1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59 #include <linux/module.h>
60 #include <linux/types.h>
61 #include <linux/errno.h>
62 #include <linux/ioport.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/kernel.h>
66 #include <linux/netdevice.h>
67 #include <linux/etherdevice.h>
68 #include <linux/mdio.h>
69 #include <linux/skbuff.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/stddef.h>
73 #include <linux/ioctl.h>
74 #include <linux/timex.h>
75 #include <linux/ethtool.h>
76 #include <linux/workqueue.h>
77 #include <linux/if_vlan.h>
79 #include <linux/tcp.h>
80 #include <linux/uaccess.h>
82 #include <linux/slab.h>
85 #include <asm/system.h>
86 #include <asm/div64.h>
91 #include "s2io-regs.h"
93 #define DRV_VERSION "2.0.26.26"
95 /* S2io Driver name & version. */
96 static char s2io_driver_name
[] = "Neterion";
97 static char s2io_driver_version
[] = DRV_VERSION
;
99 static int rxd_size
[2] = {32, 48};
100 static int rxd_count
[2] = {127, 85};
102 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
106 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
107 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
113 * Cards with following subsystem_id have a link state indication
114 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
115 * macro below identifies these cards given the subsystem_id.
117 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
118 (dev_type == XFRAME_I_DEVICE) ? \
119 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
120 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
122 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
123 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
125 static inline int is_s2io_card_up(const struct s2io_nic
*sp
)
127 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
130 /* Ethtool related variables and Macros. */
131 static const char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
132 "Register test\t(offline)",
133 "Eeprom test\t(offline)",
134 "Link test\t(online)",
135 "RLDRAM test\t(offline)",
136 "BIST Test\t(offline)"
139 static const char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
141 {"tmac_data_octets"},
145 {"tmac_pause_ctrl_frms"},
149 {"tmac_any_err_frms"},
150 {"tmac_ttl_less_fb_octets"},
151 {"tmac_vld_ip_octets"},
159 {"rmac_data_octets"},
160 {"rmac_fcs_err_frms"},
162 {"rmac_vld_mcst_frms"},
163 {"rmac_vld_bcst_frms"},
164 {"rmac_in_rng_len_err_frms"},
165 {"rmac_out_rng_len_err_frms"},
167 {"rmac_pause_ctrl_frms"},
168 {"rmac_unsup_ctrl_frms"},
170 {"rmac_accepted_ucst_frms"},
171 {"rmac_accepted_nucst_frms"},
172 {"rmac_discarded_frms"},
173 {"rmac_drop_events"},
174 {"rmac_ttl_less_fb_octets"},
176 {"rmac_usized_frms"},
177 {"rmac_osized_frms"},
179 {"rmac_jabber_frms"},
180 {"rmac_ttl_64_frms"},
181 {"rmac_ttl_65_127_frms"},
182 {"rmac_ttl_128_255_frms"},
183 {"rmac_ttl_256_511_frms"},
184 {"rmac_ttl_512_1023_frms"},
185 {"rmac_ttl_1024_1518_frms"},
193 {"rmac_err_drp_udp"},
194 {"rmac_xgmii_err_sym"},
212 {"rmac_xgmii_data_err_cnt"},
213 {"rmac_xgmii_ctrl_err_cnt"},
214 {"rmac_accepted_ip"},
218 {"new_rd_req_rtry_cnt"},
220 {"wr_rtry_rd_ack_cnt"},
223 {"new_wr_req_rtry_cnt"},
226 {"rd_rtry_wr_ack_cnt"},
236 static const char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
237 {"rmac_ttl_1519_4095_frms"},
238 {"rmac_ttl_4096_8191_frms"},
239 {"rmac_ttl_8192_max_frms"},
240 {"rmac_ttl_gt_max_frms"},
241 {"rmac_osized_alt_frms"},
242 {"rmac_jabber_alt_frms"},
243 {"rmac_gt_max_alt_frms"},
245 {"rmac_len_discard"},
246 {"rmac_fcs_discard"},
249 {"rmac_red_discard"},
250 {"rmac_rts_discard"},
251 {"rmac_ingm_full_discard"},
255 static const char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
256 {"\n DRIVER STATISTICS"},
257 {"single_bit_ecc_errs"},
258 {"double_bit_ecc_errs"},
271 {"alarm_transceiver_temp_high"},
272 {"alarm_transceiver_temp_low"},
273 {"alarm_laser_bias_current_high"},
274 {"alarm_laser_bias_current_low"},
275 {"alarm_laser_output_power_high"},
276 {"alarm_laser_output_power_low"},
277 {"warn_transceiver_temp_high"},
278 {"warn_transceiver_temp_low"},
279 {"warn_laser_bias_current_high"},
280 {"warn_laser_bias_current_low"},
281 {"warn_laser_output_power_high"},
282 {"warn_laser_output_power_low"},
283 {"lro_aggregated_pkts"},
284 {"lro_flush_both_count"},
285 {"lro_out_of_sequence_pkts"},
286 {"lro_flush_due_to_max_pkts"},
287 {"lro_avg_aggr_pkts"},
288 {"mem_alloc_fail_cnt"},
289 {"pci_map_fail_cnt"},
290 {"watchdog_timer_cnt"},
297 {"tx_tcode_buf_abort_cnt"},
298 {"tx_tcode_desc_abort_cnt"},
299 {"tx_tcode_parity_err_cnt"},
300 {"tx_tcode_link_loss_cnt"},
301 {"tx_tcode_list_proc_err_cnt"},
302 {"rx_tcode_parity_err_cnt"},
303 {"rx_tcode_abort_cnt"},
304 {"rx_tcode_parity_abort_cnt"},
305 {"rx_tcode_rda_fail_cnt"},
306 {"rx_tcode_unkn_prot_cnt"},
307 {"rx_tcode_fcs_err_cnt"},
308 {"rx_tcode_buf_size_err_cnt"},
309 {"rx_tcode_rxd_corrupt_cnt"},
310 {"rx_tcode_unkn_err_cnt"},
318 {"mac_tmac_err_cnt"},
319 {"mac_rmac_err_cnt"},
320 {"xgxs_txgxs_err_cnt"},
321 {"xgxs_rxgxs_err_cnt"},
323 {"prc_pcix_err_cnt"},
330 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
331 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
332 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
334 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
335 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
337 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
338 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
340 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
341 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
343 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
344 init_timer(&timer); \
345 timer.function = handle; \
346 timer.data = (unsigned long)arg; \
347 mod_timer(&timer, (jiffies + exp)) \
349 /* copy mac addr to def_mac_addr array */
350 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
352 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
353 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
354 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
355 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
356 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
357 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
361 static void s2io_vlan_rx_register(struct net_device
*dev
,
362 struct vlan_group
*grp
)
365 struct s2io_nic
*nic
= netdev_priv(dev
);
366 unsigned long flags
[MAX_TX_FIFOS
];
367 struct config_param
*config
= &nic
->config
;
368 struct mac_info
*mac_control
= &nic
->mac_control
;
370 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
371 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
373 spin_lock_irqsave(&fifo
->tx_lock
, flags
[i
]);
378 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--) {
379 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
381 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
[i
]);
385 /* Unregister the vlan */
386 static void s2io_vlan_rx_kill_vid(struct net_device
*dev
, unsigned short vid
)
389 struct s2io_nic
*nic
= netdev_priv(dev
);
390 unsigned long flags
[MAX_TX_FIFOS
];
391 struct config_param
*config
= &nic
->config
;
392 struct mac_info
*mac_control
= &nic
->mac_control
;
394 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
395 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
397 spin_lock_irqsave(&fifo
->tx_lock
, flags
[i
]);
401 vlan_group_set_device(nic
->vlgrp
, vid
, NULL
);
403 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--) {
404 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
406 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
[i
]);
411 * Constants to be programmed into the Xena's registers, to configure
416 static const u64 herc_act_dtx_cfg
[] = {
418 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
420 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
422 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
424 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
426 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
428 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
430 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
432 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
437 static const u64 xena_dtx_cfg
[] = {
439 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
441 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
443 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
445 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
447 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
449 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
454 * Constants for Fixing the MacAddress problem seen mostly on
457 static const u64 fix_mac
[] = {
458 0x0060000000000000ULL
, 0x0060600000000000ULL
,
459 0x0040600000000000ULL
, 0x0000600000000000ULL
,
460 0x0020600000000000ULL
, 0x0060600000000000ULL
,
461 0x0020600000000000ULL
, 0x0060600000000000ULL
,
462 0x0020600000000000ULL
, 0x0060600000000000ULL
,
463 0x0020600000000000ULL
, 0x0060600000000000ULL
,
464 0x0020600000000000ULL
, 0x0060600000000000ULL
,
465 0x0020600000000000ULL
, 0x0060600000000000ULL
,
466 0x0020600000000000ULL
, 0x0060600000000000ULL
,
467 0x0020600000000000ULL
, 0x0060600000000000ULL
,
468 0x0020600000000000ULL
, 0x0060600000000000ULL
,
469 0x0020600000000000ULL
, 0x0060600000000000ULL
,
470 0x0020600000000000ULL
, 0x0000600000000000ULL
,
471 0x0040600000000000ULL
, 0x0060600000000000ULL
,
475 MODULE_LICENSE("GPL");
476 MODULE_VERSION(DRV_VERSION
);
479 /* Module Loadable parameters. */
480 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
481 S2IO_PARM_INT(rx_ring_num
, 1);
482 S2IO_PARM_INT(multiq
, 0);
483 S2IO_PARM_INT(rx_ring_mode
, 1);
484 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
485 S2IO_PARM_INT(rmac_pause_time
, 0x100);
486 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
487 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
488 S2IO_PARM_INT(shared_splits
, 0);
489 S2IO_PARM_INT(tmac_util_period
, 5);
490 S2IO_PARM_INT(rmac_util_period
, 5);
491 S2IO_PARM_INT(l3l4hdr_size
, 128);
492 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
493 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
494 /* Frequency of Rx desc syncs expressed as power of 2 */
495 S2IO_PARM_INT(rxsync_frequency
, 3);
496 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
497 S2IO_PARM_INT(intr_type
, 2);
498 /* Large receive offload feature */
499 static unsigned int lro_enable
= 1;
500 module_param_named(lro
, lro_enable
, uint
, 0);
502 /* Max pkts to be aggregated by LRO at one time. If not specified,
503 * aggregation happens until we hit max IP pkt size(64K)
505 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
506 S2IO_PARM_INT(indicate_max_pkts
, 0);
508 S2IO_PARM_INT(napi
, 1);
509 S2IO_PARM_INT(ufo
, 0);
510 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
512 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
513 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
514 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
515 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
516 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
517 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
519 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
520 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
521 module_param_array(rts_frm_len
, uint
, NULL
, 0);
525 * This table lists all the devices that this driver supports.
