4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
39 #include <linux/compat.h>
40 #include <linux/syscalls.h>
41 #include <linux/kprobes.h>
42 #include <linux/user_namespace.h>
44 #include <asm/uaccess.h>
46 #include <asm/unistd.h>
48 #ifndef SET_UNALIGN_CTL
49 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
51 #ifndef GET_UNALIGN_CTL
52 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
55 # define SET_FPEMU_CTL(a,b) (-EINVAL)
58 # define GET_FPEMU_CTL(a,b) (-EINVAL)
61 # define SET_FPEXC_CTL(a,b) (-EINVAL)
64 # define GET_FPEXC_CTL(a,b) (-EINVAL)
67 # define GET_ENDIAN(a,b) (-EINVAL)
70 # define SET_ENDIAN(a,b) (-EINVAL)
73 # define GET_TSC_CTL(a) (-EINVAL)
76 # define SET_TSC_CTL(a) (-EINVAL)
80 * this is where the system-wide overflow UID and GID are defined, for
81 * architectures that now have 32-bit UID/GID but didn't in the past
84 int overflowuid
= DEFAULT_OVERFLOWUID
;
85 int overflowgid
= DEFAULT_OVERFLOWGID
;
88 EXPORT_SYMBOL(overflowuid
);
89 EXPORT_SYMBOL(overflowgid
);
93 * the same as above, but for filesystems which can only store a 16-bit
94 * UID and GID. as such, this is needed on all architectures
97 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
98 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
100 EXPORT_SYMBOL(fs_overflowuid
);
101 EXPORT_SYMBOL(fs_overflowgid
);
104 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
109 EXPORT_SYMBOL(cad_pid
);
112 * If set, this is used for preparing the system to power off.
115 void (*pm_power_off_prepare
)(void);
118 * set the priority of a task
119 * - the caller must hold the RCU read lock
121 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
123 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
126 if (pcred
->uid
!= cred
->euid
&&
127 pcred
->euid
!= cred
->euid
&& !capable(CAP_SYS_NICE
)) {
131 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
135 no_nice
= security_task_setnice(p
, niceval
);
142 set_user_nice(p
, niceval
);
147 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
149 struct task_struct
*g
, *p
;
150 struct user_struct
*user
;
151 const struct cred
*cred
= current_cred();
155 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
158 /* normalize: avoid signed division (rounding problems) */
165 read_lock(&tasklist_lock
);
169 p
= find_task_by_vpid(who
);
173 error
= set_one_prio(p
, niceval
, error
);
177 pgrp
= find_vpid(who
);
179 pgrp
= task_pgrp(current
);
180 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
181 error
= set_one_prio(p
, niceval
, error
);
182 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
185 user
= (struct user_struct
*) cred
->user
;
188 else if ((who
!= cred
->uid
) &&
189 !(user
= find_user(who
)))
190 goto out_unlock
; /* No processes for this user */
193 if (__task_cred(p
)->uid
== who
)
194 error
= set_one_prio(p
, niceval
, error
);
195 while_each_thread(g
, p
);
196 if (who
!= cred
->uid
)
197 free_uid(user
); /* For find_user() */
201 read_unlock(&tasklist_lock
);
207 * Ugh. To avoid negative return values, "getpriority()" will
208 * not return the normal nice-value, but a negated value that
209 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
210 * to stay compatible.
212 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
214 struct task_struct
*g
, *p
;
215 struct user_struct
*user
;
216 const struct cred
*cred
= current_cred();
217 long niceval
, retval
= -ESRCH
;
220 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
223 read_lock(&tasklist_lock
);
227 p
= find_task_by_vpid(who
);
231 niceval
= 20 - task_nice(p
);
232 if (niceval
> retval
)
238 pgrp
= find_vpid(who
);
240 pgrp
= task_pgrp(current
);
241 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
242 niceval
= 20 - task_nice(p
);
243 if (niceval
> retval
)
245 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
248 user
= (struct user_struct
*) cred
->user
;
251 else if ((who
!= cred
->uid
) &&
252 !(user
= find_user(who
)))
253 goto out_unlock
; /* No processes for this user */
256 if (__task_cred(p
)->uid
== who
) {
257 niceval
= 20 - task_nice(p
);
258 if (niceval
> retval
)
261 while_each_thread(g
, p
);
262 if (who
!= cred
->uid
)
263 free_uid(user
); /* for find_user() */
267 read_unlock(&tasklist_lock
);
273 * emergency_restart - reboot the system
275 * Without shutting down any hardware or taking any locks
276 * reboot the system. This is called when we know we are in
277 * trouble so this is our best effort to reboot. This is
278 * safe to call in interrupt context.
