mm: keep a guard page below a grow-down stack segment
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob63b4a14682faa3193830ec4dfc0ba26c9bada4d0
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
123 static inline int rt_policy(int policy)
125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 return 1;
127 return 0;
130 static inline int task_has_rt_policy(struct task_struct *p)
132 return rt_policy(p->policy);
136 * This is the priority-queue data structure of the RT scheduling class:
138 struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
143 struct rt_bandwidth {
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock;
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
151 static struct rt_bandwidth def_rt_bandwidth;
153 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167 if (!overrun)
168 break;
170 idle = do_sched_rt_period_timer(rt_b, overrun);
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176 static
177 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
189 static inline int rt_bandwidth_enabled(void)
191 return sysctl_sched_rt_runtime >= 0;
194 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 ktime_t now;
198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 return;
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
204 raw_spin_lock(&rt_b->rt_runtime_lock);
205 for (;;) {
206 unsigned long delta;
207 ktime_t soft, hard;
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219 HRTIMER_MODE_ABS_PINNED, 0);
221 raw_spin_unlock(&rt_b->rt_runtime_lock);
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 hrtimer_cancel(&rt_b->rt_period_timer);
229 #endif
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
235 static DEFINE_MUTEX(sched_domains_mutex);
237 #ifdef CONFIG_CGROUP_SCHED
239 #include <linux/cgroup.h>
241 struct cfs_rq;
243 static LIST_HEAD(task_groups);
245 /* task group related information */
246 struct task_group {
247 struct cgroup_subsys_state css;
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
255 #endif
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
261 struct rt_bandwidth rt_bandwidth;
262 #endif
264 struct rcu_head rcu;
265 struct list_head list;
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
272 #define root_task_group init_task_group
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
277 static DEFINE_SPINLOCK(task_group_lock);
279 #ifdef CONFIG_FAIR_GROUP_SCHED
281 #ifdef CONFIG_SMP
282 static int root_task_group_empty(void)
284 return list_empty(&root_task_group.children);
286 #endif
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
298 #define MIN_SHARES 2
299 #define MAX_SHARES (1UL << 18)
301 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302 #endif
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
307 struct task_group init_task_group;
309 #endif /* CONFIG_CGROUP_SCHED */
311 /* CFS-related fields in a runqueue */
312 struct cfs_rq {
313 struct load_weight load;
314 unsigned long nr_running;
316 u64 exec_clock;
317 u64 min_vruntime;
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
322 struct list_head tasks;
323 struct list_head *balance_iterator;
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
329 struct sched_entity *curr, *next, *last;
331 unsigned int nr_spread_over;
333 #ifdef CONFIG_FAIR_GROUP_SCHED
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
344 struct list_head leaf_cfs_rq_list;
345 struct task_group *tg; /* group that "owns" this runqueue */
347 #ifdef CONFIG_SMP
349 * the part of load.weight contributed by tasks
351 unsigned long task_weight;
354 * h_load = weight * f(tg)
356 * Where f(tg) is the recursive weight fraction assigned to
357 * this group.
359 unsigned long h_load;
362 * this cpu's part of tg->shares
364 unsigned long shares;
367 * load.weight at the time we set shares
369 unsigned long rq_weight;
370 #endif
371 #endif
374 /* Real-Time classes' related field in a runqueue: */
375 struct rt_rq {
376 struct rt_prio_array active;
377 unsigned long rt_nr_running;
378 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
379 struct {
380 int curr; /* highest queued rt task prio */
381 #ifdef CONFIG_SMP
382 int next; /* next highest */
383 #endif
384 } highest_prio;
385 #endif
386 #ifdef CONFIG_SMP
387 unsigned long rt_nr_migratory;
388 unsigned long rt_nr_total;
389 int overloaded;
390 struct plist_head pushable_tasks;
391 #endif
392 int rt_throttled;
393 u64 rt_time;
394 u64 rt_runtime;
395 /* Nests inside the rq lock: */
396 raw_spinlock_t rt_runtime_lock;
398 #ifdef CONFIG_RT_GROUP_SCHED
399 unsigned long rt_nr_boosted;
401 struct rq *rq;
402 struct list_head leaf_rt_rq_list;
403 struct task_group *tg;
404 #endif
407 #ifdef CONFIG_SMP
410 * We add the notion of a root-domain which will be used to define per-domain
411 * variables. Each exclusive cpuset essentially defines an island domain by
412 * fully partitioning the member cpus from any other cpuset. Whenever a new
413 * exclusive cpuset is created, we also create and attach a new root-domain
414 * object.
417 struct root_domain {
418 atomic_t refcount;
419 cpumask_var_t span;
420 cpumask_var_t online;
423 * The "RT overload" flag: it gets set if a CPU has more than
424 * one runnable RT task.
426 cpumask_var_t rto_mask;
427 atomic_t rto_count;
428 #ifdef CONFIG_SMP
429 struct cpupri cpupri;
430 #endif
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
437 static struct root_domain def_root_domain;
439 #endif
442 * This is the main, per-CPU runqueue data structure.
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
448 struct rq {
449 /* runqueue lock: */
450 raw_spinlock_t lock;
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
456 unsigned long nr_running;
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
459 #ifdef CONFIG_NO_HZ
460 u64 nohz_stamp;
461 unsigned char in_nohz_recently;
462 #endif
463 unsigned int skip_clock_update;
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
468 u64 nr_switches;
470 struct cfs_rq cfs;
471 struct rt_rq rt;
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
476 #endif
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
479 #endif
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
487 unsigned long nr_uninterruptible;
489 struct task_struct *curr, *idle;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
493 u64 clock;
495 atomic_t nr_iowait;
497 #ifdef CONFIG_SMP
498 struct root_domain *rd;
499 struct sched_domain *sd;
501 unsigned long cpu_power;
503 unsigned char idle_at_tick;
504 /* For active balancing */
505 int post_schedule;
506 int active_balance;
507 int push_cpu;
508 struct cpu_stop_work active_balance_work;
509 /* cpu of this runqueue: */
510 int cpu;
511 int online;
513 unsigned long avg_load_per_task;
515 u64 rt_avg;
516 u64 age_stamp;
517 u64 idle_stamp;
518 u64 avg_idle;
519 #endif
521 /* calc_load related fields */
522 unsigned long calc_load_update;
523 long calc_load_active;
525 #ifdef CONFIG_SCHED_HRTICK
526 #ifdef CONFIG_SMP
527 int hrtick_csd_pending;
528 struct call_single_data hrtick_csd;
529 #endif
530 struct hrtimer hrtick_timer;
531 #endif
533 #ifdef CONFIG_SCHEDSTATS
534 /* latency stats */
535 struct sched_info rq_sched_info;
536 unsigned long long rq_cpu_time;
537 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
539 /* sys_sched_yield() stats */
540 unsigned int yld_count;
542 /* schedule() stats */
543 unsigned int sched_switch;
544 unsigned int sched_count;
545 unsigned int sched_goidle;
547 /* try_to_wake_up() stats */
548 unsigned int ttwu_count;
549 unsigned int ttwu_local;
551 /* BKL stats */
552 unsigned int bkl_count;
553 #endif
556 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
558 static inline
559 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
561 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
564 * A queue event has occurred, and we're going to schedule. In
565 * this case, we can save a useless back to back clock update.
567 if (test_tsk_need_resched(p))
568 rq->skip_clock_update = 1;
571 static inline int cpu_of(struct rq *rq)
573 #ifdef CONFIG_SMP
574 return rq->cpu;
575 #else
576 return 0;
577 #endif
580 #define rcu_dereference_check_sched_domain(p) \
581 rcu_dereference_check((p), \
582 rcu_read_lock_sched_held() || \
583 lockdep_is_held(&sched_domains_mutex))
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
587 * See detach_destroy_domains: synchronize_sched for details.
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
592 #define for_each_domain(cpu, __sd) \
593 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
595 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596 #define this_rq() (&__get_cpu_var(runqueues))
597 #define task_rq(p) cpu_rq(task_cpu(p))
598 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
599 #define raw_rq() (&__raw_get_cpu_var(runqueues))
601 #ifdef CONFIG_CGROUP_SCHED
604 * Return the group to which this tasks belongs.
606 * We use task_subsys_state_check() and extend the RCU verification
607 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
608 * holds that lock for each task it moves into the cgroup. Therefore
609 * by holding that lock, we pin the task to the current cgroup.
611 static inline struct task_group *task_group(struct task_struct *p)
613 struct cgroup_subsys_state *css;
615 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
616 lockdep_is_held(&task_rq(p)->lock));
617 return container_of(css, struct task_group, css);
620 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
621 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
623 #ifdef CONFIG_FAIR_GROUP_SCHED
624 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
625 p->se.parent = task_group(p)->se[cpu];
626 #endif
628 #ifdef CONFIG_RT_GROUP_SCHED
629 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
630 p->rt.parent = task_group(p)->rt_se[cpu];
631 #endif
634 #else /* CONFIG_CGROUP_SCHED */
636 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
637 static inline struct task_group *task_group(struct task_struct *p)
639 return NULL;
642 #endif /* CONFIG_CGROUP_SCHED */
644 inline void update_rq_clock(struct rq *rq)
646 if (!rq->skip_clock_update)
647 rq->clock = sched_clock_cpu(cpu_of(rq));
651 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
653 #ifdef CONFIG_SCHED_DEBUG
654 # define const_debug __read_mostly
655 #else
656 # define const_debug static const
657 #endif
660 * runqueue_is_locked
661 * @cpu: the processor in question.
663 * Returns true if the current cpu runqueue is locked.
664 * This interface allows printk to be called with the runqueue lock
665 * held and know whether or not it is OK to wake up the klogd.
667 int runqueue_is_locked(int cpu)
669 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
673 * Debugging: various feature bits
676 #define SCHED_FEAT(name, enabled) \
677 __SCHED_FEAT_##name ,
679 enum {
680 #include "sched_features.h"
683 #undef SCHED_FEAT
685 #define SCHED_FEAT(name, enabled) \
686 (1UL << __SCHED_FEAT_##name) * enabled |
688 const_debug unsigned int sysctl_sched_features =
689 #include "sched_features.h"
692 #undef SCHED_FEAT
694 #ifdef CONFIG_SCHED_DEBUG
695 #define SCHED_FEAT(name, enabled) \
696 #name ,
698 static __read_mostly char *sched_feat_names[] = {
699 #include "sched_features.h"
700 NULL
703 #undef SCHED_FEAT
705 static int sched_feat_show(struct seq_file *m, void *v)
707 int i;
709 for (i = 0; sched_feat_names[i]; i++) {
710 if (!(sysctl_sched_features & (1UL << i)))
711 seq_puts(m, "NO_");
712 seq_printf(m, "%s ", sched_feat_names[i]);
714 seq_puts(m, "\n");
716 return 0;
719 static ssize_t
720 sched_feat_write(struct file *filp, const char __user *ubuf,
721 size_t cnt, loff_t *ppos)
723 char buf[64];
724 char *cmp = buf;
725 int neg = 0;
726 int i;
728 if (cnt > 63)
729 cnt = 63;
731 if (copy_from_user(&buf, ubuf, cnt))
732 return -EFAULT;
734 buf[cnt] = 0;
736 if (strncmp(buf, "NO_", 3) == 0) {
737 neg = 1;
738 cmp += 3;
741 for (i = 0; sched_feat_names[i]; i++) {
742 int len = strlen(sched_feat_names[i]);
744 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
745 if (neg)
746 sysctl_sched_features &= ~(1UL << i);
747 else
748 sysctl_sched_features |= (1UL << i);
749 break;
753 if (!sched_feat_names[i])
754 return -EINVAL;
756 *ppos += cnt;
758 return cnt;
761 static int sched_feat_open(struct inode *inode, struct file *filp)
763 return single_open(filp, sched_feat_show, NULL);
766 static const struct file_operations sched_feat_fops = {
767 .open = sched_feat_open,
768 .write = sched_feat_write,
769 .read = seq_read,
770 .llseek = seq_lseek,
771 .release = single_release,
774 static __init int sched_init_debug(void)
776 debugfs_create_file("sched_features", 0644, NULL, NULL,
777 &sched_feat_fops);
779 return 0;
781 late_initcall(sched_init_debug);
783 #endif
785 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
788 * Number of tasks to iterate in a single balance run.
789 * Limited because this is done with IRQs disabled.
791 const_debug unsigned int sysctl_sched_nr_migrate = 32;
794 * ratelimit for updating the group shares.
795 * default: 0.25ms
797 unsigned int sysctl_sched_shares_ratelimit = 250000;
798 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
801 * Inject some fuzzyness into changing the per-cpu group shares
802 * this avoids remote rq-locks at the expense of fairness.
803 * default: 4
805 unsigned int sysctl_sched_shares_thresh = 4;
808 * period over which we average the RT time consumption, measured
809 * in ms.
811 * default: 1s
813 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
816 * period over which we measure -rt task cpu usage in us.
817 * default: 1s
819 unsigned int sysctl_sched_rt_period = 1000000;
821 static __read_mostly int scheduler_running;
824 * part of the period that we allow rt tasks to run in us.
825 * default: 0.95s
827 int sysctl_sched_rt_runtime = 950000;
829 static inline u64 global_rt_period(void)
831 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
834 static inline u64 global_rt_runtime(void)
836 if (sysctl_sched_rt_runtime < 0)
837 return RUNTIME_INF;
839 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
842 #ifndef prepare_arch_switch
843 # define prepare_arch_switch(next) do { } while (0)
844 #endif
845 #ifndef finish_arch_switch
846 # define finish_arch_switch(prev) do { } while (0)
847 #endif
849 static inline int task_current(struct rq *rq, struct task_struct *p)
851 return rq->curr == p;
854 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
855 static inline int task_running(struct rq *rq, struct task_struct *p)
857 return task_current(rq, p);
860 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
864 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
866 #ifdef CONFIG_DEBUG_SPINLOCK
867 /* this is a valid case when another task releases the spinlock */
868 rq->lock.owner = current;
869 #endif
871 * If we are tracking spinlock dependencies then we have to
872 * fix up the runqueue lock - which gets 'carried over' from
873 * prev into current:
875 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
877 raw_spin_unlock_irq(&rq->lock);
880 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
881 static inline int task_running(struct rq *rq, struct task_struct *p)
883 #ifdef CONFIG_SMP
884 return p->oncpu;
885 #else
886 return task_current(rq, p);
887 #endif
890 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
892 #ifdef CONFIG_SMP
894 * We can optimise this out completely for !SMP, because the
895 * SMP rebalancing from interrupt is the only thing that cares
896 * here.
898 next->oncpu = 1;
899 #endif
900 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
901 raw_spin_unlock_irq(&rq->lock);
902 #else
903 raw_spin_unlock(&rq->lock);
904 #endif
907 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
909 #ifdef CONFIG_SMP
911 * After ->oncpu is cleared, the task can be moved to a different CPU.
912 * We must ensure this doesn't happen until the switch is completely
913 * finished.
915 smp_wmb();
916 prev->oncpu = 0;
917 #endif
918 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 local_irq_enable();
920 #endif
922 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
925 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
926 * against ttwu().
928 static inline int task_is_waking(struct task_struct *p)
930 return unlikely(p->state == TASK_WAKING);
934 * __task_rq_lock - lock the runqueue a given task resides on.
935 * Must be called interrupts disabled.
937 static inline struct rq *__task_rq_lock(struct task_struct *p)
938 __acquires(rq->lock)
940 struct rq *rq;
942 for (;;) {
943 rq = task_rq(p);
944 raw_spin_lock(&rq->lock);
945 if (likely(rq == task_rq(p)))
946 return rq;
947 raw_spin_unlock(&rq->lock);
952 * task_rq_lock - lock the runqueue a given task resides on and disable
953 * interrupts. Note the ordering: we can safely lookup the task_rq without
954 * explicitly disabling preemption.
956 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
957 __acquires(rq->lock)
959 struct rq *rq;
961 for (;;) {
962 local_irq_save(*flags);
963 rq = task_rq(p);
964 raw_spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p)))
966 return rq;
967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
971 static void __task_rq_unlock(struct rq *rq)
972 __releases(rq->lock)
974 raw_spin_unlock(&rq->lock);
977 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
978 __releases(rq->lock)
980 raw_spin_unlock_irqrestore(&rq->lock, *flags);
984 * this_rq_lock - lock this runqueue and disable interrupts.
986 static struct rq *this_rq_lock(void)
987 __acquires(rq->lock)
989 struct rq *rq;
991 local_irq_disable();
992 rq = this_rq();
993 raw_spin_lock(&rq->lock);
995 return rq;
998 #ifdef CONFIG_SCHED_HRTICK
1000 * Use HR-timers to deliver accurate preemption points.
1002 * Its all a bit involved since we cannot program an hrt while holding the
1003 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1004 * reschedule event.
1006 * When we get rescheduled we reprogram the hrtick_timer outside of the
1007 * rq->lock.
1011 * Use hrtick when:
1012 * - enabled by features
1013 * - hrtimer is actually high res
1015 static inline int hrtick_enabled(struct rq *rq)
1017 if (!sched_feat(HRTICK))
1018 return 0;
1019 if (!cpu_active(cpu_of(rq)))
1020 return 0;
1021 return hrtimer_is_hres_active(&rq->hrtick_timer);
1024 static void hrtick_clear(struct rq *rq)
1026 if (hrtimer_active(&rq->hrtick_timer))
1027 hrtimer_cancel(&rq->hrtick_timer);
1031 * High-resolution timer tick.
1032 * Runs from hardirq context with interrupts disabled.
1034 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1036 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1038 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1040 raw_spin_lock(&rq->lock);
1041 update_rq_clock(rq);
1042 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1043 raw_spin_unlock(&rq->lock);
1045 return HRTIMER_NORESTART;
1048 #ifdef CONFIG_SMP
1050 * called from hardirq (IPI) context
1052 static void __hrtick_start(void *arg)
1054 struct rq *rq = arg;
1056 raw_spin_lock(&rq->lock);
1057 hrtimer_restart(&rq->hrtick_timer);
1058 rq->hrtick_csd_pending = 0;
1059 raw_spin_unlock(&rq->lock);
1063 * Called to set the hrtick timer state.
1065 * called with rq->lock held and irqs disabled
1067 static void hrtick_start(struct rq *rq, u64 delay)
1069 struct hrtimer *timer = &rq->hrtick_timer;
1070 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1072 hrtimer_set_expires(timer, time);
1074 if (rq == this_rq()) {
1075 hrtimer_restart(timer);
1076 } else if (!rq->hrtick_csd_pending) {
1077 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1078 rq->hrtick_csd_pending = 1;
1082 static int
1083 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1085 int cpu = (int)(long)hcpu;
1087 switch (action) {
1088 case CPU_UP_CANCELED:
1089 case CPU_UP_CANCELED_FROZEN:
1090 case CPU_DOWN_PREPARE:
1091 case CPU_DOWN_PREPARE_FROZEN:
1092 case CPU_DEAD:
1093 case CPU_DEAD_FROZEN:
1094 hrtick_clear(cpu_rq(cpu));
1095 return NOTIFY_OK;
1098 return NOTIFY_DONE;
1101 static __init void init_hrtick(void)
1103 hotcpu_notifier(hotplug_hrtick, 0);
1105 #else
1107 * Called to set the hrtick timer state.
1109 * called with rq->lock held and irqs disabled
1111 static void hrtick_start(struct rq *rq, u64 delay)
1113 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1114 HRTIMER_MODE_REL_PINNED, 0);
1117 static inline void init_hrtick(void)
1120 #endif /* CONFIG_SMP */
1122 static void init_rq_hrtick(struct rq *rq)
1124 #ifdef CONFIG_SMP
1125 rq->hrtick_csd_pending = 0;
1127 rq->hrtick_csd.flags = 0;
1128 rq->hrtick_csd.func = __hrtick_start;
1129 rq->hrtick_csd.info = rq;
1130 #endif
1132 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 rq->hrtick_timer.function = hrtick;
1135 #else /* CONFIG_SCHED_HRTICK */
1136 static inline void hrtick_clear(struct rq *rq)
1140 static inline void init_rq_hrtick(struct rq *rq)
1144 static inline void init_hrtick(void)
1147 #endif /* CONFIG_SCHED_HRTICK */
1150 * resched_task - mark a task 'to be rescheduled now'.
1152 * On UP this means the setting of the need_resched flag, on SMP it
1153 * might also involve a cross-CPU call to trigger the scheduler on
1154 * the target CPU.
1156 #ifdef CONFIG_SMP
1158 #ifndef tsk_is_polling
1159 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1160 #endif
1162 static void resched_task(struct task_struct *p)
1164 int cpu;
1166 assert_raw_spin_locked(&task_rq(p)->lock);
1168 if (test_tsk_need_resched(p))
1169 return;
1171 set_tsk_need_resched(p);
1173 cpu = task_cpu(p);
1174 if (cpu == smp_processor_id())
1175 return;
1177 /* NEED_RESCHED must be visible before we test polling */
1178 smp_mb();
1179 if (!tsk_is_polling(p))
1180 smp_send_reschedule(cpu);
1183 static void resched_cpu(int cpu)
1185 struct rq *rq = cpu_rq(cpu);
1186 unsigned long flags;
1188 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1189 return;
1190 resched_task(cpu_curr(cpu));
1191 raw_spin_unlock_irqrestore(&rq->lock, flags);
1194 #ifdef CONFIG_NO_HZ
1196 * When add_timer_on() enqueues a timer into the timer wheel of an
1197 * idle CPU then this timer might expire before the next timer event
1198 * which is scheduled to wake up that CPU. In case of a completely
1199 * idle system the next event might even be infinite time into the
1200 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1201 * leaves the inner idle loop so the newly added timer is taken into
1202 * account when the CPU goes back to idle and evaluates the timer
1203 * wheel for the next timer event.
1205 void wake_up_idle_cpu(int cpu)
1207 struct rq *rq = cpu_rq(cpu);
1209 if (cpu == smp_processor_id())
1210 return;
1213 * This is safe, as this function is called with the timer
1214 * wheel base lock of (cpu) held. When the CPU is on the way
1215 * to idle and has not yet set rq->curr to idle then it will
1216 * be serialized on the timer wheel base lock and take the new
1217 * timer into account automatically.
1219 if (rq->curr != rq->idle)
1220 return;
1223 * We can set TIF_RESCHED on the idle task of the other CPU
1224 * lockless. The worst case is that the other CPU runs the
1225 * idle task through an additional NOOP schedule()
1227 set_tsk_need_resched(rq->idle);
1229 /* NEED_RESCHED must be visible before we test polling */
1230 smp_mb();
1231 if (!tsk_is_polling(rq->idle))
1232 smp_send_reschedule(cpu);
1235 #endif /* CONFIG_NO_HZ */
1237 static u64 sched_avg_period(void)
1239 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1242 static void sched_avg_update(struct rq *rq)
1244 s64 period = sched_avg_period();
1246 while ((s64)(rq->clock - rq->age_stamp) > period) {
1248 * Inline assembly required to prevent the compiler
1249 * optimising this loop into a divmod call.
1250 * See __iter_div_u64_rem() for another example of this.
1252 asm("" : "+rm" (rq->age_stamp));
1253 rq->age_stamp += period;
1254 rq->rt_avg /= 2;
1258 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1260 rq->rt_avg += rt_delta;
1261 sched_avg_update(rq);
1264 #else /* !CONFIG_SMP */
1265 static void resched_task(struct task_struct *p)
1267 assert_raw_spin_locked(&task_rq(p)->lock);
1268 set_tsk_need_resched(p);
1271 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1274 #endif /* CONFIG_SMP */
1276 #if BITS_PER_LONG == 32
1277 # define WMULT_CONST (~0UL)
1278 #else
1279 # define WMULT_CONST (1UL << 32)
1280 #endif
1282 #define WMULT_SHIFT 32
1285 * Shift right and round:
1287 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1290 * delta *= weight / lw
1292 static unsigned long
1293 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1294 struct load_weight *lw)
1296 u64 tmp;
1298 if (!lw->inv_weight) {
1299 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1300 lw->inv_weight = 1;
1301 else
1302 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1303 / (lw->weight+1);
1306 tmp = (u64)delta_exec * weight;
1308 * Check whether we'd overflow the 64-bit multiplication:
1310 if (unlikely(tmp > WMULT_CONST))
1311 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1312 WMULT_SHIFT/2);
1313 else
1314 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1316 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1319 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1321 lw->weight += inc;
1322 lw->inv_weight = 0;
1325 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1327 lw->weight -= dec;
1328 lw->inv_weight = 0;
1332 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1333 * of tasks with abnormal "nice" values across CPUs the contribution that
1334 * each task makes to its run queue's load is weighted according to its
1335 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1336 * scaled version of the new time slice allocation that they receive on time
1337 * slice expiry etc.
1340 #define WEIGHT_IDLEPRIO 3
1341 #define WMULT_IDLEPRIO 1431655765
1344 * Nice levels are multiplicative, with a gentle 10% change for every
1345 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1346 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1347 * that remained on nice 0.
1349 * The "10% effect" is relative and cumulative: from _any_ nice level,
1350 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1351 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1352 * If a task goes up by ~10% and another task goes down by ~10% then
1353 * the relative distance between them is ~25%.)
1355 static const int prio_to_weight[40] = {
1356 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1357 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1358 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1359 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1360 /* 0 */ 1024, 820, 655, 526, 423,
1361 /* 5 */ 335, 272, 215, 172, 137,
1362 /* 10 */ 110, 87, 70, 56, 45,
1363 /* 15 */ 36, 29, 23, 18, 15,
1367 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1369 * In cases where the weight does not change often, we can use the
1370 * precalculated inverse to speed up arithmetics by turning divisions
1371 * into multiplications:
1373 static const u32 prio_to_wmult[40] = {
1374 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1375 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1376 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1377 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1378 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1379 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1380 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1381 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1384 /* Time spent by the tasks of the cpu accounting group executing in ... */
1385 enum cpuacct_stat_index {
1386 CPUACCT_STAT_USER, /* ... user mode */
1387 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1389 CPUACCT_STAT_NSTATS,
1392 #ifdef CONFIG_CGROUP_CPUACCT
1393 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1394 static void cpuacct_update_stats(struct task_struct *tsk,
1395 enum cpuacct_stat_index idx, cputime_t val);
1396 #else
1397 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1398 static inline void cpuacct_update_stats(struct task_struct *tsk,
1399 enum cpuacct_stat_index idx, cputime_t val) {}
1400 #endif
1402 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1404 update_load_add(&rq->load, load);
1407 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1409 update_load_sub(&rq->load, load);
1412 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1413 typedef int (*tg_visitor)(struct task_group *, void *);
1416 * Iterate the full tree, calling @down when first entering a node and @up when
1417 * leaving it for the final time.
1419 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1421 struct task_group *parent, *child;
1422 int ret;
1424 rcu_read_lock();
1425 parent = &root_task_group;
1426 down:
1427 ret = (*down)(parent, data);
1428 if (ret)
1429 goto out_unlock;
1430 list_for_each_entry_rcu(child, &parent->children, siblings) {
1431 parent = child;
1432 goto down;
1435 continue;
1437 ret = (*up)(parent, data);
1438 if (ret)
1439 goto out_unlock;
1441 child = parent;
1442 parent = parent->parent;
1443 if (parent)
1444 goto up;
1445 out_unlock:
1446 rcu_read_unlock();
1448 return ret;
1451 static int tg_nop(struct task_group *tg, void *data)
1453 return 0;
1455 #endif
1457 #ifdef CONFIG_SMP
1458 /* Used instead of source_load when we know the type == 0 */
1459 static unsigned long weighted_cpuload(const int cpu)
1461 return cpu_rq(cpu)->load.weight;
1465 * Return a low guess at the load of a migration-source cpu weighted
1466 * according to the scheduling class and "nice" value.