527 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl
) = {
528 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
529 PCI_ANY_ID
, PCI_ANY_ID
},
530 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
531 PCI_ANY_ID
, PCI_ANY_ID
},
532 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
533 PCI_ANY_ID
, PCI_ANY_ID
},
534 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
535 PCI_ANY_ID
, PCI_ANY_ID
},
539 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
541 static struct pci_error_handlers s2io_err_handler
= {
542 .error_detected
= s2io_io_error_detected
,
543 .slot_reset
= s2io_io_slot_reset
,
544 .resume
= s2io_io_resume
,
547 static struct pci_driver s2io_driver
= {
549 .id_table
= s2io_tbl
,
550 .probe
= s2io_init_nic
,
551 .remove
= __devexit_p(s2io_rem_nic
),
552 .err_handler
= &s2io_err_handler
,
555 /* A simplifier macro used both by init and free shared_mem Fns(). */
556 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
558 /* netqueue manipulation helper functions */
559 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
561 if (!sp
->config
.multiq
) {
564 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
565 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
567 netif_tx_stop_all_queues(sp
->dev
);
570 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
572 if (!sp
->config
.multiq
)
573 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
576 netif_tx_stop_all_queues(sp
->dev
);
579 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
581 if (!sp
->config
.multiq
) {
584 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
585 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
587 netif_tx_start_all_queues(sp
->dev
);
590 static inline void s2io_start_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
592 if (!sp
->config
.multiq
)
593 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
596 netif_tx_start_all_queues(sp
->dev
);
599 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
601 if (!sp
->config
.multiq
) {
604 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
605 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
607 netif_tx_wake_all_queues(sp
->dev
);
610 static inline void s2io_wake_tx_queue(
611 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
615 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
616 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
617 } else if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
618 if (netif_queue_stopped(fifo
->dev
)) {
619 fifo
->queue_state
= FIFO_QUEUE_START
;
620 netif_wake_queue(fifo
->dev
);
626 * init_shared_mem - Allocation and Initialization of Memory
627 * @nic: Device private variable.
628 * Description: The function allocates all the memory areas shared
629 * between the NIC and the driver. This includes Tx descriptors,
630 * Rx descriptors and the statistics block.
633 static int init_shared_mem(struct s2io_nic
*nic
)
636 void *tmp_v_addr
, *tmp_v_addr_next
;
637 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
638 struct RxD_block
*pre_rxd_blk
= NULL
;
640 int lst_size
, lst_per_page
;
641 struct net_device
*dev
= nic
->dev
;
644 struct config_param
*config
= &nic
->config
;
645 struct mac_info
*mac_control
= &nic
->mac_control
;
646 unsigned long long mem_allocated
= 0;
648 /* Allocation and initialization of TXDLs in FIFOs */
650 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
651 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
653 size
+= tx_cfg
->fifo_len
;
655 if (size
> MAX_AVAILABLE_TXDS
) {
657 "Too many TxDs requested: %d, max supported: %d\n",
658 size
, MAX_AVAILABLE_TXDS
);
663 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
664 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
666 size
= tx_cfg
->fifo_len
;
668 * Legal values are from 2 to 8192
671 DBG_PRINT(ERR_DBG
, "Fifo %d: Invalid length (%d) - "
672 "Valid lengths are 2 through 8192\n",
678 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
679 lst_per_page
= PAGE_SIZE
/ lst_size
;
681 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
682 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
683 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
684 int fifo_len
= tx_cfg
->fifo_len
;
685 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
687 fifo
->list_info
= kzalloc(list_holder_size
, GFP_KERNEL
);
688 if (!fifo
->list_info
) {
689 DBG_PRINT(INFO_DBG
, "Malloc failed for list_info\n");
692 mem_allocated
+= list_holder_size
;
694 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
695 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
697 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
698 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
700 fifo
->tx_curr_put_info
.offset
= 0;
701 fifo
->tx_curr_put_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
702 fifo
->tx_curr_get_info
.offset
= 0;
703 fifo
->tx_curr_get_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
706 fifo
->max_txds
= MAX_SKB_FRAGS
+ 2;
709 for (j
= 0; j
< page_num
; j
++) {
713 tmp_v
= pci_alloc_consistent(nic
->pdev
,
717 "pci_alloc_consistent failed for TxDL\n");
720 /* If we got a zero DMA address(can happen on
721 * certain platforms like PPC), reallocate.
722 * Store virtual address of page we don't want,
726 mac_control
->zerodma_virt_addr
= tmp_v
;
728 "%s: Zero DMA address for TxDL. "
729 "Virtual address %p\n",
731 tmp_v
= pci_alloc_consistent(nic
->pdev
,
735 "pci_alloc_consistent failed for TxDL\n");
738 mem_allocated
+= PAGE_SIZE
;
740 while (k
< lst_per_page
) {
741 int l
= (j
* lst_per_page
) + k
;
742 if (l
== tx_cfg
->fifo_len
)
744 fifo
->list_info
[l
].list_virt_addr
=
745 tmp_v
+ (k
* lst_size
);
746 fifo
->list_info
[l
].list_phy_addr
=
747 tmp_p
+ (k
* lst_size
);
753 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
754 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
755 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
757 size
= tx_cfg
->fifo_len
;
758 fifo
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
759 if (!fifo
->ufo_in_band_v
)
761 mem_allocated
+= (size
* sizeof(u64
));
764 /* Allocation and initialization of RXDs in Rings */
766 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
767 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
768 struct ring_info
*ring
= &mac_control
->rings
[i
];
770 if (rx_cfg
->num_rxd
% (rxd_count
[nic
->rxd_mode
] + 1)) {
771 DBG_PRINT(ERR_DBG
, "%s: Ring%d RxD count is not a "
772 "multiple of RxDs per Block\n",
776 size
+= rx_cfg
->num_rxd
;
777 ring
->block_count
= rx_cfg
->num_rxd
/
778 (rxd_count
[nic
->rxd_mode
] + 1);
779 ring
->pkt_cnt
= rx_cfg
->num_rxd
- ring
->block_count
;
781 if (nic
->rxd_mode
== RXD_MODE_1
)
782 size
= (size
* (sizeof(struct RxD1
)));
784 size
= (size
* (sizeof(struct RxD3
)));
786 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
787 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
788 struct ring_info
*ring
= &mac_control
->rings
[i
];
790 ring
->rx_curr_get_info
.block_index
= 0;
791 ring
->rx_curr_get_info
.offset
= 0;
792 ring
->rx_curr_get_info
.ring_len
= rx_cfg
->num_rxd
- 1;
793 ring
->rx_curr_put_info
.block_index
= 0;
794 ring
->rx_curr_put_info
.offset
= 0;
795 ring
->rx_curr_put_info
.ring_len
= rx_cfg
->num_rxd
- 1;
799 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[nic
->rxd_mode
] + 1);
800 /* Allocating all the Rx blocks */
801 for (j
= 0; j
< blk_cnt
; j
++) {
802 struct rx_block_info
*rx_blocks
;
805 rx_blocks
= &ring
->rx_blocks
[j
];
806 size
= SIZE_OF_BLOCK
; /* size is always page size */
807 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
809 if (tmp_v_addr
== NULL
) {
811 * In case of failure, free_shared_mem()
812 * is called, which should free any
813 * memory that was alloced till the
816 rx_blocks
->block_virt_addr
= tmp_v_addr
;
819 mem_allocated
+= size
;
820 memset(tmp_v_addr
, 0, size
);
822 size
= sizeof(struct rxd_info
) *
823 rxd_count
[nic
->rxd_mode
];
824 rx_blocks
->block_virt_addr
= tmp_v_addr
;
825 rx_blocks
->block_dma_addr
= tmp_p_addr
;
826 rx_blocks
->rxds
= kmalloc(size
, GFP_KERNEL
);
827 if (!rx_blocks
->rxds
)
829 mem_allocated
+= size
;
830 for (l
= 0; l
< rxd_count
[nic
->rxd_mode
]; l
++) {
831 rx_blocks
->rxds
[l
].virt_addr
=
832 rx_blocks
->block_virt_addr
+
833 (rxd_size
[nic
->rxd_mode
] * l
);
834 rx_blocks
->rxds
[l
].dma_addr
=
835 rx_blocks
->block_dma_addr
+
836 (rxd_size
[nic
->rxd_mode
] * l
);
839 /* Interlinking all Rx Blocks */
840 for (j
= 0; j
< blk_cnt
; j
++) {
841 int next
= (j
+ 1) % blk_cnt
;
842 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
843 tmp_v_addr_next
= ring
->rx_blocks
[next
].block_virt_addr
;
844 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
845 tmp_p_addr_next
= ring
->rx_blocks
[next
].block_dma_addr
;
847 pre_rxd_blk
= (struct RxD_block
*)tmp_v_addr
;
848 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
849 (unsigned long)tmp_v_addr_next
;
850 pre_rxd_blk
->pNext_RxD_Blk_physical
=
851 (u64
)tmp_p_addr_next
;
854 if (nic
->rxd_mode
== RXD_MODE_3B
) {
856 * Allocation of Storages for buffer addresses in 2BUFF mode
857 * and the buffers as well.
859 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
860 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
861 struct ring_info
*ring
= &mac_control
->rings
[i
];
863 blk_cnt
= rx_cfg
->num_rxd
/
864 (rxd_count
[nic
->rxd_mode
] + 1);
865 size
= sizeof(struct buffAdd
*) * blk_cnt
;
866 ring
->ba
= kmalloc(size
, GFP_KERNEL
);
869 mem_allocated
+= size
;
870 for (j
= 0; j
< blk_cnt
; j
++) {
873 size
= sizeof(struct buffAdd
) *
874 (rxd_count
[nic
->rxd_mode
] + 1);
875 ring
->ba
[j
] = kmalloc(size
, GFP_KERNEL
);
878 mem_allocated
+= size
;
879 while (k
!= rxd_count
[nic
->rxd_mode
]) {
880 ba
= &ring
->ba
[j
][k
];
881 size
= BUF0_LEN
+ ALIGN_SIZE
;
882 ba
->ba_0_org
= kmalloc(size
, GFP_KERNEL
);
885 mem_allocated
+= size
;
886 tmp
= (unsigned long)ba
->ba_0_org
;
888 tmp
&= ~((unsigned long)ALIGN_SIZE
);
889 ba
->ba_0
= (void *)tmp
;
891 size
= BUF1_LEN
+ ALIGN_SIZE
;
892 ba
->ba_1_org
= kmalloc(size
, GFP_KERNEL
);
895 mem_allocated
+= size
;
896 tmp
= (unsigned long)ba
->ba_1_org
;
898 tmp
&= ~((unsigned long)ALIGN_SIZE
);
899 ba
->ba_1
= (void *)tmp
;
906 /* Allocation and initialization of Statistics block */
907 size
= sizeof(struct stat_block
);
908 mac_control
->stats_mem
=
909 pci_alloc_consistent(nic
->pdev
, size
,
910 &mac_control
->stats_mem_phy
);
912 if (!mac_control
->stats_mem
) {
914 * In case of failure, free_shared_mem() is called, which
915 * should free any memory that was alloced till the
920 mem_allocated
+= size
;
921 mac_control
->stats_mem_sz
= size
;
923 tmp_v_addr
= mac_control
->stats_mem
;
924 mac_control
->stats_info
= (struct stat_block
*)tmp_v_addr
;
925 memset(tmp_v_addr
, 0, size
);
926 DBG_PRINT(INIT_DBG
, "%s: Ring Mem PHY: 0x%llx\n",
927 dev_name(&nic
->pdev
->dev
), (unsigned long long)tmp_p_addr
);
928 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
933 * free_shared_mem - Free the allocated Memory
934 * @nic: Device private variable.
935 * Description: This function is to free all memory locations allocated by
936 * the init_shared_mem() function and return it to the kernel.
