 case PR_GET_PDEATHSIG
:
1640 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
1642 case PR_GET_DUMPABLE
:
1643 error
= get_dumpable(me
->mm
);
1645 case PR_SET_DUMPABLE
:
1646 if (arg2
< 0 || arg2
> 1) {
1650 set_dumpable(me
->mm
, arg2
);
1654 case PR_SET_UNALIGN
:
1655 error
= SET_UNALIGN_CTL(me
, arg2
);
1657 case PR_GET_UNALIGN
:
1658 error
= GET_UNALIGN_CTL(me
, arg2
);
1661 error
= SET_FPEMU_CTL(me
, arg2
);
1664 error
= GET_FPEMU_CTL(me
, arg2
);
1667 error
= SET_FPEXC_CTL(me
, arg2
);
1670 error
= GET_FPEXC_CTL(me
, arg2
);
1673 error
= PR_TIMING_STATISTICAL
;
1676 if (arg2
!= PR_TIMING_STATISTICAL
)
1683 comm
[sizeof(me
->comm
)-1] = 0;
1684 if (strncpy_from_user(comm
, (char __user
*)arg2
,
1685 sizeof(me
->comm
) - 1) < 0)
1687 set_task_comm(me
, comm
);
1690 get_task_comm(comm
, me
);
1691 if (copy_to_user((char __user
*)arg2
, comm
,
1696 error
= GET_ENDIAN(me
, arg2
);
1699 error
= SET_ENDIAN(me
, arg2
);
1702 case PR_GET_SECCOMP
:
1703 error
= prctl_get_seccomp();
1705 case PR_SET_SECCOMP
:
1706 error
= prctl_set_seccomp(arg2
);
1709 error
= GET_TSC_CTL(arg2
);
1712 error
= SET_TSC_CTL(arg2
);
1714 case PR_TASK_PERF_EVENTS_DISABLE
:
1715 error
= perf_event_task_disable();
1717 case PR_TASK_PERF_EVENTS_ENABLE
:
1718 error
= perf_event_task_enable();
1720 case PR_GET_TIMERSLACK
:
1721 error
= current
->timer_slack_ns
;
1723 case PR_SET_TIMERSLACK
:
1725 current
->timer_slack_ns
=
1726 current
->default_timer_slack_ns
;
1728 current
->timer_slack_ns
= arg2
;
1735 case PR_MCE_KILL_CLEAR
:
1738 current
->flags
&= ~PF_MCE_PROCESS
;
1740 case PR_MCE_KILL_SET
:
1741 current
->flags
|= PF_MCE_PROCESS
;
1742 if (arg3
== PR_MCE_KILL_EARLY
)
1743 current
->flags
|= PF_MCE_EARLY
;
1744 else if (arg3
== PR_MCE_KILL_LATE
)
1745 current
->flags
&= ~PF_MCE_EARLY
;
1746 else if (arg3
== PR_MCE_KILL_DEFAULT
)
1748 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
1757 case PR_MCE_KILL_GET
:
1758 if (arg2
| arg3
| arg4
| arg5
)
1760 if (current
->flags
& PF_MCE_PROCESS
)
1761 error
= (current
->flags
& PF_MCE_EARLY
) ?
1762 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
1764 error
= PR_MCE_KILL_DEFAULT
;
1773 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
1774 struct getcpu_cache __user
*, unused
)
1777 int cpu
= raw_smp_processor_id();
1779 err
|= put_user(cpu
, cpup
);
1781 err
|= put_user(cpu_to_node(cpu
), nodep
);
1782 return err
? -EFAULT
: 0;
1785 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1787 static void argv_cleanup(struct subprocess_info
*info
)
1789 argv_free(info
->argv
);
1793 * orderly_poweroff - Trigger an orderly system poweroff
1794 * @force: force poweroff if command execution fails
1796 * This may be called from any context to trigger a system shutdown.
1797 * If the orderly shutdown fails, it will force an immediate shutdown.
1799 int orderly_poweroff(bool force
)
1802 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1803 static char *envp
[] = {
1805 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1809 struct subprocess_info
*info
;
1812 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1813 __func__
, poweroff_cmd
);
1817 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
1823 call_usermodehelper_setfns(info
, NULL
, argv_cleanup
, NULL
);
1825 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1829 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1830 "forcing the issue\n");
1832 /* I guess this should try to kick off some daemon to
1833 sync and poweroff asap. Or not even bother syncing
1834 if we're doing an emergency shutdown? */
1841 EXPORT_SYMBOL_GPL(orderly_poweroff
);