1468 * We want to under-estimate the load of migration sources, to
1469 * balance conservatively.
1471 static unsigned long source_load(int cpu, int type)
1473 struct rq *rq = cpu_rq(cpu);
1474 unsigned long total = weighted_cpuload(cpu);
1476 if (type == 0 || !sched_feat(LB_BIAS))
1477 return total;
1479 return min(rq->cpu_load[type-1], total);
1483 * Return a high guess at the load of a migration-target cpu weighted
1484 * according to the scheduling class and "nice" value.
1486 static unsigned long target_load(int cpu, int type)
1488 struct rq *rq = cpu_rq(cpu);
1489 unsigned long total = weighted_cpuload(cpu);
1491 if (type == 0 || !sched_feat(LB_BIAS))
1492 return total;
1494 return max(rq->cpu_load[type-1], total);
1497 static unsigned long power_of(int cpu)
1499 return cpu_rq(cpu)->cpu_power;
1502 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1504 static unsigned long cpu_avg_load_per_task(int cpu)
1506 struct rq *rq = cpu_rq(cpu);
1507 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1509 if (nr_running)
1510 rq->avg_load_per_task = rq->load.weight / nr_running;
1511 else
1512 rq->avg_load_per_task = 0;
1514 return rq->avg_load_per_task;
1517 #ifdef CONFIG_FAIR_GROUP_SCHED
1519 static __read_mostly unsigned long __percpu *update_shares_data;
1521 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1524 * Calculate and set the cpu's group shares.
1526 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1527 unsigned long sd_shares,
1528 unsigned long sd_rq_weight,
1529 unsigned long *usd_rq_weight)
1531 unsigned long shares, rq_weight;
1532 int boost = 0;
1534 rq_weight = usd_rq_weight[cpu];
1535 if (!rq_weight) {
1536 boost = 1;
1537 rq_weight = NICE_0_LOAD;
1541 * \Sum_j shares_j * rq_weight_i
1542 * shares_i = -----------------------------
1543 * \Sum_j rq_weight_j
1545 shares = (sd_shares * rq_weight) / sd_rq_weight;
1546 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1548 if (abs(shares - tg->se[cpu]->load.weight) >
1549 sysctl_sched_shares_thresh) {
1550 struct rq *rq = cpu_rq(cpu);
1551 unsigned long flags;
1553 raw_spin_lock_irqsave(&rq->lock, flags);
1554 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1555 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1556 __set_se_shares(tg->se[cpu], shares);
1557 raw_spin_unlock_irqrestore(&rq->lock, flags);
1562 * Re-compute the task group their per cpu shares over the given domain.
1563 * This needs to be done in a bottom-up fashion because the rq weight of a
1564 * parent group depends on the shares of its child groups.
1566 static int tg_shares_up(struct task_group *tg, void *data)
1568 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1569 unsigned long *usd_rq_weight;
1570 struct sched_domain *sd = data;
1571 unsigned long flags;
1572 int i;
1574 if (!tg->se[0])
1575 return 0;
1577 local_irq_save(flags);
1578 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1580 for_each_cpu(i, sched_domain_span(sd)) {
1581 weight = tg->cfs_rq[i]->load.weight;
1582 usd_rq_weight[i] = weight;
1584 rq_weight += weight;
1586 * If there are currently no tasks on the cpu pretend there
1587 * is one of average load so that when a new task gets to
1588 * run here it will not get delayed by group starvation.
1590 if (!weight)
1591 weight = NICE_0_LOAD;
1593 sum_weight += weight;
1594 shares += tg->cfs_rq[i]->shares;
1597 if (!rq_weight)
1598 rq_weight = sum_weight;
1600 if ((!shares && rq_weight) || shares > tg->shares)
1601 shares = tg->shares;
1603 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1604 shares = tg->shares;
1606 for_each_cpu(i, sched_domain_span(sd))
1607 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1609 local_irq_restore(flags);
1611 return 0;
1615 * Compute the cpu's hierarchical load factor for each task group.
1616 * This needs to be done in a top-down fashion because the load of a child
1617 * group is a fraction of its parents load.
1619 static int tg_load_down(struct task_group *tg, void *data)
1621 unsigned long load;
1622 long cpu = (long)data;
1624 if (!tg->parent) {
1625 load = cpu_rq(cpu)->load.weight;
1626 } else {
1627 load = tg->parent->cfs_rq[cpu]->h_load;
1628 load *= tg->cfs_rq[cpu]->shares;
1629 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1632 tg->cfs_rq[cpu]->h_load = load;
1634 return 0;
1637 static void update_shares(struct sched_domain *sd)
1639 s64 elapsed;
1640 u64 now;
1642 if (root_task_group_empty())
1643 return;
1645 now = cpu_clock(raw_smp_processor_id());
1646 elapsed = now - sd->last_update;
1648 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1649 sd->last_update = now;
1650 walk_tg_tree(tg_nop, tg_shares_up, sd);
1654 static void update_h_load(long cpu)
1656 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1659 #else
1661 static inline void update_shares(struct sched_domain *sd)
1665 #endif
1667 #ifdef CONFIG_PREEMPT
1669 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1672 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1673 * way at the expense of forcing extra atomic operations in all
1674 * invocations. This assures that the double_lock is acquired using the
1675 * same underlying policy as the spinlock_t on this architecture, which
1676 * reduces latency compared to the unfair variant below. However, it
1677 * also adds more overhead and therefore may reduce throughput.
1679 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1680 __releases(this_rq->lock)
1681 __acquires(busiest->lock)
1682 __acquires(this_rq->lock)
1684 raw_spin_unlock(&this_rq->lock);
1685 double_rq_lock(this_rq, busiest);
1687 return 1;
1690 #else
1692 * Unfair double_lock_balance: Optimizes throughput at the expense of
1693 * latency by eliminating extra atomic operations when the locks are
1694 * already in proper order on entry. This favors lower cpu-ids and will
1695 * grant the double lock to lower cpus over higher ids under contention,
1696 * regardless of entry order into the function.
1698 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1699 __releases(this_rq->lock)
1700 __acquires(busiest->lock)
1701 __acquires(this_rq->lock)
1703 int ret = 0;
1705 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1706 if (busiest < this_rq) {
1707 raw_spin_unlock(&this_rq->lock);
1708 raw_spin_lock(&busiest->lock);
1709 raw_spin_lock_nested(&this_rq->lock,
1710 SINGLE_DEPTH_NESTING);
1711 ret = 1;
1712 } else
1713 raw_spin_lock_nested(&busiest->lock,
1714 SINGLE_DEPTH_NESTING);
1716 return ret;
1719 #endif /* CONFIG_PREEMPT */
1722 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1724 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1726 if (unlikely(!irqs_disabled())) {
1727 /* printk() doesn't work good under rq->lock */
1728 raw_spin_unlock(&this_rq->lock);
1729 BUG_ON(1);
1732 return _double_lock_balance(this_rq, busiest);
1735 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1736 __releases(busiest->lock)
1738 raw_spin_unlock(&busiest->lock);
1739 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1743 * double_rq_lock - safely lock two runqueues
1745 * Note this does not disable interrupts like task_rq_lock,
1746 * you need to do so manually before calling.
1748 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1749 __acquires(rq1->lock)
1750 __acquires(rq2->lock)
1752 BUG_ON(!irqs_disabled());
1753 if (rq1 == rq2) {
1754 raw_spin_lock(&rq1->lock);
1755 __acquire(rq2->lock); /* Fake it out ;) */
1756 } else {
1757 if (rq1 < rq2) {
1758 raw_spin_lock(&rq1->lock);
1759 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1760 } else {
1761 raw_spin_lock(&rq2->lock);
1762 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1768 * double_rq_unlock - safely unlock two runqueues
1770 * Note this does not restore interrupts like task_rq_unlock,
1771 * you need to do so manually after calling.
1773 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1774 __releases(rq1->lock)
1775 __releases(rq2->lock)
1777 raw_spin_unlock(&rq1->lock);
1778 if (rq1 != rq2)
1779 raw_spin_unlock(&rq2->lock);
1780 else
1781 __release(rq2->lock);
1784 #endif
1786 #ifdef CONFIG_FAIR_GROUP_SCHED
1787 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1789 #ifdef CONFIG_SMP
1790 cfs_rq->shares = shares;
1791 #endif
1793 #endif
1795 static void calc_load_account_idle(struct rq *this_rq);
1796 static void update_sysctl(void);
1797 static int get_update_sysctl_factor(void);
1799 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1801 set_task_rq(p, cpu);
1802 #ifdef CONFIG_SMP
1804 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1805 * successfuly executed on another CPU. We must ensure that updates of
1806 * per-task data have been completed by this moment.
1808 smp_wmb();
1809 task_thread_info(p)->cpu = cpu;
1810 #endif
1813 static const struct sched_class rt_sched_class;
1815 #define sched_class_highest (&rt_sched_class)
1816 #define for_each_class(class) \
1817 for (class = sched_class_highest; class; class = class->next)
1819 #include "sched_stats.h"
1821 static void inc_nr_running(struct rq *rq)
1823 rq->nr_running++;
1826 static void dec_nr_running(struct rq *rq)
1828 rq->nr_running--;
1831 static void set_load_weight(struct task_struct *p)
1833 if (task_has_rt_policy(p)) {
1834 p->se.load.weight = 0;
1835 p->se.load.inv_weight = WMULT_CONST;
1836 return;
1840 * SCHED_IDLE tasks get minimal weight:
1842 if (p->policy == SCHED_IDLE) {
1843 p->se.load.weight = WEIGHT_IDLEPRIO;
1844 p->se.load.inv_weight = WMULT_IDLEPRIO;
1845 return;
1848 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1849 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1852 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1854 update_rq_clock(rq);
1855 sched_info_queued(p);
1856 p->sched_class->enqueue_task(rq, p, flags);
1857 p->se.on_rq = 1;
1860 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1862 update_rq_clock(rq);
1863 sched_info_dequeued(p);
1864 p->sched_class->dequeue_task(rq, p, flags);
1865 p->se.on_rq = 0;
1869 * activate_task - move a task to the runqueue.
1871 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1873 if (task_contributes_to_load(p))
1874 rq->nr_uninterruptible--;
1876 enqueue_task(rq, p, flags);
1877 inc_nr_running(rq);
1881 * deactivate_task - remove a task from the runqueue.
1883 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1885 if (task_contributes_to_load(p))
1886 rq->nr_uninterruptible++;
1888 dequeue_task(rq, p, flags);
1889 dec_nr_running(rq);
1892 #include "sched_idletask.c"
1893 #include "sched_fair.c"
1894 #include "sched_rt.c"
1895 #ifdef CONFIG_SCHED_DEBUG
1896 # include "sched_debug.c"
1897 #endif
1900 * __normal_prio - return the priority that is based on the static prio
1902 static inline int __normal_prio(struct task_struct *p)
1904 return p->static_prio;
1908 * Calculate the expected normal priority: i.e. priority
1909 * without taking RT-inheritance into account. Might be
1910 * boosted by interactivity modifiers. Changes upon fork,
1911 * setprio syscalls, and whenever the interactivity
1912 * estimator recalculates.
1914 static inline int normal_prio(struct task_struct *p)
1916 int prio;
1918 if (task_has_rt_policy(p))
1919 prio = MAX_RT_PRIO-1 - p->rt_priority;
1920 else
1921 prio = __normal_prio(p);
1922 return prio;
1926 * Calculate the current priority, i.e. the priority
1927 * taken into account by the scheduler. This value might
1928 * be boosted by RT tasks, or might be boosted by
1929 * interactivity modifiers. Will be RT if the task got
1930 * RT-boosted. If not then it returns p->normal_prio.
1932 static int effective_prio(struct task_struct *p)
1934 p->normal_prio = normal_prio(p);
1936 * If we are RT tasks or we were boosted to RT priority,
1937 * keep the priority unchanged. Otherwise, update priority
1938 * to the normal priority:
1940 if (!rt_prio(p->prio))
1941 return p->normal_prio;
1942 return p->prio;
1946 * task_curr - is this task currently executing on a CPU?
1947 * @p: the task in question.
1949 inline int task_curr(const struct task_struct *p)
1951 return cpu_curr(task_cpu(p)) == p;
1954 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1955 const struct sched_class *prev_class,
1956 int oldprio, int running)
1958 if (prev_class != p->sched_class) {
1959 if (prev_class->switched_from)
1960 prev_class->switched_from(rq, p, running);
1961 p->sched_class->switched_to(rq, p, running);
1962 } else
1963 p->sched_class->prio_changed(rq, p, oldprio, running);
1966 #ifdef CONFIG_SMP
1968 * Is this task likely cache-hot:
1970 static int
1971 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1973 s64 delta;
1975 if (p->sched_class != &fair_sched_class)
1976 return 0;
1979 * Buddy candidates are cache hot:
1981 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
1982 (&p->se == cfs_rq_of(&p->se)->next ||
1983 &p->se == cfs_rq_of(&p->se)->last))
1984 return 1;
1986 if (sysctl_sched_migration_cost == -1)
1987 return 1;
1988 if (sysctl_sched_migration_cost == 0)
1989 return 0;
1991 delta = now - p->se.exec_start;
1993 return delta < (s64)sysctl_sched_migration_cost;
1996 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1998 #ifdef CONFIG_SCHED_DEBUG
2000 * We should never call set_task_cpu() on a blocked task,
2001 * ttwu() will sort out the placement.
2003 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2004 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2005 #endif
2007 trace_sched_migrate_task(p, new_cpu);
2009 if (task_cpu(p) != new_cpu) {
2010 p->se.nr_migrations++;
2011 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2014 __set_task_cpu(p, new_cpu);
2017 struct migration_arg {
2018 struct task_struct *task;
2019 int dest_cpu;
2022 static int migration_cpu_stop(void *data);
2025 * The task's runqueue lock must be held.
2026 * Returns true if you have to wait for migration thread.
2028 static bool migrate_task(struct task_struct *p, int dest_cpu)
2030 struct rq *rq = task_rq(p);
2033 * If the task is not on a runqueue (and not running), then
2034 * the next wake-up will properly place the task.
2036 return p->se.on_rq || task_running(rq, p);
2040 * wait_task_inactive - wait for a thread to unschedule.
2042 * If @match_state is nonzero, it's the @p->state value just checked and
2043 * not expected to change. If it changes, i.e. @p might have woken up,
2044 * then return zero. When we succeed in waiting for @p to be off its CPU,
2045 * we return a positive number (its total switch count). If a second call
2046 * a short while later returns the same number, the caller can be sure that
2047 * @p has remained unscheduled the whole time.
2049 * The caller must ensure that the task *will* unschedule sometime soon,
2050 * else this function might spin for a *long* time. This function can't
2051 * be called with interrupts off, or it may introduce deadlock with
2052 * smp_call_function() if an IPI is sent by the same process we are
2053 * waiting to become inactive.
2055 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2057 unsigned long flags;
2058 int running, on_rq;
2059 unsigned long ncsw;
2060 struct rq *rq;
2062 for (;;) {
2064 * We do the initial early heuristics without holding
2065 * any task-queue locks at all. We'll only try to get
2066 * the runqueue lock when things look like they will
2067 * work out!
2069 rq = task_rq(p);
2072 * If the task is actively running on another CPU
2073 * still, just relax and busy-wait without holding
2074 * any locks.
2076 * NOTE! Since we don't hold any locks, it's not
2077 * even sure that "rq" stays as the right runqueue!
2078 * But we don't care, since "task_running()" will
2079 * return false if the runqueue has changed and p
2080 * is actually now running somewhere else!
2082 while (task_running(rq, p)) {
2083 if (match_state && unlikely(p->state != match_state))
2084 return 0;
2085 cpu_relax();
2089 * Ok, time to look more closely! We need the rq
2090 * lock now, to be *sure*. If we're wrong, we'll
2091 * just go back and repeat.
2093 rq = task_rq_lock(p, &flags);
2094 trace_sched_wait_task(p);
2095 running = task_running(rq, p);
2096 on_rq = p->se.on_rq;
2097 ncsw = 0;
2098 if (!match_state || p->state == match_state)
2099 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2100 task_rq_unlock(rq, &flags);
2103 * If it changed from the expected state, bail out now.
2105 if (unlikely(!ncsw))
2106 break;
2109 * Was it really running after all now that we
2110 * checked with the proper locks actually held?
2112 * Oops. Go back and try again..
2114 if (unlikely(running)) {
2115 cpu_relax();
2116 continue;
2120 * It's not enough that it's not actively running,
2121 * it must be off the runqueue _entirely_, and not
2122 * preempted!
2124 * So if it was still runnable (but just not actively
2125 * running right now), it's preempted, and we should
2126 * yield - it could be a while.
2128 if (unlikely(on_rq)) {
2129 schedule_timeout_uninterruptible(1);
2130 continue;
2134 * Ahh, all good. It wasn't running, and it wasn't
2135 * runnable, which means that it will never become
2136 * running in the future either. We're all done!
2138 break;
2141 return ncsw;
2144 /***
2145 * kick_process - kick a running thread to enter/exit the kernel
2146 * @p: the to-be-kicked thread
2148 * Cause a process which is running on another CPU to enter
2149 * kernel-mode, without any delay. (to get signals handled.)
2151 * NOTE: this function doesnt have to take the runqueue lock,
2152 * because all it wants to ensure is that the remote task enters
2153 * the kernel. If the IPI races and the task has been migrated
2154 * to another CPU then no harm is done and the purpose has been
2155 * achieved as well.
2157 void kick_process(struct task_struct *p)
2159 int cpu;
2161 preempt_disable();
2162 cpu = task_cpu(p);
2163 if ((cpu != smp_processor_id()) && task_curr(p))
2164 smp_send_reschedule(cpu);
2165 preempt_enable();
2167 EXPORT_SYMBOL_GPL(kick_process);
2168 #endif /* CONFIG_SMP */
2171 * task_oncpu_function_call - call a function on the cpu on which a task runs
2172 * @p: the task to evaluate
2173 * @func: the function to be called
2174 * @info: the function call argument
2176 * Calls the function @func when the task is currently running. This might
2177 * be on the current CPU, which just calls the function directly
2179 void task_oncpu_function_call(struct task_struct *p,
2180 void (*func) (void *info), void *info)
2182 int cpu;
2184 preempt_disable();
2185 cpu = task_cpu(p);
2186 if (task_curr(p))
2187 smp_call_function_single(cpu, func, info, 1);
2188 preempt_enable();
2191 #ifdef CONFIG_SMP
2193 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2195 static int select_fallback_rq(int cpu, struct task_struct *p)
2197 int dest_cpu;
2198 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2200 /* Look for allowed, online CPU in same node. */
2201 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2202 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2203 return dest_cpu;
2205 /* Any allowed, online CPU? */
2206 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2207 if (dest_cpu < nr_cpu_ids)
2208 return dest_cpu;
2210 /* No more Mr. Nice Guy. */
2211 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2212 dest_cpu = cpuset_cpus_allowed_fallback(p);
2214 * Don't tell them about moving exiting tasks or
2215 * kernel threads (both mm NULL), since they never
2216 * leave kernel.
2218 if (p->mm && printk_ratelimit()) {
2219 printk(KERN_INFO "process %d (%s) no "
2220 "longer affine to cpu%d\n",
2221 task_pid_nr(p), p->comm, cpu);
2225 return dest_cpu;
2229 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2231 static inline
2232 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2234 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2237 * In order not to call set_task_cpu() on a blocking task we need
2238 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2239 * cpu.
2241 * Since this is common to all placement strategies, this lives here.
2243 * [ this allows ->select_task() to simply return task_cpu(p) and
2244 * not worry about this generic constraint ]
2246 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2247 !cpu_online(cpu)))
2248 cpu = select_fallback_rq(task_cpu(p), p);
2250 return cpu;
2253 static void update_avg(u64 *avg, u64 sample)
2255 s64 diff = sample - *avg;
2256 *avg += diff >> 3;
2258 #endif
2260 /***
2261 * try_to_wake_up - wake up a thread
2262 * @p: the to-be-woken-up thread
2263 * @state: the mask of task states that can be woken
2264 * @sync: do a synchronous wakeup?
2266 * Put it on the run-queue if it's not already there. The "current"
2267 * thread is always on the run-queue (except when the actual
2268 * re-schedule is in progress), and as such you're allowed to do
2269 * the simpler "current->state = TASK_RUNNING" to mark yourself
2270 * runnable without the overhead of this.
2272 * returns failure only if the task is already active.
2274 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2275 int wake_flags)
2277 int cpu, orig_cpu, this_cpu, success = 0;
2278 unsigned long flags;
2279 unsigned long en_flags = ENQUEUE_WAKEUP;
2280 struct rq *rq;
2282 this_cpu = get_cpu();
2284 smp_wmb();
2285 rq = task_rq_lock(p, &flags);
2286 if (!(p->state & state))
2287 goto out;
2289 if (p->se.on_rq)
2290 goto out_running;
2292 cpu = task_cpu(p);
2293 orig_cpu = cpu;
2295 #ifdef CONFIG_SMP
2296 if (unlikely(task_running(rq, p)))
2297 goto out_activate;
2300 * In order to handle concurrent wakeups and release the rq->lock
2301 * we put the task in TASK_WAKING state.
2303 * First fix up the nr_uninterruptible count:
2305 if (task_contributes_to_load(p)) {
2306 if (likely(cpu_online(orig_cpu)))
2307 rq->nr_uninterruptible--;
2308 else
2309 this_rq()->nr_uninterruptible--;
2311 p->state = TASK_WAKING;
2313 if (p->sched_class->task_waking) {
2314 p->sched_class->task_waking(rq, p);
2315 en_flags |= ENQUEUE_WAKING;
2318 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2319 if (cpu != orig_cpu)
2320 set_task_cpu(p, cpu);
2321 __task_rq_unlock(rq);
2323 rq = cpu_rq(cpu);
2324 raw_spin_lock(&rq->lock);
2327 * We migrated the task without holding either rq->lock, however
2328 * since the task is not on the task list itself, nobody else
2329 * will try and migrate the task, hence the rq should match the
2330 * cpu we just moved it to.
2332 WARN_ON(task_cpu(p) != cpu);
2333 WARN_ON(p->state != TASK_WAKING);
2335 #ifdef CONFIG_SCHEDSTATS
2336 schedstat_inc(rq, ttwu_count);
2337 if (cpu == this_cpu)
2338 schedstat_inc(rq, ttwu_local);
2339 else {
2340 struct sched_domain *sd;
2341 for_each_domain(this_cpu, sd) {
2342 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2343 schedstat_inc(sd, ttwu_wake_remote);
2344 break;
2348 #endif /* CONFIG_SCHEDSTATS */
2350 out_activate:
2351 #endif /* CONFIG_SMP */
2352 schedstat_inc(p, se.statistics.nr_wakeups);
2353 if (wake_flags & WF_SYNC)
2354 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2355 if (orig_cpu != cpu)
2356 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2357 if (cpu == this_cpu)
2358 schedstat_inc(p, se.statistics.nr_wakeups_local);
2359 else
2360 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2361 activate_task(rq, p, en_flags);
2362 success = 1;
2364 out_running:
2365 trace_sched_wakeup(p, success);
2366 check_preempt_curr(rq, p, wake_flags);
2368 p->state = TASK_RUNNING;
2369 #ifdef CONFIG_SMP
2370 if (p->sched_class->task_woken)
2371 p->sched_class->task_woken(rq, p);
2373 if (unlikely(rq->idle_stamp)) {
2374 u64 delta = rq->clock - rq->idle_stamp;
2375 u64 max = 2*sysctl_sched_migration_cost;
2377 if (delta > max)
2378 rq->avg_idle = max;
2379 else
2380 update_avg(&rq->avg_idle, delta);
2381 rq->idle_stamp = 0;
2383 #endif
2384 out:
2385 task_rq_unlock(rq, &flags);
2386 put_cpu();
2388 return success;
2392 * wake_up_process - Wake up a specific process
2393 * @p: The process to be woken up.
2395 * Attempt to wake up the nominated process and move it to the set of runnable
2396 * processes. Returns 1 if the process was woken up, 0 if it was already
2397 * running.
2399 * It may be assumed that this function implies a write memory barrier before
2400 * changing the task state if and only if any tasks are woken up.
2402 int wake_up_process(struct task_struct *p)
2404 return try_to_wake_up(p, TASK_ALL, 0);
2406 EXPORT_SYMBOL(wake_up_process);
2408 int wake_up_state(struct task_struct *p, unsigned int state)
2410 return try_to_wake_up(p, state, 0);
2414 * Perform scheduler related setup for a newly forked process p.
2415 * p is forked by current.
2417 * __sched_fork() is basic setup used by init_idle() too:
2419 static void __sched_fork(struct task_struct *p)
2421 p->se.exec_start = 0;
2422 p->se.sum_exec_runtime = 0;
2423 p->se.prev_sum_exec_runtime = 0;
2424 p->se.nr_migrations = 0;
2426 #ifdef CONFIG_SCHEDSTATS
2427 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2428 #endif
2430 INIT_LIST_HEAD(&p->rt.run_list);
2431 p->se.on_rq = 0;
2432 INIT_LIST_HEAD(&p->se.group_node);
2434 #ifdef CONFIG_PREEMPT_NOTIFIERS
2435 INIT_HLIST_HEAD(&p->preempt_notifiers);
2436 #endif
2440 * fork()/clone()-time setup:
2442 void sched_fork(struct task_struct *p, int clone_flags)
2444 int cpu = get_cpu();
2446 __sched_fork(p);
2448 * We mark the process as running here. This guarantees that
2449 * nobody will actually run it, and a signal or other external
2450 * event cannot wake it up and insert it on the runqueue either.
2452 p->state = TASK_RUNNING;
2455 * Revert to default priority/policy on fork if requested.
2457 if (unlikely(p->sched_reset_on_fork)) {
2458 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2459 p->policy = SCHED_NORMAL;
2460 p->normal_prio = p->static_prio;
2463 if (PRIO_TO_NICE(p->static_prio) < 0) {
2464 p->static_prio = NICE_TO_PRIO(0);
2465 p->normal_prio = p->static_prio;
2466 set_load_weight(p);
2470 * We don't need the reset flag anymore after the fork. It has
2471 * fulfilled its duty:
2473 p->sched_reset_on_fork = 0;
2477 * Make sure we do not leak PI boosting priority to the child.
2479 p->prio = current->normal_prio;
2481 if (!rt_prio(p->prio))
2482 p->sched_class = &fair_sched_class;
2484 if (p->sched_class->task_fork)
2485 p->sched_class->task_fork(p);
2488 * The child is not yet in the pid-hash so no cgroup attach races,
2489 * and the cgroup is pinned to this child due to cgroup_fork()
2490 * is ran before sched_fork().
2492 * Silence PROVE_RCU.