939 static void free_shared_mem(struct s2io_nic
*nic
)
941 int i
, j
, blk_cnt
, size
;
943 dma_addr_t tmp_p_addr
;
944 int lst_size
, lst_per_page
;
945 struct net_device
*dev
;
947 struct config_param
*config
;
948 struct mac_info
*mac_control
;
949 struct stat_block
*stats
;
950 struct swStat
*swstats
;
957 config
= &nic
->config
;
958 mac_control
= &nic
->mac_control
;
959 stats
= mac_control
->stats_info
;
960 swstats
= &stats
->sw_stat
;
962 lst_size
= sizeof(struct TxD
) * config
->max_txds
;
963 lst_per_page
= PAGE_SIZE
/ lst_size
;
965 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
966 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
967 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
969 page_num
= TXD_MEM_PAGE_CNT(tx_cfg
->fifo_len
, lst_per_page
);
970 for (j
= 0; j
< page_num
; j
++) {
971 int mem_blks
= (j
* lst_per_page
);
972 struct list_info_hold
*fli
;
974 if (!fifo
->list_info
)
977 fli
= &fifo
->list_info
[mem_blks
];
978 if (!fli
->list_virt_addr
)
980 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
983 swstats
->mem_freed
+= PAGE_SIZE
;
985 /* If we got a zero DMA address during allocation,
988 if (mac_control
->zerodma_virt_addr
) {
989 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
990 mac_control
->zerodma_virt_addr
,
993 "%s: Freeing TxDL with zero DMA address. "
994 "Virtual address %p\n",
995 dev
->name
, mac_control
->zerodma_virt_addr
);
996 swstats
->mem_freed
+= PAGE_SIZE
;
998 kfree(fifo
->list_info
);
999 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
1000 sizeof(struct list_info_hold
);
1003 size
= SIZE_OF_BLOCK
;
1004 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1005 struct ring_info
*ring
= &mac_control
->rings
[i
];
1007 blk_cnt
= ring
->block_count
;
1008 for (j
= 0; j
< blk_cnt
; j
++) {
1009 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
1010 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
1011 if (tmp_v_addr
== NULL
)
1013 pci_free_consistent(nic
->pdev
, size
,
1014 tmp_v_addr
, tmp_p_addr
);
1015 swstats
->mem_freed
+= size
;
1016 kfree(ring
->rx_blocks
[j
].rxds
);
1017 swstats
->mem_freed
+= sizeof(struct rxd_info
) *
1018 rxd_count
[nic
->rxd_mode
];
1022 if (nic
->rxd_mode
== RXD_MODE_3B
) {
1023 /* Freeing buffer storage addresses in 2BUFF mode. */
1024 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1025 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1026 struct ring_info
*ring
= &mac_control
->rings
[i
];
1028 blk_cnt
= rx_cfg
->num_rxd
/
1029 (rxd_count
[nic
->rxd_mode
] + 1);
1030 for (j
= 0; j
< blk_cnt
; j
++) {
1034 while (k
!= rxd_count
[nic
->rxd_mode
]) {
1035 struct buffAdd
*ba
= &ring
->ba
[j
][k
];
1036 kfree(ba
->ba_0_org
);
1037 swstats
->mem_freed
+=
1038 BUF0_LEN
+ ALIGN_SIZE
;
1039 kfree(ba
->ba_1_org
);
1040 swstats
->mem_freed
+=
1041 BUF1_LEN
+ ALIGN_SIZE
;
1045 swstats
->mem_freed
+= sizeof(struct buffAdd
) *
1046 (rxd_count
[nic
->rxd_mode
] + 1);
1049 swstats
->mem_freed
+= sizeof(struct buffAdd
*) *
1054 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
1055 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
1056 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1058 if (fifo
->ufo_in_band_v
) {
1059 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
1061 kfree(fifo
->ufo_in_band_v
);
1065 if (mac_control
->stats_mem
) {
1066 swstats
->mem_freed
+= mac_control
->stats_mem_sz
;
1067 pci_free_consistent(nic
->pdev
,
1068 mac_control
->stats_mem_sz
,
1069 mac_control
->stats_mem
,
1070 mac_control
->stats_mem_phy
);
1075 * s2io_verify_pci_mode -
1078 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1080 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1081 register u64 val64
= 0;
1084 val64
= readq(&bar0
->pci_mode
);
1085 mode
= (u8
)GET_PCI_MODE(val64
);
1087 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1088 return -1; /* Unknown PCI mode */
1092 #define NEC_VENID 0x1033
1093 #define NEC_DEVID 0x0125
1094 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1096 struct pci_dev
*tdev
= NULL
;
1097 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
1098 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1099 if (tdev
->bus
== s2io_pdev
->bus
->parent
) {
1108 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1110 * s2io_print_pci_mode -
1112 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1114 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1115 register u64 val64
= 0;
1117 struct config_param
*config
= &nic
->config
;
1118 const char *pcimode
;
1120 val64
= readq(&bar0
->pci_mode
);
1121 mode
= (u8
)GET_PCI_MODE(val64
);
1123 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1124 return -1; /* Unknown PCI mode */
1126 config
->bus_speed
= bus_speed
[mode
];
1128 if (s2io_on_nec_bridge(nic
->pdev
)) {
1129 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1135 case PCI_MODE_PCI_33
:
1136 pcimode
= "33MHz PCI bus";
1138 case PCI_MODE_PCI_66
:
1139 pcimode
= "66MHz PCI bus";
1141 case PCI_MODE_PCIX_M1_66
:
1142 pcimode
= "66MHz PCIX(M1) bus";
1144 case PCI_MODE_PCIX_M1_100
:
1145 pcimode
= "100MHz PCIX(M1) bus";
1147 case PCI_MODE_PCIX_M1_133
:
1148 pcimode
= "133MHz PCIX(M1) bus";
1150 case PCI_MODE_PCIX_M2_66
:
1151 pcimode
= "133MHz PCIX(M2) bus";
1153 case PCI_MODE_PCIX_M2_100
:
1154 pcimode
= "200MHz PCIX(M2) bus";
1156 case PCI_MODE_PCIX_M2_133
:
1157 pcimode
= "266MHz PCIX(M2) bus";
1160 pcimode
= "unsupported bus!";
1164 DBG_PRINT(ERR_DBG
, "%s: Device is on %d bit %s\n",
1165 nic
->dev
->name
, val64
& PCI_MODE_32_BITS
? 32 : 64, pcimode
);
1171 * init_tti - Initialization transmit traffic interrupt scheme
1172 * @nic: device private variable
1173 * @link: link status (UP/DOWN) used to enable/disable continuous
1174 * transmit interrupts
1175 * Description: The function configures transmit traffic interrupts
1176 * Return Value: SUCCESS on success and
1180 static int init_tti(struct s2io_nic
*nic
, int link
)
1182 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1183 register u64 val64
= 0;
1185 struct config_param
*config
= &nic
->config
;
1187 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1189 * TTI Initialization. Default Tx timer gets us about
1190 * 250 interrupts per sec. Continuous interrupts are enabled
1193 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1194 int count
= (nic
->config
.bus_speed
* 125)/2;
1195 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1197 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1199 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1200 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1201 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1202 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1204 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1205 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1206 writeq(val64
, &bar0
->tti_data1_mem
);
1208 if (nic
->config
.intr_type
== MSI_X
) {
1209 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1210 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1211 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1212 TTI_DATA2_MEM_TX_UFC_D(0x300);
1214 if ((nic
->config
.tx_steering_type
==
1215 TX_DEFAULT_STEERING
) &&
1216 (config
->tx_fifo_num
> 1) &&
1217 (i
>= nic
->udp_fifo_idx
) &&
1218 (i
< (nic
->udp_fifo_idx
+
1219 nic
->total_udp_fifos
)))
1220 val64
= TTI_DATA2_MEM_TX_UFC_A(0x50) |
1221 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1222 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1223 TTI_DATA2_MEM_TX_UFC_D(0x120);
1225 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1226 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1227 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1228 TTI_DATA2_MEM_TX_UFC_D(0x80);
1231 writeq(val64
, &bar0
->tti_data2_mem
);
1233 val64
= TTI_CMD_MEM_WE
|
1234 TTI_CMD_MEM_STROBE_NEW_CMD
|
1235 TTI_CMD_MEM_OFFSET(i
);
1236 writeq(val64
, &bar0
->tti_command_mem
);
1238 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1239 TTI_CMD_MEM_STROBE_NEW_CMD
,
1240 S2IO_BIT_RESET
) != SUCCESS
)
1248 * init_nic - Initialization of hardware
1249 * @nic: device private variable
1250 * Description: The function sequentially configures every block
1251 * of the H/W from their reset values.
1252 * Return Value: SUCCESS on success and
1253 * '-1' on failure (endian settings incorrect).
1256 static int init_nic(struct s2io_nic
*nic
)
1258 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1259 struct net_device
*dev
= nic
->dev
;
1260 register u64 val64
= 0;
1265 unsigned long long mem_share
;
1267 struct config_param
*config
= &nic
->config
;
1268 struct mac_info
*mac_control
= &nic
->mac_control
;
1270 /* to set the swapper controle on the card */
1271 if (s2io_set_swapper(nic
)) {
1272 DBG_PRINT(ERR_DBG
, "ERROR: Setting Swapper failed\n");
1277 * Herc requires EOI to be removed from reset before XGXS, so..
1279 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1280 val64
= 0xA500000000ULL
;
1281 writeq(val64
, &bar0
->sw_reset
);
1283 val64
= readq(&bar0
->sw_reset
);
1286 /* Remove XGXS from reset state */
1288 writeq(val64
, &bar0
->sw_reset
);
1290 val64
= readq(&bar0
->sw_reset
);
1292 /* Ensure that it's safe to access registers by checking
1293 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1295 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1296 for (i
= 0; i
< 50; i
++) {
1297 val64
= readq(&bar0
->adapter_status
);
1298 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1306 /* Enable Receiving broadcasts */
1307 add
= &bar0
->mac_cfg
;
1308 val64
= readq(&bar0
->mac_cfg
);
1309 val64
|= MAC_RMAC_BCAST_ENABLE
;
1310 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1311 writel((u32
)val64
, add
);
1312 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1313 writel((u32
) (val64
>> 32), (add
+ 4));
1315 /* Read registers in all blocks */
1316 val64
= readq(&bar0
->mac_int_mask
);
1317 val64
= readq(&bar0
->mc_int_mask
);
1318 val64
= readq(&bar0
->xgxs_int_mask
);
1322 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1324 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1325 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1326 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1327 &bar0
->dtx_control
, UF
);
1329 msleep(1); /* Necessary!! */
1333 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1334 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1335 &bar0
->dtx_control
, UF
);
1336 val64
= readq(&bar0
->dtx_control
);
1341 /* Tx DMA Initialization */
1343 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1344 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1345 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1346 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1348 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1349 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1351 val64
|= vBIT(tx_cfg
->fifo_len
- 1, ((j
* 32) + 19), 13) |
1352 vBIT(tx_cfg
->fifo_priority
, ((j
* 32) + 5), 3);
1354 if (i
== (config
->tx_fifo_num
- 1)) {
1361 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1366 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1371 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1376 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1387 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1388 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1390 if ((nic
->device_type
== XFRAME_I_DEVICE
) && (nic
->pdev
->revision
< 4))
1391 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1393 val64
= readq(&bar0
->tx_fifo_partition_0
);
1394 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1395 &bar0
->tx_fifo_partition_0
, (unsigned long long)val64
);
1398 * Initialization of Tx_PA_CONFIG register to ignore packet
1399 * integrity checking.