280 void emergency_restart(void)
282 machine_emergency_restart();
284 EXPORT_SYMBOL_GPL(emergency_restart
);
286 void kernel_restart_prepare(char *cmd
)
288 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
289 system_state
= SYSTEM_RESTART
;
295 * kernel_restart - reboot the system
296 * @cmd: pointer to buffer containing command to execute for restart
299 * Shutdown everything and perform a clean reboot.
300 * This is not safe to call in interrupt context.
302 void kernel_restart(char *cmd
)
304 kernel_restart_prepare(cmd
);
306 printk(KERN_EMERG
"Restarting system.\n");
308 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
309 machine_restart(cmd
);
311 EXPORT_SYMBOL_GPL(kernel_restart
);
313 static void kernel_shutdown_prepare(enum system_states state
)
315 blocking_notifier_call_chain(&reboot_notifier_list
,
316 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
317 system_state
= state
;
321 * kernel_halt - halt the system
323 * Shutdown everything and perform a clean system halt.
325 void kernel_halt(void)
327 kernel_shutdown_prepare(SYSTEM_HALT
);
329 printk(KERN_EMERG
"System halted.\n");
333 EXPORT_SYMBOL_GPL(kernel_halt
);
336 * kernel_power_off - power_off the system
338 * Shutdown everything and perform a clean system power_off.
340 void kernel_power_off(void)
342 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
343 if (pm_power_off_prepare
)
344 pm_power_off_prepare();
345 disable_nonboot_cpus();
347 printk(KERN_EMERG
"Power down.\n");
350 EXPORT_SYMBOL_GPL(kernel_power_off
);
352 static DEFINE_MUTEX(reboot_mutex
);
355 * Reboot system call: for obvious reasons only root may call it,
356 * and even root needs to set up some magic numbers in the registers
357 * so that some mistake won't make this reboot the whole machine.
358 * You can also set the meaning of the ctrl-alt-del-key here.
360 * reboot doesn't sync: do that yourself before calling this.
362 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
368 /* We only trust the superuser with rebooting the system. */
369 if (!capable(CAP_SYS_BOOT
))
372 /* For safety, we require "magic" arguments. */
373 if (magic1
!= LINUX_REBOOT_MAGIC1
||
374 (magic2
!= LINUX_REBOOT_MAGIC2
&&
375 magic2
!= LINUX_REBOOT_MAGIC2A
&&
376 magic2
!= LINUX_REBOOT_MAGIC2B
&&
377 magic2
!= LINUX_REBOOT_MAGIC2C
))
380 /* Instead of trying to make the power_off code look like
381 * halt when pm_power_off is not set do it the easy way.
383 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
384 cmd
= LINUX_REBOOT_CMD_HALT
;
386 mutex_lock(&reboot_mutex
);
388 case LINUX_REBOOT_CMD_RESTART
:
389 kernel_restart(NULL
);
392 case LINUX_REBOOT_CMD_CAD_ON
:
396 case LINUX_REBOOT_CMD_CAD_OFF
:
400 case LINUX_REBOOT_CMD_HALT
:
403 panic("cannot halt");
405 case LINUX_REBOOT_CMD_POWER_OFF
:
410 case LINUX_REBOOT_CMD_RESTART2
:
411 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
415 buffer
[sizeof(buffer
) - 1] = '\0';
417 kernel_restart(buffer
);
421 case LINUX_REBOOT_CMD_KEXEC
:
422 ret
= kernel_kexec();
426 #ifdef CONFIG_HIBERNATION
427 case LINUX_REBOOT_CMD_SW_SUSPEND
:
436 mutex_unlock(&reboot_mutex
);
440 static void deferred_cad(struct work_struct
*dummy
)
442 kernel_restart(NULL
);
446 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
447 * As it's called within an interrupt, it may NOT sync: the only choice
448 * is whether to reboot at once, or just ignore the ctrl-alt-del.