2494 rcu_read_lock();
2495 set_task_cpu(p, cpu);
2496 rcu_read_unlock();
2498 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2499 if (likely(sched_info_on()))
2500 memset(&p->sched_info, 0, sizeof(p->sched_info));
2501 #endif
2502 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2503 p->oncpu = 0;
2504 #endif
2505 #ifdef CONFIG_PREEMPT
2506 /* Want to start with kernel preemption disabled. */
2507 task_thread_info(p)->preempt_count = 1;
2508 #endif
2509 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2511 put_cpu();
2515 * wake_up_new_task - wake up a newly created task for the first time.
2517 * This function will do some initial scheduler statistics housekeeping
2518 * that must be done for every newly created context, then puts the task
2519 * on the runqueue and wakes it.
2521 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2523 unsigned long flags;
2524 struct rq *rq;
2525 int cpu __maybe_unused = get_cpu();
2527 #ifdef CONFIG_SMP
2528 rq = task_rq_lock(p, &flags);
2529 p->state = TASK_WAKING;
2532 * Fork balancing, do it here and not earlier because:
2533 * - cpus_allowed can change in the fork path
2534 * - any previously selected cpu might disappear through hotplug
2536 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2537 * without people poking at ->cpus_allowed.
2539 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2540 set_task_cpu(p, cpu);
2542 p->state = TASK_RUNNING;
2543 task_rq_unlock(rq, &flags);
2544 #endif
2546 rq = task_rq_lock(p, &flags);
2547 activate_task(rq, p, 0);
2548 trace_sched_wakeup_new(p, 1);
2549 check_preempt_curr(rq, p, WF_FORK);
2550 #ifdef CONFIG_SMP
2551 if (p->sched_class->task_woken)
2552 p->sched_class->task_woken(rq, p);
2553 #endif
2554 task_rq_unlock(rq, &flags);
2555 put_cpu();
2558 #ifdef CONFIG_PREEMPT_NOTIFIERS
2561 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2562 * @notifier: notifier struct to register
2564 void preempt_notifier_register(struct preempt_notifier *notifier)
2566 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2568 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2571 * preempt_notifier_unregister - no longer interested in preemption notifications
2572 * @notifier: notifier struct to unregister
2574 * This is safe to call from within a preemption notifier.
2576 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2578 hlist_del(&notifier->link);
2580 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2582 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2584 struct preempt_notifier *notifier;
2585 struct hlist_node *node;
2587 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2588 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2591 static void
2592 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2593 struct task_struct *next)
2595 struct preempt_notifier *notifier;
2596 struct hlist_node *node;
2598 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2599 notifier->ops->sched_out(notifier, next);
2602 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2604 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2608 static void
2609 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2610 struct task_struct *next)
2614 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2617 * prepare_task_switch - prepare to switch tasks
2618 * @rq: the runqueue preparing to switch
2619 * @prev: the current task that is being switched out
2620 * @next: the task we are going to switch to.
2622 * This is called with the rq lock held and interrupts off. It must
2623 * be paired with a subsequent finish_task_switch after the context
2624 * switch.
2626 * prepare_task_switch sets up locking and calls architecture specific
2627 * hooks.
2629 static inline void
2630 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2631 struct task_struct *next)
2633 fire_sched_out_preempt_notifiers(prev, next);
2634 prepare_lock_switch(rq, next);
2635 prepare_arch_switch(next);
2639 * finish_task_switch - clean up after a task-switch
2640 * @rq: runqueue associated with task-switch
2641 * @prev: the thread we just switched away from.
2643 * finish_task_switch must be called after the context switch, paired
2644 * with a prepare_task_switch call before the context switch.
2645 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2646 * and do any other architecture-specific cleanup actions.
2648 * Note that we may have delayed dropping an mm in context_switch(). If
2649 * so, we finish that here outside of the runqueue lock. (Doing it
2650 * with the lock held can cause deadlocks; see schedule() for
2651 * details.)
2653 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2654 __releases(rq->lock)
2656 struct mm_struct *mm = rq->prev_mm;
2657 long prev_state;
2659 rq->prev_mm = NULL;
2662 * A task struct has one reference for the use as "current".
2663 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2664 * schedule one last time. The schedule call will never return, and
2665 * the scheduled task must drop that reference.
2666 * The test for TASK_DEAD must occur while the runqueue locks are
2667 * still held, otherwise prev could be scheduled on another cpu, die
2668 * there before we look at prev->state, and then the reference would
2669 * be dropped twice.
2670 * Manfred Spraul <manfred@colorfullife.com>
2672 prev_state = prev->state;
2673 finish_arch_switch(prev);
2674 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2675 local_irq_disable();
2676 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2677 perf_event_task_sched_in(current);
2678 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2679 local_irq_enable();
2680 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2681 finish_lock_switch(rq, prev);
2683 fire_sched_in_preempt_notifiers(current);
2684 if (mm)
2685 mmdrop(mm);
2686 if (unlikely(prev_state == TASK_DEAD)) {
2688 * Remove function-return probe instances associated with this
2689 * task and put them back on the free list.
2691 kprobe_flush_task(prev);
2692 put_task_struct(prev);
2696 #ifdef CONFIG_SMP
2698 /* assumes rq->lock is held */
2699 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2701 if (prev->sched_class->pre_schedule)
2702 prev->sched_class->pre_schedule(rq, prev);
2705 /* rq->lock is NOT held, but preemption is disabled */
2706 static inline void post_schedule(struct rq *rq)
2708 if (rq->post_schedule) {
2709 unsigned long flags;
2711 raw_spin_lock_irqsave(&rq->lock, flags);
2712 if (rq->curr->sched_class->post_schedule)
2713 rq->curr->sched_class->post_schedule(rq);
2714 raw_spin_unlock_irqrestore(&rq->lock, flags);
2716 rq->post_schedule = 0;
2720 #else
2722 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2726 static inline void post_schedule(struct rq *rq)
2730 #endif
2733 * schedule_tail - first thing a freshly forked thread must call.
2734 * @prev: the thread we just switched away from.
2736 asmlinkage void schedule_tail(struct task_struct *prev)
2737 __releases(rq->lock)
2739 struct rq *rq = this_rq();
2741 finish_task_switch(rq, prev);
2744 * FIXME: do we need to worry about rq being invalidated by the
2745 * task_switch?
2747 post_schedule(rq);
2749 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2750 /* In this case, finish_task_switch does not reenable preemption */
2751 preempt_enable();
2752 #endif
2753 if (current->set_child_tid)
2754 put_user(task_pid_vnr(current), current->set_child_tid);
2758 * context_switch - switch to the new MM and the new
2759 * thread's register state.
2761 static inline void
2762 context_switch(struct rq *rq, struct task_struct *prev,
2763 struct task_struct *next)
2765 struct mm_struct *mm, *oldmm;
2767 prepare_task_switch(rq, prev, next);
2768 trace_sched_switch(prev, next);
2769 mm = next->mm;
2770 oldmm = prev->active_mm;
2772 * For paravirt, this is coupled with an exit in switch_to to
2773 * combine the page table reload and the switch backend into
2774 * one hypercall.
2776 arch_start_context_switch(prev);
2778 if (likely(!mm)) {
2779 next->active_mm = oldmm;
2780 atomic_inc(&oldmm->mm_count);
2781 enter_lazy_tlb(oldmm, next);
2782 } else
2783 switch_mm(oldmm, mm, next);
2785 if (likely(!prev->mm)) {
2786 prev->active_mm = NULL;
2787 rq->prev_mm = oldmm;
2790 * Since the runqueue lock will be released by the next
2791 * task (which is an invalid locking op but in the case
2792 * of the scheduler it's an obvious special-case), so we
2793 * do an early lockdep release here:
2795 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2796 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2797 #endif
2799 /* Here we just switch the register state and the stack. */
2800 switch_to(prev, next, prev);
2802 barrier();
2804 * this_rq must be evaluated again because prev may have moved
2805 * CPUs since it called schedule(), thus the 'rq' on its stack
2806 * frame will be invalid.
2808 finish_task_switch(this_rq(), prev);
2812 * nr_running, nr_uninterruptible and nr_context_switches:
2814 * externally visible scheduler statistics: current number of runnable
2815 * threads, current number of uninterruptible-sleeping threads, total
2816 * number of context switches performed since bootup.
2818 unsigned long nr_running(void)
2820 unsigned long i, sum = 0;
2822 for_each_online_cpu(i)
2823 sum += cpu_rq(i)->nr_running;
2825 return sum;
2828 unsigned long nr_uninterruptible(void)
2830 unsigned long i, sum = 0;
2832 for_each_possible_cpu(i)
2833 sum += cpu_rq(i)->nr_uninterruptible;
2836 * Since we read the counters lockless, it might be slightly
2837 * inaccurate. Do not allow it to go below zero though:
2839 if (unlikely((long)sum < 0))
2840 sum = 0;
2842 return sum;
2845 unsigned long long nr_context_switches(void)
2847 int i;
2848 unsigned long long sum = 0;
2850 for_each_possible_cpu(i)
2851 sum += cpu_rq(i)->nr_switches;
2853 return sum;
2856 unsigned long nr_iowait(void)
2858 unsigned long i, sum = 0;
2860 for_each_possible_cpu(i)
2861 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2863 return sum;
2866 unsigned long nr_iowait_cpu(int cpu)
2868 struct rq *this = cpu_rq(cpu);
2869 return atomic_read(&this->nr_iowait);
2872 unsigned long this_cpu_load(void)
2874 struct rq *this = this_rq();
2875 return this->cpu_load[0];
2879 /* Variables and functions for calc_load */
2880 static atomic_long_t calc_load_tasks;
2881 static unsigned long calc_load_update;
2882 unsigned long avenrun[3];
2883 EXPORT_SYMBOL(avenrun);
2885 static long calc_load_fold_active(struct rq *this_rq)
2887 long nr_active, delta = 0;
2889 nr_active = this_rq->nr_running;
2890 nr_active += (long) this_rq->nr_uninterruptible;
2892 if (nr_active != this_rq->calc_load_active) {
2893 delta = nr_active - this_rq->calc_load_active;
2894 this_rq->calc_load_active = nr_active;
2897 return delta;
2900 #ifdef CONFIG_NO_HZ
2902 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2904 * When making the ILB scale, we should try to pull this in as well.
2906 static atomic_long_t calc_load_tasks_idle;
2908 static void calc_load_account_idle(struct rq *this_rq)
2910 long delta;
2912 delta = calc_load_fold_active(this_rq);
2913 if (delta)
2914 atomic_long_add(delta, &calc_load_tasks_idle);
2917 static long calc_load_fold_idle(void)
2919 long delta = 0;
2922 * Its got a race, we don't care...
2924 if (atomic_long_read(&calc_load_tasks_idle))
2925 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2927 return delta;
2929 #else
2930 static void calc_load_account_idle(struct rq *this_rq)
2934 static inline long calc_load_fold_idle(void)
2936 return 0;
2938 #endif
2941 * get_avenrun - get the load average array
2942 * @loads: pointer to dest load array
2943 * @offset: offset to add
2944 * @shift: shift count to shift the result left
2946 * These values are estimates at best, so no need for locking.
2948 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2950 loads[0] = (avenrun[0] + offset) << shift;
2951 loads[1] = (avenrun[1] + offset) << shift;
2952 loads[2] = (avenrun[2] + offset) << shift;
2955 static unsigned long
2956 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2958 load *= exp;
2959 load += active * (FIXED_1 - exp);
2960 return load >> FSHIFT;
2964 * calc_load - update the avenrun load estimates 10 ticks after the
2965 * CPUs have updated calc_load_tasks.
2967 void calc_global_load(void)
2969 unsigned long upd = calc_load_update + 10;
2970 long active;
2972 if (time_before(jiffies, upd))
2973 return;
2975 active = atomic_long_read(&calc_load_tasks);
2976 active = active > 0 ? active * FIXED_1 : 0;
2978 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2979 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2980 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2982 calc_load_update += LOAD_FREQ;
2986 * Called from update_cpu_load() to periodically update this CPU's
2987 * active count.
2989 static void calc_load_account_active(struct rq *this_rq)
2991 long delta;
2993 if (time_before(jiffies, this_rq->calc_load_update))
2994 return;
2996 delta = calc_load_fold_active(this_rq);
2997 delta += calc_load_fold_idle();
2998 if (delta)
2999 atomic_long_add(delta, &calc_load_tasks);
3001 this_rq->calc_load_update += LOAD_FREQ;
3005 * Update rq->cpu_load[] statistics. This function is usually called every
3006 * scheduler tick (TICK_NSEC).
3008 static void update_cpu_load(struct rq *this_rq)
3010 unsigned long this_load = this_rq->load.weight;
3011 int i, scale;
3013 this_rq->nr_load_updates++;
3015 /* Update our load: */
3016 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3017 unsigned long old_load, new_load;
3019 /* scale is effectively 1 << i now, and >> i divides by scale */
3021 old_load = this_rq->cpu_load[i];
3022 new_load = this_load;
3024 * Round up the averaging division if load is increasing. This
3025 * prevents us from getting stuck on 9 if the load is 10, for
3026 * example.
3028 if (new_load > old_load)
3029 new_load += scale-1;
3030 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3033 calc_load_account_active(this_rq);
3036 #ifdef CONFIG_SMP
3039 * sched_exec - execve() is a valuable balancing opportunity, because at
3040 * this point the task has the smallest effective memory and cache footprint.
3042 void sched_exec(void)
3044 struct task_struct *p = current;
3045 unsigned long flags;
3046 struct rq *rq;
3047 int dest_cpu;
3049 rq = task_rq_lock(p, &flags);
3050 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3051 if (dest_cpu == smp_processor_id())
3052 goto unlock;
3055 * select_task_rq() can race against ->cpus_allowed
3057 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3058 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3059 struct migration_arg arg = { p, dest_cpu };
3061 task_rq_unlock(rq, &flags);
3062 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3063 return;
3065 unlock:
3066 task_rq_unlock(rq, &flags);
3069 #endif
3071 DEFINE_PER_CPU(struct kernel_stat, kstat);
3073 EXPORT_PER_CPU_SYMBOL(kstat);
3076 * Return any ns on the sched_clock that have not yet been accounted in
3077 * @p in case that task is currently running.
3079 * Called with task_rq_lock() held on @rq.
3081 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3083 u64 ns = 0;
3085 if (task_current(rq, p)) {
3086 update_rq_clock(rq);
3087 ns = rq->clock - p->se.exec_start;
3088 if ((s64)ns < 0)
3089 ns = 0;
3092 return ns;
3095 unsigned long long task_delta_exec(struct task_struct *p)
3097 unsigned long flags;
3098 struct rq *rq;
3099 u64 ns = 0;
3101 rq = task_rq_lock(p, &flags);
3102 ns = do_task_delta_exec(p, rq);
3103 task_rq_unlock(rq, &flags);
3105 return ns;
3109 * Return accounted runtime for the task.
3110 * In case the task is currently running, return the runtime plus current's
3111 * pending runtime that have not been accounted yet.
3113 unsigned long long task_sched_runtime(struct task_struct *p)
3115 unsigned long flags;
3116 struct rq *rq;
3117 u64 ns = 0;
3119 rq = task_rq_lock(p, &flags);
3120 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3121 task_rq_unlock(rq, &flags);
3123 return ns;
3127 * Return sum_exec_runtime for the thread group.
3128 * In case the task is currently running, return the sum plus current's
3129 * pending runtime that have not been accounted yet.
3131 * Note that the thread group might have other running tasks as well,
3132 * so the return value not includes other pending runtime that other
3133 * running tasks might have.
3135 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3137 struct task_cputime totals;
3138 unsigned long flags;
3139 struct rq *rq;
3140 u64 ns;
3142 rq = task_rq_lock(p, &flags);
3143 thread_group_cputime(p, &totals);
3144 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3145 task_rq_unlock(rq, &flags);
3147 return ns;
3151 * Account user cpu time to a process.
3152 * @p: the process that the cpu time gets accounted to
3153 * @cputime: the cpu time spent in user space since the last update
3154 * @cputime_scaled: cputime scaled by cpu frequency
3156 void account_user_time(struct task_struct *p, cputime_t cputime,
3157 cputime_t cputime_scaled)
3159 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3160 cputime64_t tmp;
3162 /* Add user time to process. */
3163 p->utime = cputime_add(p->utime, cputime);
3164 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3165 account_group_user_time(p, cputime);
3167 /* Add user time to cpustat. */
3168 tmp = cputime_to_cputime64(cputime);
3169 if (TASK_NICE(p) > 0)
3170 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3171 else
3172 cpustat->user = cputime64_add(cpustat->user, tmp);
3174 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3175 /* Account for user time used */
3176 acct_update_integrals(p);
3180 * Account guest cpu time to a process.
3181 * @p: the process that the cpu time gets accounted to
3182 * @cputime: the cpu time spent in virtual machine since the last update
3183 * @cputime_scaled: cputime scaled by cpu frequency
3185 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3186 cputime_t cputime_scaled)
3188 cputime64_t tmp;
3189 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3191 tmp = cputime_to_cputime64(cputime);
3193 /* Add guest time to process. */
3194 p->utime = cputime_add(p->utime, cputime);
3195 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3196 account_group_user_time(p, cputime);
3197 p->gtime = cputime_add(p->gtime, cputime);
3199 /* Add guest time to cpustat. */
3200 if (TASK_NICE(p) > 0) {
3201 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3202 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3203 } else {
3204 cpustat->user = cputime64_add(cpustat->user, tmp);
3205 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3210 * Account system cpu time to a process.
3211 * @p: the process that the cpu time gets accounted to
3212 * @hardirq_offset: the offset to subtract from hardirq_count()
3213 * @cputime: the cpu time spent in kernel space since the last update
3214 * @cputime_scaled: cputime scaled by cpu frequency
3216 void account_system_time(struct task_struct *p, int hardirq_offset,
3217 cputime_t cputime, cputime_t cputime_scaled)
3219 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3220 cputime64_t tmp;
3222 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3223 account_guest_time(p, cputime, cputime_scaled);
3224 return;
3227 /* Add system time to process. */
3228 p->stime = cputime_add(p->stime, cputime);
3229 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3230 account_group_system_time(p, cputime);
3232 /* Add system time to cpustat. */
3233 tmp = cputime_to_cputime64(cputime);
3234 if (hardirq_count() - hardirq_offset)
3235 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3236 else if (softirq_count())
3237 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3238 else
3239 cpustat->system = cputime64_add(cpustat->system, tmp);
3241 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3243 /* Account for system time used */
3244 acct_update_integrals(p);
3248 * Account for involuntary wait time.
3249 * @steal: the cpu time spent in involuntary wait
3251 void account_steal_time(cputime_t cputime)
3253 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3254 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3256 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3260 * Account for idle time.
3261 * @cputime: the cpu time spent in idle wait
3263 void account_idle_time(cputime_t cputime)
3265 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3266 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3267 struct rq *rq = this_rq();
3269 if (atomic_read(&rq->nr_iowait) > 0)
3270 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3271 else
3272 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3275 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3278 * Account a single tick of cpu time.
3279 * @p: the process that the cpu time gets accounted to
3280 * @user_tick: indicates if the tick is a user or a system tick
3282 void account_process_tick(struct task_struct *p, int user_tick)
3284 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3285 struct rq *rq = this_rq();
3287 if (user_tick)
3288 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3289 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3290 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3291 one_jiffy_scaled);
3292 else
3293 account_idle_time(cputime_one_jiffy);
3297 * Account multiple ticks of steal time.
3298 * @p: the process from which the cpu time has been stolen
3299 * @ticks: number of stolen ticks
3301 void account_steal_ticks(unsigned long ticks)
3303 account_steal_time(jiffies_to_cputime(ticks));
3307 * Account multiple ticks of idle time.
3308 * @ticks: number of stolen ticks
3310 void account_idle_ticks(unsigned long ticks)
3312 account_idle_time(jiffies_to_cputime(ticks));
3315 #endif
3318 * Use precise platform statistics if available:
3320 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3321 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3323 *ut = p->utime;
3324 *st = p->stime;
3327 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3329 struct task_cputime cputime;
3331 thread_group_cputime(p, &cputime);
3333 *ut = cputime.utime;
3334 *st = cputime.stime;
3336 #else
3338 #ifndef nsecs_to_cputime
3339 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3340 #endif
3342 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3344 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3347 * Use CFS's precise accounting:
3349 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3351 if (total) {
3352 u64 temp;
3354 temp = (u64)(rtime * utime);
3355 do_div(temp, total);
3356 utime = (cputime_t)temp;
3357 } else
3358 utime = rtime;
3361 * Compare with previous values, to keep monotonicity:
3363 p->prev_utime = max(p->prev_utime, utime);
3364 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3366 *ut = p->prev_utime;
3367 *st = p->prev_stime;
3371 * Must be called with siglock held.
3373 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3375 struct signal_struct *sig = p->signal;
3376 struct task_cputime cputime;
3377 cputime_t rtime, utime, total;
3379 thread_group_cputime(p, &cputime);
3381 total = cputime_add(cputime.utime, cputime.stime);
3382 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3384 if (total) {
3385 u64 temp;
3387 temp = (u64)(rtime * cputime.utime);
3388 do_div(temp, total);
3389 utime = (cputime_t)temp;
3390 } else
3391 utime = rtime;
3393 sig->prev_utime = max(sig->prev_utime, utime);
3394 sig->prev_stime = max(sig->prev_stime,
3395 cputime_sub(rtime, sig->prev_utime));
3397 *ut = sig->prev_utime;
3398 *st = sig->prev_stime;
3400 #endif
3403 * This function gets called by the timer code, with HZ frequency.
3404 * We call it with interrupts disabled.
3406 * It also gets called by the fork code, when changing the parent's
3407 * timeslices.
3409 void scheduler_tick(void)
3411 int cpu = smp_processor_id();
3412 struct rq *rq = cpu_rq(cpu);
3413 struct task_struct *curr = rq->curr;
3415 sched_clock_tick();
3417 raw_spin_lock(&rq->lock);
3418 update_rq_clock(rq);
3419 update_cpu_load(rq);
3420 curr->sched_class->task_tick(rq, curr, 0);
3421 raw_spin_unlock(&rq->lock);
3423 perf_event_task_tick(curr);
3425 #ifdef CONFIG_SMP
3426 rq->idle_at_tick = idle_cpu(cpu);
3427 trigger_load_balance(rq, cpu);
3428 #endif
3431 notrace unsigned long get_parent_ip(unsigned long addr)
3433 if (in_lock_functions(addr)) {
3434 addr = CALLER_ADDR2;
3435 if (in_lock_functions(addr))
3436 addr = CALLER_ADDR3;
3438 return addr;
3441 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3442 defined(CONFIG_PREEMPT_TRACER))
3444 void __kprobes add_preempt_count(int val)
3446 #ifdef CONFIG_DEBUG_PREEMPT
3448 * Underflow?
3450 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3451 return;
3452 #endif
3453 preempt_count() += val;
3454 #ifdef CONFIG_DEBUG_PREEMPT
3456 * Spinlock count overflowing soon?
3458 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3459 PREEMPT_MASK - 10);
3460 #endif
3461 if (preempt_count() == val)
3462 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3464 EXPORT_SYMBOL(add_preempt_count);
3466 void __kprobes sub_preempt_count(int val)
3468 #ifdef CONFIG_DEBUG_PREEMPT
3470 * Underflow?
3472 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3473 return;
3475 * Is the spinlock portion underflowing?
3477 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3478 !(preempt_count() & PREEMPT_MASK)))
3479 return;
3480 #endif
3482 if (preempt_count() == val)
3483 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3484 preempt_count() -= val;
3486 EXPORT_SYMBOL(sub_preempt_count);
3488 #endif
3491 * Print scheduling while atomic bug:
3493 static noinline void __schedule_bug(struct task_struct *prev)
3495 struct pt_regs *regs = get_irq_regs();
3497 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3498 prev->comm, prev->pid, preempt_count());
3500 debug_show_held_locks(prev);
3501 print_modules();
3502 if (irqs_disabled())
3503 print_irqtrace_events(prev);
3505 if (regs)
3506 show_regs(regs);
3507 else
3508 dump_stack();
3512 * Various schedule()-time debugging checks and statistics:
3514 static inline void schedule_debug(struct task_struct *prev)
3517 * Test if we are atomic. Since do_exit() needs to call into
3518 * schedule() atomically, we ignore that path for now.
3519 * Otherwise, whine if we are scheduling when we should not be.
3521 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3522 __schedule_bug(prev);
3524 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3526 schedstat_inc(this_rq(), sched_count);
3527 #ifdef CONFIG_SCHEDSTATS
3528 if (unlikely(prev->lock_depth >= 0)) {
3529 schedstat_inc(this_rq(), bkl_count);
3530 schedstat_inc(prev, sched_info.bkl_count);
3532 #endif
3535 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3537 if (prev->se.on_rq)
3538 update_rq_clock(rq);
3539 rq->skip_clock_update = 0;
3540 prev->sched_class->put_prev_task(rq, prev);
3544 * Pick up the highest-prio task:
3546 static inline struct task_struct *
3547 pick_next_task(struct rq *rq)
3549 const struct sched_class *class;
3550 struct task_struct *p;
3553 * Optimization: we know that if all tasks are in
3554 * the fair class we can call that function directly:
3556 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3557 p = fair_sched_class.pick_next_task(rq);
3558 if (likely(p))
3559 return p;
3562 class = sched_class_highest;
3563 for ( ; ; ) {
3564 p = class->pick_next_task(rq);
3565 if (p)
3566 return p;
3568 * Will never be NULL as the idle class always
3569 * returns a non-NULL p:
3571 class = class->next;
3576 * schedule() is the main scheduler function.
3578 asmlinkage void __sched schedule(void)
3580 struct task_struct *prev, *next;
3581 unsigned long *switch_count;
3582 struct rq *rq;
3583 int cpu;
3585 need_resched:
3586 preempt_disable();
3587 cpu = smp_processor_id();
3588 rq = cpu_rq(cpu);
3589 rcu_note_context_switch(cpu);
3590 prev = rq->curr;
3591 switch_count = &prev->nivcsw;
3593 release_kernel_lock(prev);
3594 need_resched_nonpreemptible:
3596 schedule_debug(prev);
3598 if (sched_feat(HRTICK))
3599 hrtick_clear(rq);
3601 raw_spin_lock_irq(&rq->lock);
3602 clear_tsk_need_resched(prev);
3604 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3605 if (unlikely(signal_pending_state(prev->state, prev)))
3606 prev->state = TASK_RUNNING;
3607 else
3608 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3609 switch_count = &prev->nvcsw;
3612 pre_schedule(rq, prev);
3614 if (unlikely(!rq->nr_running))
3615 idle_balance(cpu, rq);
3617 put_prev_task(rq, prev);
3618 next = pick_next_task(rq);
3620 if (likely(prev != next)) {
3621 sched_info_switch(prev, next);
3622 perf_event_task_sched_out(prev, next);
3624 rq->nr_switches++;
3625 rq->curr = next;
3626 ++*switch_count;
3628 context_switch(rq, prev, next); /* unlocks the rq */
3630 * the context switch might have flipped the stack from under
3631 * us, hence refresh the local variables.
3633 cpu = smp_processor_id();
3634 rq = cpu_rq(cpu);
3635 } else
3636 raw_spin_unlock_irq(&rq->lock);
3638 post_schedule(rq);
3640 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3641 prev = rq->curr;
3642 switch_count = &prev->nivcsw;
3643 goto need_resched_nonpreemptible;
3646 preempt_enable_no_resched();
3647 if (need_resched())
3648 goto need_resched;
3650 EXPORT_SYMBOL(schedule);
3652 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3654 * Look out! "owner" is an entirely speculative pointer
3655 * access and not reliable.