1401 val64
= readq(&bar0
->tx_pa_cfg
);
1402 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
|
1403 TX_PA_CFG_IGNORE_SNAP_OUI
|
1404 TX_PA_CFG_IGNORE_LLC_CTRL
|
1405 TX_PA_CFG_IGNORE_L2_ERR
;
1406 writeq(val64
, &bar0
->tx_pa_cfg
);
1408 /* Rx DMA intialization. */
1410 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1411 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1413 val64
|= vBIT(rx_cfg
->ring_priority
, (5 + (i
* 8)), 3);
1415 writeq(val64
, &bar0
->rx_queue_priority
);
1418 * Allocating equal share of memory to all the
1422 if (nic
->device_type
& XFRAME_II_DEVICE
)
1427 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1430 mem_share
= (mem_size
/ config
->rx_ring_num
+
1431 mem_size
% config
->rx_ring_num
);
1432 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1435 mem_share
= (mem_size
/ config
->rx_ring_num
);
1436 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1439 mem_share
= (mem_size
/ config
->rx_ring_num
);
1440 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1443 mem_share
= (mem_size
/ config
->rx_ring_num
);
1444 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1447 mem_share
= (mem_size
/ config
->rx_ring_num
);
1448 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1451 mem_share
= (mem_size
/ config
->rx_ring_num
);
1452 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1455 mem_share
= (mem_size
/ config
->rx_ring_num
);
1456 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1459 mem_share
= (mem_size
/ config
->rx_ring_num
);
1460 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1464 writeq(val64
, &bar0
->rx_queue_cfg
);
1467 * Filling Tx round robin registers
1468 * as per the number of FIFOs for equal scheduling priority
1470 switch (config
->tx_fifo_num
) {
1473 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1474 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1475 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1476 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1477 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1480 val64
= 0x0001000100010001ULL
;
1481 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1482 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1483 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1484 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1485 val64
= 0x0001000100000000ULL
;
1486 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1489 val64
= 0x0001020001020001ULL
;
1490 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1491 val64
= 0x0200010200010200ULL
;
1492 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1493 val64
= 0x0102000102000102ULL
;
1494 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1495 val64
= 0x0001020001020001ULL
;
1496 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1497 val64
= 0x0200010200000000ULL
;
1498 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1501 val64
= 0x0001020300010203ULL
;
1502 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1503 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1504 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1505 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1506 val64
= 0x0001020300000000ULL
;
1507 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1510 val64
= 0x0001020304000102ULL
;
1511 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1512 val64
= 0x0304000102030400ULL
;
1513 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1514 val64
= 0x0102030400010203ULL
;
1515 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1516 val64
= 0x0400010203040001ULL
;
1517 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1518 val64
= 0x0203040000000000ULL
;
1519 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1522 val64
= 0x0001020304050001ULL
;
1523 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1524 val64
= 0x0203040500010203ULL
;
1525 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1526 val64
= 0x0405000102030405ULL
;
1527 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1528 val64
= 0x0001020304050001ULL
;
1529 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1530 val64
= 0x0203040500000000ULL
;
1531 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1534 val64
= 0x0001020304050600ULL
;
1535 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1536 val64
= 0x0102030405060001ULL
;
1537 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1538 val64
= 0x0203040506000102ULL
;
1539 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1540 val64
= 0x0304050600010203ULL
;
1541 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1542 val64
= 0x0405060000000000ULL
;
1543 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1546 val64
= 0x0001020304050607ULL
;
1547 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1548 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1549 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1550 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1551 val64
= 0x0001020300000000ULL
;
1552 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1556 /* Enable all configured Tx FIFO partitions */
1557 val64
= readq(&bar0
->tx_fifo_partition_0
);
1558 val64
|= (TX_FIFO_PARTITION_EN
);
1559 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1561 /* Filling the Rx round robin registers as per the
1562 * number of Rings and steering based on QoS with
1565 switch (config
->rx_ring_num
) {
1568 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1569 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1570 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1571 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1572 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1574 val64
= 0x8080808080808080ULL
;
1575 writeq(val64
, &bar0
->rts_qos_steering
);
1578 val64
= 0x0001000100010001ULL
;
1579 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1580 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1581 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1582 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1583 val64
= 0x0001000100000000ULL
;
1584 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1586 val64
= 0x8080808040404040ULL
;
1587 writeq(val64
, &bar0
->rts_qos_steering
);
1590 val64
= 0x0001020001020001ULL
;
1591 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1592 val64
= 0x0200010200010200ULL
;
1593 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1594 val64
= 0x0102000102000102ULL
;
1595 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1596 val64
= 0x0001020001020001ULL
;
1597 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1598 val64
= 0x0200010200000000ULL
;
1599 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1601 val64
= 0x8080804040402020ULL
;
1602 writeq(val64
, &bar0
->rts_qos_steering
);
1605 val64
= 0x0001020300010203ULL
;
1606 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1607 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1608 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1609 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1610 val64
= 0x0001020300000000ULL
;
1611 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1613 val64
= 0x8080404020201010ULL
;
1614 writeq(val64
, &bar0
->rts_qos_steering
);
1617 val64
= 0x0001020304000102ULL
;
1618 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1619 val64
= 0x0304000102030400ULL
;
1620 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1621 val64
= 0x0102030400010203ULL
;
1622 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1623 val64
= 0x0400010203040001ULL
;
1624 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1625 val64
= 0x0203040000000000ULL
;
1626 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1628 val64
= 0x8080404020201008ULL
;
1629 writeq(val64
, &bar0
->rts_qos_steering
);
1632 val64
= 0x0001020304050001ULL
;
1633 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1634 val64
= 0x0203040500010203ULL
;
1635 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1636 val64
= 0x0405000102030405ULL
;
1637 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1638 val64
= 0x0001020304050001ULL
;
1639 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1640 val64
= 0x0203040500000000ULL
;
1641 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1643 val64
= 0x8080404020100804ULL
;
1644 writeq(val64
, &bar0
->rts_qos_steering
);
1647 val64
= 0x0001020304050600ULL
;
1648 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1649 val64
= 0x0102030405060001ULL
;
1650 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1651 val64
= 0x0203040506000102ULL
;
1652 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1653 val64
= 0x0304050600010203ULL
;
1654 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1655 val64
= 0x0405060000000000ULL
;
1656 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1658 val64
= 0x8080402010080402ULL
;
1659 writeq(val64
, &bar0
->rts_qos_steering
);
1662 val64
= 0x0001020304050607ULL
;
1663 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1664 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1665 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1666 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1667 val64
= 0x0001020300000000ULL
;
1668 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1670 val64
= 0x8040201008040201ULL
;
1671 writeq(val64
, &bar0
->rts_qos_steering
);
1677 for (i
= 0; i
< 8; i
++)
1678 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1680 /* Set the default rts frame length for the rings configured */
1681 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1682 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1683 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1685 /* Set the frame length for the configured rings
1686 * desired by the user
1688 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1689 /* If rts_frm_len[i] == 0 then it is assumed that user not
1690 * specified frame length steering.
1691 * If the user provides the frame length then program
1692 * the rts_frm_len register for those values or else
1693 * leave it as it is.
1695 if (rts_frm_len
[i
] != 0) {
1696 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1697 &bar0
->rts_frm_len_n
[i
]);
1701 /* Disable differentiated services steering logic */
1702 for (i
= 0; i
< 64; i
++) {
1703 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1705 "%s: rts_ds_steer failed on codepoint %d\n",
1711 /* Program statistics memory */
1712 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1714 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1715 val64
= STAT_BC(0x320);
1716 writeq(val64
, &bar0
->stat_byte_cnt
);
1720 * Initializing the sampling rate for the device to calculate the
1721 * bandwidth utilization.
1723 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1724 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1725 writeq(val64
, &bar0
->mac_link_util
);
1728 * Initializing the Transmit and Receive Traffic Interrupt
1732 /* Initialize TTI */
1733 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1736 /* RTI Initialization */
1737 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1739 * Programmed to generate Apprx 500 Intrs per
1742 int count
= (nic
->config
.bus_speed
* 125)/4;
1743 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1745 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1746 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1747 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1748 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1749 RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1751 writeq(val64
, &bar0
->rti_data1_mem
);
1753 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1754 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1755 if (nic
->config
.intr_type
== MSI_X
)
1756 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1757 RTI_DATA2_MEM_RX_UFC_D(0x40));
1759 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1760 RTI_DATA2_MEM_RX_UFC_D(0x80));
1761 writeq(val64
, &bar0
->rti_data2_mem
);
1763 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1764 val64
= RTI_CMD_MEM_WE
|
1765 RTI_CMD_MEM_STROBE_NEW_CMD
|
1766 RTI_CMD_MEM_OFFSET(i
);
1767 writeq(val64
, &bar0
->rti_command_mem
);
1770 * Once the operation completes, the Strobe bit of the
1771 * command register will be reset. We poll for this
1772 * particular condition. We wait for a maximum of 500ms
1773 * for the operation to complete, if it's not complete
1774 * by then we return error.
1778 val64
= readq(&bar0
->rti_command_mem
);
1779 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1783 DBG_PRINT(ERR_DBG
, "%s: RTI init failed\n",
1793 * Initializing proper values as Pause threshold into all
1794 * the 8 Queues on Rx side.
1796 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1797 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1799 /* Disable RMAC PAD STRIPPING */
1800 add
= &bar0
->mac_cfg
;
1801 val64
= readq(&bar0
->mac_cfg
);
1802 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1803 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1804 writel((u32
) (val64
), add
);
1805 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1806 writel((u32
) (val64
>> 32), (add
+ 4));
1807 val64
= readq(&bar0
->mac_cfg
);
1809 /* Enable FCS stripping by adapter */
1810 add
= &bar0
->mac_cfg
;
1811 val64
= readq(&bar0
->mac_cfg
);
1812 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1813 if (nic
->device_type
== XFRAME_II_DEVICE
)
1814 writeq(val64
, &bar0
->mac_cfg
);
1816 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1817 writel((u32
) (val64
), add
);
1818 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1819 writel((u32
) (val64
>> 32), (add
+ 4));
1823 * Set the time value to be inserted in the pause frame
1824 * generated by xena.
1826 val64
= readq(&bar0
->rmac_pause_cfg
);
1827 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1828 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1829 writeq(val64
, &bar0
->rmac_pause_cfg
);
1832 * Set the Threshold Limit for Generating the pause frame
1833 * If the amount of data in any Queue exceeds ratio of
1834 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1835 * pause frame is generated
1838 for (i
= 0; i
< 4; i
++) {
1839 val64
|= (((u64
)0xFF00 |
1840 nic
->mac_control
.mc_pause_threshold_q0q3
)
1843 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1846 for (i
= 0; i
< 4; i
++) {
1847 val64
|= (((u64
)0xFF00 |
1848 nic
->mac_control
.mc_pause_threshold_q4q7
)
1851 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1854 * TxDMA will stop Read request if the number of read split has
1855 * exceeded the limit pointed by shared_splits
1857 val64
= readq(&bar0
->pic_control
);
1858 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1859 writeq(val64
, &bar0
->pic_control
);
1861 if (nic
->config
.bus_speed
== 266) {
1862 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1863 writeq(0x0, &bar0
->read_retry_delay
);
1864 writeq(0x0, &bar0
->write_retry_delay
);
1868 * Programming the Herc to split every write transaction
1869 * that does not start on an ADB to reduce disconnects.