450 void ctrl_alt_del(void)
452 static DECLARE_WORK(cad_work
, deferred_cad
);
455 schedule_work(&cad_work
);
457 kill_cad_pid(SIGINT
, 1);
461 * Unprivileged users may change the real gid to the effective gid
462 * or vice versa. (BSD-style)
464 * If you set the real gid at all, or set the effective gid to a value not
465 * equal to the real gid, then the saved gid is set to the new effective gid.
467 * This makes it possible for a setgid program to completely drop its
468 * privileges, which is often a useful assertion to make when you are doing
469 * a security audit over a program.
471 * The general idea is that a program which uses just setregid() will be
472 * 100% compatible with BSD. A program which uses just setgid() will be
473 * 100% compatible with POSIX with saved IDs.
475 * SMP: There are not races, the GIDs are checked only by filesystem
476 * operations (as far as semantic preservation is concerned).
478 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
480 const struct cred
*old
;
484 new = prepare_creds();
487 old
= current_cred();
489 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
494 if (rgid
!= (gid_t
) -1) {
495 if (old
->gid
== rgid
||
502 if (egid
!= (gid_t
) -1) {
503 if (old
->gid
== egid
||
512 if (rgid
!= (gid_t
) -1 ||
513 (egid
!= (gid_t
) -1 && egid
!= old
->gid
))
514 new->sgid
= new->egid
;
515 new->fsgid
= new->egid
;
517 return commit_creds(new);
525 * setgid() is implemented like SysV w/ SAVED_IDS
527 * SMP: Same implicit races as above.
529 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
531 const struct cred
*old
;
535 new = prepare_creds();
538 old
= current_cred();
540 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
545 if (capable(CAP_SETGID
))
546 new->gid
= new->egid
= new->sgid
= new->fsgid
= gid
;
547 else if (gid
== old
->gid
|| gid
== old
->sgid
)
548 new->egid
= new->fsgid
= gid
;
552 return commit_creds(new);
560 * change the user struct in a credentials set to match the new UID
562 static int set_user(struct cred
*new)
564 struct user_struct
*new_user
;
566 new_user
= alloc_uid(current_user_ns(), new->uid
);
570 if (!task_can_switch_user(new_user
, current
)) {
575 if (atomic_read(&new_user
->processes
) >=
576 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
577 new_user
!= INIT_USER
) {
583 new->user
= new_user
;
588 * Unprivileged users may change the real uid to the effective uid
589 * or vice versa. (BSD-style)
591 * If you set the real uid at all, or set the effective uid to a value not
592 * equal to the real uid, then the saved uid is set to the new effective uid.
594 * This makes it possible for a setuid program to completely drop its
595 * privileges, which is often a useful assertion to make when you are doing
596 * a security audit over a program.
598 * The general idea is that a program which uses just setreuid() will be
599 * 100% compatible with BSD. A program which uses just setuid() will be
600 * 100% compatible with POSIX with saved IDs.
602 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
604 const struct cred
*old
;
608 new = prepare_creds();
611 old
= current_cred();
613 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
618 if (ruid
!= (uid_t
) -1) {
620 if (old
->uid
!= ruid
&&
622 !capable(CAP_SETUID
))
626 if (euid
!= (uid_t
) -1) {
628 if (old
->uid
!= euid
&&
631 !capable(CAP_SETUID
))
635 if (new->uid
!= old
->uid
) {
636 retval
= set_user(new);
640 if (ruid
!= (uid_t
) -1 ||
641 (euid
!= (uid_t
) -1 && euid
!= old
->uid
))
642 new->suid
= new->euid
;
643 new->fsuid
= new->euid
;
645 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
649 return commit_creds(new);
657 * setuid() is implemented like SysV with SAVED_IDS
659 * Note that SAVED_ID's is deficient in that a setuid root program
660 * like sendmail, for example, cannot set its uid to be a normal
661 * user and then switch back, because if you're root, setuid() sets
662 * the saved uid too. If you don't like this, blame the bright people
663 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
664 * will allow a root program to temporarily drop privileges and be able to
665 * regain them by swapping the real and effective uid.