3657 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3659 unsigned int cpu;
3660 struct rq *rq;
3662 if (!sched_feat(OWNER_SPIN))
3663 return 0;
3665 #ifdef CONFIG_DEBUG_PAGEALLOC
3667 * Need to access the cpu field knowing that
3668 * DEBUG_PAGEALLOC could have unmapped it if
3669 * the mutex owner just released it and exited.
3671 if (probe_kernel_address(&owner->cpu, cpu))
3672 return 0;
3673 #else
3674 cpu = owner->cpu;
3675 #endif
3678 * Even if the access succeeded (likely case),
3679 * the cpu field may no longer be valid.
3681 if (cpu >= nr_cpumask_bits)
3682 return 0;
3685 * We need to validate that we can do a
3686 * get_cpu() and that we have the percpu area.
3688 if (!cpu_online(cpu))
3689 return 0;
3691 rq = cpu_rq(cpu);
3693 for (;;) {
3695 * Owner changed, break to re-assess state.
3697 if (lock->owner != owner)
3698 break;
3701 * Is that owner really running on that cpu?
3703 if (task_thread_info(rq->curr) != owner || need_resched())
3704 return 0;
3706 cpu_relax();
3709 return 1;
3711 #endif
3713 #ifdef CONFIG_PREEMPT
3715 * this is the entry point to schedule() from in-kernel preemption
3716 * off of preempt_enable. Kernel preemptions off return from interrupt
3717 * occur there and call schedule directly.
3719 asmlinkage void __sched preempt_schedule(void)
3721 struct thread_info *ti = current_thread_info();
3724 * If there is a non-zero preempt_count or interrupts are disabled,
3725 * we do not want to preempt the current task. Just return..
3727 if (likely(ti->preempt_count || irqs_disabled()))
3728 return;
3730 do {
3731 add_preempt_count(PREEMPT_ACTIVE);
3732 schedule();
3733 sub_preempt_count(PREEMPT_ACTIVE);
3736 * Check again in case we missed a preemption opportunity
3737 * between schedule and now.
3739 barrier();
3740 } while (need_resched());
3742 EXPORT_SYMBOL(preempt_schedule);
3745 * this is the entry point to schedule() from kernel preemption
3746 * off of irq context.
3747 * Note, that this is called and return with irqs disabled. This will
3748 * protect us against recursive calling from irq.
3750 asmlinkage void __sched preempt_schedule_irq(void)
3752 struct thread_info *ti = current_thread_info();
3754 /* Catch callers which need to be fixed */
3755 BUG_ON(ti->preempt_count || !irqs_disabled());
3757 do {
3758 add_preempt_count(PREEMPT_ACTIVE);
3759 local_irq_enable();
3760 schedule();
3761 local_irq_disable();
3762 sub_preempt_count(PREEMPT_ACTIVE);
3765 * Check again in case we missed a preemption opportunity
3766 * between schedule and now.
3768 barrier();
3769 } while (need_resched());
3772 #endif /* CONFIG_PREEMPT */
3774 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3775 void *key)
3777 return try_to_wake_up(curr->private, mode, wake_flags);
3779 EXPORT_SYMBOL(default_wake_function);
3782 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3783 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3784 * number) then we wake all the non-exclusive tasks and one exclusive task.
3786 * There are circumstances in which we can try to wake a task which has already
3787 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3788 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3790 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3791 int nr_exclusive, int wake_flags, void *key)
3793 wait_queue_t *curr, *next;
3795 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3796 unsigned flags = curr->flags;
3798 if (curr->func(curr, mode, wake_flags, key) &&
3799 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3800 break;
3805 * __wake_up - wake up threads blocked on a waitqueue.
3806 * @q: the waitqueue
3807 * @mode: which threads
3808 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3809 * @key: is directly passed to the wakeup function
3811 * It may be assumed that this function implies a write memory barrier before
3812 * changing the task state if and only if any tasks are woken up.
3814 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3815 int nr_exclusive, void *key)
3817 unsigned long flags;
3819 spin_lock_irqsave(&q->lock, flags);
3820 __wake_up_common(q, mode, nr_exclusive, 0, key);
3821 spin_unlock_irqrestore(&q->lock, flags);
3823 EXPORT_SYMBOL(__wake_up);
3826 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3828 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3830 __wake_up_common(q, mode, 1, 0, NULL);
3832 EXPORT_SYMBOL_GPL(__wake_up_locked);
3834 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3836 __wake_up_common(q, mode, 1, 0, key);
3840 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3841 * @q: the waitqueue
3842 * @mode: which threads
3843 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3844 * @key: opaque value to be passed to wakeup targets
3846 * The sync wakeup differs that the waker knows that it will schedule
3847 * away soon, so while the target thread will be woken up, it will not
3848 * be migrated to another CPU - ie. the two threads are 'synchronized'
3849 * with each other. This can prevent needless bouncing between CPUs.
3851 * On UP it can prevent extra preemption.
3853 * It may be assumed that this function implies a write memory barrier before
3854 * changing the task state if and only if any tasks are woken up.
3856 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3857 int nr_exclusive, void *key)
3859 unsigned long flags;
3860 int wake_flags = WF_SYNC;
3862 if (unlikely(!q))
3863 return;
3865 if (unlikely(!nr_exclusive))
3866 wake_flags = 0;
3868 spin_lock_irqsave(&q->lock, flags);
3869 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3870 spin_unlock_irqrestore(&q->lock, flags);
3872 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3875 * __wake_up_sync - see __wake_up_sync_key()
3877 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3879 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3881 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3884 * complete: - signals a single thread waiting on this completion
3885 * @x: holds the state of this particular completion
3887 * This will wake up a single thread waiting on this completion. Threads will be
3888 * awakened in the same order in which they were queued.
3890 * See also complete_all(), wait_for_completion() and related routines.
3892 * It may be assumed that this function implies a write memory barrier before
3893 * changing the task state if and only if any tasks are woken up.
3895 void complete(struct completion *x)
3897 unsigned long flags;
3899 spin_lock_irqsave(&x->wait.lock, flags);
3900 x->done++;
3901 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3902 spin_unlock_irqrestore(&x->wait.lock, flags);
3904 EXPORT_SYMBOL(complete);
3907 * complete_all: - signals all threads waiting on this completion
3908 * @x: holds the state of this particular completion
3910 * This will wake up all threads waiting on this particular completion event.
3912 * It may be assumed that this function implies a write memory barrier before
3913 * changing the task state if and only if any tasks are woken up.
3915 void complete_all(struct completion *x)
3917 unsigned long flags;
3919 spin_lock_irqsave(&x->wait.lock, flags);
3920 x->done += UINT_MAX/2;
3921 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3922 spin_unlock_irqrestore(&x->wait.lock, flags);
3924 EXPORT_SYMBOL(complete_all);
3926 static inline long __sched
3927 do_wait_for_common(struct completion *x, long timeout, int state)
3929 if (!x->done) {
3930 DECLARE_WAITQUEUE(wait, current);
3932 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3933 do {
3934 if (signal_pending_state(state, current)) {
3935 timeout = -ERESTARTSYS;
3936 break;
3938 __set_current_state(state);
3939 spin_unlock_irq(&x->wait.lock);
3940 timeout = schedule_timeout(timeout);
3941 spin_lock_irq(&x->wait.lock);
3942 } while (!x->done && timeout);
3943 __remove_wait_queue(&x->wait, &wait);
3944 if (!x->done)
3945 return timeout;
3947 x->done--;
3948 return timeout ?: 1;
3951 static long __sched
3952 wait_for_common(struct completion *x, long timeout, int state)
3954 might_sleep();
3956 spin_lock_irq(&x->wait.lock);
3957 timeout = do_wait_for_common(x, timeout, state);
3958 spin_unlock_irq(&x->wait.lock);
3959 return timeout;
3963 * wait_for_completion: - waits for completion of a task
3964 * @x: holds the state of this particular completion
3966 * This waits to be signaled for completion of a specific task. It is NOT
3967 * interruptible and there is no timeout.
3969 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3970 * and interrupt capability. Also see complete().
3972 void __sched wait_for_completion(struct completion *x)
3974 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3976 EXPORT_SYMBOL(wait_for_completion);
3979 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3980 * @x: holds the state of this particular completion
3981 * @timeout: timeout value in jiffies
3983 * This waits for either a completion of a specific task to be signaled or for a
3984 * specified timeout to expire. The timeout is in jiffies. It is not
3985 * interruptible.
3987 unsigned long __sched
3988 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3990 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3992 EXPORT_SYMBOL(wait_for_completion_timeout);
3995 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3996 * @x: holds the state of this particular completion
3998 * This waits for completion of a specific task to be signaled. It is
3999 * interruptible.
4001 int __sched wait_for_completion_interruptible(struct completion *x)
4003 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4004 if (t == -ERESTARTSYS)
4005 return t;
4006 return 0;
4008 EXPORT_SYMBOL(wait_for_completion_interruptible);
4011 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4012 * @x: holds the state of this particular completion
4013 * @timeout: timeout value in jiffies
4015 * This waits for either a completion of a specific task to be signaled or for a
4016 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4018 unsigned long __sched
4019 wait_for_completion_interruptible_timeout(struct completion *x,
4020 unsigned long timeout)
4022 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4024 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4027 * wait_for_completion_killable: - waits for completion of a task (killable)
4028 * @x: holds the state of this particular completion
4030 * This waits to be signaled for completion of a specific task. It can be
4031 * interrupted by a kill signal.
4033 int __sched wait_for_completion_killable(struct completion *x)
4035 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4036 if (t == -ERESTARTSYS)
4037 return t;
4038 return 0;
4040 EXPORT_SYMBOL(wait_for_completion_killable);
4043 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4044 * @x: holds the state of this particular completion
4045 * @timeout: timeout value in jiffies
4047 * This waits for either a completion of a specific task to be
4048 * signaled or for a specified timeout to expire. It can be
4049 * interrupted by a kill signal. The timeout is in jiffies.
4051 unsigned long __sched
4052 wait_for_completion_killable_timeout(struct completion *x,
4053 unsigned long timeout)
4055 return wait_for_common(x, timeout, TASK_KILLABLE);
4057 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4060 * try_wait_for_completion - try to decrement a completion without blocking
4061 * @x: completion structure
4063 * Returns: 0 if a decrement cannot be done without blocking
4064 * 1 if a decrement succeeded.
4066 * If a completion is being used as a counting completion,
4067 * attempt to decrement the counter without blocking. This
4068 * enables us to avoid waiting if the resource the completion
4069 * is protecting is not available.
4071 bool try_wait_for_completion(struct completion *x)
4073 unsigned long flags;
4074 int ret = 1;
4076 spin_lock_irqsave(&x->wait.lock, flags);
4077 if (!x->done)
4078 ret = 0;
4079 else
4080 x->done--;
4081 spin_unlock_irqrestore(&x->wait.lock, flags);
4082 return ret;
4084 EXPORT_SYMBOL(try_wait_for_completion);
4087 * completion_done - Test to see if a completion has any waiters
4088 * @x: completion structure
4090 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4091 * 1 if there are no waiters.
4094 bool completion_done(struct completion *x)
4096 unsigned long flags;
4097 int ret = 1;
4099 spin_lock_irqsave(&x->wait.lock, flags);
4100 if (!x->done)
4101 ret = 0;
4102 spin_unlock_irqrestore(&x->wait.lock, flags);
4103 return ret;
4105 EXPORT_SYMBOL(completion_done);
4107 static long __sched
4108 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4110 unsigned long flags;
4111 wait_queue_t wait;
4113 init_waitqueue_entry(&wait, current);
4115 __set_current_state(state);
4117 spin_lock_irqsave(&q->lock, flags);
4118 __add_wait_queue(q, &wait);
4119 spin_unlock(&q->lock);
4120 timeout = schedule_timeout(timeout);
4121 spin_lock_irq(&q->lock);
4122 __remove_wait_queue(q, &wait);
4123 spin_unlock_irqrestore(&q->lock, flags);
4125 return timeout;
4128 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4130 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4132 EXPORT_SYMBOL(interruptible_sleep_on);
4134 long __sched
4135 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4137 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4139 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4141 void __sched sleep_on(wait_queue_head_t *q)
4143 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4145 EXPORT_SYMBOL(sleep_on);
4147 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4149 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4151 EXPORT_SYMBOL(sleep_on_timeout);
4153 #ifdef CONFIG_RT_MUTEXES
4156 * rt_mutex_setprio - set the current priority of a task
4157 * @p: task
4158 * @prio: prio value (kernel-internal form)
4160 * This function changes the 'effective' priority of a task. It does
4161 * not touch ->normal_prio like __setscheduler().
4163 * Used by the rt_mutex code to implement priority inheritance logic.
4165 void rt_mutex_setprio(struct task_struct *p, int prio)
4167 unsigned long flags;
4168 int oldprio, on_rq, running;
4169 struct rq *rq;
4170 const struct sched_class *prev_class;
4172 BUG_ON(prio < 0 || prio > MAX_PRIO);
4174 rq = task_rq_lock(p, &flags);
4176 oldprio = p->prio;
4177 prev_class = p->sched_class;
4178 on_rq = p->se.on_rq;
4179 running = task_current(rq, p);
4180 if (on_rq)
4181 dequeue_task(rq, p, 0);
4182 if (running)
4183 p->sched_class->put_prev_task(rq, p);
4185 if (rt_prio(prio))
4186 p->sched_class = &rt_sched_class;
4187 else
4188 p->sched_class = &fair_sched_class;
4190 p->prio = prio;
4192 if (running)
4193 p->sched_class->set_curr_task(rq);
4194 if (on_rq) {
4195 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4197 check_class_changed(rq, p, prev_class, oldprio, running);
4199 task_rq_unlock(rq, &flags);
4202 #endif
4204 void set_user_nice(struct task_struct *p, long nice)
4206 int old_prio, delta, on_rq;
4207 unsigned long flags;
4208 struct rq *rq;
4210 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4211 return;
4213 * We have to be careful, if called from sys_setpriority(),
4214 * the task might be in the middle of scheduling on another CPU.
4216 rq = task_rq_lock(p, &flags);
4218 * The RT priorities are set via sched_setscheduler(), but we still
4219 * allow the 'normal' nice value to be set - but as expected
4220 * it wont have any effect on scheduling until the task is
4221 * SCHED_FIFO/SCHED_RR:
4223 if (task_has_rt_policy(p)) {
4224 p->static_prio = NICE_TO_PRIO(nice);
4225 goto out_unlock;
4227 on_rq = p->se.on_rq;
4228 if (on_rq)
4229 dequeue_task(rq, p, 0);
4231 p->static_prio = NICE_TO_PRIO(nice);
4232 set_load_weight(p);
4233 old_prio = p->prio;
4234 p->prio = effective_prio(p);
4235 delta = p->prio - old_prio;
4237 if (on_rq) {
4238 enqueue_task(rq, p, 0);
4240 * If the task increased its priority or is running and
4241 * lowered its priority, then reschedule its CPU:
4243 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4244 resched_task(rq->curr);
4246 out_unlock:
4247 task_rq_unlock(rq, &flags);
4249 EXPORT_SYMBOL(set_user_nice);
4252 * can_nice - check if a task can reduce its nice value
4253 * @p: task
4254 * @nice: nice value
4256 int can_nice(const struct task_struct *p, const int nice)
4258 /* convert nice value [19,-20] to rlimit style value [1,40] */
4259 int nice_rlim = 20 - nice;
4261 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4262 capable(CAP_SYS_NICE));
4265 #ifdef __ARCH_WANT_SYS_NICE
4268 * sys_nice - change the priority of the current process.
4269 * @increment: priority increment
4271 * sys_setpriority is a more generic, but much slower function that
4272 * does similar things.
4274 SYSCALL_DEFINE1(nice, int, increment)
4276 long nice, retval;
4279 * Setpriority might change our priority at the same moment.
4280 * We don't have to worry. Conceptually one call occurs first
4281 * and we have a single winner.
4283 if (increment < -40)
4284 increment = -40;
4285 if (increment > 40)
4286 increment = 40;
4288 nice = TASK_NICE(current) + increment;
4289 if (nice < -20)
4290 nice = -20;
4291 if (nice > 19)
4292 nice = 19;
4294 if (increment < 0 && !can_nice(current, nice))
4295 return -EPERM;
4297 retval = security_task_setnice(current, nice);
4298 if (retval)
4299 return retval;
4301 set_user_nice(current, nice);
4302 return 0;
4305 #endif
4308 * task_prio - return the priority value of a given task.
4309 * @p: the task in question.
4311 * This is the priority value as seen by users in /proc.
4312 * RT tasks are offset by -200. Normal tasks are centered
4313 * around 0, value goes from -16 to +15.
4315 int task_prio(const struct task_struct *p)
4317 return p->prio - MAX_RT_PRIO;
4321 * task_nice - return the nice value of a given task.
4322 * @p: the task in question.
4324 int task_nice(const struct task_struct *p)
4326 return TASK_NICE(p);
4328 EXPORT_SYMBOL(task_nice);
4331 * idle_cpu - is a given cpu idle currently?
4332 * @cpu: the processor in question.
4334 int idle_cpu(int cpu)
4336 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4340 * idle_task - return the idle task for a given cpu.
4341 * @cpu: the processor in question.
4343 struct task_struct *idle_task(int cpu)
4345 return cpu_rq(cpu)->idle;
4349 * find_process_by_pid - find a process with a matching PID value.
4350 * @pid: the pid in question.
4352 static struct task_struct *find_process_by_pid(pid_t pid)
4354 return pid ? find_task_by_vpid(pid) : current;
4357 /* Actually do priority change: must hold rq lock. */
4358 static void
4359 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4361 BUG_ON(p->se.on_rq);
4363 p->policy = policy;
4364 p->rt_priority = prio;
4365 p->normal_prio = normal_prio(p);
4366 /* we are holding p->pi_lock already */
4367 p->prio = rt_mutex_getprio(p);
4368 if (rt_prio(p->prio))
4369 p->sched_class = &rt_sched_class;
4370 else
4371 p->sched_class = &fair_sched_class;
4372 set_load_weight(p);
4376 * check the target process has a UID that matches the current process's
4378 static bool check_same_owner(struct task_struct *p)
4380 const struct cred *cred = current_cred(), *pcred;
4381 bool match;
4383 rcu_read_lock();
4384 pcred = __task_cred(p);
4385 match = (cred->euid == pcred->euid ||
4386 cred->euid == pcred->uid);
4387 rcu_read_unlock();
4388 return match;
4391 static int __sched_setscheduler(struct task_struct *p, int policy,
4392 struct sched_param *param, bool user)
4394 int retval, oldprio, oldpolicy = -1, on_rq, running;
4395 unsigned long flags;
4396 const struct sched_class *prev_class;
4397 struct rq *rq;
4398 int reset_on_fork;
4400 /* may grab non-irq protected spin_locks */
4401 BUG_ON(in_interrupt());
4402 recheck:
4403 /* double check policy once rq lock held */
4404 if (policy < 0) {
4405 reset_on_fork = p->sched_reset_on_fork;
4406 policy = oldpolicy = p->policy;
4407 } else {
4408 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4409 policy &= ~SCHED_RESET_ON_FORK;
4411 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4412 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4413 policy != SCHED_IDLE)
4414 return -EINVAL;
4418 * Valid priorities for SCHED_FIFO and SCHED_RR are
4419 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4420 * SCHED_BATCH and SCHED_IDLE is 0.
4422 if (param->sched_priority < 0 ||
4423 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4424 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4425 return -EINVAL;
4426 if (rt_policy(policy) != (param->sched_priority != 0))
4427 return -EINVAL;
4430 * Allow unprivileged RT tasks to decrease priority:
4432 if (user && !capable(CAP_SYS_NICE)) {
4433 if (rt_policy(policy)) {
4434 unsigned long rlim_rtprio;
4436 if (!lock_task_sighand(p, &flags))
4437 return -ESRCH;
4438 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4439 unlock_task_sighand(p, &flags);
4441 /* can't set/change the rt policy */
4442 if (policy != p->policy && !rlim_rtprio)
4443 return -EPERM;
4445 /* can't increase priority */
4446 if (param->sched_priority > p->rt_priority &&
4447 param->sched_priority > rlim_rtprio)
4448 return -EPERM;
4451 * Like positive nice levels, dont allow tasks to
4452 * move out of SCHED_IDLE either:
4454 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4455 return -EPERM;
4457 /* can't change other user's priorities */
4458 if (!check_same_owner(p))
4459 return -EPERM;
4461 /* Normal users shall not reset the sched_reset_on_fork flag */
4462 if (p->sched_reset_on_fork && !reset_on_fork)
4463 return -EPERM;
4466 if (user) {
4467 retval = security_task_setscheduler(p, policy, param);
4468 if (retval)
4469 return retval;
4473 * make sure no PI-waiters arrive (or leave) while we are
4474 * changing the priority of the task:
4476 raw_spin_lock_irqsave(&p->pi_lock, flags);
4478 * To be able to change p->policy safely, the apropriate
4479 * runqueue lock must be held.
4481 rq = __task_rq_lock(p);
4483 #ifdef CONFIG_RT_GROUP_SCHED
4484 if (user) {
4486 * Do not allow realtime tasks into groups that have no runtime
4487 * assigned.
4489 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4490 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4491 __task_rq_unlock(rq);
4492 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4493 return -EPERM;
4496 #endif
4498 /* recheck policy now with rq lock held */
4499 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4500 policy = oldpolicy = -1;
4501 __task_rq_unlock(rq);
4502 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4503 goto recheck;
4505 on_rq = p->se.on_rq;
4506 running = task_current(rq, p);
4507 if (on_rq)
4508 deactivate_task(rq, p, 0);
4509 if (running)
4510 p->sched_class->put_prev_task(rq, p);
4512 p->sched_reset_on_fork = reset_on_fork;
4514 oldprio = p->prio;
4515 prev_class = p->sched_class;
4516 __setscheduler(rq, p, policy, param->sched_priority);
4518 if (running)
4519 p->sched_class->set_curr_task(rq);
4520 if (on_rq) {
4521 activate_task(rq, p, 0);
4523 check_class_changed(rq, p, prev_class, oldprio, running);
4525 __task_rq_unlock(rq);
4526 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4528 rt_mutex_adjust_pi(p);
4530 return 0;
4534 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4535 * @p: the task in question.
4536 * @policy: new policy.
4537 * @param: structure containing the new RT priority.
4539 * NOTE that the task may be already dead.
4541 int sched_setscheduler(struct task_struct *p, int policy,
4542 struct sched_param *param)
4544 return __sched_setscheduler(p, policy, param, true);
4546 EXPORT_SYMBOL_GPL(sched_setscheduler);
4549 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4550 * @p: the task in question.
4551 * @policy: new policy.
4552 * @param: structure containing the new RT priority.
4554 * Just like sched_setscheduler, only don't bother checking if the
4555 * current context has permission. For example, this is needed in
4556 * stop_machine(): we create temporary high priority worker threads,
4557 * but our caller might not have that capability.
4559 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4560 struct sched_param *param)
4562 return __sched_setscheduler(p, policy, param, false);
4565 static int
4566 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4568 struct sched_param lparam;
4569 struct task_struct *p;
4570 int retval;
4572 if (!param || pid < 0)
4573 return -EINVAL;
4574 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4575 return -EFAULT;
4577 rcu_read_lock();
4578 retval = -ESRCH;
4579 p = find_process_by_pid(pid);
4580 if (p != NULL)
4581 retval = sched_setscheduler(p, policy, &lparam);
4582 rcu_read_unlock();
4584 return retval;
4588 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4589 * @pid: the pid in question.
4590 * @policy: new policy.
4591 * @param: structure containing the new RT priority.
4593 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4594 struct sched_param __user *, param)
4596 /* negative values for policy are not valid */
4597 if (policy < 0)
4598 return -EINVAL;
4600 return do_sched_setscheduler(pid, policy, param);
4604 * sys_sched_setparam - set/change the RT priority of a thread
4605 * @pid: the pid in question.
4606 * @param: structure containing the new RT priority.
4608 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4610 return do_sched_setscheduler(pid, -1, param);
4614 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4615 * @pid: the pid in question.
4617 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4619 struct task_struct *p;
4620 int retval;
4622 if (pid < 0)
4623 return -EINVAL;
4625 retval = -ESRCH;
4626 rcu_read_lock();
4627 p = find_process_by_pid(pid);
4628 if (p) {
4629 retval = security_task_getscheduler(p);
4630 if (!retval)
4631 retval = p->policy
4632 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4634 rcu_read_unlock();
4635 return retval;
4639 * sys_sched_getparam - get the RT priority of a thread
4640 * @pid: the pid in question.
4641 * @param: structure containing the RT priority.
4643 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4645 struct sched_param lp;
4646 struct task_struct *p;
4647 int retval;
4649 if (!param || pid < 0)
4650 return -EINVAL;
4652 rcu_read_lock();
4653 p = find_process_by_pid(pid);
4654 retval = -ESRCH;
4655 if (!p)
4656 goto out_unlock;
4658 retval = security_task_getscheduler(p);
4659 if (retval)
4660 goto out_unlock;
4662 lp.sched_priority = p->rt_priority;
4663 rcu_read_unlock();
4666 * This one might sleep, we cannot do it with a spinlock held ...
4668 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4670 return retval;
4672 out_unlock:
4673 rcu_read_unlock();
4674 return retval;
4677 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4679 cpumask_var_t cpus_allowed, new_mask;
4680 struct task_struct *p;
4681 int retval;
4683 get_online_cpus();
4684 rcu_read_lock();
4686 p = find_process_by_pid(pid);
4687 if (!p) {
4688 rcu_read_unlock();
4689 put_online_cpus();
4690 return -ESRCH;
4693 /* Prevent p going away */
4694 get_task_struct(p);
4695 rcu_read_unlock();
4697 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4698 retval = -ENOMEM;
4699 goto out_put_task;
4701 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4702 retval = -ENOMEM;
4703 goto out_free_cpus_allowed;
4705 retval = -EPERM;
4706 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4707 goto out_unlock;
4709 retval = security_task_setscheduler(p, 0, NULL);
4710 if (retval)
4711 goto out_unlock;
4713 cpuset_cpus_allowed(p, cpus_allowed);
4714 cpumask_and(new_mask, in_mask, cpus_allowed);
4715 again:
4716 retval = set_cpus_allowed_ptr(p, new_mask);
4718 if (!retval) {
4719 cpuset_cpus_allowed(p, cpus_allowed);
4720 if (!cpumask_subset(new_mask, cpus_allowed)) {
4722 * We must have raced with a concurrent cpuset
4723 * update. Just reset the cpus_allowed to the
4724 * cpuset's cpus_allowed
4726 cpumask_copy(new_mask, cpus_allowed);
4727 goto again;
4730 out_unlock:
4731 free_cpumask_var(new_mask);
4732 out_free_cpus_allowed:
4733 free_cpumask_var(cpus_allowed);
4734 out_put_task:
4735 put_task_struct(p);
4736 put_online_cpus();
4737 return retval;
4740 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4741 struct cpumask *new_mask)
4743 if (len < cpumask_size())
4744 cpumask_clear(new_mask);
4745 else if (len > cpumask_size())
4746 len = cpumask_size();
4748 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4752 * sys_sched_setaffinity - set the cpu affinity of a process
4753 * @pid: pid of the process
4754 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4755 * @user_mask_ptr: user-space pointer to the new cpu mask
4757 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4758 unsigned long __user *, user_mask_ptr)
4760 cpumask_var_t new_mask;
4761 int retval;
4763 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4764 return -ENOMEM;
4766 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4767 if (retval == 0)
4768 retval = sched_setaffinity(pid, new_mask);
4769 free_cpumask_var(new_mask);
4770 return retval;
4773 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4775 struct task_struct *p;
4776 unsigned long flags;
4777 struct rq *rq;
4778 int retval;
4780 get_online_cpus();
4781 rcu_read_lock();
4783 retval = -ESRCH;
4784 p = find_process_by_pid(pid);
4785 if (!p)
4786 goto out_unlock;
4788 retval = security_task_getscheduler(p);
4789 if (retval)
4790 goto out_unlock;
4792 rq = task_rq_lock(p, &flags);
4793 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4794 task_rq_unlock(rq, &flags);
4796 out_unlock:
4797 rcu_read_unlock();
4798 put_online_cpus();
4800 return retval;
4804 * sys_sched_getaffinity - get the cpu affinity of a process
4805 * @pid: pid of the process
4806 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4807 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4809 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4810 unsigned long __user *, user_mask_ptr)
4812 int ret;
4813 cpumask_var_t mask;
4815 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4816 return -EINVAL;
4817 if (len & (sizeof(unsigned long)-1))
4818 return -EINVAL;
4820 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4821 return -ENOMEM;
4823 ret = sched_getaffinity(pid, mask);
4824 if (ret == 0) {
4825 size_t retlen = min_t(size_t, len, cpumask_size());
4827 if (copy_to_user(user_mask_ptr, mask, retlen))
4828 ret = -EFAULT;
4829 else
4830 ret = retlen;
4832 free_cpumask_var(mask);
4834 return ret;
4838 * sys_sched_yield - yield the current processor to other threads.