1871 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1872 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1873 MISC_LINK_STABILITY_PRD(3);
1874 writeq(val64
, &bar0
->misc_control
);
1875 val64
= readq(&bar0
->pic_control2
);
1876 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1877 writeq(val64
, &bar0
->pic_control2
);
1879 if (strstr(nic
->product_name
, "CX4")) {
1880 val64
= TMAC_AVG_IPG(0x17);
1881 writeq(val64
, &bar0
->tmac_avg_ipg
);
1886 #define LINK_UP_DOWN_INTERRUPT 1
1887 #define MAC_RMAC_ERR_TIMER 2
1889 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1891 if (nic
->device_type
== XFRAME_II_DEVICE
)
1892 return LINK_UP_DOWN_INTERRUPT
;
1894 return MAC_RMAC_ERR_TIMER
;
1898 * do_s2io_write_bits - update alarm bits in alarm register
1899 * @value: alarm bits
1900 * @flag: interrupt status
1901 * @addr: address value
1902 * Description: update alarm bits in alarm register
1906 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1910 temp64
= readq(addr
);
1912 if (flag
== ENABLE_INTRS
)
1913 temp64
&= ~((u64
)value
);
1915 temp64
|= ((u64
)value
);
1916 writeq(temp64
, addr
);
1919 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1921 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1922 register u64 gen_int_mask
= 0;
1925 writeq(DISABLE_ALL_INTRS
, &bar0
->general_int_mask
);
1926 if (mask
& TX_DMA_INTR
) {
1927 gen_int_mask
|= TXDMA_INT_M
;
1929 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1930 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1931 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1932 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1934 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1935 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1936 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1937 &bar0
->pfc_err_mask
);
1939 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1940 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1941 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1943 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1944 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1945 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1946 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1947 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1949 flag
, &bar0
->pcc_err_mask
);
1951 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1952 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1954 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1955 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1956 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1957 flag
, &bar0
->lso_err_mask
);
1959 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1960 flag
, &bar0
->tpa_err_mask
);
1962 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1965 if (mask
& TX_MAC_INTR
) {
1966 gen_int_mask
|= TXMAC_INT_M
;
1967 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1968 &bar0
->mac_int_mask
);
1969 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1970 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1971 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1972 flag
, &bar0
->mac_tmac_err_mask
);
1975 if (mask
& TX_XGXS_INTR
) {
1976 gen_int_mask
|= TXXGXS_INT_M
;
1977 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1978 &bar0
->xgxs_int_mask
);
1979 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1980 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1981 flag
, &bar0
->xgxs_txgxs_err_mask
);
1984 if (mask
& RX_DMA_INTR
) {
1985 gen_int_mask
|= RXDMA_INT_M
;
1986 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1987 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1988 flag
, &bar0
->rxdma_int_mask
);
1989 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1990 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1991 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1992 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1993 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1994 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1995 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1996 &bar0
->prc_pcix_err_mask
);
1997 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1998 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
1999 &bar0
->rpa_err_mask
);
2000 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
2001 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
2002 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
2003 RDA_FRM_ECC_SG_ERR
|
2004 RDA_MISC_ERR
|RDA_PCIX_ERR
,
2005 flag
, &bar0
->rda_err_mask
);
2006 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
2007 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
2008 flag
, &bar0
->rti_err_mask
);
2011 if (mask
& RX_MAC_INTR
) {
2012 gen_int_mask
|= RXMAC_INT_M
;
2013 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
2014 &bar0
->mac_int_mask
);
2015 interruptible
= (RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
2016 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
2017 RMAC_DOUBLE_ECC_ERR
);
2018 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
)
2019 interruptible
|= RMAC_LINK_STATE_CHANGE_INT
;
2020 do_s2io_write_bits(interruptible
,
2021 flag
, &bar0
->mac_rmac_err_mask
);
2024 if (mask
& RX_XGXS_INTR
) {
2025 gen_int_mask
|= RXXGXS_INT_M
;
2026 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
2027 &bar0
->xgxs_int_mask
);
2028 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
2029 &bar0
->xgxs_rxgxs_err_mask
);
2032 if (mask
& MC_INTR
) {
2033 gen_int_mask
|= MC_INT_M
;
2034 do_s2io_write_bits(MC_INT_MASK_MC_INT
,
2035 flag
, &bar0
->mc_int_mask
);
2036 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
2037 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
2038 &bar0
->mc_err_mask
);
2040 nic
->general_int_mask
= gen_int_mask
;
2042 /* Remove this line when alarm interrupts are enabled */
2043 nic
->general_int_mask
= 0;
2047 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2048 * @nic: device private variable,
2049 * @mask: A mask indicating which Intr block must be modified and,
2050 * @flag: A flag indicating whether to enable or disable the Intrs.
2051 * Description: This function will either disable or enable the interrupts
2052 * depending on the flag argument. The mask argument can be used to
2053 * enable/disable any Intr block.
2054 * Return Value: NONE.
2057 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
2059 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2060 register u64 temp64
= 0, intr_mask
= 0;
2062 intr_mask
= nic
->general_int_mask
;
2064 /* Top level interrupt classification */
2065 /* PIC Interrupts */
2066 if (mask
& TX_PIC_INTR
) {
2067 /* Enable PIC Intrs in the general intr mask register */
2068 intr_mask
|= TXPIC_INT_M
;
2069 if (flag
== ENABLE_INTRS
) {
2071 * If Hercules adapter enable GPIO otherwise
2072 * disable all PCIX, Flash, MDIO, IIC and GPIO
2073 * interrupts for now.
2076 if (s2io_link_fault_indication(nic
) ==
2077 LINK_UP_DOWN_INTERRUPT
) {
2078 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2079 &bar0
->pic_int_mask
);
2080 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2081 &bar0
->gpio_int_mask
);
2083 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2084 } else if (flag
== DISABLE_INTRS
) {
2086 * Disable PIC Intrs in the general
2087 * intr mask register
2089 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2093 /* Tx traffic interrupts */
2094 if (mask
& TX_TRAFFIC_INTR
) {
2095 intr_mask
|= TXTRAFFIC_INT_M
;
2096 if (flag
== ENABLE_INTRS
) {
2098 * Enable all the Tx side interrupts
2099 * writing 0 Enables all 64 TX interrupt levels
2101 writeq(0x0, &bar0
->tx_traffic_mask
);
2102 } else if (flag
== DISABLE_INTRS
) {
2104 * Disable Tx Traffic Intrs in the general intr mask
2107 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2111 /* Rx traffic interrupts */
2112 if (mask
& RX_TRAFFIC_INTR
) {
2113 intr_mask
|= RXTRAFFIC_INT_M
;
2114 if (flag
== ENABLE_INTRS
) {
2115 /* writing 0 Enables all 8 RX interrupt levels */
2116 writeq(0x0, &bar0
->rx_traffic_mask
);
2117 } else if (flag
== DISABLE_INTRS
) {
2119 * Disable Rx Traffic Intrs in the general intr mask
2122 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2126 temp64
= readq(&bar0
->general_int_mask
);
2127 if (flag
== ENABLE_INTRS
)
2128 temp64
&= ~((u64
)intr_mask
);
2130 temp64
= DISABLE_ALL_INTRS
;
2131 writeq(temp64
, &bar0
->general_int_mask
);
2133 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2137 * verify_pcc_quiescent- Checks for PCC quiescent state
2138 * Return: 1 If PCC is quiescence
2139 * 0 If PCC is not quiescence
2141 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2144 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2145 u64 val64
= readq(&bar0
->adapter_status
);
2147 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2149 if (flag
== false) {
2150 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2151 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2154 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2158 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2159 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2160 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2163 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2164 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2172 * verify_xena_quiescence - Checks whether the H/W is ready
2173 * Description: Returns whether the H/W is ready to go or not. Depending
2174 * on whether adapter enable bit was written or not the comparison
2175 * differs and the calling function passes the input argument flag to
2177 * Return: 1 If xena is quiescence
2178 * 0 If Xena is not quiescence
2181 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2184 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2185 u64 val64
= readq(&bar0
->adapter_status
);
2186 mode
= s2io_verify_pci_mode(sp
);
2188 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2189 DBG_PRINT(ERR_DBG
, "TDMA is not ready!\n");
2192 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2193 DBG_PRINT(ERR_DBG
, "RDMA is not ready!\n");
2196 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2197 DBG_PRINT(ERR_DBG
, "PFC is not ready!\n");
2200 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2201 DBG_PRINT(ERR_DBG
, "TMAC BUF is not empty!\n");
2204 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2205 DBG_PRINT(ERR_DBG
, "PIC is not QUIESCENT!\n");
2208 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2209 DBG_PRINT(ERR_DBG
, "MC_DRAM is not ready!\n");
2212 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2213 DBG_PRINT(ERR_DBG
, "MC_QUEUES is not ready!\n");
2216 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2217 DBG_PRINT(ERR_DBG
, "M_PLL is not locked!\n");
2222 * In PCI 33 mode, the P_PLL is not used, and therefore,
2223 * the the P_PLL_LOCK bit in the adapter_status register will
2226 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2227 sp
->device_type
== XFRAME_II_DEVICE
&&
2228 mode
!= PCI_MODE_PCI_33
) {
2229 DBG_PRINT(ERR_DBG
, "P_PLL is not locked!\n");
2232 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2233 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2234 DBG_PRINT(ERR_DBG
, "RC_PRC is not QUIESCENT!\n");
2241 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2242 * @sp: Pointer to device specifc structure
2244 * New procedure to clear mac address reading problems on Alpha platforms
2248 static void fix_mac_address(struct s2io_nic
*sp
)
2250 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2254 while (fix_mac
[i
] != END_SIGN
) {
2255 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2257 val64
= readq(&bar0
->gpio_control
);
2262 * start_nic - Turns the device on
2263 * @nic : device private variable.
2265 * This function actually turns the device on. Before this function is
2266 * called,all Registers are configured from their reset states
2267 * and shared memory is allocated but the NIC is still quiescent. On
2268 * calling this function, the device interrupts are cleared and the NIC is
2269 * literally switched on by writing into the adapter control register.
2271 * SUCCESS on success and -1 on failure.
2274 static int start_nic(struct s2io_nic
*nic
)
2276 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2277 struct net_device
*dev
= nic
->dev
;
2278 register u64 val64
= 0;
2280 struct config_param
*config
= &nic
->config
;
2281 struct mac_info
*mac_control
= &nic
->mac_control
;
2283 /* PRC Initialization and configuration */
2284 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2285 struct ring_info
*ring
= &mac_control
->rings
[i
];
2287 writeq((u64
)ring
->rx_blocks
[0].block_dma_addr
,
2288 &bar0
->prc_rxd0_n
[i
]);
2290 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2291 if (nic
->rxd_mode
== RXD_MODE_1
)
2292 val64
|= PRC_CTRL_RC_ENABLED
;
2294 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2295 if (nic
->device_type
== XFRAME_II_DEVICE
)
2296 val64
|= PRC_CTRL_GROUP_READS
;
2297 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2298 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2299 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2302 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2303 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2304 val64
= readq(&bar0
->rx_pa_cfg
);
2305 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2306 writeq(val64
, &bar0
->rx_pa_cfg
);
2309 if (vlan_tag_strip
== 0) {
2310 val64
= readq(&bar0
->rx_pa_cfg
);
2311 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2312 writeq(val64
, &bar0
->rx_pa_cfg
);
2313 nic
->vlan_strip_flag
= 0;
2317 * Enabling MC-RLDRAM. After enabling the device, we timeout
2318 * for around 100ms, which is approximately the time required
2319 * for the device to be ready for operation.
2321 val64
= readq(&bar0
->mc_rldram_mrs
);
2322 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2323 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2324 val64
= readq(&bar0
->mc_rldram_mrs
);
2326 msleep(100); /* Delay by around 100 ms. */
2328 /* Enabling ECC Protection. */
2329 val64
= readq(&bar0
->adapter_control
);
2330 val64
&= ~ADAPTER_ECC_EN
;
2331 writeq(val64
, &bar0
->adapter_control
);
2334 * Verify if the device is ready to be enabled, if so enable
2337 val64
= readq(&bar0
->adapter_status
);
2338 if (!verify_xena_quiescence(nic
)) {
2339 DBG_PRINT(ERR_DBG
, "%s: device is not ready, "
2340 "Adapter status reads: 0x%llx\n",
2341 dev
->name
, (unsigned long long)val64
);
2346 * With some switches, link might be already up at this point.
2347 * Because of this weird behavior, when we enable laser,
2348 * we may not get link. We need to handle this. We cannot
2349 * figure out which switch is misbehaving. So we are forced to
2350 * make a global change.
2353 /* Enabling Laser. */
2354 val64
= readq(&bar0
->adapter_control
);
2355 val64
|= ADAPTER_EOI_TX_ON
;
2356 writeq(val64
, &bar0
->adapter_control
);
2358 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2360 * Dont see link state interrupts initally on some switches,
2361 * so directly scheduling the link state task here.