667 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
669 const struct cred
*old
;
673 new = prepare_creds();
676 old
= current_cred();
678 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
683 if (capable(CAP_SETUID
)) {
684 new->suid
= new->uid
= uid
;
685 if (uid
!= old
->uid
) {
686 retval
= set_user(new);
690 } else if (uid
!= old
->uid
&& uid
!= new->suid
) {
694 new->fsuid
= new->euid
= uid
;
696 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
700 return commit_creds(new);
709 * This function implements a generic ability to update ruid, euid,
710 * and suid. This allows you to implement the 4.4 compatible seteuid().
712 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
714 const struct cred
*old
;
718 new = prepare_creds();
722 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
725 old
= current_cred();
728 if (!capable(CAP_SETUID
)) {
729 if (ruid
!= (uid_t
) -1 && ruid
!= old
->uid
&&
730 ruid
!= old
->euid
&& ruid
!= old
->suid
)
732 if (euid
!= (uid_t
) -1 && euid
!= old
->uid
&&
733 euid
!= old
->euid
&& euid
!= old
->suid
)
735 if (suid
!= (uid_t
) -1 && suid
!= old
->uid
&&
736 suid
!= old
->euid
&& suid
!= old
->suid
)
740 if (ruid
!= (uid_t
) -1) {
742 if (ruid
!= old
->uid
) {
743 retval
= set_user(new);
748 if (euid
!= (uid_t
) -1)
750 if (suid
!= (uid_t
) -1)
752 new->fsuid
= new->euid
;
754 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
758 return commit_creds(new);
765 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruid
, uid_t __user
*, euid
, uid_t __user
*, suid
)
767 const struct cred
*cred
= current_cred();
770 if (!(retval
= put_user(cred
->uid
, ruid
)) &&
771 !(retval
= put_user(cred
->euid
, euid
)))
772 retval
= put_user(cred
->suid
, suid
);
778 * Same as above, but for rgid, egid, sgid.
780 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
782 const struct cred
*old
;
786 new = prepare_creds();
789 old
= current_cred();
791 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
796 if (!capable(CAP_SETGID
)) {
797 if (rgid
!= (gid_t
) -1 && rgid
!= old
->gid
&&
798 rgid
!= old
->egid
&& rgid
!= old
->sgid
)
800 if (egid
!= (gid_t
) -1 && egid
!= old
->gid
&&
801 egid
!= old
->egid
&& egid
!= old
->sgid
)
803 if (sgid
!= (gid_t
) -1 && sgid
!= old
->gid
&&
804 sgid
!= old
->egid
&& sgid
!= old
->sgid
)
808 if (rgid
!= (gid_t
) -1)
810 if (egid
!= (gid_t
) -1)
812 if (sgid
!= (gid_t
) -1)
814 new->fsgid
= new->egid
;
816 return commit_creds(new);
823 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgid
, gid_t __user
*, egid
, gid_t __user
*, sgid
)
825 const struct cred
*cred
= current_cred();
828 if (!(retval
= put_user(cred
->gid
, rgid
)) &&
829 !(retval
= put_user(cred
->egid
, egid
)))
830 retval
= put_user(cred
->sgid
, sgid
);
837 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
838 * is used for "access()" and for the NFS daemon (letting nfsd stay at
839 * whatever uid it wants to). It normally shadows "euid", except when
840 * explicitly set by setfsuid() or for access..
842 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
844 const struct cred
*old
;
848 new = prepare_creds();
850 return current_fsuid();
851 old
= current_cred();
852 old_fsuid
= old
->fsuid
;
854 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
) < 0)
857 if (uid
== old
->uid
|| uid
== old
->euid
||
858 uid
== old
->suid
|| uid
== old
->fsuid
||
859 capable(CAP_SETUID
)) {
860 if (uid
!= old_fsuid
) {
862 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
877 * Samma på svenska..