4840 * This function yields the current CPU to other tasks. If there are no
4841 * other threads running on this CPU then this function will return.
4843 SYSCALL_DEFINE0(sched_yield)
4845 struct rq *rq = this_rq_lock();
4847 schedstat_inc(rq, yld_count);
4848 current->sched_class->yield_task(rq);
4851 * Since we are going to call schedule() anyway, there's
4852 * no need to preempt or enable interrupts:
4854 __release(rq->lock);
4855 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4856 do_raw_spin_unlock(&rq->lock);
4857 preempt_enable_no_resched();
4859 schedule();
4861 return 0;
4864 static inline int should_resched(void)
4866 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4869 static void __cond_resched(void)
4871 add_preempt_count(PREEMPT_ACTIVE);
4872 schedule();
4873 sub_preempt_count(PREEMPT_ACTIVE);
4876 int __sched _cond_resched(void)
4878 if (should_resched()) {
4879 __cond_resched();
4880 return 1;
4882 return 0;
4884 EXPORT_SYMBOL(_cond_resched);
4887 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4888 * call schedule, and on return reacquire the lock.
4890 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4891 * operations here to prevent schedule() from being called twice (once via
4892 * spin_unlock(), once by hand).
4894 int __cond_resched_lock(spinlock_t *lock)
4896 int resched = should_resched();
4897 int ret = 0;
4899 lockdep_assert_held(lock);
4901 if (spin_needbreak(lock) || resched) {
4902 spin_unlock(lock);
4903 if (resched)
4904 __cond_resched();
4905 else
4906 cpu_relax();
4907 ret = 1;
4908 spin_lock(lock);
4910 return ret;
4912 EXPORT_SYMBOL(__cond_resched_lock);
4914 int __sched __cond_resched_softirq(void)
4916 BUG_ON(!in_softirq());
4918 if (should_resched()) {
4919 local_bh_enable();
4920 __cond_resched();
4921 local_bh_disable();
4922 return 1;
4924 return 0;
4926 EXPORT_SYMBOL(__cond_resched_softirq);
4929 * yield - yield the current processor to other threads.
4931 * This is a shortcut for kernel-space yielding - it marks the
4932 * thread runnable and calls sys_sched_yield().
4934 void __sched yield(void)
4936 set_current_state(TASK_RUNNING);
4937 sys_sched_yield();
4939 EXPORT_SYMBOL(yield);
4942 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4943 * that process accounting knows that this is a task in IO wait state.
4945 void __sched io_schedule(void)
4947 struct rq *rq = raw_rq();
4949 delayacct_blkio_start();
4950 atomic_inc(&rq->nr_iowait);
4951 current->in_iowait = 1;
4952 schedule();
4953 current->in_iowait = 0;
4954 atomic_dec(&rq->nr_iowait);
4955 delayacct_blkio_end();
4957 EXPORT_SYMBOL(io_schedule);
4959 long __sched io_schedule_timeout(long timeout)
4961 struct rq *rq = raw_rq();
4962 long ret;
4964 delayacct_blkio_start();
4965 atomic_inc(&rq->nr_iowait);
4966 current->in_iowait = 1;
4967 ret = schedule_timeout(timeout);
4968 current->in_iowait = 0;
4969 atomic_dec(&rq->nr_iowait);
4970 delayacct_blkio_end();
4971 return ret;
4975 * sys_sched_get_priority_max - return maximum RT priority.
4976 * @policy: scheduling class.
4978 * this syscall returns the maximum rt_priority that can be used
4979 * by a given scheduling class.
4981 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4983 int ret = -EINVAL;
4985 switch (policy) {
4986 case SCHED_FIFO:
4987 case SCHED_RR:
4988 ret = MAX_USER_RT_PRIO-1;
4989 break;
4990 case SCHED_NORMAL:
4991 case SCHED_BATCH:
4992 case SCHED_IDLE:
4993 ret = 0;
4994 break;
4996 return ret;
5000 * sys_sched_get_priority_min - return minimum RT priority.
5001 * @policy: scheduling class.
5003 * this syscall returns the minimum rt_priority that can be used
5004 * by a given scheduling class.
5006 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5008 int ret = -EINVAL;
5010 switch (policy) {
5011 case SCHED_FIFO:
5012 case SCHED_RR:
5013 ret = 1;
5014 break;
5015 case SCHED_NORMAL:
5016 case SCHED_BATCH:
5017 case SCHED_IDLE:
5018 ret = 0;
5020 return ret;
5024 * sys_sched_rr_get_interval - return the default timeslice of a process.
5025 * @pid: pid of the process.
5026 * @interval: userspace pointer to the timeslice value.
5028 * this syscall writes the default timeslice value of a given process
5029 * into the user-space timespec buffer. A value of '0' means infinity.
5031 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5032 struct timespec __user *, interval)
5034 struct task_struct *p;
5035 unsigned int time_slice;
5036 unsigned long flags;
5037 struct rq *rq;
5038 int retval;
5039 struct timespec t;
5041 if (pid < 0)
5042 return -EINVAL;
5044 retval = -ESRCH;
5045 rcu_read_lock();
5046 p = find_process_by_pid(pid);
5047 if (!p)
5048 goto out_unlock;
5050 retval = security_task_getscheduler(p);
5051 if (retval)
5052 goto out_unlock;
5054 rq = task_rq_lock(p, &flags);
5055 time_slice = p->sched_class->get_rr_interval(rq, p);
5056 task_rq_unlock(rq, &flags);
5058 rcu_read_unlock();
5059 jiffies_to_timespec(time_slice, &t);
5060 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5061 return retval;
5063 out_unlock:
5064 rcu_read_unlock();
5065 return retval;
5068 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5070 void sched_show_task(struct task_struct *p)
5072 unsigned long free = 0;
5073 unsigned state;
5075 state = p->state ? __ffs(p->state) + 1 : 0;
5076 printk(KERN_INFO "%-13.13s %c", p->comm,
5077 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5078 #if BITS_PER_LONG == 32
5079 if (state == TASK_RUNNING)
5080 printk(KERN_CONT " running ");
5081 else
5082 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5083 #else
5084 if (state == TASK_RUNNING)
5085 printk(KERN_CONT " running task ");
5086 else
5087 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5088 #endif
5089 #ifdef CONFIG_DEBUG_STACK_USAGE
5090 free = stack_not_used(p);
5091 #endif
5092 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5093 task_pid_nr(p), task_pid_nr(p->real_parent),
5094 (unsigned long)task_thread_info(p)->flags);
5096 show_stack(p, NULL);
5099 void show_state_filter(unsigned long state_filter)
5101 struct task_struct *g, *p;
5103 #if BITS_PER_LONG == 32
5104 printk(KERN_INFO
5105 " task PC stack pid father\n");
5106 #else
5107 printk(KERN_INFO
5108 " task PC stack pid father\n");
5109 #endif
5110 read_lock(&tasklist_lock);
5111 do_each_thread(g, p) {
5113 * reset the NMI-timeout, listing all files on a slow
5114 * console might take alot of time:
5116 touch_nmi_watchdog();
5117 if (!state_filter || (p->state & state_filter))
5118 sched_show_task(p);
5119 } while_each_thread(g, p);
5121 touch_all_softlockup_watchdogs();
5123 #ifdef CONFIG_SCHED_DEBUG
5124 sysrq_sched_debug_show();
5125 #endif
5126 read_unlock(&tasklist_lock);
5128 * Only show locks if all tasks are dumped:
5130 if (!state_filter)
5131 debug_show_all_locks();
5134 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5136 idle->sched_class = &idle_sched_class;
5140 * init_idle - set up an idle thread for a given CPU
5141 * @idle: task in question
5142 * @cpu: cpu the idle task belongs to
5144 * NOTE: this function does not set the idle thread's NEED_RESCHED
5145 * flag, to make booting more robust.
5147 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5149 struct rq *rq = cpu_rq(cpu);
5150 unsigned long flags;
5152 raw_spin_lock_irqsave(&rq->lock, flags);
5154 __sched_fork(idle);
5155 idle->state = TASK_RUNNING;
5156 idle->se.exec_start = sched_clock();
5158 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5159 __set_task_cpu(idle, cpu);
5161 rq->curr = rq->idle = idle;
5162 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5163 idle->oncpu = 1;
5164 #endif
5165 raw_spin_unlock_irqrestore(&rq->lock, flags);
5167 /* Set the preempt count _outside_ the spinlocks! */
5168 #if defined(CONFIG_PREEMPT)
5169 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5170 #else
5171 task_thread_info(idle)->preempt_count = 0;
5172 #endif
5174 * The idle tasks have their own, simple scheduling class:
5176 idle->sched_class = &idle_sched_class;
5177 ftrace_graph_init_task(idle);
5181 * In a system that switches off the HZ timer nohz_cpu_mask
5182 * indicates which cpus entered this state. This is used
5183 * in the rcu update to wait only for active cpus. For system
5184 * which do not switch off the HZ timer nohz_cpu_mask should
5185 * always be CPU_BITS_NONE.
5187 cpumask_var_t nohz_cpu_mask;
5190 * Increase the granularity value when there are more CPUs,
5191 * because with more CPUs the 'effective latency' as visible
5192 * to users decreases. But the relationship is not linear,
5193 * so pick a second-best guess by going with the log2 of the
5194 * number of CPUs.
5196 * This idea comes from the SD scheduler of Con Kolivas:
5198 static int get_update_sysctl_factor(void)
5200 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5201 unsigned int factor;
5203 switch (sysctl_sched_tunable_scaling) {
5204 case SCHED_TUNABLESCALING_NONE:
5205 factor = 1;
5206 break;
5207 case SCHED_TUNABLESCALING_LINEAR:
5208 factor = cpus;
5209 break;
5210 case SCHED_TUNABLESCALING_LOG:
5211 default:
5212 factor = 1 + ilog2(cpus);
5213 break;
5216 return factor;
5219 static void update_sysctl(void)
5221 unsigned int factor = get_update_sysctl_factor();
5223 #define SET_SYSCTL(name) \
5224 (sysctl_##name = (factor) * normalized_sysctl_##name)
5225 SET_SYSCTL(sched_min_granularity);
5226 SET_SYSCTL(sched_latency);
5227 SET_SYSCTL(sched_wakeup_granularity);
5228 SET_SYSCTL(sched_shares_ratelimit);
5229 #undef SET_SYSCTL
5232 static inline void sched_init_granularity(void)
5234 update_sysctl();
5237 #ifdef CONFIG_SMP
5239 * This is how migration works:
5241 * 1) we invoke migration_cpu_stop() on the target CPU using
5242 * stop_one_cpu().
5243 * 2) stopper starts to run (implicitly forcing the migrated thread
5244 * off the CPU)
5245 * 3) it checks whether the migrated task is still in the wrong runqueue.
5246 * 4) if it's in the wrong runqueue then the migration thread removes
5247 * it and puts it into the right queue.
5248 * 5) stopper completes and stop_one_cpu() returns and the migration
5249 * is done.
5253 * Change a given task's CPU affinity. Migrate the thread to a
5254 * proper CPU and schedule it away if the CPU it's executing on
5255 * is removed from the allowed bitmask.
5257 * NOTE: the caller must have a valid reference to the task, the
5258 * task must not exit() & deallocate itself prematurely. The
5259 * call is not atomic; no spinlocks may be held.
5261 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5263 unsigned long flags;
5264 struct rq *rq;
5265 unsigned int dest_cpu;
5266 int ret = 0;
5269 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5270 * drop the rq->lock and still rely on ->cpus_allowed.
5272 again:
5273 while (task_is_waking(p))
5274 cpu_relax();
5275 rq = task_rq_lock(p, &flags);
5276 if (task_is_waking(p)) {
5277 task_rq_unlock(rq, &flags);
5278 goto again;
5281 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5282 ret = -EINVAL;
5283 goto out;
5286 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5287 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5288 ret = -EINVAL;
5289 goto out;
5292 if (p->sched_class->set_cpus_allowed)
5293 p->sched_class->set_cpus_allowed(p, new_mask);
5294 else {
5295 cpumask_copy(&p->cpus_allowed, new_mask);
5296 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5299 /* Can the task run on the task's current CPU? If so, we're done */
5300 if (cpumask_test_cpu(task_cpu(p), new_mask))
5301 goto out;
5303 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5304 if (migrate_task(p, dest_cpu)) {
5305 struct migration_arg arg = { p, dest_cpu };
5306 /* Need help from migration thread: drop lock and wait. */
5307 task_rq_unlock(rq, &flags);
5308 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5309 tlb_migrate_finish(p->mm);
5310 return 0;
5312 out:
5313 task_rq_unlock(rq, &flags);
5315 return ret;
5317 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5320 * Move (not current) task off this cpu, onto dest cpu. We're doing
5321 * this because either it can't run here any more (set_cpus_allowed()
5322 * away from this CPU, or CPU going down), or because we're
5323 * attempting to rebalance this task on exec (sched_exec).
5325 * So we race with normal scheduler movements, but that's OK, as long
5326 * as the task is no longer on this CPU.
5328 * Returns non-zero if task was successfully migrated.
5330 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5332 struct rq *rq_dest, *rq_src;
5333 int ret = 0;
5335 if (unlikely(!cpu_active(dest_cpu)))
5336 return ret;
5338 rq_src = cpu_rq(src_cpu);
5339 rq_dest = cpu_rq(dest_cpu);
5341 double_rq_lock(rq_src, rq_dest);
5342 /* Already moved. */
5343 if (task_cpu(p) != src_cpu)
5344 goto done;
5345 /* Affinity changed (again). */
5346 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5347 goto fail;
5350 * If we're not on a rq, the next wake-up will ensure we're
5351 * placed properly.
5353 if (p->se.on_rq) {
5354 deactivate_task(rq_src, p, 0);
5355 set_task_cpu(p, dest_cpu);
5356 activate_task(rq_dest, p, 0);
5357 check_preempt_curr(rq_dest, p, 0);
5359 done:
5360 ret = 1;
5361 fail:
5362 double_rq_unlock(rq_src, rq_dest);
5363 return ret;
5367 * migration_cpu_stop - this will be executed by a highprio stopper thread
5368 * and performs thread migration by bumping thread off CPU then
5369 * 'pushing' onto another runqueue.
5371 static int migration_cpu_stop(void *data)
5373 struct migration_arg *arg = data;
5376 * The original target cpu might have gone down and we might
5377 * be on another cpu but it doesn't matter.
5379 local_irq_disable();
5380 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5381 local_irq_enable();
5382 return 0;
5385 #ifdef CONFIG_HOTPLUG_CPU
5387 * Figure out where task on dead CPU should go, use force if necessary.
5389 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5391 struct rq *rq = cpu_rq(dead_cpu);
5392 int needs_cpu, uninitialized_var(dest_cpu);
5393 unsigned long flags;
5395 local_irq_save(flags);
5397 raw_spin_lock(&rq->lock);
5398 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5399 if (needs_cpu)
5400 dest_cpu = select_fallback_rq(dead_cpu, p);
5401 raw_spin_unlock(&rq->lock);
5403 * It can only fail if we race with set_cpus_allowed(),
5404 * in the racer should migrate the task anyway.
5406 if (needs_cpu)
5407 __migrate_task(p, dead_cpu, dest_cpu);
5408 local_irq_restore(flags);
5412 * While a dead CPU has no uninterruptible tasks queued at this point,
5413 * it might still have a nonzero ->nr_uninterruptible counter, because
5414 * for performance reasons the counter is not stricly tracking tasks to
5415 * their home CPUs. So we just add the counter to another CPU's counter,
5416 * to keep the global sum constant after CPU-down:
5418 static void migrate_nr_uninterruptible(struct rq *rq_src)
5420 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5421 unsigned long flags;
5423 local_irq_save(flags);
5424 double_rq_lock(rq_src, rq_dest);
5425 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5426 rq_src->nr_uninterruptible = 0;
5427 double_rq_unlock(rq_src, rq_dest);
5428 local_irq_restore(flags);
5431 /* Run through task list and migrate tasks from the dead cpu. */
5432 static void migrate_live_tasks(int src_cpu)
5434 struct task_struct *p, *t;
5436 read_lock(&tasklist_lock);
5438 do_each_thread(t, p) {
5439 if (p == current)
5440 continue;
5442 if (task_cpu(p) == src_cpu)
5443 move_task_off_dead_cpu(src_cpu, p);
5444 } while_each_thread(t, p);
5446 read_unlock(&tasklist_lock);
5450 * Schedules idle task to be the next runnable task on current CPU.
5451 * It does so by boosting its priority to highest possible.
5452 * Used by CPU offline code.
5454 void sched_idle_next(void)
5456 int this_cpu = smp_processor_id();
5457 struct rq *rq = cpu_rq(this_cpu);
5458 struct task_struct *p = rq->idle;
5459 unsigned long flags;
5461 /* cpu has to be offline */
5462 BUG_ON(cpu_online(this_cpu));
5465 * Strictly not necessary since rest of the CPUs are stopped by now
5466 * and interrupts disabled on the current cpu.
5468 raw_spin_lock_irqsave(&rq->lock, flags);
5470 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5472 activate_task(rq, p, 0);
5474 raw_spin_unlock_irqrestore(&rq->lock, flags);
5478 * Ensures that the idle task is using init_mm right before its cpu goes
5479 * offline.
5481 void idle_task_exit(void)
5483 struct mm_struct *mm = current->active_mm;
5485 BUG_ON(cpu_online(smp_processor_id()));
5487 if (mm != &init_mm)
5488 switch_mm(mm, &init_mm, current);
5489 mmdrop(mm);
5492 /* called under rq->lock with disabled interrupts */
5493 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5495 struct rq *rq = cpu_rq(dead_cpu);
5497 /* Must be exiting, otherwise would be on tasklist. */
5498 BUG_ON(!p->exit_state);
5500 /* Cannot have done final schedule yet: would have vanished. */
5501 BUG_ON(p->state == TASK_DEAD);
5503 get_task_struct(p);
5506 * Drop lock around migration; if someone else moves it,
5507 * that's OK. No task can be added to this CPU, so iteration is
5508 * fine.
5510 raw_spin_unlock_irq(&rq->lock);
5511 move_task_off_dead_cpu(dead_cpu, p);
5512 raw_spin_lock_irq(&rq->lock);
5514 put_task_struct(p);
5517 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5518 static void migrate_dead_tasks(unsigned int dead_cpu)
5520 struct rq *rq = cpu_rq(dead_cpu);
5521 struct task_struct *next;
5523 for ( ; ; ) {
5524 if (!rq->nr_running)
5525 break;
5526 next = pick_next_task(rq);
5527 if (!next)
5528 break;
5529 next->sched_class->put_prev_task(rq, next);
5530 migrate_dead(dead_cpu, next);
5536 * remove the tasks which were accounted by rq from calc_load_tasks.
5538 static void calc_global_load_remove(struct rq *rq)
5540 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5541 rq->calc_load_active = 0;
5543 #endif /* CONFIG_HOTPLUG_CPU */
5545 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5547 static struct ctl_table sd_ctl_dir[] = {
5549 .procname = "sched_domain",
5550 .mode = 0555,
5555 static struct ctl_table sd_ctl_root[] = {
5557 .procname = "kernel",
5558 .mode = 0555,
5559 .child = sd_ctl_dir,
5564 static struct ctl_table *sd_alloc_ctl_entry(int n)
5566 struct ctl_table *entry =
5567 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5569 return entry;
5572 static void sd_free_ctl_entry(struct ctl_table **tablep)
5574 struct ctl_table *entry;
5577 * In the intermediate directories, both the child directory and
5578 * procname are dynamically allocated and could fail but the mode
5579 * will always be set. In the lowest directory the names are
5580 * static strings and all have proc handlers.
5582 for (entry = *tablep; entry->mode; entry++) {
5583 if (entry->child)
5584 sd_free_ctl_entry(&entry->child);
5585 if (entry->proc_handler == NULL)
5586 kfree(entry->procname);
5589 kfree(*tablep);
5590 *tablep = NULL;
5593 static void
5594 set_table_entry(struct ctl_table *entry,
5595 const char *procname, void *data, int maxlen,
5596 mode_t mode, proc_handler *proc_handler)
5598 entry->procname = procname;
5599 entry->data = data;
5600 entry->maxlen = maxlen;
5601 entry->mode = mode;
5602 entry->proc_handler = proc_handler;
5605 static struct ctl_table *
5606 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5608 struct ctl_table *table = sd_alloc_ctl_entry(13);
5610 if (table == NULL)
5611 return NULL;
5613 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5614 sizeof(long), 0644, proc_doulongvec_minmax);
5615 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5616 sizeof(long), 0644, proc_doulongvec_minmax);
5617 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5618 sizeof(int), 0644, proc_dointvec_minmax);
5619 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5620 sizeof(int), 0644, proc_dointvec_minmax);
5621 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5622 sizeof(int), 0644, proc_dointvec_minmax);
5623 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5624 sizeof(int), 0644, proc_dointvec_minmax);
5625 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5626 sizeof(int), 0644, proc_dointvec_minmax);
5627 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5628 sizeof(int), 0644, proc_dointvec_minmax);
5629 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5630 sizeof(int), 0644, proc_dointvec_minmax);
5631 set_table_entry(&table[9], "cache_nice_tries",
5632 &sd->cache_nice_tries,
5633 sizeof(int), 0644, proc_dointvec_minmax);
5634 set_table_entry(&table[10], "flags", &sd->flags,
5635 sizeof(int), 0644, proc_dointvec_minmax);
5636 set_table_entry(&table[11], "name", sd->name,
5637 CORENAME_MAX_SIZE, 0444, proc_dostring);
5638 /* &table[12] is terminator */
5640 return table;
5643 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5645 struct ctl_table *entry, *table;
5646 struct sched_domain *sd;
5647 int domain_num = 0, i;
5648 char buf[32];
5650 for_each_domain(cpu, sd)
5651 domain_num++;
5652 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5653 if (table == NULL)
5654 return NULL;
5656 i = 0;
5657 for_each_domain(cpu, sd) {
5658 snprintf(buf, 32, "domain%d", i);
5659 entry->procname = kstrdup(buf, GFP_KERNEL);
5660 entry->mode = 0555;
5661 entry->child = sd_alloc_ctl_domain_table(sd);
5662 entry++;
5663 i++;
5665 return table;
5668 static struct ctl_table_header *sd_sysctl_header;
5669 static void register_sched_domain_sysctl(void)
5671 int i, cpu_num = num_possible_cpus();
5672 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5673 char buf[32];
5675 WARN_ON(sd_ctl_dir[0].child);
5676 sd_ctl_dir[0].child = entry;
5678 if (entry == NULL)
5679 return;
5681 for_each_possible_cpu(i) {
5682 snprintf(buf, 32, "cpu%d", i);
5683 entry->procname = kstrdup(buf, GFP_KERNEL);
5684 entry->mode = 0555;
5685 entry->child = sd_alloc_ctl_cpu_table(i);
5686 entry++;
5689 WARN_ON(sd_sysctl_header);
5690 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5693 /* may be called multiple times per register */
5694 static void unregister_sched_domain_sysctl(void)
5696 if (sd_sysctl_header)
5697 unregister_sysctl_table(sd_sysctl_header);
5698 sd_sysctl_header = NULL;
5699 if (sd_ctl_dir[0].child)
5700 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5702 #else
5703 static void register_sched_domain_sysctl(void)
5706 static void unregister_sched_domain_sysctl(void)
5709 #endif
5711 static void set_rq_online(struct rq *rq)
5713 if (!rq->online) {
5714 const struct sched_class *class;
5716 cpumask_set_cpu(rq->cpu, rq->rd->online);
5717 rq->online = 1;
5719 for_each_class(class) {
5720 if (class->rq_online)
5721 class->rq_online(rq);
5726 static void set_rq_offline(struct rq *rq)
5728 if (rq->online) {
5729 const struct sched_class *class;
5731 for_each_class(class) {
5732 if (class->rq_offline)
5733 class->rq_offline(rq);
5736 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5737 rq->online = 0;
5742 * migration_call - callback that gets triggered when a CPU is added.
5743 * Here we can start up the necessary migration thread for the new CPU.
5745 static int __cpuinit
5746 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5748 int cpu = (long)hcpu;
5749 unsigned long flags;
5750 struct rq *rq = cpu_rq(cpu);
5752 switch (action) {
5754 case CPU_UP_PREPARE:
5755 case CPU_UP_PREPARE_FROZEN:
5756 rq->calc_load_update = calc_load_update;
5757 break;
5759 case CPU_ONLINE:
5760 case CPU_ONLINE_FROZEN:
5761 /* Update our root-domain */
5762 raw_spin_lock_irqsave(&rq->lock, flags);
5763 if (rq->rd) {
5764 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5766 set_rq_online(rq);
5768 raw_spin_unlock_irqrestore(&rq->lock, flags);
5769 break;
5771 #ifdef CONFIG_HOTPLUG_CPU
5772 case CPU_DEAD:
5773 case CPU_DEAD_FROZEN:
5774 migrate_live_tasks(cpu);
5775 /* Idle task back to normal (off runqueue, low prio) */
5776 raw_spin_lock_irq(&rq->lock);
5777 deactivate_task(rq, rq->idle, 0);
5778 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5779 rq->idle->sched_class = &idle_sched_class;
5780 migrate_dead_tasks(cpu);
5781 raw_spin_unlock_irq(&rq->lock);
5782 migrate_nr_uninterruptible(rq);
5783 BUG_ON(rq->nr_running != 0);
5784 calc_global_load_remove(rq);
5785 break;
5787 case CPU_DYING:
5788 case CPU_DYING_FROZEN:
5789 /* Update our root-domain */
5790 raw_spin_lock_irqsave(&rq->lock, flags);
5791 if (rq->rd) {
5792 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5793 set_rq_offline(rq);
5795 raw_spin_unlock_irqrestore(&rq->lock, flags);
5796 break;
5797 #endif
5799 return NOTIFY_OK;
5803 * Register at high priority so that task migration (migrate_all_tasks)
5804 * happens before everything else. This has to be lower priority than
5805 * the notifier in the perf_event subsystem, though.