2363 schedule_work(&nic
->set_link_task
);
2365 /* SXE-002: Initialize link and activity LED */
2366 subid
= nic
->pdev
->subsystem_device
;
2367 if (((subid
& 0xFF) >= 0x07) &&
2368 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2369 val64
= readq(&bar0
->gpio_control
);
2370 val64
|= 0x0000800000000000ULL
;
2371 writeq(val64
, &bar0
->gpio_control
);
2372 val64
= 0x0411040400000000ULL
;
2373 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2379 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2381 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
,
2382 struct TxD
*txdlp
, int get_off
)
2384 struct s2io_nic
*nic
= fifo_data
->nic
;
2385 struct sk_buff
*skb
;
2390 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2391 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2392 sizeof(u64
), PCI_DMA_TODEVICE
);
2396 skb
= (struct sk_buff
*)((unsigned long)txds
->Host_Control
);
2398 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2401 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2402 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2403 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2406 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2407 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2408 if (!txds
->Buffer_Pointer
)
2410 pci_unmap_page(nic
->pdev
,
2411 (dma_addr_t
)txds
->Buffer_Pointer
,
2412 frag
->size
, PCI_DMA_TODEVICE
);
2415 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2420 * free_tx_buffers - Free all queued Tx buffers
2421 * @nic : device private variable.
2423 * Free all queued Tx buffers.
2424 * Return Value: void
2427 static void free_tx_buffers(struct s2io_nic
*nic
)
2429 struct net_device
*dev
= nic
->dev
;
2430 struct sk_buff
*skb
;
2434 struct config_param
*config
= &nic
->config
;
2435 struct mac_info
*mac_control
= &nic
->mac_control
;
2436 struct stat_block
*stats
= mac_control
->stats_info
;
2437 struct swStat
*swstats
= &stats
->sw_stat
;
2439 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2440 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
2441 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
2442 unsigned long flags
;
2444 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
2445 for (j
= 0; j
< tx_cfg
->fifo_len
; j
++) {
2446 txdp
= (struct TxD
*)fifo
->list_info
[j
].list_virt_addr
;
2447 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2449 swstats
->mem_freed
+= skb
->truesize
;
2455 "%s: forcibly freeing %d skbs on FIFO%d\n",
2457 fifo
->tx_curr_get_info
.offset
= 0;
2458 fifo
->tx_curr_put_info
.offset
= 0;
2459 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
2464 * stop_nic - To stop the nic
2465 * @nic ; device private variable.
2467 * This function does exactly the opposite of what the start_nic()
2468 * function does. This function is called to stop the device.
2473 static void stop_nic(struct s2io_nic
*nic
)
2475 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2476 register u64 val64
= 0;
2479 /* Disable all interrupts */
2480 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2481 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2482 interruptible
|= TX_PIC_INTR
;
2483 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2485 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2486 val64
= readq(&bar0
->adapter_control
);
2487 val64
&= ~(ADAPTER_CNTL_EN
);
2488 writeq(val64
, &bar0
->adapter_control
);
2492 * fill_rx_buffers - Allocates the Rx side skbs
2493 * @ring_info: per ring structure
2494 * @from_card_up: If this is true, we will map the buffer to get
2495 * the dma address for buf0 and buf1 to give it to the card.
2496 * Else we will sync the already mapped buffer to give it to the card.
2498 * The function allocates Rx side skbs and puts the physical
2499 * address of these buffers into the RxD buffer pointers, so that the NIC
2500 * can DMA the received frame into these locations.
2501 * The NIC supports 3 receive modes, viz
2503 * 2. three buffer and
2504 * 3. Five buffer modes.
2505 * Each mode defines how many fragments the received frame will be split
2506 * up into by the NIC. The frame is split into L3 header, L4 Header,
2507 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2508 * is split into 3 fragments. As of now only single buffer mode is
2511 * SUCCESS on success or an appropriate -ve value on failure.
2513 static int fill_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
,
2516 struct sk_buff
*skb
;
2518 int off
, size
, block_no
, block_no1
;
2523 struct RxD_t
*first_rxdp
= NULL
;
2524 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2528 struct swStat
*swstats
= &ring
->nic
->mac_control
.stats_info
->sw_stat
;
2530 alloc_cnt
= ring
->pkt_cnt
- ring
->rx_bufs_left
;
2532 block_no1
= ring
->rx_curr_get_info
.block_index
;
2533 while (alloc_tab
< alloc_cnt
) {
2534 block_no
= ring
->rx_curr_put_info
.block_index
;
2536 off
= ring
->rx_curr_put_info
.offset
;
2538 rxdp
= ring
->rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2540 rxd_index
= off
+ 1;
2542 rxd_index
+= (block_no
* ring
->rxd_count
);
2544 if ((block_no
== block_no1
) &&
2545 (off
== ring
->rx_curr_get_info
.offset
) &&
2546 (rxdp
->Host_Control
)) {
2547 DBG_PRINT(INTR_DBG
, "%s: Get and Put info equated\n",
2551 if (off
&& (off
== ring
->rxd_count
)) {
2552 ring
->rx_curr_put_info
.block_index
++;
2553 if (ring
->rx_curr_put_info
.block_index
==
2555 ring
->rx_curr_put_info
.block_index
= 0;
2556 block_no
= ring
->rx_curr_put_info
.block_index
;
2558 ring
->rx_curr_put_info
.offset
= off
;
2559 rxdp
= ring
->rx_blocks
[block_no
].block_virt_addr
;
2560 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2561 ring
->dev
->name
, rxdp
);
2565 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2566 ((ring
->rxd_mode
== RXD_MODE_3B
) &&
2567 (rxdp
->Control_2
& s2BIT(0)))) {
2568 ring
->rx_curr_put_info
.offset
= off
;
2571 /* calculate size of skb based on ring mode */
2573 HEADER_ETHERNET_II_802_3_SIZE
+
2574 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2575 if (ring
->rxd_mode
== RXD_MODE_1
)
2576 size
+= NET_IP_ALIGN
;
2578 size
= ring
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2581 skb
= dev_alloc_skb(size
);
2583 DBG_PRINT(INFO_DBG
, "%s: Could not allocate skb\n",
2587 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2589 swstats
->mem_alloc_fail_cnt
++;
2593 swstats
->mem_allocated
+= skb
->truesize
;
2595 if (ring
->rxd_mode
== RXD_MODE_1
) {
2596 /* 1 buffer mode - normal operation mode */
2597 rxdp1
= (struct RxD1
*)rxdp
;
2598 memset(rxdp
, 0, sizeof(struct RxD1
));
2599 skb_reserve(skb
, NET_IP_ALIGN
);
2600 rxdp1
->Buffer0_ptr
=
2601 pci_map_single(ring
->pdev
, skb
->data
,
2602 size
- NET_IP_ALIGN
,
2603 PCI_DMA_FROMDEVICE
);
2604 if (pci_dma_mapping_error(nic
->pdev
,
2605 rxdp1
->Buffer0_ptr
))
2606 goto pci_map_failed
;
2609 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2610 rxdp
->Host_Control
= (unsigned long)skb
;
2611 } else if (ring
->rxd_mode
== RXD_MODE_3B
) {
2614 * 2 buffer mode provides 128
2615 * byte aligned receive buffers.
2618 rxdp3
= (struct RxD3
*)rxdp
;
2619 /* save buffer pointers to avoid frequent dma mapping */
2620 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2621 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2622 memset(rxdp
, 0, sizeof(struct RxD3
));
2623 /* restore the buffer pointers for dma sync*/
2624 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2625 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2627 ba
= &ring
->ba
[block_no
][off
];
2628 skb_reserve(skb
, BUF0_LEN
);
2629 tmp
= (u64
)(unsigned long)skb
->data
;
2632 skb
->data
= (void *) (unsigned long)tmp
;
2633 skb_reset_tail_pointer(skb
);
2636 rxdp3
->Buffer0_ptr
=
2637 pci_map_single(ring
->pdev
, ba
->ba_0
,
2639 PCI_DMA_FROMDEVICE
);
2640 if (pci_dma_mapping_error(nic
->pdev
,
2641 rxdp3
->Buffer0_ptr
))
2642 goto pci_map_failed
;
2644 pci_dma_sync_single_for_device(ring
->pdev
,
2645 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2647 PCI_DMA_FROMDEVICE
);
2649 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2650 if (ring
->rxd_mode
== RXD_MODE_3B
) {
2651 /* Two buffer mode */
2654 * Buffer2 will have L3/L4 header plus
2657 rxdp3
->Buffer2_ptr
= pci_map_single(ring
->pdev
,
2660 PCI_DMA_FROMDEVICE
);
2662 if (pci_dma_mapping_error(nic
->pdev
,
2663 rxdp3
->Buffer2_ptr
))
2664 goto pci_map_failed
;
2667 rxdp3
->Buffer1_ptr
=
2668 pci_map_single(ring
->pdev
,
2671 PCI_DMA_FROMDEVICE
);
2673 if (pci_dma_mapping_error(nic
->pdev
,
2674 rxdp3
->Buffer1_ptr
)) {
2675 pci_unmap_single(ring
->pdev
,
2676 (dma_addr_t
)(unsigned long)
2679 PCI_DMA_FROMDEVICE
);
2680 goto pci_map_failed
;
2683 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2684 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2687 rxdp
->Control_2
|= s2BIT(0);
2688 rxdp
->Host_Control
= (unsigned long) (skb
);
2690 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2691 rxdp
->Control_1
|= RXD_OWN_XENA
;
2693 if (off
== (ring
->rxd_count
+ 1))
2695 ring
->rx_curr_put_info
.offset
= off
;
2697 rxdp
->Control_2
|= SET_RXD_MARKER
;
2698 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2701 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2705 ring
->rx_bufs_left
+= 1;
2710 /* Transfer ownership of first descriptor to adapter just before
2711 * exiting. Before that, use memory barrier so that ownership
2712 * and other fields are seen by adapter correctly.
2716 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2722 swstats
->pci_map_fail_cnt
++;
2723 swstats
->mem_freed
+= skb
->truesize
;
2724 dev_kfree_skb_irq(skb
);
2728 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2730 struct net_device
*dev
= sp
->dev
;
2732 struct sk_buff
*skb
;
2737 struct mac_info
*mac_control
= &sp
->mac_control
;
2738 struct stat_block
*stats
= mac_control
->stats_info
;
2739 struct swStat
*swstats
= &stats
->sw_stat
;
2741 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2742 rxdp
= mac_control
->rings
[ring_no
].
2743 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2744 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2747 if (sp
->rxd_mode
== RXD_MODE_1
) {
2748 rxdp1
= (struct RxD1
*)rxdp
;
2749 pci_unmap_single(sp
->pdev
,
2750 (dma_addr_t
)rxdp1
->Buffer0_ptr
,
2752 HEADER_ETHERNET_II_802_3_SIZE
+
2753 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
,
2754 PCI_DMA_FROMDEVICE
);
2755 memset(rxdp
, 0, sizeof(struct RxD1
));
2756 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
2757 rxdp3
= (struct RxD3
*)rxdp
;
2758 ba
= &mac_control
->rings
[ring_no
].ba
[blk
][j
];
2759 pci_unmap_single(sp
->pdev
,
2760 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2762 PCI_DMA_FROMDEVICE
);
2763 pci_unmap_single(sp
->pdev
,
2764 (dma_addr_t
)rxdp3
->Buffer1_ptr
,
2766 PCI_DMA_FROMDEVICE
);
2767 pci_unmap_single(sp
->pdev
,
2768 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2770 PCI_DMA_FROMDEVICE
);
2771 memset(rxdp
, 0, sizeof(struct RxD3
));
2773 swstats
->mem_freed
+= skb
->truesize
;
2775 mac_control
->rings
[ring_no
].rx_bufs_left
-= 1;
2780 * free_rx_buffers - Frees all Rx buffers
2781 * @sp: device private variable.