879 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
881 const struct cred
*old
;
885 new = prepare_creds();
887 return current_fsgid();
888 old
= current_cred();
889 old_fsgid
= old
->fsgid
;
891 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
894 if (gid
== old
->gid
|| gid
== old
->egid
||
895 gid
== old
->sgid
|| gid
== old
->fsgid
||
896 capable(CAP_SETGID
)) {
897 if (gid
!= old_fsgid
) {
912 void do_sys_times(struct tms
*tms
)
914 cputime_t tgutime
, tgstime
, cutime
, cstime
;
916 spin_lock_irq(¤t
->sighand
->siglock
);
917 thread_group_times(current
, &tgutime
, &tgstime
);
918 cutime
= current
->signal
->cutime
;
919 cstime
= current
->signal
->cstime
;
920 spin_unlock_irq(¤t
->sighand
->siglock
);
921 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
922 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
923 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
924 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
927 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
933 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
936 force_successful_syscall_return();
937 return (long) jiffies_64_to_clock_t(get_jiffies_64());
941 * This needs some heavy checking ...
942 * I just haven't the stomach for it. I also don't fully
943 * understand sessions/pgrp etc. Let somebody who does explain it.
945 * OK, I think I have the protection semantics right.... this is really
946 * only important on a multi-user system anyway, to make sure one user
947 * can't send a signal to a process owned by another. -TYT, 12/12/91
949 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
952 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
954 struct task_struct
*p
;
955 struct task_struct
*group_leader
= current
->group_leader
;
960 pid
= task_pid_vnr(group_leader
);
966 /* From this point forward we keep holding onto the tasklist lock
967 * so that our parent does not change from under us. -DaveM
969 write_lock_irq(&tasklist_lock
);
972 p
= find_task_by_vpid(pid
);
977 if (!thread_group_leader(p
))
980 if (same_thread_group(p
->real_parent
, group_leader
)) {
982 if (task_session(p
) != task_session(group_leader
))
989 if (p
!= group_leader
)
994 if (p
->signal
->leader
)
999 struct task_struct
*g
;
1001 pgrp
= find_vpid(pgid
);
1002 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1003 if (!g
|| task_session(g
) != task_session(group_leader
))
1007 err
= security_task_setpgid(p
, pgid
);
1011 if (task_pgrp(p
) != pgrp
)
1012 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1016 /* All paths lead to here, thus we are safe. -DaveM */
1017 write_unlock_irq(&tasklist_lock
);
1021 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1023 struct task_struct
*p
;
1029 grp
= task_pgrp(current
);
1032 p
= find_task_by_vpid(pid
);
1039 retval
= security_task_getpgid(p
);
1043 retval
= pid_vnr(grp
);
1049 #ifdef __ARCH_WANT_SYS_GETPGRP
1051 SYSCALL_DEFINE0(getpgrp
)
1053 return sys_getpgid(0);
1058 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1060 struct task_struct
*p
;
1066 sid
= task_session(current
);
1069 p
= find_task_by_vpid(pid
);
1072 sid
= task_session(p
);
1076 retval
= security_task_getsid(p
);
1080 retval
= pid_vnr(sid
);
1086 SYSCALL_DEFINE0(setsid
)
1088 struct task_struct
*group_leader
= current
->group_leader
;
1089 struct pid
*sid
= task_pid(group_leader
);
1090 pid_t session
= pid_vnr(sid
);
1093 write_lock_irq(&tasklist_lock
);
1094 /* Fail if I am already a session leader */
1095 if (group_leader
->signal
->leader
)
1098 /* Fail if a process group id already exists that equals the
1099 * proposed session id.