5807 static struct notifier_block __cpuinitdata migration_notifier = {
5808 .notifier_call = migration_call,
5809 .priority = 10
5812 static int __init migration_init(void)
5814 void *cpu = (void *)(long)smp_processor_id();
5815 int err;
5817 /* Start one for the boot CPU: */
5818 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5819 BUG_ON(err == NOTIFY_BAD);
5820 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5821 register_cpu_notifier(&migration_notifier);
5823 return 0;
5825 early_initcall(migration_init);
5826 #endif
5828 #ifdef CONFIG_SMP
5830 #ifdef CONFIG_SCHED_DEBUG
5832 static __read_mostly int sched_domain_debug_enabled;
5834 static int __init sched_domain_debug_setup(char *str)
5836 sched_domain_debug_enabled = 1;
5838 return 0;
5840 early_param("sched_debug", sched_domain_debug_setup);
5842 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5843 struct cpumask *groupmask)
5845 struct sched_group *group = sd->groups;
5846 char str[256];
5848 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5849 cpumask_clear(groupmask);
5851 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5853 if (!(sd->flags & SD_LOAD_BALANCE)) {
5854 printk("does not load-balance\n");
5855 if (sd->parent)
5856 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5857 " has parent");
5858 return -1;
5861 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5863 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5864 printk(KERN_ERR "ERROR: domain->span does not contain "
5865 "CPU%d\n", cpu);
5867 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5868 printk(KERN_ERR "ERROR: domain->groups does not contain"
5869 " CPU%d\n", cpu);
5872 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5873 do {
5874 if (!group) {
5875 printk("\n");
5876 printk(KERN_ERR "ERROR: group is NULL\n");
5877 break;
5880 if (!group->cpu_power) {
5881 printk(KERN_CONT "\n");
5882 printk(KERN_ERR "ERROR: domain->cpu_power not "
5883 "set\n");
5884 break;
5887 if (!cpumask_weight(sched_group_cpus(group))) {
5888 printk(KERN_CONT "\n");
5889 printk(KERN_ERR "ERROR: empty group\n");
5890 break;
5893 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5894 printk(KERN_CONT "\n");
5895 printk(KERN_ERR "ERROR: repeated CPUs\n");
5896 break;
5899 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5901 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5903 printk(KERN_CONT " %s", str);
5904 if (group->cpu_power != SCHED_LOAD_SCALE) {
5905 printk(KERN_CONT " (cpu_power = %d)",
5906 group->cpu_power);
5909 group = group->next;
5910 } while (group != sd->groups);
5911 printk(KERN_CONT "\n");
5913 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5914 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5916 if (sd->parent &&
5917 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5918 printk(KERN_ERR "ERROR: parent span is not a superset "
5919 "of domain->span\n");
5920 return 0;
5923 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5925 cpumask_var_t groupmask;
5926 int level = 0;
5928 if (!sched_domain_debug_enabled)
5929 return;
5931 if (!sd) {
5932 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5933 return;
5936 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5938 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
5939 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
5940 return;
5943 for (;;) {
5944 if (sched_domain_debug_one(sd, cpu, level, groupmask))
5945 break;
5946 level++;
5947 sd = sd->parent;
5948 if (!sd)
5949 break;
5951 free_cpumask_var(groupmask);
5953 #else /* !CONFIG_SCHED_DEBUG */
5954 # define sched_domain_debug(sd, cpu) do { } while (0)
5955 #endif /* CONFIG_SCHED_DEBUG */
5957 static int sd_degenerate(struct sched_domain *sd)
5959 if (cpumask_weight(sched_domain_span(sd)) == 1)
5960 return 1;
5962 /* Following flags need at least 2 groups */
5963 if (sd->flags & (SD_LOAD_BALANCE |
5964 SD_BALANCE_NEWIDLE |
5965 SD_BALANCE_FORK |
5966 SD_BALANCE_EXEC |
5967 SD_SHARE_CPUPOWER |
5968 SD_SHARE_PKG_RESOURCES)) {
5969 if (sd->groups != sd->groups->next)
5970 return 0;
5973 /* Following flags don't use groups */
5974 if (sd->flags & (SD_WAKE_AFFINE))
5975 return 0;
5977 return 1;
5980 static int
5981 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5983 unsigned long cflags = sd->flags, pflags = parent->flags;
5985 if (sd_degenerate(parent))
5986 return 1;
5988 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5989 return 0;
5991 /* Flags needing groups don't count if only 1 group in parent */
5992 if (parent->groups == parent->groups->next) {
5993 pflags &= ~(SD_LOAD_BALANCE |
5994 SD_BALANCE_NEWIDLE |
5995 SD_BALANCE_FORK |
5996 SD_BALANCE_EXEC |
5997 SD_SHARE_CPUPOWER |
5998 SD_SHARE_PKG_RESOURCES);
5999 if (nr_node_ids == 1)
6000 pflags &= ~SD_SERIALIZE;
6002 if (~cflags & pflags)
6003 return 0;
6005 return 1;
6008 static void free_rootdomain(struct root_domain *rd)
6010 synchronize_sched();
6012 cpupri_cleanup(&rd->cpupri);
6014 free_cpumask_var(rd->rto_mask);
6015 free_cpumask_var(rd->online);
6016 free_cpumask_var(rd->span);
6017 kfree(rd);
6020 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6022 struct root_domain *old_rd = NULL;
6023 unsigned long flags;
6025 raw_spin_lock_irqsave(&rq->lock, flags);
6027 if (rq->rd) {
6028 old_rd = rq->rd;
6030 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6031 set_rq_offline(rq);
6033 cpumask_clear_cpu(rq->cpu, old_rd->span);
6036 * If we dont want to free the old_rt yet then
6037 * set old_rd to NULL to skip the freeing later
6038 * in this function:
6040 if (!atomic_dec_and_test(&old_rd->refcount))
6041 old_rd = NULL;
6044 atomic_inc(&rd->refcount);
6045 rq->rd = rd;
6047 cpumask_set_cpu(rq->cpu, rd->span);
6048 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6049 set_rq_online(rq);
6051 raw_spin_unlock_irqrestore(&rq->lock, flags);
6053 if (old_rd)
6054 free_rootdomain(old_rd);
6057 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6059 gfp_t gfp = GFP_KERNEL;
6061 memset(rd, 0, sizeof(*rd));
6063 if (bootmem)
6064 gfp = GFP_NOWAIT;
6066 if (!alloc_cpumask_var(&rd->span, gfp))
6067 goto out;
6068 if (!alloc_cpumask_var(&rd->online, gfp))
6069 goto free_span;
6070 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6071 goto free_online;
6073 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6074 goto free_rto_mask;
6075 return 0;
6077 free_rto_mask:
6078 free_cpumask_var(rd->rto_mask);
6079 free_online:
6080 free_cpumask_var(rd->online);
6081 free_span:
6082 free_cpumask_var(rd->span);
6083 out:
6084 return -ENOMEM;
6087 static void init_defrootdomain(void)
6089 init_rootdomain(&def_root_domain, true);
6091 atomic_set(&def_root_domain.refcount, 1);
6094 static struct root_domain *alloc_rootdomain(void)
6096 struct root_domain *rd;
6098 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6099 if (!rd)
6100 return NULL;
6102 if (init_rootdomain(rd, false) != 0) {
6103 kfree(rd);
6104 return NULL;
6107 return rd;
6111 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6112 * hold the hotplug lock.
6114 static void
6115 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6117 struct rq *rq = cpu_rq(cpu);
6118 struct sched_domain *tmp;
6120 for (tmp = sd; tmp; tmp = tmp->parent)
6121 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6123 /* Remove the sched domains which do not contribute to scheduling. */
6124 for (tmp = sd; tmp; ) {
6125 struct sched_domain *parent = tmp->parent;
6126 if (!parent)
6127 break;
6129 if (sd_parent_degenerate(tmp, parent)) {
6130 tmp->parent = parent->parent;
6131 if (parent->parent)
6132 parent->parent->child = tmp;
6133 } else
6134 tmp = tmp->parent;
6137 if (sd && sd_degenerate(sd)) {
6138 sd = sd->parent;
6139 if (sd)
6140 sd->child = NULL;
6143 sched_domain_debug(sd, cpu);
6145 rq_attach_root(rq, rd);
6146 rcu_assign_pointer(rq->sd, sd);
6149 /* cpus with isolated domains */
6150 static cpumask_var_t cpu_isolated_map;
6152 /* Setup the mask of cpus configured for isolated domains */
6153 static int __init isolated_cpu_setup(char *str)
6155 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6156 cpulist_parse(str, cpu_isolated_map);
6157 return 1;
6160 __setup("isolcpus=", isolated_cpu_setup);
6163 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6164 * to a function which identifies what group(along with sched group) a CPU
6165 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6166 * (due to the fact that we keep track of groups covered with a struct cpumask).
6168 * init_sched_build_groups will build a circular linked list of the groups
6169 * covered by the given span, and will set each group's ->cpumask correctly,
6170 * and ->cpu_power to 0.
6172 static void
6173 init_sched_build_groups(const struct cpumask *span,
6174 const struct cpumask *cpu_map,
6175 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6176 struct sched_group **sg,
6177 struct cpumask *tmpmask),
6178 struct cpumask *covered, struct cpumask *tmpmask)
6180 struct sched_group *first = NULL, *last = NULL;
6181 int i;
6183 cpumask_clear(covered);
6185 for_each_cpu(i, span) {
6186 struct sched_group *sg;
6187 int group = group_fn(i, cpu_map, &sg, tmpmask);
6188 int j;
6190 if (cpumask_test_cpu(i, covered))
6191 continue;
6193 cpumask_clear(sched_group_cpus(sg));
6194 sg->cpu_power = 0;
6196 for_each_cpu(j, span) {
6197 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6198 continue;
6200 cpumask_set_cpu(j, covered);
6201 cpumask_set_cpu(j, sched_group_cpus(sg));
6203 if (!first)
6204 first = sg;
6205 if (last)
6206 last->next = sg;
6207 last = sg;
6209 last->next = first;
6212 #define SD_NODES_PER_DOMAIN 16
6214 #ifdef CONFIG_NUMA
6217 * find_next_best_node - find the next node to include in a sched_domain
6218 * @node: node whose sched_domain we're building
6219 * @used_nodes: nodes already in the sched_domain
6221 * Find the next node to include in a given scheduling domain. Simply
6222 * finds the closest node not already in the @used_nodes map.
6224 * Should use nodemask_t.
6226 static int find_next_best_node(int node, nodemask_t *used_nodes)
6228 int i, n, val, min_val, best_node = 0;
6230 min_val = INT_MAX;
6232 for (i = 0; i < nr_node_ids; i++) {
6233 /* Start at @node */
6234 n = (node + i) % nr_node_ids;
6236 if (!nr_cpus_node(n))
6237 continue;
6239 /* Skip already used nodes */
6240 if (node_isset(n, *used_nodes))
6241 continue;
6243 /* Simple min distance search */
6244 val = node_distance(node, n);
6246 if (val < min_val) {
6247 min_val = val;
6248 best_node = n;
6252 node_set(best_node, *used_nodes);
6253 return best_node;
6257 * sched_domain_node_span - get a cpumask for a node's sched_domain
6258 * @node: node whose cpumask we're constructing
6259 * @span: resulting cpumask
6261 * Given a node, construct a good cpumask for its sched_domain to span. It
6262 * should be one that prevents unnecessary balancing, but also spreads tasks
6263 * out optimally.
6265 static void sched_domain_node_span(int node, struct cpumask *span)
6267 nodemask_t used_nodes;
6268 int i;
6270 cpumask_clear(span);
6271 nodes_clear(used_nodes);
6273 cpumask_or(span, span, cpumask_of_node(node));
6274 node_set(node, used_nodes);
6276 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6277 int next_node = find_next_best_node(node, &used_nodes);
6279 cpumask_or(span, span, cpumask_of_node(next_node));
6282 #endif /* CONFIG_NUMA */
6284 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6287 * The cpus mask in sched_group and sched_domain hangs off the end.
6289 * ( See the the comments in include/linux/sched.h:struct sched_group
6290 * and struct sched_domain. )
6292 struct static_sched_group {
6293 struct sched_group sg;
6294 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6297 struct static_sched_domain {
6298 struct sched_domain sd;
6299 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6302 struct s_data {
6303 #ifdef CONFIG_NUMA
6304 int sd_allnodes;
6305 cpumask_var_t domainspan;
6306 cpumask_var_t covered;
6307 cpumask_var_t notcovered;
6308 #endif
6309 cpumask_var_t nodemask;
6310 cpumask_var_t this_sibling_map;
6311 cpumask_var_t this_core_map;
6312 cpumask_var_t send_covered;
6313 cpumask_var_t tmpmask;
6314 struct sched_group **sched_group_nodes;
6315 struct root_domain *rd;
6318 enum s_alloc {
6319 sa_sched_groups = 0,
6320 sa_rootdomain,
6321 sa_tmpmask,
6322 sa_send_covered,
6323 sa_this_core_map,
6324 sa_this_sibling_map,
6325 sa_nodemask,
6326 sa_sched_group_nodes,
6327 #ifdef CONFIG_NUMA
6328 sa_notcovered,
6329 sa_covered,
6330 sa_domainspan,
6331 #endif
6332 sa_none,
6336 * SMT sched-domains:
6338 #ifdef CONFIG_SCHED_SMT
6339 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6340 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6342 static int
6343 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6344 struct sched_group **sg, struct cpumask *unused)
6346 if (sg)
6347 *sg = &per_cpu(sched_groups, cpu).sg;
6348 return cpu;
6350 #endif /* CONFIG_SCHED_SMT */
6353 * multi-core sched-domains:
6355 #ifdef CONFIG_SCHED_MC
6356 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6357 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6358 #endif /* CONFIG_SCHED_MC */
6360 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6361 static int
6362 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6363 struct sched_group **sg, struct cpumask *mask)
6365 int group;
6367 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6368 group = cpumask_first(mask);
6369 if (sg)
6370 *sg = &per_cpu(sched_group_core, group).sg;
6371 return group;
6373 #elif defined(CONFIG_SCHED_MC)
6374 static int
6375 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6376 struct sched_group **sg, struct cpumask *unused)
6378 if (sg)
6379 *sg = &per_cpu(sched_group_core, cpu).sg;
6380 return cpu;
6382 #endif
6384 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6385 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6387 static int
6388 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6389 struct sched_group **sg, struct cpumask *mask)
6391 int group;
6392 #ifdef CONFIG_SCHED_MC
6393 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6394 group = cpumask_first(mask);
6395 #elif defined(CONFIG_SCHED_SMT)
6396 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6397 group = cpumask_first(mask);
6398 #else
6399 group = cpu;
6400 #endif
6401 if (sg)
6402 *sg = &per_cpu(sched_group_phys, group).sg;
6403 return group;
6406 #ifdef CONFIG_NUMA
6408 * The init_sched_build_groups can't handle what we want to do with node
6409 * groups, so roll our own. Now each node has its own list of groups which
6410 * gets dynamically allocated.
6412 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6413 static struct sched_group ***sched_group_nodes_bycpu;
6415 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6416 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6418 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6419 struct sched_group **sg,
6420 struct cpumask *nodemask)
6422 int group;
6424 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6425 group = cpumask_first(nodemask);
6427 if (sg)
6428 *sg = &per_cpu(sched_group_allnodes, group).sg;
6429 return group;
6432 static void init_numa_sched_groups_power(struct sched_group *group_head)
6434 struct sched_group *sg = group_head;
6435 int j;
6437 if (!sg)
6438 return;
6439 do {
6440 for_each_cpu(j, sched_group_cpus(sg)) {
6441 struct sched_domain *sd;
6443 sd = &per_cpu(phys_domains, j).sd;
6444 if (j != group_first_cpu(sd->groups)) {
6446 * Only add "power" once for each
6447 * physical package.
6449 continue;
6452 sg->cpu_power += sd->groups->cpu_power;
6454 sg = sg->next;
6455 } while (sg != group_head);
6458 static int build_numa_sched_groups(struct s_data *d,
6459 const struct cpumask *cpu_map, int num)
6461 struct sched_domain *sd;
6462 struct sched_group *sg, *prev;
6463 int n, j;
6465 cpumask_clear(d->covered);
6466 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6467 if (cpumask_empty(d->nodemask)) {
6468 d->sched_group_nodes[num] = NULL;
6469 goto out;
6472 sched_domain_node_span(num, d->domainspan);
6473 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6475 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6476 GFP_KERNEL, num);
6477 if (!sg) {
6478 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6479 num);
6480 return -ENOMEM;
6482 d->sched_group_nodes[num] = sg;
6484 for_each_cpu(j, d->nodemask) {
6485 sd = &per_cpu(node_domains, j).sd;
6486 sd->groups = sg;
6489 sg->cpu_power = 0;
6490 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6491 sg->next = sg;
6492 cpumask_or(d->covered, d->covered, d->nodemask);
6494 prev = sg;
6495 for (j = 0; j < nr_node_ids; j++) {
6496 n = (num + j) % nr_node_ids;
6497 cpumask_complement(d->notcovered, d->covered);
6498 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6499 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6500 if (cpumask_empty(d->tmpmask))
6501 break;
6502 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6503 if (cpumask_empty(d->tmpmask))
6504 continue;
6505 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6506 GFP_KERNEL, num);
6507 if (!sg) {
6508 printk(KERN_WARNING
6509 "Can not alloc domain group for node %d\n", j);
6510 return -ENOMEM;
6512 sg->cpu_power = 0;
6513 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6514 sg->next = prev->next;
6515 cpumask_or(d->covered, d->covered, d->tmpmask);
6516 prev->next = sg;
6517 prev = sg;
6519 out:
6520 return 0;
6522 #endif /* CONFIG_NUMA */
6524 #ifdef CONFIG_NUMA
6525 /* Free memory allocated for various sched_group structures */
6526 static void free_sched_groups(const struct cpumask *cpu_map,
6527 struct cpumask *nodemask)
6529 int cpu, i;
6531 for_each_cpu(cpu, cpu_map) {
6532 struct sched_group **sched_group_nodes
6533 = sched_group_nodes_bycpu[cpu];
6535 if (!sched_group_nodes)
6536 continue;
6538 for (i = 0; i < nr_node_ids; i++) {
6539 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6541 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6542 if (cpumask_empty(nodemask))
6543 continue;
6545 if (sg == NULL)
6546 continue;
6547 sg = sg->next;
6548 next_sg:
6549 oldsg = sg;
6550 sg = sg->next;
6551 kfree(oldsg);
6552 if (oldsg != sched_group_nodes[i])
6553 goto next_sg;
6555 kfree(sched_group_nodes);
6556 sched_group_nodes_bycpu[cpu] = NULL;
6559 #else /* !CONFIG_NUMA */
6560 static void free_sched_groups(const struct cpumask *cpu_map,
6561 struct cpumask *nodemask)
6564 #endif /* CONFIG_NUMA */
6567 * Initialize sched groups cpu_power.
6569 * cpu_power indicates the capacity of sched group, which is used while
6570 * distributing the load between different sched groups in a sched domain.
6571 * Typically cpu_power for all the groups in a sched domain will be same unless
6572 * there are asymmetries in the topology. If there are asymmetries, group
6573 * having more cpu_power will pickup more load compared to the group having
6574 * less cpu_power.
6576 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6578 struct sched_domain *child;
6579 struct sched_group *group;
6580 long power;
6581 int weight;
6583 WARN_ON(!sd || !sd->groups);
6585 if (cpu != group_first_cpu(sd->groups))
6586 return;
6588 child = sd->child;
6590 sd->groups->cpu_power = 0;
6592 if (!child) {
6593 power = SCHED_LOAD_SCALE;
6594 weight = cpumask_weight(sched_domain_span(sd));
6596 * SMT siblings share the power of a single core.
6597 * Usually multiple threads get a better yield out of
6598 * that one core than a single thread would have,
6599 * reflect that in sd->smt_gain.
6601 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6602 power *= sd->smt_gain;
6603 power /= weight;
6604 power >>= SCHED_LOAD_SHIFT;
6606 sd->groups->cpu_power += power;
6607 return;
6611 * Add cpu_power of each child group to this groups cpu_power.
6613 group = child->groups;
6614 do {
6615 sd->groups->cpu_power += group->cpu_power;
6616 group = group->next;
6617 } while (group != child->groups);
6621 * Initializers for schedule domains
6622 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6625 #ifdef CONFIG_SCHED_DEBUG
6626 # define SD_INIT_NAME(sd, type) sd->name = #type
6627 #else
6628 # define SD_INIT_NAME(sd, type) do { } while (0)
6629 #endif
6631 #define SD_INIT(sd, type) sd_init_##type(sd)
6633 #define SD_INIT_FUNC(type) \
6634 static noinline void sd_init_##type(struct sched_domain *sd) \
6636 memset(sd, 0, sizeof(*sd)); \
6637 *sd = SD_##type##_INIT; \
6638 sd->level = SD_LV_##type; \
6639 SD_INIT_NAME(sd, type); \
6642 SD_INIT_FUNC(CPU)
6643 #ifdef CONFIG_NUMA
6644 SD_INIT_FUNC(ALLNODES)
6645 SD_INIT_FUNC(NODE)
6646 #endif
6647 #ifdef CONFIG_SCHED_SMT
6648 SD_INIT_FUNC(SIBLING)
6649 #endif
6650 #ifdef CONFIG_SCHED_MC
6651 SD_INIT_FUNC(MC)
6652 #endif
6654 static int default_relax_domain_level = -1;
6656 static int __init setup_relax_domain_level(char *str)
6658 unsigned long val;
6660 val = simple_strtoul(str, NULL, 0);
6661 if (val < SD_LV_MAX)
6662 default_relax_domain_level = val;
6664 return 1;
6666 __setup("relax_domain_level=", setup_relax_domain_level);
6668 static void set_domain_attribute(struct sched_domain *sd,
6669 struct sched_domain_attr *attr)
6671 int request;
6673 if (!attr || attr->relax_domain_level < 0) {
6674 if (default_relax_domain_level < 0)
6675 return;
6676 else
6677 request = default_relax_domain_level;
6678 } else
6679 request = attr->relax_domain_level;
6680 if (request < sd->level) {
6681 /* turn off idle balance on this domain */
6682 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6683 } else {
6684 /* turn on idle balance on this domain */
6685 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6689 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6690 const struct cpumask *cpu_map)
6692 switch (what) {
6693 case sa_sched_groups:
6694 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6695 d->sched_group_nodes = NULL;
6696 case sa_rootdomain:
6697 free_rootdomain(d->rd); /* fall through */
6698 case sa_tmpmask:
6699 free_cpumask_var(d->tmpmask); /* fall through */
6700 case sa_send_covered:
6701 free_cpumask_var(d->send_covered); /* fall through */
6702 case sa_this_core_map:
6703 free_cpumask_var(d->this_core_map); /* fall through */
6704 case sa_this_sibling_map:
6705 free_cpumask_var(d->this_sibling_map); /* fall through */
6706 case sa_nodemask:
6707 free_cpumask_var(d->nodemask); /* fall through */
6708 case sa_sched_group_nodes:
6709 #ifdef CONFIG_NUMA
6710 kfree(d->sched_group_nodes); /* fall through */
6711 case sa_notcovered:
6712 free_cpumask_var(d->notcovered); /* fall through */
6713 case sa_covered:
6714 free_cpumask_var(d->covered); /* fall through */
6715 case sa_domainspan:
6716 free_cpumask_var(d->domainspan); /* fall through */
6717 #endif
6718 case sa_none:
6719 break;
6723 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6724 const struct cpumask *cpu_map)
6726 #ifdef CONFIG_NUMA
6727 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6728 return sa_none;
6729 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6730 return sa_domainspan;
6731 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6732 return sa_covered;
6733 /* Allocate the per-node list of sched groups */
6734 d->sched_group_nodes = kcalloc(nr_node_ids,
6735 sizeof(struct sched_group *), GFP_KERNEL);
6736 if (!d->sched_group_nodes) {
6737 printk(KERN_WARNING "Can not alloc sched group node list\n");
6738 return sa_notcovered;
6740 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6741 #endif
6742 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6743 return sa_sched_group_nodes;
6744 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6745 return sa_nodemask;
6746 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6747 return sa_this_sibling_map;
6748 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6749 return sa_this_core_map;
6750 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6751 return sa_send_covered;
6752 d->rd = alloc_rootdomain();
6753 if (!d->rd) {
6754 printk(KERN_WARNING "Cannot alloc root domain\n");
6755 return sa_tmpmask;
6757 return sa_rootdomain;
6760 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6761 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6763 struct sched_domain *sd = NULL;
6764 #ifdef CONFIG_NUMA
6765 struct sched_domain *parent;
6767 d->sd_allnodes = 0;
6768 if (cpumask_weight(cpu_map) >
6769 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6770 sd = &per_cpu(allnodes_domains, i).sd;
6771 SD_INIT(sd, ALLNODES);
6772 set_domain_attribute(sd, attr);
6773 cpumask_copy(sched_domain_span(sd), cpu_map);
6774 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6775 d->sd_allnodes = 1;
6777 parent = sd;
6779 sd = &per_cpu(node_domains, i).sd;
6780 SD_INIT(sd, NODE);
6781 set_domain_attribute(sd, attr);
6782 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6783 sd->parent = parent;
6784 if (parent)
6785 parent->child = sd;
6786 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6787 #endif
6788 return sd;
6791 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6792 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6793 struct sched_domain *parent, int i)
6795 struct sched_domain *sd;
6796 sd = &per_cpu(phys_domains, i).sd;
6797 SD_INIT(sd, CPU);
6798 set_domain_attribute(sd, attr);
6799 cpumask_copy(sched_domain_span(sd), d->nodemask);
6800 sd->parent = parent;
6801 if (parent)
6802 parent->child = sd;
6803 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6804 return sd;
6807 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6808 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6809 struct sched_domain *parent, int i)
6811 struct sched_domain *sd = parent;
6812 #ifdef CONFIG_SCHED_MC
6813 sd = &per_cpu(core_domains, i).sd;
6814 SD_INIT(sd, MC);
6815 set_domain_attribute(sd, attr);
6816 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6817 sd->parent = parent;
6818 parent->child = sd;
6819 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6820 #endif
6821 return sd;
6824 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6825 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6826 struct sched_domain *parent, int i)
6828 struct sched_domain *sd = parent;
6829 #ifdef CONFIG_SCHED_SMT
6830 sd = &per_cpu(cpu_domains, i).sd;
6831 SD_INIT(sd, SIBLING);
6832 set_domain_attribute(sd, attr);
6833 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6834 sd->parent = parent;
6835 parent->child = sd;
6836 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6837 #endif
6838 return sd;
6841 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6842 const struct cpumask *cpu_map, int cpu)
6844 switch (l) {
6845 #ifdef CONFIG_SCHED_SMT
6846 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6847 cpumask_and(d->this_sibling_map, cpu_map,
6848 topology_thread_cpumask(cpu));
6849 if (cpu == cpumask_first(d->this_sibling_map))
6850 init_sched_build_groups(d->this_sibling_map, cpu_map,
6851 &cpu_to_cpu_group,
6852 d->send_covered, d->tmpmask);
6853 break;
6854 #endif
6855 #ifdef CONFIG_SCHED_MC
6856 case SD_LV_MC: /* set up multi-core groups */
6857 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6858 if (cpu == cpumask_first(d->this_core_map))
6859 init_sched_build_groups(d->this_core_map, cpu_map,
6860 &cpu_to_core_group,
6861 d->send_covered, d->tmpmask);
6862 break;
6863 #endif
6864 case SD_LV_CPU: /* set up physical groups */
6865 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6866 if (!cpumask_empty(d->nodemask))
6867 init_sched_build_groups(d->nodemask, cpu_map,
6868 &cpu_to_phys_group,
6869 d->send_covered, d->tmpmask);
6870 break;
6871 #ifdef CONFIG_NUMA
6872 case SD_LV_ALLNODES:
6873 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6874 d->send_covered, d->tmpmask);
6875 break;
6876 #endif
6877 default:
6878 break;
6883 * Build sched domains for a given set of cpus and attach the sched domains
6884 * to the individual cpus
6886 static int __build_sched_domains(const struct cpumask *cpu_map,
6887 struct sched_domain_attr *attr)
6889 enum s_alloc alloc_state = sa_none;
6890 struct s_data d;
6891 struct sched_domain *sd;
6892 int i;
6893 #ifdef CONFIG_NUMA
6894 d.sd_allnodes = 0;
6895 #endif
6897 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6898 if (alloc_state != sa_rootdomain)
6899 goto error;
6900 alloc_state = sa_sched_groups;
6903 * Set up domains for cpus specified by the cpu_map.