2783 * This function will free all Rx buffers allocated by host.
2788 static void free_rx_buffers(struct s2io_nic
*sp
)
2790 struct net_device
*dev
= sp
->dev
;
2791 int i
, blk
= 0, buf_cnt
= 0;
2792 struct config_param
*config
= &sp
->config
;
2793 struct mac_info
*mac_control
= &sp
->mac_control
;
2795 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2796 struct ring_info
*ring
= &mac_control
->rings
[i
];
2798 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2799 free_rxd_blk(sp
, i
, blk
);
2801 ring
->rx_curr_put_info
.block_index
= 0;
2802 ring
->rx_curr_get_info
.block_index
= 0;
2803 ring
->rx_curr_put_info
.offset
= 0;
2804 ring
->rx_curr_get_info
.offset
= 0;
2805 ring
->rx_bufs_left
= 0;
2806 DBG_PRINT(INIT_DBG
, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2807 dev
->name
, buf_cnt
, i
);
2811 static int s2io_chk_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
)
2813 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2814 DBG_PRINT(INFO_DBG
, "%s: Out of memory in Rx Intr!!\n",
2821 * s2io_poll - Rx interrupt handler for NAPI support
2822 * @napi : pointer to the napi structure.
2823 * @budget : The number of packets that were budgeted to be processed
2824 * during one pass through the 'Poll" function.
2826 * Comes into picture only if NAPI support has been incorporated. It does
2827 * the same thing that rx_intr_handler does, but not in a interrupt context
2828 * also It will process only a given number of packets.
2830 * 0 on success and 1 if there are No Rx packets to be processed.
2833 static int s2io_poll_msix(struct napi_struct
*napi
, int budget
)
2835 struct ring_info
*ring
= container_of(napi
, struct ring_info
, napi
);
2836 struct net_device
*dev
= ring
->dev
;
2837 int pkts_processed
= 0;
2838 u8 __iomem
*addr
= NULL
;
2840 struct s2io_nic
*nic
= netdev_priv(dev
);
2841 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2842 int budget_org
= budget
;
2844 if (unlikely(!is_s2io_card_up(nic
)))
2847 pkts_processed
= rx_intr_handler(ring
, budget
);
2848 s2io_chk_rx_buffers(nic
, ring
);
2850 if (pkts_processed
< budget_org
) {
2851 napi_complete(napi
);
2852 /*Re Enable MSI-Rx Vector*/
2853 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
2854 addr
+= 7 - ring
->ring_no
;
2855 val8
= (ring
->ring_no
== 0) ? 0x3f : 0xbf;
2859 return pkts_processed
;
2862 static int s2io_poll_inta(struct napi_struct
*napi
, int budget
)
2864 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2865 int pkts_processed
= 0;
2866 int ring_pkts_processed
, i
;
2867 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2868 int budget_org
= budget
;
2869 struct config_param
*config
= &nic
->config
;
2870 struct mac_info
*mac_control
= &nic
->mac_control
;
2872 if (unlikely(!is_s2io_card_up(nic
)))
2875 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2876 struct ring_info
*ring
= &mac_control
->rings
[i
];
2877 ring_pkts_processed
= rx_intr_handler(ring
, budget
);
2878 s2io_chk_rx_buffers(nic
, ring
);
2879 pkts_processed
+= ring_pkts_processed
;
2880 budget
-= ring_pkts_processed
;
2884 if (pkts_processed
< budget_org
) {
2885 napi_complete(napi
);
2886 /* Re enable the Rx interrupts for the ring */
2887 writeq(0, &bar0
->rx_traffic_mask
);
2888 readl(&bar0
->rx_traffic_mask
);
2890 return pkts_processed
;
2893 #ifdef CONFIG_NET_POLL_CONTROLLER
2895 * s2io_netpoll - netpoll event handler entry point
2896 * @dev : pointer to the device structure.
2898 * This function will be called by upper layer to check for events on the
2899 * interface in situations where interrupts are disabled. It is used for
2900 * specific in-kernel networking tasks, such as remote consoles and kernel
2901 * debugging over the network (example netdump in RedHat).
2903 static void s2io_netpoll(struct net_device
*dev
)
2905 struct s2io_nic
*nic
= netdev_priv(dev
);
2906 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2907 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2909 struct config_param
*config
= &nic
->config
;
2910 struct mac_info
*mac_control
= &nic
->mac_control
;
2912 if (pci_channel_offline(nic
->pdev
))
2915 disable_irq(dev
->irq
);
2917 writeq(val64
, &bar0
->rx_traffic_int
);
2918 writeq(val64
, &bar0
->tx_traffic_int
);
2920 /* we need to free up the transmitted skbufs or else netpoll will
2921 * run out of skbs and will fail and eventually netpoll application such
2922 * as netdump will fail.
2924 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2925 tx_intr_handler(&mac_control
->fifos
[i
]);
2927 /* check for received packet and indicate up to network */
2928 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2929 struct ring_info
*ring
= &mac_control
->rings
[i
];
2931 rx_intr_handler(ring
, 0);
2934 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2935 struct ring_info
*ring
= &mac_control
->rings
[i
];
2937 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2939 "%s: Out of memory in Rx Netpoll!!\n",
2944 enable_irq(dev
->irq
);
2949 * rx_intr_handler - Rx interrupt handler
2950 * @ring_info: per ring structure.
2951 * @budget: budget for napi processing.
2953 * If the interrupt is because of a received frame or if the
2954 * receive ring contains fresh as yet un-processed frames,this function is
2955 * called. It picks out the RxD at which place the last Rx processing had
2956 * stopped and sends the skb to the OSM's Rx handler and then increments
2959 * No. of napi packets processed.
2961 static int rx_intr_handler(struct ring_info
*ring_data
, int budget
)
2963 int get_block
, put_block
;
2964 struct rx_curr_get_info get_info
, put_info
;
2966 struct sk_buff
*skb
;
2967 int pkt_cnt
= 0, napi_pkts
= 0;
2972 get_info
= ring_data
->rx_curr_get_info
;
2973 get_block
= get_info
.block_index
;
2974 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2975 put_block
= put_info
.block_index
;
2976 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2978 while (RXD_IS_UP2DT(rxdp
)) {
2980 * If your are next to put index then it's
2981 * FIFO full condition
2983 if ((get_block
== put_block
) &&
2984 (get_info
.offset
+ 1) == put_info
.offset
) {
2985 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",
2986 ring_data
->dev
->name
);
2989 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2991 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Rx Intr\n",
2992 ring_data
->dev
->name
);
2995 if (ring_data
->rxd_mode
== RXD_MODE_1
) {
2996 rxdp1
= (struct RxD1
*)rxdp
;
2997 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
3000 HEADER_ETHERNET_II_802_3_SIZE
+
3003 PCI_DMA_FROMDEVICE
);
3004 } else if (ring_data
->rxd_mode
== RXD_MODE_3B
) {
3005 rxdp3
= (struct RxD3
*)rxdp
;
3006 pci_dma_sync_single_for_cpu(ring_data
->pdev
,
3007 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
3009 PCI_DMA_FROMDEVICE
);
3010 pci_unmap_single(ring_data
->pdev
,
3011 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
3013 PCI_DMA_FROMDEVICE
);
3015 prefetch(skb
->data
);
3016 rx_osm_handler(ring_data
, rxdp
);
3018 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3019 rxdp
= ring_data
->rx_blocks
[get_block
].
3020 rxds
[get_info
.offset
].virt_addr
;
3021 if (get_info
.offset
== rxd_count
[ring_data
->rxd_mode
]) {
3022 get_info
.offset
= 0;
3023 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3025 if (get_block
== ring_data
->block_count
)
3027 ring_data
->rx_curr_get_info
.block_index
= get_block
;
3028 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
3031 if (ring_data
->nic
->config
.napi
) {
3038 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
3041 if (ring_data
->lro
) {
3042 /* Clear all LRO sessions before exiting */
3043 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
3044 struct lro
*lro
= &ring_data
->lro0_n
[i
];
3046 update_L3L4_header(ring_data
->nic
, lro
);
3047 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
3048 clear_lro_session(lro
);
3056 * tx_intr_handler - Transmit interrupt handler
3057 * @nic : device private variable
3059 * If an interrupt was raised to indicate DMA complete of the
3060 * Tx packet, this function is called. It identifies the last TxD
3061 * whose buffer was freed and frees all skbs whose data have already
3062 * DMA'ed into the NICs internal memory.