1101 if (pid_task(sid
, PIDTYPE_PGID
))
1104 group_leader
->signal
->leader
= 1;
1105 __set_special_pids(sid
);
1107 proc_clear_tty(group_leader
);
1111 write_unlock_irq(&tasklist_lock
);
1113 proc_sid_connector(group_leader
);
1117 DECLARE_RWSEM(uts_sem
);
1119 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1123 down_read(&uts_sem
);
1124 if (copy_to_user(name
, utsname(), sizeof *name
))
1130 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1133 char tmp
[__NEW_UTS_LEN
];
1135 if (!capable(CAP_SYS_ADMIN
))
1137 if (len
< 0 || len
> __NEW_UTS_LEN
)
1139 down_write(&uts_sem
);
1141 if (!copy_from_user(tmp
, name
, len
)) {
1142 struct new_utsname
*u
= utsname();
1144 memcpy(u
->nodename
, tmp
, len
);
1145 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1152 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1154 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1157 struct new_utsname
*u
;
1161 down_read(&uts_sem
);
1163 i
= 1 + strlen(u
->nodename
);
1167 if (copy_to_user(name
, u
->nodename
, i
))
1176 * Only setdomainname; getdomainname can be implemented by calling
1179 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1182 char tmp
[__NEW_UTS_LEN
];
1184 if (!capable(CAP_SYS_ADMIN
))
1186 if (len
< 0 || len
> __NEW_UTS_LEN
)
1189 down_write(&uts_sem
);
1191 if (!copy_from_user(tmp
, name
, len
)) {
1192 struct new_utsname
*u
= utsname();
1194 memcpy(u
->domainname
, tmp
, len
);
1195 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1202 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1204 if (resource
>= RLIM_NLIMITS
)
1207 struct rlimit value
;
1208 task_lock(current
->group_leader
);
1209 value
= current
->signal
->rlim
[resource
];
1210 task_unlock(current
->group_leader
);
1211 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1215 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1218 * Back compatibility for getrlimit. Needed for some apps.
1221 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1222 struct rlimit __user
*, rlim
)
1225 if (resource
>= RLIM_NLIMITS
)
1228 task_lock(current
->group_leader
);
1229 x
= current
->signal
->rlim
[resource
];
1230 task_unlock(current
->group_leader
);
1231 if (x
.rlim_cur
> 0x7FFFFFFF)
1232 x
.rlim_cur
= 0x7FFFFFFF;
1233 if (x
.rlim_max
> 0x7FFFFFFF)
1234 x
.rlim_max
= 0x7FFFFFFF;
1235 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1240 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1242 struct rlimit new_rlim
, *old_rlim
;
1245 if (resource
>= RLIM_NLIMITS
)
1247 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1249 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1251 old_rlim
= current
->signal
->rlim
+ resource
;
1252 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1253 !capable(CAP_SYS_RESOURCE
))
1255 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> sysctl_nr_open
)
1258 retval
= security_task_setrlimit(resource
, &new_rlim
);
1262 if (resource
== RLIMIT_CPU
&& new_rlim
.rlim_cur
== 0) {
1264 * The caller is asking for an immediate RLIMIT_CPU
1265 * expiry. But we use the zero value to mean "it was
1266 * never set". So let's cheat and make it one second
1269 new_rlim
.rlim_cur
= 1;
1272 task_lock(current
->group_leader
);
1273 *old_rlim
= new_rlim
;
1274 task_unlock(current
->group_leader
);
1276 if (resource
!= RLIMIT_CPU
)
1280 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1281 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1282 * very long-standing error, and fixing it now risks breakage of
1283 * applications, so we live with it
1285 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
1288 update_rlimit_cpu(new_rlim
.rlim_cur
);
1294 * It would make sense to put struct rusage in the task_struct,
1295 * except that would make the task_struct be *really big*. After
1296 * task_struct gets moved into malloc'ed memory, it would
1297 * make sense to do this. It will make moving the rest of the information
1298 * a lot simpler! (Which we're not doing right now because we're not
1299 * measuring them yet).
1301 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1302 * races with threads incrementing their own counters. But since word
1303 * reads are atomic, we either get new values or old values and we don't
1304 * care which for the sums. We always take the siglock to protect reading
1305 * the c* fields from p->signal from races with exit.c updating those
1306 * fields when reaping, so a sample either gets all the additions of a
1307 * given child after it's reaped, or none so this sample is before reaping.
1310 * We need to take the siglock for CHILDEREN, SELF and BOTH
1311 * for the cases current multithreaded, non-current single threaded
1312 * non-current multithreaded. Thread traversal is now safe with
1314 * Strictly speaking, we donot need to take the siglock if we are current and
1315 * single threaded, as no one else can take our signal_struct away, no one
1316 * else can reap the children to update signal->c* counters, and no one else
1317 * can race with the signal-> fields. If we do not take any lock, the
1318 * signal-> fields could be read out of order while another thread was just
1319 * exiting. So we should place a read memory barrier when we avoid the lock.