6905 for_each_cpu(i, cpu_map) {
6906 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6907 cpu_map);
6909 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
6910 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
6911 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
6912 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
6915 for_each_cpu(i, cpu_map) {
6916 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
6917 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
6920 /* Set up physical groups */
6921 for (i = 0; i < nr_node_ids; i++)
6922 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
6924 #ifdef CONFIG_NUMA
6925 /* Set up node groups */
6926 if (d.sd_allnodes)
6927 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
6929 for (i = 0; i < nr_node_ids; i++)
6930 if (build_numa_sched_groups(&d, cpu_map, i))
6931 goto error;
6932 #endif
6934 /* Calculate CPU power for physical packages and nodes */
6935 #ifdef CONFIG_SCHED_SMT
6936 for_each_cpu(i, cpu_map) {
6937 sd = &per_cpu(cpu_domains, i).sd;
6938 init_sched_groups_power(i, sd);
6940 #endif
6941 #ifdef CONFIG_SCHED_MC
6942 for_each_cpu(i, cpu_map) {
6943 sd = &per_cpu(core_domains, i).sd;
6944 init_sched_groups_power(i, sd);
6946 #endif
6948 for_each_cpu(i, cpu_map) {
6949 sd = &per_cpu(phys_domains, i).sd;
6950 init_sched_groups_power(i, sd);
6953 #ifdef CONFIG_NUMA
6954 for (i = 0; i < nr_node_ids; i++)
6955 init_numa_sched_groups_power(d.sched_group_nodes[i]);
6957 if (d.sd_allnodes) {
6958 struct sched_group *sg;
6960 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
6961 d.tmpmask);
6962 init_numa_sched_groups_power(sg);
6964 #endif
6966 /* Attach the domains */
6967 for_each_cpu(i, cpu_map) {
6968 #ifdef CONFIG_SCHED_SMT
6969 sd = &per_cpu(cpu_domains, i).sd;
6970 #elif defined(CONFIG_SCHED_MC)
6971 sd = &per_cpu(core_domains, i).sd;
6972 #else
6973 sd = &per_cpu(phys_domains, i).sd;
6974 #endif
6975 cpu_attach_domain(sd, d.rd, i);
6978 d.sched_group_nodes = NULL; /* don't free this we still need it */
6979 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
6980 return 0;
6982 error:
6983 __free_domain_allocs(&d, alloc_state, cpu_map);
6984 return -ENOMEM;
6987 static int build_sched_domains(const struct cpumask *cpu_map)
6989 return __build_sched_domains(cpu_map, NULL);
6992 static cpumask_var_t *doms_cur; /* current sched domains */
6993 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6994 static struct sched_domain_attr *dattr_cur;
6995 /* attribues of custom domains in 'doms_cur' */
6998 * Special case: If a kmalloc of a doms_cur partition (array of
6999 * cpumask) fails, then fallback to a single sched domain,
7000 * as determined by the single cpumask fallback_doms.
7002 static cpumask_var_t fallback_doms;
7005 * arch_update_cpu_topology lets virtualized architectures update the
7006 * cpu core maps. It is supposed to return 1 if the topology changed
7007 * or 0 if it stayed the same.
7009 int __attribute__((weak)) arch_update_cpu_topology(void)
7011 return 0;
7014 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7016 int i;
7017 cpumask_var_t *doms;
7019 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7020 if (!doms)
7021 return NULL;
7022 for (i = 0; i < ndoms; i++) {
7023 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7024 free_sched_domains(doms, i);
7025 return NULL;
7028 return doms;
7031 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7033 unsigned int i;
7034 for (i = 0; i < ndoms; i++)
7035 free_cpumask_var(doms[i]);
7036 kfree(doms);
7040 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7041 * For now this just excludes isolated cpus, but could be used to
7042 * exclude other special cases in the future.
7044 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7046 int err;
7048 arch_update_cpu_topology();
7049 ndoms_cur = 1;
7050 doms_cur = alloc_sched_domains(ndoms_cur);
7051 if (!doms_cur)
7052 doms_cur = &fallback_doms;
7053 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7054 dattr_cur = NULL;
7055 err = build_sched_domains(doms_cur[0]);
7056 register_sched_domain_sysctl();
7058 return err;
7061 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7062 struct cpumask *tmpmask)
7064 free_sched_groups(cpu_map, tmpmask);
7068 * Detach sched domains from a group of cpus specified in cpu_map
7069 * These cpus will now be attached to the NULL domain
7071 static void detach_destroy_domains(const struct cpumask *cpu_map)
7073 /* Save because hotplug lock held. */
7074 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7075 int i;
7077 for_each_cpu(i, cpu_map)
7078 cpu_attach_domain(NULL, &def_root_domain, i);
7079 synchronize_sched();
7080 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7083 /* handle null as "default" */
7084 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7085 struct sched_domain_attr *new, int idx_new)
7087 struct sched_domain_attr tmp;
7089 /* fast path */
7090 if (!new && !cur)
7091 return 1;
7093 tmp = SD_ATTR_INIT;
7094 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7095 new ? (new + idx_new) : &tmp,
7096 sizeof(struct sched_domain_attr));
7100 * Partition sched domains as specified by the 'ndoms_new'
7101 * cpumasks in the array doms_new[] of cpumasks. This compares
7102 * doms_new[] to the current sched domain partitioning, doms_cur[].
7103 * It destroys each deleted domain and builds each new domain.
7105 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7106 * The masks don't intersect (don't overlap.) We should setup one
7107 * sched domain for each mask. CPUs not in any of the cpumasks will
7108 * not be load balanced. If the same cpumask appears both in the
7109 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7110 * it as it is.
7112 * The passed in 'doms_new' should be allocated using
7113 * alloc_sched_domains. This routine takes ownership of it and will
7114 * free_sched_domains it when done with it. If the caller failed the
7115 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7116 * and partition_sched_domains() will fallback to the single partition
7117 * 'fallback_doms', it also forces the domains to be rebuilt.
7119 * If doms_new == NULL it will be replaced with cpu_online_mask.
7120 * ndoms_new == 0 is a special case for destroying existing domains,
7121 * and it will not create the default domain.
7123 * Call with hotplug lock held
7125 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7126 struct sched_domain_attr *dattr_new)
7128 int i, j, n;
7129 int new_topology;
7131 mutex_lock(&sched_domains_mutex);
7133 /* always unregister in case we don't destroy any domains */
7134 unregister_sched_domain_sysctl();
7136 /* Let architecture update cpu core mappings. */
7137 new_topology = arch_update_cpu_topology();
7139 n = doms_new ? ndoms_new : 0;
7141 /* Destroy deleted domains */
7142 for (i = 0; i < ndoms_cur; i++) {
7143 for (j = 0; j < n && !new_topology; j++) {
7144 if (cpumask_equal(doms_cur[i], doms_new[j])
7145 && dattrs_equal(dattr_cur, i, dattr_new, j))
7146 goto match1;
7148 /* no match - a current sched domain not in new doms_new[] */
7149 detach_destroy_domains(doms_cur[i]);
7150 match1:
7154 if (doms_new == NULL) {
7155 ndoms_cur = 0;
7156 doms_new = &fallback_doms;
7157 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7158 WARN_ON_ONCE(dattr_new);
7161 /* Build new domains */
7162 for (i = 0; i < ndoms_new; i++) {
7163 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7164 if (cpumask_equal(doms_new[i], doms_cur[j])
7165 && dattrs_equal(dattr_new, i, dattr_cur, j))
7166 goto match2;
7168 /* no match - add a new doms_new */
7169 __build_sched_domains(doms_new[i],
7170 dattr_new ? dattr_new + i : NULL);
7171 match2:
7175 /* Remember the new sched domains */
7176 if (doms_cur != &fallback_doms)
7177 free_sched_domains(doms_cur, ndoms_cur);
7178 kfree(dattr_cur); /* kfree(NULL) is safe */
7179 doms_cur = doms_new;
7180 dattr_cur = dattr_new;
7181 ndoms_cur = ndoms_new;
7183 register_sched_domain_sysctl();
7185 mutex_unlock(&sched_domains_mutex);
7188 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7189 static void arch_reinit_sched_domains(void)
7191 get_online_cpus();
7193 /* Destroy domains first to force the rebuild */
7194 partition_sched_domains(0, NULL, NULL);
7196 rebuild_sched_domains();
7197 put_online_cpus();
7200 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7202 unsigned int level = 0;
7204 if (sscanf(buf, "%u", &level) != 1)
7205 return -EINVAL;
7208 * level is always be positive so don't check for
7209 * level < POWERSAVINGS_BALANCE_NONE which is 0
7210 * What happens on 0 or 1 byte write,
7211 * need to check for count as well?
7214 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7215 return -EINVAL;
7217 if (smt)
7218 sched_smt_power_savings = level;
7219 else
7220 sched_mc_power_savings = level;
7222 arch_reinit_sched_domains();
7224 return count;
7227 #ifdef CONFIG_SCHED_MC
7228 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7229 struct sysdev_class_attribute *attr,
7230 char *page)
7232 return sprintf(page, "%u\n", sched_mc_power_savings);
7234 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7235 struct sysdev_class_attribute *attr,
7236 const char *buf, size_t count)
7238 return sched_power_savings_store(buf, count, 0);
7240 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7241 sched_mc_power_savings_show,
7242 sched_mc_power_savings_store);
7243 #endif
7245 #ifdef CONFIG_SCHED_SMT
7246 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7247 struct sysdev_class_attribute *attr,
7248 char *page)
7250 return sprintf(page, "%u\n", sched_smt_power_savings);
7252 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7253 struct sysdev_class_attribute *attr,
7254 const char *buf, size_t count)
7256 return sched_power_savings_store(buf, count, 1);
7258 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7259 sched_smt_power_savings_show,
7260 sched_smt_power_savings_store);
7261 #endif
7263 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7265 int err = 0;
7267 #ifdef CONFIG_SCHED_SMT
7268 if (smt_capable())
7269 err = sysfs_create_file(&cls->kset.kobj,
7270 &attr_sched_smt_power_savings.attr);
7271 #endif
7272 #ifdef CONFIG_SCHED_MC
7273 if (!err && mc_capable())
7274 err = sysfs_create_file(&cls->kset.kobj,
7275 &attr_sched_mc_power_savings.attr);
7276 #endif
7277 return err;
7279 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7281 #ifndef CONFIG_CPUSETS
7283 * Add online and remove offline CPUs from the scheduler domains.
7284 * When cpusets are enabled they take over this function.
7286 static int update_sched_domains(struct notifier_block *nfb,
7287 unsigned long action, void *hcpu)
7289 switch (action) {
7290 case CPU_ONLINE:
7291 case CPU_ONLINE_FROZEN:
7292 case CPU_DOWN_PREPARE:
7293 case CPU_DOWN_PREPARE_FROZEN:
7294 case CPU_DOWN_FAILED:
7295 case CPU_DOWN_FAILED_FROZEN:
7296 partition_sched_domains(1, NULL, NULL);
7297 return NOTIFY_OK;
7299 default:
7300 return NOTIFY_DONE;
7303 #endif
7305 static int update_runtime(struct notifier_block *nfb,
7306 unsigned long action, void *hcpu)
7308 int cpu = (int)(long)hcpu;
7310 switch (action) {
7311 case CPU_DOWN_PREPARE:
7312 case CPU_DOWN_PREPARE_FROZEN:
7313 disable_runtime(cpu_rq(cpu));
7314 return NOTIFY_OK;
7316 case CPU_DOWN_FAILED:
7317 case CPU_DOWN_FAILED_FROZEN:
7318 case CPU_ONLINE:
7319 case CPU_ONLINE_FROZEN:
7320 enable_runtime(cpu_rq(cpu));
7321 return NOTIFY_OK;
7323 default:
7324 return NOTIFY_DONE;
7328 void __init sched_init_smp(void)
7330 cpumask_var_t non_isolated_cpus;
7332 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7333 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7335 #if defined(CONFIG_NUMA)
7336 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7337 GFP_KERNEL);
7338 BUG_ON(sched_group_nodes_bycpu == NULL);
7339 #endif
7340 get_online_cpus();
7341 mutex_lock(&sched_domains_mutex);
7342 arch_init_sched_domains(cpu_active_mask);
7343 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7344 if (cpumask_empty(non_isolated_cpus))
7345 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7346 mutex_unlock(&sched_domains_mutex);
7347 put_online_cpus();
7349 #ifndef CONFIG_CPUSETS
7350 /* XXX: Theoretical race here - CPU may be hotplugged now */
7351 hotcpu_notifier(update_sched_domains, 0);
7352 #endif
7354 /* RT runtime code needs to handle some hotplug events */
7355 hotcpu_notifier(update_runtime, 0);
7357 init_hrtick();
7359 /* Move init over to a non-isolated CPU */
7360 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7361 BUG();
7362 sched_init_granularity();
7363 free_cpumask_var(non_isolated_cpus);
7365 init_sched_rt_class();
7367 #else
7368 void __init sched_init_smp(void)
7370 sched_init_granularity();
7372 #endif /* CONFIG_SMP */
7374 const_debug unsigned int sysctl_timer_migration = 1;
7376 int in_sched_functions(unsigned long addr)
7378 return in_lock_functions(addr) ||
7379 (addr >= (unsigned long)__sched_text_start
7380 && addr < (unsigned long)__sched_text_end);
7383 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7385 cfs_rq->tasks_timeline = RB_ROOT;
7386 INIT_LIST_HEAD(&cfs_rq->tasks);
7387 #ifdef CONFIG_FAIR_GROUP_SCHED
7388 cfs_rq->rq = rq;
7389 #endif
7390 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7393 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7395 struct rt_prio_array *array;
7396 int i;
7398 array = &rt_rq->active;
7399 for (i = 0; i < MAX_RT_PRIO; i++) {
7400 INIT_LIST_HEAD(array->queue + i);
7401 __clear_bit(i, array->bitmap);
7403 /* delimiter for bitsearch: */
7404 __set_bit(MAX_RT_PRIO, array->bitmap);
7406 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7407 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7408 #ifdef CONFIG_SMP
7409 rt_rq->highest_prio.next = MAX_RT_PRIO;
7410 #endif
7411 #endif
7412 #ifdef CONFIG_SMP
7413 rt_rq->rt_nr_migratory = 0;
7414 rt_rq->overloaded = 0;
7415 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7416 #endif
7418 rt_rq->rt_time = 0;
7419 rt_rq->rt_throttled = 0;
7420 rt_rq->rt_runtime = 0;
7421 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7423 #ifdef CONFIG_RT_GROUP_SCHED
7424 rt_rq->rt_nr_boosted = 0;
7425 rt_rq->rq = rq;
7426 #endif
7429 #ifdef CONFIG_FAIR_GROUP_SCHED
7430 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7431 struct sched_entity *se, int cpu, int add,
7432 struct sched_entity *parent)
7434 struct rq *rq = cpu_rq(cpu);
7435 tg->cfs_rq[cpu] = cfs_rq;
7436 init_cfs_rq(cfs_rq, rq);
7437 cfs_rq->tg = tg;
7438 if (add)
7439 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7441 tg->se[cpu] = se;
7442 /* se could be NULL for init_task_group */
7443 if (!se)
7444 return;
7446 if (!parent)
7447 se->cfs_rq = &rq->cfs;
7448 else
7449 se->cfs_rq = parent->my_q;
7451 se->my_q = cfs_rq;
7452 se->load.weight = tg->shares;
7453 se->load.inv_weight = 0;
7454 se->parent = parent;
7456 #endif
7458 #ifdef CONFIG_RT_GROUP_SCHED
7459 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7460 struct sched_rt_entity *rt_se, int cpu, int add,
7461 struct sched_rt_entity *parent)
7463 struct rq *rq = cpu_rq(cpu);
7465 tg->rt_rq[cpu] = rt_rq;
7466 init_rt_rq(rt_rq, rq);
7467 rt_rq->tg = tg;
7468 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7469 if (add)
7470 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7472 tg->rt_se[cpu] = rt_se;
7473 if (!rt_se)
7474 return;
7476 if (!parent)
7477 rt_se->rt_rq = &rq->rt;
7478 else
7479 rt_se->rt_rq = parent->my_q;
7481 rt_se->my_q = rt_rq;
7482 rt_se->parent = parent;
7483 INIT_LIST_HEAD(&rt_se->run_list);
7485 #endif
7487 void __init sched_init(void)
7489 int i, j;
7490 unsigned long alloc_size = 0, ptr;
7492 #ifdef CONFIG_FAIR_GROUP_SCHED
7493 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7494 #endif
7495 #ifdef CONFIG_RT_GROUP_SCHED
7496 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7497 #endif
7498 #ifdef CONFIG_CPUMASK_OFFSTACK
7499 alloc_size += num_possible_cpus() * cpumask_size();
7500 #endif
7501 if (alloc_size) {
7502 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7504 #ifdef CONFIG_FAIR_GROUP_SCHED
7505 init_task_group.se = (struct sched_entity **)ptr;
7506 ptr += nr_cpu_ids * sizeof(void **);
7508 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7509 ptr += nr_cpu_ids * sizeof(void **);
7511 #endif /* CONFIG_FAIR_GROUP_SCHED */
7512 #ifdef CONFIG_RT_GROUP_SCHED
7513 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7514 ptr += nr_cpu_ids * sizeof(void **);
7516 init_task_group.rt_rq = (struct rt_rq **)ptr;
7517 ptr += nr_cpu_ids * sizeof(void **);
7519 #endif /* CONFIG_RT_GROUP_SCHED */
7520 #ifdef CONFIG_CPUMASK_OFFSTACK
7521 for_each_possible_cpu(i) {
7522 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7523 ptr += cpumask_size();
7525 #endif /* CONFIG_CPUMASK_OFFSTACK */
7528 #ifdef CONFIG_SMP
7529 init_defrootdomain();
7530 #endif
7532 init_rt_bandwidth(&def_rt_bandwidth,
7533 global_rt_period(), global_rt_runtime());
7535 #ifdef CONFIG_RT_GROUP_SCHED
7536 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7537 global_rt_period(), global_rt_runtime());
7538 #endif /* CONFIG_RT_GROUP_SCHED */
7540 #ifdef CONFIG_CGROUP_SCHED
7541 list_add(&init_task_group.list, &task_groups);
7542 INIT_LIST_HEAD(&init_task_group.children);
7544 #endif /* CONFIG_CGROUP_SCHED */
7546 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7547 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7548 __alignof__(unsigned long));
7549 #endif
7550 for_each_possible_cpu(i) {
7551 struct rq *rq;
7553 rq = cpu_rq(i);
7554 raw_spin_lock_init(&rq->lock);
7555 rq->nr_running = 0;
7556 rq->calc_load_active = 0;
7557 rq->calc_load_update = jiffies + LOAD_FREQ;
7558 init_cfs_rq(&rq->cfs, rq);
7559 init_rt_rq(&rq->rt, rq);
7560 #ifdef CONFIG_FAIR_GROUP_SCHED
7561 init_task_group.shares = init_task_group_load;
7562 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7563 #ifdef CONFIG_CGROUP_SCHED
7565 * How much cpu bandwidth does init_task_group get?
7567 * In case of task-groups formed thr' the cgroup filesystem, it
7568 * gets 100% of the cpu resources in the system. This overall
7569 * system cpu resource is divided among the tasks of
7570 * init_task_group and its child task-groups in a fair manner,
7571 * based on each entity's (task or task-group's) weight
7572 * (se->load.weight).
7574 * In other words, if init_task_group has 10 tasks of weight
7575 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7576 * then A0's share of the cpu resource is:
7578 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7580 * We achieve this by letting init_task_group's tasks sit
7581 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7583 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7584 #endif
7585 #endif /* CONFIG_FAIR_GROUP_SCHED */
7587 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7588 #ifdef CONFIG_RT_GROUP_SCHED
7589 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7590 #ifdef CONFIG_CGROUP_SCHED
7591 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7592 #endif
7593 #endif
7595 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7596 rq->cpu_load[j] = 0;
7597 #ifdef CONFIG_SMP
7598 rq->sd = NULL;
7599 rq->rd = NULL;
7600 rq->cpu_power = SCHED_LOAD_SCALE;
7601 rq->post_schedule = 0;
7602 rq->active_balance = 0;
7603 rq->next_balance = jiffies;
7604 rq->push_cpu = 0;
7605 rq->cpu = i;
7606 rq->online = 0;
7607 rq->idle_stamp = 0;
7608 rq->avg_idle = 2*sysctl_sched_migration_cost;
7609 rq_attach_root(rq, &def_root_domain);
7610 #endif
7611 init_rq_hrtick(rq);
7612 atomic_set(&rq->nr_iowait, 0);
7615 set_load_weight(&init_task);
7617 #ifdef CONFIG_PREEMPT_NOTIFIERS
7618 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7619 #endif
7621 #ifdef CONFIG_SMP
7622 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7623 #endif
7625 #ifdef CONFIG_RT_MUTEXES
7626 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7627 #endif
7630 * The boot idle thread does lazy MMU switching as well:
7632 atomic_inc(&init_mm.mm_count);
7633 enter_lazy_tlb(&init_mm, current);
7636 * Make us the idle thread. Technically, schedule() should not be
7637 * called from this thread, however somewhere below it might be,
7638 * but because we are the idle thread, we just pick up running again
7639 * when this runqueue becomes "idle".
7641 init_idle(current, smp_processor_id());
7643 calc_load_update = jiffies + LOAD_FREQ;
7646 * During early bootup we pretend to be a normal task:
7648 current->sched_class = &fair_sched_class;
7650 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7651 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7652 #ifdef CONFIG_SMP
7653 #ifdef CONFIG_NO_HZ
7654 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7655 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7656 #endif
7657 /* May be allocated at isolcpus cmdline parse time */
7658 if (cpu_isolated_map == NULL)
7659 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7660 #endif /* SMP */
7662 perf_event_init();
7664 scheduler_running = 1;
7667 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7668 static inline int preempt_count_equals(int preempt_offset)
7670 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7672 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7675 void __might_sleep(const char *file, int line, int preempt_offset)
7677 #ifdef in_atomic
7678 static unsigned long prev_jiffy; /* ratelimiting */
7680 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7681 system_state != SYSTEM_RUNNING || oops_in_progress)
7682 return;
7683 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7684 return;
7685 prev_jiffy = jiffies;
7687 printk(KERN_ERR
7688 "BUG: sleeping function called from invalid context at %s:%d\n",
7689 file, line);
7690 printk(KERN_ERR
7691 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7692 in_atomic(), irqs_disabled(),
7693 current->pid, current->comm);
7695 debug_show_held_locks(current);
7696 if (irqs_disabled())
7697 print_irqtrace_events(current);
7698 dump_stack();
7699 #endif
7701 EXPORT_SYMBOL(__might_sleep);
7702 #endif
7704 #ifdef CONFIG_MAGIC_SYSRQ
7705 static void normalize_task(struct rq *rq, struct task_struct *p)
7707 int on_rq;
7709 on_rq = p->se.on_rq;
7710 if (on_rq)
7711 deactivate_task(rq, p, 0);
7712 __setscheduler(rq, p, SCHED_NORMAL, 0);
7713 if (on_rq) {
7714 activate_task(rq, p, 0);
7715 resched_task(rq->curr);
7719 void normalize_rt_tasks(void)
7721 struct task_struct *g, *p;
7722 unsigned long flags;
7723 struct rq *rq;
7725 read_lock_irqsave(&tasklist_lock, flags);
7726 do_each_thread(g, p) {
7728 * Only normalize user tasks:
7730 if (!p->mm)
7731 continue;
7733 p->se.exec_start = 0;
7734 #ifdef CONFIG_SCHEDSTATS
7735 p->se.statistics.wait_start = 0;
7736 p->se.statistics.sleep_start = 0;
7737 p->se.statistics.block_start = 0;
7738 #endif
7740 if (!rt_task(p)) {
7742 * Renice negative nice level userspace
7743 * tasks back to 0:
7745 if (TASK_NICE(p) < 0 && p->mm)
7746 set_user_nice(p, 0);
7747 continue;
7750 raw_spin_lock(&p->pi_lock);
7751 rq = __task_rq_lock(p);
7753 normalize_task(rq, p);
7755 __task_rq_unlock(rq);
7756 raw_spin_unlock(&p->pi_lock);
7757 } while_each_thread(g, p);
7759 read_unlock_irqrestore(&tasklist_lock, flags);
7762 #endif /* CONFIG_MAGIC_SYSRQ */
7764 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7766 * These functions are only useful for the IA64 MCA handling, or kdb.
7768 * They can only be called when the whole system has been
7769 * stopped - every CPU needs to be quiescent, and no scheduling
7770 * activity can take place. Using them for anything else would
7771 * be a serious bug, and as a result, they aren't even visible
7772 * under any other configuration.
7776 * curr_task - return the current task for a given cpu.
7777 * @cpu: the processor in question.
7779 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7781 struct task_struct *curr_task(int cpu)
7783 return cpu_curr(cpu);
7786 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7788 #ifdef CONFIG_IA64
7790 * set_curr_task - set the current task for a given cpu.
7791 * @cpu: the processor in question.
7792 * @p: the task pointer to set.
7794 * Description: This function must only be used when non-maskable interrupts
7795 * are serviced on a separate stack. It allows the architecture to switch the
7796 * notion of the current task on a cpu in a non-blocking manner. This function
7797 * must be called with all CPU's synchronized, and interrupts disabled, the
7798 * and caller must save the original value of the current task (see
7799 * curr_task() above) and restore that value before reenabling interrupts and
7800 * re-starting the system.
7802 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7804 void set_curr_task(int cpu, struct task_struct *p)
7806 cpu_curr(cpu) = p;
7809 #endif
7811 #ifdef CONFIG_FAIR_GROUP_SCHED
7812 static void free_fair_sched_group(struct task_group *tg)
7814 int i;
7816 for_each_possible_cpu(i) {
7817 if (tg->cfs_rq)
7818 kfree(tg->cfs_rq[i]);
7819 if (tg->se)
7820 kfree(tg->se[i]);
7823 kfree(tg->cfs_rq);
7824 kfree(tg->se);
7827 static
7828 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7830 struct cfs_rq *cfs_rq;
7831 struct sched_entity *se;
7832 struct rq *rq;
7833 int i;
7835 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7836 if (!tg->cfs_rq)
7837 goto err;
7838 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7839 if (!tg->se)
7840 goto err;
7842 tg->shares = NICE_0_LOAD;
7844 for_each_possible_cpu(i) {
7845 rq = cpu_rq(i);
7847 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7848 GFP_KERNEL, cpu_to_node(i));
7849 if (!cfs_rq)
7850 goto err;
7852 se = kzalloc_node(sizeof(struct sched_entity),
7853 GFP_KERNEL, cpu_to_node(i));
7854 if (!se)
7855 goto err_free_rq;
7857 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7860 return 1;
7862 err_free_rq:
7863 kfree(cfs_rq);
7864 err:
7865 return 0;
7868 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7870 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7871 &cpu_rq(cpu)->leaf_cfs_rq_list);
7874 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7876 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7878 #else /* !CONFG_FAIR_GROUP_SCHED */
7879 static inline void free_fair_sched_group(struct task_group *tg)
7883 static inline
7884 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7886 return 1;
7889 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7893 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7896 #endif /* CONFIG_FAIR_GROUP_SCHED */
7898 #ifdef CONFIG_RT_GROUP_SCHED
7899 static void free_rt_sched_group(struct task_group *tg)
7901 int i;
7903 destroy_rt_bandwidth(&tg->rt_bandwidth);
7905 for_each_possible_cpu(i) {
7906 if (tg->rt_rq)
7907 kfree(tg->rt_rq[i]);
7908 if (tg->rt_se)
7909 kfree(tg->rt_se[i]);
7912 kfree(tg->rt_rq);
7913 kfree(tg->rt_se);
7916 static
7917 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7919 struct rt_rq *rt_rq;
7920 struct sched_rt_entity *rt_se;
7921 struct rq *rq;
7922 int i;
7924 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
7925 if (!tg->rt_rq)
7926 goto err;
7927 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
7928 if (!tg->rt_se)
7929 goto err;
7931 init_rt_bandwidth(&tg->rt_bandwidth,
7932 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7934 for_each_possible_cpu(i) {
7935 rq = cpu_rq(i);
7937 rt_rq = kzalloc_node(sizeof(struct rt_rq),
7938 GFP_KERNEL, cpu_to_node(i));
7939 if (!rt_rq)
7940 goto err;
7942 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
7943 GFP_KERNEL, cpu_to_node(i));
7944 if (!rt_se)
7945 goto err_free_rq;
7947 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
7950 return 1;
7952 err_free_rq:
7953 kfree(rt_rq);
7954 err:
7955 return 0;
7958 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7960 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7961 &cpu_rq(cpu)->leaf_rt_rq_list);
7964 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7966 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7968 #else /* !CONFIG_RT_GROUP_SCHED */
7969 static inline void free_rt_sched_group(struct task_group *tg)
7973 static inline
7974 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7976 return 1;
7979 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7983 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7986 #endif /* CONFIG_RT_GROUP_SCHED */
7988 #ifdef CONFIG_CGROUP_SCHED
7989 static void free_sched_group(struct task_group *tg)
7991 free_fair_sched_group(tg);
7992 free_rt_sched_group(tg);
7993 kfree(tg);
7996 /* allocate runqueue etc for a new task group */
7997 struct task_group *sched_create_group(struct task_group *parent)
7999 struct task_group *tg;
8000 unsigned long flags;
8001 int i;
8003 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8004 if (!tg)
8005 return ERR_PTR(-ENOMEM);
8007 if (!alloc_fair_sched_group(tg, parent))
8008 goto err;
8010 if (!alloc_rt_sched_group(tg, parent))
8011 goto err;
8013 spin_lock_irqsave(&task_group_lock, flags);
8014 for_each_possible_cpu(i) {
8015 register_fair_sched_group(tg, i);
8016 register_rt_sched_group(tg, i);
8018 list_add_rcu(&tg->list, &task_groups);
8020 WARN_ON(!parent); /* root should already exist */
8022 tg->parent = parent;
8023 INIT_LIST_HEAD(&tg->children);
8024 list_add_rcu(&tg->siblings, &parent->children);
8025 spin_unlock_irqrestore(&task_group_lock, flags);
8027 return tg;
8029 err:
8030 free_sched_group(tg);
8031 return ERR_PTR(-ENOMEM);
8034 /* rcu callback to free various structures associated with a task group */
8035 static void free_sched_group_rcu(struct rcu_head *rhp)
8037 /* now it should be safe to free those cfs_rqs */
8038 free_sched_group(container_of(rhp, struct task_group, rcu));
8041 /* Destroy runqueue etc associated with a task group */
8042 void sched_destroy_group(struct task_group *tg)
8044 unsigned long flags;
8045 int i;
8047 spin_lock_irqsave(&task_group_lock, flags);
8048 for_each_possible_cpu(i) {
8049 unregister_fair_sched_group(tg, i);
8050 unregister_rt_sched_group(tg, i);
8052 list_del_rcu(&tg->list);
8053 list_del_rcu(&tg->siblings);
8054 spin_unlock_irqrestore(&task_group_lock, flags);
8056 /* wait for possible concurrent references to cfs_rqs complete */
8057 call_rcu(&tg->rcu, free_sched_group_rcu);
8060 /* change task's runqueue when it moves between groups.
8061 * The caller of this function should have put the task in its new group
8062 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8063 * reflect its new group.
8065 void sched_move_task(struct task_struct *tsk)
8067 int on_rq, running;
8068 unsigned long flags;
8069 struct rq *rq;
8071 rq = task_rq_lock(tsk, &flags);
8073 running = task_current(rq, tsk);
8074 on_rq = tsk->se.on_rq;
8076 if (on_rq)
8077 dequeue_task(rq, tsk, 0);
8078 if (unlikely(running))
8079 tsk->sched_class->put_prev_task(rq, tsk);
8081 set_task_rq(tsk, task_cpu(tsk));
8083 #ifdef CONFIG_FAIR_GROUP_SCHED
8084 if (tsk->sched_class->moved_group)
8085 tsk->sched_class->moved_group(tsk, on_rq);
8086 #endif
8088 if (unlikely(running))
8089 tsk->sched_class->set_curr_task(rq);
8090 if (on_rq)
8091 enqueue_task(rq, tsk, 0);
8093 task_rq_unlock(rq, &flags);
8095 #endif /* CONFIG_CGROUP_SCHED */
8097 #ifdef CONFIG_FAIR_GROUP_SCHED
8098 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8100 struct cfs_rq *cfs_rq = se->cfs_rq;
8101 int on_rq;
8103 on_rq = se->on_rq;
8104 if (on_rq)
8105 dequeue_entity(cfs_rq, se, 0);
8107 se->load.weight = shares;
8108 se->load.inv_weight = 0;
8110 if (on_rq)
8111 enqueue_entity(cfs_rq, se, 0);
8114 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8116 struct cfs_rq *cfs_rq = se->cfs_rq;
8117 struct rq *rq = cfs_rq->rq;
8118 unsigned long flags;
8120 raw_spin_lock_irqsave(&rq->lock, flags);
8121 __set_se_shares(se, shares);
8122 raw_spin_unlock_irqrestore(&rq->lock, flags);
8125 static DEFINE_MUTEX(shares_mutex);
8127 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8129 int i;
8130 unsigned long flags;
8133 * We can't change the weight of the root cgroup.
8135 if (!tg->se[0])
8136 return -EINVAL;
8138 if (shares < MIN_SHARES)
8139 shares = MIN_SHARES;
8140 else if (shares > MAX_SHARES)
8141 shares = MAX_SHARES;
8143 mutex_lock(&shares_mutex);
8144 if (tg->shares == shares)
8145 goto done;
8147 spin_lock_irqsave(&task_group_lock, flags);
8148 for_each_possible_cpu(i)
8149 unregister_fair_sched_group(tg, i);
8150 list_del_rcu(&tg->siblings);
8151 spin_unlock_irqrestore(&task_group_lock, flags);
8153 /* wait for any ongoing reference to this group to finish */
8154 synchronize_sched();
8157 * Now we are free to modify the group's share on each cpu
8158 * w/o tripping rebalance_share or load_balance_fair.
8160 tg->shares = shares;
8161 for_each_possible_cpu(i) {
8163 * force a rebalance
8165 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8166 set_se_shares(tg->se[i], shares);
8170 * Enable load balance activity on this group, by inserting it back on
8171 * each cpu's rq->leaf_cfs_rq_list.
8173 spin_lock_irqsave(&task_group_lock, flags);
8174 for_each_possible_cpu(i)
8175 register_fair_sched_group(tg, i);
8176 list_add_rcu(&tg->siblings, &tg->parent->children);
8177 spin_unlock_irqrestore(&task_group_lock, flags);
8178 done:
8179 mutex_unlock(&shares_mutex);
8180 return 0;
8183 unsigned long sched_group_shares(struct task_group *tg)
8185 return tg->shares;
8187 #endif
8189 #ifdef CONFIG_RT_GROUP_SCHED
8191 * Ensure that the real time constraints are schedulable.
8193 static DEFINE_MUTEX(rt_constraints_mutex);
8195 static unsigned long to_ratio(u64 period, u64 runtime)
8197 if (runtime == RUNTIME_INF)
8198 return 1ULL << 20;
8200 return div64_u64(runtime << 20, period);
8203 /* Must be called with tasklist_lock held */
8204 static inline int tg_has_rt_tasks(struct task_group *tg)
8206 struct task_struct *g, *p;
8208 do_each_thread(g, p) {
8209 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8210 return 1;
8211 } while_each_thread(g, p);
8213 return 0;
8216 struct rt_schedulable_data {
8217 struct task_group *tg;
8218 u64 rt_period;
8219 u64 rt_runtime;
8222 static int tg_schedulable(struct task_group *tg, void *data)
8224 struct rt_schedulable_data *d = data;
8225 struct task_group *child;
8226 unsigned long total, sum = 0;
8227 u64 period, runtime;
8229 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8230 runtime = tg->rt_bandwidth.rt_runtime;
8232 if (tg == d->tg) {
8233 period = d->rt_period;
8234 runtime = d->rt_runtime;
8238 * Cannot have more runtime than the period.
8240 if (runtime > period && runtime != RUNTIME_INF)
8241 return -EINVAL;
8244 * Ensure we don't starve existing RT tasks.
8246 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8247 return -EBUSY;
8249 total = to_ratio(period, runtime);
8252 * Nobody can have more than the global setting allows.
8254 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8255 return -EINVAL;
8258 * The sum of our children's runtime should not exceed our own.
8260 list_for_each_entry_rcu(child, &tg->children, siblings) {
8261 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8262 runtime = child->rt_bandwidth.rt_runtime;
8264 if (child == d->tg) {
8265 period = d->rt_period;
8266 runtime = d->rt_runtime;
8269 sum += to_ratio(period, runtime);
8272 if (sum > total)
8273 return -EINVAL;
8275 return 0;
8278 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8280 struct rt_schedulable_data data = {
8281 .tg = tg,
8282 .rt_period = period,
8283 .rt_runtime = runtime,
8286 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8289 static int tg_set_bandwidth(struct task_group *tg,
8290 u64 rt_period, u64 rt_runtime)
8292 int i, err = 0;
8294 mutex_lock(&rt_constraints_mutex);
8295 read_lock(&tasklist_lock);
8296 err = __rt_schedulable(tg, rt_period, rt_runtime);
8297 if (err)
8298 goto unlock;
8300 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8301 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8302 tg->rt_bandwidth.rt_runtime = rt_runtime;
8304 for_each_possible_cpu(i) {
8305 struct rt_rq *rt_rq = tg->rt_rq[i];
8307 raw_spin_lock(&rt_rq->rt_runtime_lock);
8308 rt_rq->rt_runtime = rt_runtime;
8309 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8311 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8312 unlock:
8313 read_unlock(&tasklist_lock);
8314 mutex_unlock(&rt_constraints_mutex);
8316 return err;
8319 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8321 u64 rt_runtime, rt_period;
8323 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8324 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8325 if (rt_runtime_us < 0)
8326 rt_runtime = RUNTIME_INF;
8328 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8331 long sched_group_rt_runtime(struct task_group *tg)
8333 u64 rt_runtime_us;
8335 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8336 return -1;
8338 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8339 do_div(rt_runtime_us, NSEC_PER_USEC);
8340 return rt_runtime_us;
8343 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8345 u64 rt_runtime, rt_period;
8347 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8348 rt_runtime = tg->rt_bandwidth.rt_runtime;
8350 if (rt_period == 0)
8351 return -EINVAL;
8353 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8356 long sched_group_rt_period(struct task_group *tg)
8358 u64 rt_period_us;
8360 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8361 do_div(rt_period_us, NSEC_PER_USEC);
8362 return rt_period_us;
8365 static int sched_rt_global_constraints(void)
8367 u64 runtime, period;
8368 int ret = 0;
8370 if (sysctl_sched_rt_period <= 0)
8371 return -EINVAL;
8373 runtime = global_rt_runtime();
8374 period = global_rt_period();
8377 * Sanity check on the sysctl variables.
8379 if (runtime > period && runtime != RUNTIME_INF)
8380 return -EINVAL;
8382 mutex_lock(&rt_constraints_mutex);
8383 read_lock(&tasklist_lock);
8384 ret = __rt_schedulable(NULL, 0, 0);
8385 read_unlock(&tasklist_lock);
8386 mutex_unlock(&rt_constraints_mutex);
8388 return ret;
8391 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8393 /* Don't accept realtime tasks when there is no way for them to run */
8394 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8395 return 0;
8397 return 1;
8400 #else /* !CONFIG_RT_GROUP_SCHED */
8401 static int sched_rt_global_constraints(void)
8403 unsigned long flags;
8404 int i;
8406 if (sysctl_sched_rt_period <= 0)
8407 return -EINVAL;
8410 * There's always some RT tasks in the root group
8411 * -- migration, kstopmachine etc..
8413 if (sysctl_sched_rt_runtime == 0)
8414 return -EBUSY;
8416 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8417 for_each_possible_cpu(i) {
8418 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8420 raw_spin_lock(&rt_rq->rt_runtime_lock);
8421 rt_rq->rt_runtime = global_rt_runtime();
8422 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8424 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8426 return 0;
8428 #endif /* CONFIG_RT_GROUP_SCHED */
8430 int sched_rt_handler(struct ctl_table *table, int write,
8431 void __user *buffer, size_t *lenp,
8432 loff_t *ppos)
8434 int ret;
8435 int old_period, old_runtime;
8436 static DEFINE_MUTEX(mutex);
8438 mutex_lock(&mutex);
8439 old_period = sysctl_sched_rt_period;
8440 old_runtime = sysctl_sched_rt_runtime;
8442 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8444 if (!ret && write) {
8445 ret = sched_rt_global_constraints();
8446 if (ret) {
8447 sysctl_sched_rt_period = old_period;
8448 sysctl_sched_rt_runtime = old_runtime;
8449 } else {
8450 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8451 def_rt_bandwidth.rt_period =
8452 ns_to_ktime(global_rt_period());
8455 mutex_unlock(&mutex);
8457 return ret;
8460 #ifdef CONFIG_CGROUP_SCHED
8462 /* return corresponding task_group object of a cgroup */
8463 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8465 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8466 struct task_group, css);
8469 static struct cgroup_subsys_state *
8470 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8472 struct task_group *tg, *parent;
8474 if (!cgrp->parent) {
8475 /* This is early initialization for the top cgroup */
8476 return &init_task_group.css;
8479 parent = cgroup_tg(cgrp->parent);
8480 tg = sched_create_group(parent);
8481 if (IS_ERR(tg))
8482 return ERR_PTR(-ENOMEM);
8484 return &tg->css;
8487 static void
8488 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8490 struct task_group *tg = cgroup_tg(cgrp);
8492 sched_destroy_group(tg);
8495 static int
8496 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8498 #ifdef CONFIG_RT_GROUP_SCHED
8499 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8500 return -EINVAL;
8501 #else
8502 /* We don't support RT-tasks being in separate groups */
8503 if (tsk->sched_class != &fair_sched_class)
8504 return -EINVAL;
8505 #endif
8506 return 0;
8509 static int
8510 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8511 struct task_struct *tsk, bool threadgroup)
8513 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8514 if (retval)
8515 return retval;
8516 if (threadgroup) {
8517 struct task_struct *c;
8518 rcu_read_lock();
8519 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8520 retval = cpu_cgroup_can_attach_task(cgrp, c);
8521 if (retval) {
8522 rcu_read_unlock();
8523 return retval;
8526 rcu_read_unlock();
8528 return 0;
8531 static void
8532 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8533 struct cgroup *old_cont, struct task_struct *tsk,
8534 bool threadgroup)
8536 sched_move_task(tsk);
8537 if (threadgroup) {
8538 struct task_struct *c;
8539 rcu_read_lock();
8540 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8541 sched_move_task(c);
8543 rcu_read_unlock();
8547 #ifdef CONFIG_FAIR_GROUP_SCHED
8548 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8549 u64 shareval)
8551 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8554 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8556 struct task_group *tg = cgroup_tg(cgrp);
8558 return (u64) tg->shares;
8560 #endif /* CONFIG_FAIR_GROUP_SCHED */
8562 #ifdef CONFIG_RT_GROUP_SCHED
8563 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8564 s64 val)
8566 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8569 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8571 return sched_group_rt_runtime(cgroup_tg(cgrp));
8574 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8575 u64 rt_period_us)
8577 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8580 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8582 return sched_group_rt_period(cgroup_tg(cgrp));
8584 #endif /* CONFIG_RT_GROUP_SCHED */
8586 static struct cftype cpu_files[] = {
8587 #ifdef CONFIG_FAIR_GROUP_SCHED
8589 .name = "shares",
8590 .read_u64 = cpu_shares_read_u64,
8591 .write_u64 = cpu_shares_write_u64,
8593 #endif
8594 #ifdef CONFIG_RT_GROUP_SCHED
8596 .name = "rt_runtime_us",
8597 .read_s64 = cpu_rt_runtime_read,
8598 .write_s64 = cpu_rt_runtime_write,
8601 .name = "rt_period_us",
8602 .read_u64 = cpu_rt_period_read_uint,
8603 .write_u64 = cpu_rt_period_write_uint,
8605 #endif
8608 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8610 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8613 struct cgroup_subsys cpu_cgroup_subsys = {
8614 .name = "cpu",
8615 .create = cpu_cgroup_create,
8616 .destroy = cpu_cgroup_destroy,
8617 .can_attach = cpu_cgroup_can_attach,
8618 .attach = cpu_cgroup_attach,
8619 .populate = cpu_cgroup_populate,
8620 .subsys_id = cpu_cgroup_subsys_id,
8621 .early_init = 1,
8624 #endif /* CONFIG_CGROUP_SCHED */
8626 #ifdef CONFIG_CGROUP_CPUACCT
8629 * CPU accounting code for task groups.
8631 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8632 * (balbir@in.ibm.com).
8635 /* track cpu usage of a group of tasks and its child groups */
8636 struct cpuacct {
8637 struct cgroup_subsys_state css;
8638 /* cpuusage holds pointer to a u64-type object on every cpu */
8639 u64 __percpu *cpuusage;
8640 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8641 struct cpuacct *parent;
8644 struct cgroup_subsys cpuacct_subsys;
8646 /* return cpu accounting group corresponding to this container */
8647 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8649 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8650 struct cpuacct, css);
8653 /* return cpu accounting group to which this task belongs */
8654 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8656 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8657 struct cpuacct, css);
8660 /* create a new cpu accounting group */
8661 static struct cgroup_subsys_state *cpuacct_create(
8662 struct cgroup_subsys *ss, struct cgroup *cgrp)
8664 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8665 int i;
8667 if (!ca)
8668 goto out;
8670 ca->cpuusage = alloc_percpu(u64);
8671 if (!ca->cpuusage)
8672 goto out_free_ca;
8674 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8675 if (percpu_counter_init(&ca->cpustat[i], 0))
8676 goto out_free_counters;
8678 if (cgrp->parent)
8679 ca->parent = cgroup_ca(cgrp->parent);
8681 return &ca->css;
8683 out_free_counters:
8684 while (--i >= 0)
8685 percpu_counter_destroy(&ca->cpustat[i]);
8686 free_percpu(ca->cpuusage);
8687 out_free_ca:
8688 kfree(ca);
8689 out:
8690 return ERR_PTR(-ENOMEM);
8693 /* destroy an existing cpu accounting group */
8694 static void
8695 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8697 struct cpuacct *ca = cgroup_ca(cgrp);
8698 int i;
8700 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8701 percpu_counter_destroy(&ca->cpustat[i]);
8702 free_percpu(ca->cpuusage);
8703 kfree(ca);
8706 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8708 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8709 u64 data;
8711 #ifndef CONFIG_64BIT
8713 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8715 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8716 data = *cpuusage;
8717 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8718 #else
8719 data = *cpuusage;
8720 #endif
8722 return data;
8725 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8727 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8729 #ifndef CONFIG_64BIT
8731 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8733 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8734 *cpuusage = val;
8735 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8736 #else
8737 *cpuusage = val;
8738 #endif
8741 /* return total cpu usage (in nanoseconds) of a group */
8742 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8744 struct cpuacct *ca = cgroup_ca(cgrp);
8745 u64 totalcpuusage = 0;
8746 int i;
8748 for_each_present_cpu(i)
8749 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8751 return totalcpuusage;
8754 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8755 u64 reset)
8757 struct cpuacct *ca = cgroup_ca(cgrp);
8758 int err = 0;
8759 int i;
8761 if (reset) {
8762 err = -EINVAL;
8763 goto out;
8766 for_each_present_cpu(i)
8767 cpuacct_cpuusage_write(ca, i, 0);
8769 out:
8770 return err;
8773 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8774 struct seq_file *m)
8776 struct cpuacct *ca = cgroup_ca(cgroup);
8777 u64 percpu;
8778 int i;
8780 for_each_present_cpu(i) {
8781 percpu = cpuacct_cpuusage_read(ca, i);
8782 seq_printf(m, "%llu ", (unsigned long long) percpu);
8784 seq_printf(m, "\n");
8785 return 0;
8788 static const char *cpuacct_stat_desc[] = {
8789 [CPUACCT_STAT_USER] = "user",
8790 [CPUACCT_STAT_SYSTEM] = "system",
8793 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8794 struct cgroup_map_cb *cb)
8796 struct cpuacct *ca = cgroup_ca(cgrp);
8797 int i;
8799 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8800 s64 val = percpu_counter_read(&ca->cpustat[i]);
8801 val = cputime64_to_clock_t(val);
8802 cb->fill(cb, cpuacct_stat_desc[i], val);
8804 return 0;
8807 static struct cftype files[] = {
8809 .name = "usage",
8810 .read_u64 = cpuusage_read,
8811 .write_u64 = cpuusage_write,
8814 .name = "usage_percpu",
8815 .read_seq_string = cpuacct_percpu_seq_read,
8818 .name = "stat",
8819 .read_map = cpuacct_stats_show,
8823 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8825 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8829 * charge this task's execution time to its accounting group.
8831 * called with rq->lock held.
8833 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8835 struct cpuacct *ca;
8836 int cpu;
8838 if (unlikely(!cpuacct_subsys.active))
8839 return;
8841 cpu = task_cpu(tsk);
8843 rcu_read_lock();
8845 ca = task_ca(tsk);
8847 for (; ca; ca = ca->parent) {
8848 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8849 *cpuusage += cputime;
8852 rcu_read_unlock();
8856 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8857 * in cputime_t units. As a result, cpuacct_update_stats calls
8858 * percpu_counter_add with values large enough to always overflow the
8859 * per cpu batch limit causing bad SMP scalability.
8861 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8862 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8863 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8865 #ifdef CONFIG_SMP
8866 #define CPUACCT_BATCH \
8867 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8868 #else
8869 #define CPUACCT_BATCH 0
8870 #endif
8873 * Charge the system/user time to the task's accounting group.
8875 static void cpuacct_update_stats(struct task_struct *tsk,
8876 enum cpuacct_stat_index idx, cputime_t val)
8878 struct cpuacct *ca;
8879 int batch = CPUACCT_BATCH;
8881 if (unlikely(!cpuacct_subsys.active))
8882 return;
8884 rcu_read_lock();
8885 ca = task_ca(tsk);
8887 do {
8888 __percpu_counter_add(&ca->cpustat[idx], val, batch);
8889 ca = ca->parent;
8890 } while (ca);
8891 rcu_read_unlock();
8894 struct cgroup_subsys cpuacct_subsys = {
8895 .name = "cpuacct",
8896 .create = cpuacct_create,
8897 .destroy = cpuacct_destroy,
8898 .populate = cpuacct_populate,
8899 .subsys_id = cpuacct_subsys_id,
8901 #endif /* CONFIG_CGROUP_CPUACCT */
8903 #ifndef CONFIG_SMP
8905 void synchronize_sched_expedited(void)
8907 barrier();
8909 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8911 #else /* #ifndef CONFIG_SMP */
8913 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
8915 static int synchronize_sched_expedited_cpu_stop(void *data)
8918 * There must be a full memory barrier on each affected CPU
8919 * between the time that try_stop_cpus() is called and the
8920 * time that it returns.
8922 * In the current initial implementation of cpu_stop, the
8923 * above condition is already met when the control reaches
8924 * this point and the following smp_mb() is not strictly
8925 * necessary. Do smp_mb() anyway for documentation and
8926 * robustness against future implementation changes.
8928 smp_mb(); /* See above comment block. */
8929 return 0;
8933 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8934 * approach to force grace period to end quickly. This consumes
8935 * significant time on all CPUs, and is thus not recommended for
8936 * any sort of common-case code.
8938 * Note that it is illegal to call this function while holding any
8939 * lock that is acquired by a CPU-hotplug notifier. Failing to
8940 * observe this restriction will result in deadlock.
8942 void synchronize_sched_expedited(void)
8944 int snap, trycount = 0;
8946 smp_mb(); /* ensure prior mod happens before capturing snap. */
8947 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
8948 get_online_cpus();
8949 while (try_stop_cpus(cpu_online_mask,
8950 synchronize_sched_expedited_cpu_stop,
8951 NULL) == -EAGAIN) {
8952 put_online_cpus();
8953 if (trycount++ < 10)
8954 udelay(trycount * num_online_cpus());
8955 else {
8956 synchronize_sched();
8957 return;
8959 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
8960 smp_mb(); /* ensure test happens before caller kfree */
8961 return;
8963 get_online_cpus();
8965 atomic_inc(&synchronize_sched_expedited_count);
8966 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
8967 put_online_cpus();
8969 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8971 #endif /* #else #ifndef CONFIG_SMP */