1320 * On the writer side, write memory barrier is implied in __exit_signal
1321 * as __exit_signal releases the siglock spinlock after updating the signal->
1322 * fields. But we don't do this yet to keep things simple.
1326 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1328 r
->ru_nvcsw
+= t
->nvcsw
;
1329 r
->ru_nivcsw
+= t
->nivcsw
;
1330 r
->ru_minflt
+= t
->min_flt
;
1331 r
->ru_majflt
+= t
->maj_flt
;
1332 r
->ru_inblock
+= task_io_get_inblock(t
);
1333 r
->ru_oublock
+= task_io_get_oublock(t
);
1336 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1338 struct task_struct
*t
;
1339 unsigned long flags
;
1340 cputime_t tgutime
, tgstime
, utime
, stime
;
1341 unsigned long maxrss
= 0;
1343 memset((char *) r
, 0, sizeof *r
);
1344 utime
= stime
= cputime_zero
;
1346 if (who
== RUSAGE_THREAD
) {
1347 task_times(current
, &utime
, &stime
);
1348 accumulate_thread_rusage(p
, r
);
1349 maxrss
= p
->signal
->maxrss
;
1353 if (!lock_task_sighand(p
, &flags
))
1358 case RUSAGE_CHILDREN
:
1359 utime
= p
->signal
->cutime
;
1360 stime
= p
->signal
->cstime
;
1361 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1362 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1363 r
->ru_minflt
= p
->signal
->cmin_flt
;
1364 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1365 r
->ru_inblock
= p
->signal
->cinblock
;
1366 r
->ru_oublock
= p
->signal
->coublock
;
1367 maxrss
= p
->signal
->cmaxrss
;
1369 if (who
== RUSAGE_CHILDREN
)
1373 thread_group_times(p
, &tgutime
, &tgstime
);
1374 utime
= cputime_add(utime
, tgutime
);
1375 stime
= cputime_add(stime
, tgstime
);
1376 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1377 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1378 r
->ru_minflt
+= p
->signal
->min_flt
;
1379 r
->ru_majflt
+= p
->signal
->maj_flt
;
1380 r
->ru_inblock
+= p
->signal
->inblock
;
1381 r
->ru_oublock
+= p
->signal
->oublock
;
1382 if (maxrss
< p
->signal
->maxrss
)
1383 maxrss
= p
->signal
->maxrss
;
1386 accumulate_thread_rusage(t
, r
);
1394 unlock_task_sighand(p
, &flags
);
1397 cputime_to_timeval(utime
, &r
->ru_utime
);
1398 cputime_to_timeval(stime
, &r
->ru_stime
);
1400 if (who
!= RUSAGE_CHILDREN
) {
1401 struct mm_struct
*mm
= get_task_mm(p
);
1403 setmax_mm_hiwater_rss(&maxrss
, mm
);
1407 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1410 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1413 k_getrusage(p
, who
, &r
);
1414 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1417 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1419 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1420 who
!= RUSAGE_THREAD
)
1422 return getrusage(current
, who
, ru
);
1425 SYSCALL_DEFINE1(umask
, int, mask
)
1427 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1431 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
1432 unsigned long, arg4
, unsigned long, arg5
)
1434 struct task_struct
*me
= current
;
1435 unsigned char comm
[sizeof(me
->comm
)];
1438 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1439 if (error
!= -ENOSYS
)
1444 case PR_SET_PDEATHSIG
:
1445 if (!valid_signal(arg2
)) {
1449 me
->pdeath_signal
= arg2
;
1452 case PR_GET_PDEATHSIG
:
1453 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
1455 case PR_GET_DUMPABLE
:
1456 error
= get_dumpable(me
->mm
);
1458 case PR_SET_DUMPABLE
:
1459 if (arg2
< 0 || arg2
> 1) {
1463 set_dumpable(me
->mm
, arg2
);
1467 case PR_SET_UNALIGN
:
1468 error
= SET_UNALIGN_CTL(me
, arg2
);
1470 case PR_GET_UNALIGN
:
1471 error
= GET_UNALIGN_CTL(me
, arg2
);
1474 error
= SET_FPEMU_CTL(me
, arg2
);
1477 error
= GET_FPEMU_CTL(me
, arg2
);
1480 error
= SET_FPEXC_CTL(me
, arg2
);
1483 error
= GET_FPEXC_CTL(me
, arg2
);
1486 error
= PR_TIMING_STATISTICAL
;
1489 if (arg2
!= PR_TIMING_STATISTICAL
)
1496 comm
[sizeof(me
->comm
)-1] = 0;
1497 if (strncpy_from_user(comm
, (char __user
*)arg2
,
1498 sizeof(me
->comm
) - 1) < 0)
1500 set_task_comm(me
, comm
);
1503 get_task_comm(comm
, me
);
1504 if (copy_to_user((char __user
*)arg2
, comm
,
1509 error
= GET_ENDIAN(me
, arg2
);
1512 error
= SET_ENDIAN(me
, arg2
);
1515 case PR_GET_SECCOMP
:
1516 error
= prctl_get_seccomp();
1518 case PR_SET_SECCOMP
:
1519 error
= prctl_set_seccomp(arg2
);
1522 error
= GET_TSC_CTL(arg2
);
1525 error
= SET_TSC_CTL(arg2
);
1527 case PR_TASK_PERF_EVENTS_DISABLE
:
1528 error
= perf_event_task_disable();
1530 case PR_TASK_PERF_EVENTS_ENABLE
:
1531 error
= perf_event_task_enable();
1533 case PR_GET_TIMERSLACK
:
1534 error
= current
->timer_slack_ns
;
1536 case PR_SET_TIMERSLACK
:
1538 current
->timer_slack_ns
=
1539 current
->default_timer_slack_ns
;
1541 current
->timer_slack_ns
= arg2
;
1548 case PR_MCE_KILL_CLEAR
:
1551 current
->flags
&= ~PF_MCE_PROCESS
;
1553 case PR_MCE_KILL_SET
:
1554 current
->flags
|= PF_MCE_PROCESS
;
1555 if (arg3
== PR_MCE_KILL_EARLY
)
1556 current
->flags
|= PF_MCE_EARLY
;
1557 else if (arg3
== PR_MCE_KILL_LATE
)
1558 current
->flags
&= ~PF_MCE_EARLY
;
1559 else if (arg3
== PR_MCE_KILL_DEFAULT
)
1561 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
1570 case PR_MCE_KILL_GET
:
1571 if (arg2
| arg3
| arg4
| arg5
)
1573 if (current
->flags
& PF_MCE_PROCESS
)
1574 error
= (current
->flags
& PF_MCE_EARLY
) ?
1575 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
1577 error
= PR_MCE_KILL_DEFAULT
;
1586 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
1587 struct getcpu_cache __user
*, unused
)
1590 int cpu
= raw_smp_processor_id();
1592 err
|= put_user(cpu
, cpup
);
1594 err
|= put_user(cpu_to_node(cpu
), nodep
);
1595 return err
? -EFAULT
: 0;
1598 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1600 static void argv_cleanup(char **argv
, char **envp
)
1606 * orderly_poweroff - Trigger an orderly system poweroff
1607 * @force: force poweroff if command execution fails
1609 * This may be called from any context to trigger a system shutdown.
1610 * If the orderly shutdown fails, it will force an immediate shutdown.
1612 int orderly_poweroff(bool force
)
1615 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1616 static char *envp
[] = {
1618 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1622 struct subprocess_info
*info
;
1625 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1626 __func__
, poweroff_cmd
);
1630 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
1636 call_usermodehelper_setcleanup(info
, argv_cleanup
);
1638 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1642 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1643 "forcing the issue\n");
1645 /* I guess this should try to kick off some daemon to
1646 sync and poweroff asap. Or not even bother syncing
1647 if we're doing an emergency shutdown? */
1654 EXPORT_SYMBOL_GPL(orderly_poweroff
);