3067 static void tx_intr_handler(struct fifo_info
*fifo_data
)
3069 struct s2io_nic
*nic
= fifo_data
->nic
;
3070 struct tx_curr_get_info get_info
, put_info
;
3071 struct sk_buff
*skb
= NULL
;
3074 unsigned long flags
= 0;
3076 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3077 struct swStat
*swstats
= &stats
->sw_stat
;
3079 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3082 get_info
= fifo_data
->tx_curr_get_info
;
3083 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3084 txdlp
= (struct TxD
*)
3085 fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3086 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3087 (get_info
.offset
!= put_info
.offset
) &&
3088 (txdlp
->Host_Control
)) {
3089 /* Check for TxD errors */
3090 if (txdlp
->Control_1
& TXD_T_CODE
) {
3091 unsigned long long err
;
3092 err
= txdlp
->Control_1
& TXD_T_CODE
;
3094 swstats
->parity_err_cnt
++;
3097 /* update t_code statistics */
3098 err_mask
= err
>> 48;
3101 swstats
->tx_buf_abort_cnt
++;
3105 swstats
->tx_desc_abort_cnt
++;
3109 swstats
->tx_parity_err_cnt
++;
3113 swstats
->tx_link_loss_cnt
++;
3117 swstats
->tx_list_proc_err_cnt
++;
3122 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3124 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3125 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Tx Free Intr\n",
3131 /* Updating the statistics block */
3132 swstats
->mem_freed
+= skb
->truesize
;
3133 dev_kfree_skb_irq(skb
);
3136 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3137 get_info
.offset
= 0;
3138 txdlp
= (struct TxD
*)
3139 fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3140 fifo_data
->tx_curr_get_info
.offset
= get_info
.offset
;
3143 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3145 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3149 * s2io_mdio_write - Function to write in to MDIO registers
3150 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3151 * @addr : address value
3152 * @value : data value
3153 * @dev : pointer to net_device structure
3155 * This function is used to write values to the MDIO registers
3158 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
,
3159 struct net_device
*dev
)
3162 struct s2io_nic
*sp
= netdev_priv(dev
);
3163 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3165 /* address transaction */
3166 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3167 MDIO_MMD_DEV_ADDR(mmd_type
) |
3168 MDIO_MMS_PRT_ADDR(0x0);
3169 writeq(val64
, &bar0
->mdio_control
);
3170 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3171 writeq(val64
, &bar0
->mdio_control
);
3174 /* Data transaction */
3175 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3176 MDIO_MMD_DEV_ADDR(mmd_type
) |
3177 MDIO_MMS_PRT_ADDR(0x0) |
3178 MDIO_MDIO_DATA(value
) |
3179 MDIO_OP(MDIO_OP_WRITE_TRANS
);
3180 writeq(val64
, &bar0
->mdio_control
);
3181 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3182 writeq(val64
, &bar0
->mdio_control
);
3185 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3186 MDIO_MMD_DEV_ADDR(mmd_type
) |
3187 MDIO_MMS_PRT_ADDR(0x0) |
3188 MDIO_OP(MDIO_OP_READ_TRANS
);
3189 writeq(val64
, &bar0
->mdio_control
);
3190 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3191 writeq(val64
, &bar0
->mdio_control
);
3196 * s2io_mdio_read - Function to write in to MDIO registers
3197 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3198 * @addr : address value
3199 * @dev : pointer to net_device structure
3201 * This function is used to read values to the MDIO registers
3204 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3208 struct s2io_nic
*sp
= netdev_priv(dev
);
3209 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3211 /* address transaction */
3212 val64
= val64
| (MDIO_MMD_INDX_ADDR(addr
)
3213 | MDIO_MMD_DEV_ADDR(mmd_type
)
3214 | MDIO_MMS_PRT_ADDR(0x0));
3215 writeq(val64
, &bar0
->mdio_control
);
3216 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3217 writeq(val64
, &bar0
->mdio_control
);
3220 /* Data transaction */
3221 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3222 MDIO_MMD_DEV_ADDR(mmd_type
) |
3223 MDIO_MMS_PRT_ADDR(0x0) |
3224 MDIO_OP(MDIO_OP_READ_TRANS
);
3225 writeq(val64
, &bar0
->mdio_control
);
3226 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3227 writeq(val64
, &bar0
->mdio_control
);
3230 /* Read the value from regs */
3231 rval64
= readq(&bar0
->mdio_control
);
3232 rval64
= rval64
& 0xFFFF0000;
3233 rval64
= rval64
>> 16;
3238 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3239 * @counter : counter value to be updated
3240 * @flag : flag to indicate the status
3241 * @type : counter type
3243 * This function is to check the status of the xpak counters value
3247 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
,
3253 for (i
= 0; i
< index
; i
++)
3257 *counter
= *counter
+ 1;
3258 val64
= *regs_stat
& mask
;
3259 val64
= val64
>> (index
* 0x2);
3265 "Take Xframe NIC out of service.\n");
3267 "Excessive temperatures may result in premature transceiver failure.\n");
3271 "Take Xframe NIC out of service.\n");
3273 "Excessive bias currents may indicate imminent laser diode failure.\n");
3277 "Take Xframe NIC out of service.\n");
3279 "Excessive laser output power may saturate far-end receiver.\n");
3283 "Incorrect XPAK Alarm type\n");
3287 val64
= val64
<< (index
* 0x2);
3288 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3291 *regs_stat
= *regs_stat
& (~mask
);
3296 * s2io_updt_xpak_counter - Function to update the xpak counters
3297 * @dev : pointer to net_device struct
3299 * This function is to upate the status of the xpak counters value
3302 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3310 struct s2io_nic
*sp
= netdev_priv(dev
);
3311 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
3312 struct xpakStat
*xstats
= &stats
->xpak_stat
;
3314 /* Check the communication with the MDIO slave */
3317 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3318 if ((val64
== 0xFFFF) || (val64
== 0x0000)) {
3320 "ERR: MDIO slave access failed - Returned %llx\n",
3321 (unsigned long long)val64
);
3325 /* Check for the expected value of control reg 1 */
3326 if (val64
!= MDIO_CTRL1_SPEED10G
) {
3327 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - "
3328 "Returned: %llx- Expected: 0x%x\n",
3329 (unsigned long long)val64
, MDIO_CTRL1_SPEED10G
);
3333 /* Loading the DOM register to MDIO register */
3335 s2io_mdio_write(MDIO_MMD_PMAPMD
, addr
, val16
, dev
);
3336 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3338 /* Reading the Alarm flags */
3341 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3343 flag
= CHECKBIT(val64
, 0x7);
3345 s2io_chk_xpak_counter(&xstats
->alarm_transceiver_temp_high
,
3346 &xstats
->xpak_regs_stat
,
3349 if (CHECKBIT(val64
, 0x6))
3350 xstats
->alarm_transceiver_temp_low
++;
3352 flag
= CHECKBIT(val64
, 0x3);
3354 s2io_chk_xpak_counter(&xstats
->alarm_laser_bias_current_high
,
3355 &xstats
->xpak_regs_stat
,
3358 if (CHECKBIT(val64
, 0x2))
3359 xstats
->alarm_laser_bias_current_low
++;
3361 flag
= CHECKBIT(val64
, 0x1);
3363 s2io_chk_xpak_counter(&xstats
->alarm_laser_output_power_high
,
3364 &xstats
->xpak_regs_stat
,
3367 if (CHECKBIT(val64
, 0x0))
3368 xstats
->alarm_laser_output_power_low
++;
3370 /* Reading the Warning flags */
3373 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3375 if (CHECKBIT(val64
, 0x7))
3376 xstats
->warn_transceiver_temp_high
++;
3378 if (CHECKBIT(val64
, 0x6))
3379 xstats
->warn_transceiver_temp_low
++;
3381 if (CHECKBIT(val64
, 0x3))
3382 xstats
->warn_laser_bias_current_high
++;
3384 if (CHECKBIT(val64
, 0x2))
3385 xstats
->warn_laser_bias_current_low
++;
3387 if (CHECKBIT(val64
, 0x1))
3388 xstats
->warn_laser_output_power_high
++;
3390 if (CHECKBIT(val64
, 0x0))
3391 xstats
->warn_laser_output_power_low
++;
3395 * wait_for_cmd_complete - waits for a command to complete.
3396 * @sp : private member of the device structure, which is a pointer to the
3397 * s2io_nic structure.
3398 * Description: Function that waits for a command to Write into RMAC
3399 * ADDR DATA registers to be completed and returns either success or
3400 * error depending on whether the command was complete or not.
3402 * SUCCESS on success and FAILURE on failure.
3405 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3408 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3411 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3415 val64
= readq(addr
);
3416 if (bit_state
== S2IO_BIT_RESET
) {
3417 if (!(val64
& busy_bit
)) {
3422 if (val64
& busy_bit
) {
3439 * check_pci_device_id - Checks if the device id is supported
3441 * Description: Function to check if the pci device id is supported by driver.
3442 * Return value: Actual device id if supported else PCI_ANY_ID
3444 static u16
check_pci_device_id(u16 id
)
3447 case PCI_DEVICE_ID_HERC_WIN
:
3448 case PCI_DEVICE_ID_HERC_UNI
:
3449 return XFRAME_II_DEVICE
;
3450 case PCI_DEVICE_ID_S2IO_UNI
:
3451 case PCI_DEVICE_ID_S2IO_WIN
:
3452 return XFRAME_I_DEVICE
;
3459 * s2io_reset - Resets the card.
3460 * @sp : private member of the device structure.
3461 * Description: Function to Reset the card. This function then also
3462 * restores the previously saved PCI configuration space registers as
3463 * the card reset also resets the configuration space.
3468 static void s2io_reset(struct s2io_nic
*sp
)
3470 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3475 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3476 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3477 struct stat_block
*stats
;
3478 struct swStat
*swstats
;
3480 DBG_PRINT(INIT_DBG
, "%s: Resetting XFrame card %s\n",
3481 __func__
, pci_name(sp
->pdev
));
3483 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3484 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3486 val64
= SW_RESET_ALL
;
3487 writeq(val64
, &bar0
->sw_reset
);
3488 if (strstr(sp
->product_name
, "CX4"))
3491 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3493 /* Restore the PCI state saved during initialization. */
3494 pci_restore_state(sp
->pdev
);
3495 pci_save_state(sp
->pdev
);
3496 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3497 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3502 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
)
3503 DBG_PRINT(ERR_DBG
, "%s SW_Reset failed!\n", __func__
);
3505 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3509 /* Set swapper to enable I/O register access */
3510 s2io_set_swapper(sp
);
3512 /* restore mac_addr entries */
3513 do_s2io_restore_unicast_mc(sp
);
3515 /* Restore the MSIX table entries from local variables */
3516 restore_xmsi_data(sp
);
3518 /* Clear certain PCI/PCI-X fields after reset */
3519 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3520 /* Clear "detected parity error" bit */
3521 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3523 /* Clearing PCIX Ecc status register */
3524 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3526 /* Clearing PCI_STATUS error reflected here */
3527 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3530 /* Reset device statistics maintained by OS */
3531 memset(&sp
->stats
, 0, sizeof(struct net_device_stats
));
3533 stats
= sp
->mac_control
.stats_info
;
3534 swstats
= &stats
->sw_stat
;
3536 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3537 up_cnt
= swstats
->link_up_cnt
;
3538 down_cnt
= swstats
->link_down_cnt
;
3539 up_time
= swstats
->link_up_time
;
3540 down_time
= swstats
->link_down_time
;
3541 reset_cnt
= swstats
->soft_reset_cnt
;
3542 mem_alloc_cnt
= swstats
->mem_allocated
;
3543 mem_free_cnt
= swstats
->mem_freed
;
3544 watchdog_cnt
= swstats
->watchdog_timer_cnt
;
3546 memset(stats
, 0, sizeof(struct stat_block
));
3548 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3549 swstats
->link_up_cnt
= up_cnt
;
3550 swstats
->link_down_cnt
= down_cnt
;
3551 swstats
->link_up_time
= up_time
;
3552 swstats
->link_down_time
= down_time
;
3553 swstats
->soft_reset_cnt
= reset_cnt
;
3554 swstats
->mem_allocated
= mem_alloc_cnt
;
3555 swstats
->mem_freed
= mem_free_cnt
;
3556 swstats
->watchdog_timer_cnt
= watchdog_cnt
;
3558 /* SXE-002: Configure link and activity LED to turn it off */
3559 subid
= sp
->pdev
->subsystem_device
;
3560 if (((subid
& 0xFF) >= 0x07) &&
3561 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3562 val64
= readq(&bar0
->gpio_control
);
3563 val64
|= 0x0000800000000000ULL
;
3564 writeq(val64
, &bar0
->gpio_control
);
3565 val64
= 0x0411040400000000ULL
;
3566 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3570 * Clear spurious ECC interrupts that would have occured on
3571 * XFRAME II cards after reset.
3573 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3574 val64
= readq(&bar0
->pcc_err_reg
);
3575 writeq(val64
, &bar0
->pcc_err_reg
);
3578 sp
->device_enabled_once
= false;
3582 * s2io_set_swapper - to set the swapper controle on the card
3583 * @sp : private member of the device structure,
3584 * pointer to the s2io_nic structure.
3585 * Description: Function to set the swapper control on the card
3586 * correctly depending on the 'endianness' of the system.
3588 * SUCCESS on success and FAILURE on failure.
3591 static int s2io_set_swapper(struct s2io_nic
*sp
)
3593 struct net_device
*dev
= sp
->dev
;
3594 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3595 u64 val64
, valt
, valr
;
3598 * Set proper endian settings and verify the same by reading
3599 * the PIF Feed-back register.
3602 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3603 if (val64
!= 0x0123456789ABCDEFULL
) {
3605 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3606 0x8100008181000081ULL
, /* FE=1, SE=0 */
3607 0x4200004242000042ULL
, /* FE=0, SE=1 */
3608 0}; /* FE=0, SE=0 */
3611 writeq(value
[i
], &bar0
->swapper_ctrl
);
3612 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3613 if (val64
== 0x0123456789ABCDEFULL
)
3618 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, "
3619 "feedback read %llx\n",
3620 dev
->name
, (unsigned long long)val64
);
3625 valr
= readq(&bar0
->swapper_ctrl
);
3628 valt
= 0x0123456789ABCDEFULL
;
3629 writeq(valt
, &bar0
->xmsi_address
);
3630 val64
= readq(&bar0
->xmsi_address
);
3632 if (val64
!= valt
) {
3634 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3635 0x0081810000818100ULL
, /* FE=1, SE=0 */
3636 0x0042420000424200ULL
, /* FE=0, SE=1 */
3637 0}; /* FE=0, SE=0 */
3640 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3641 writeq(valt
, &bar0
->xmsi_address
);
3642 val64
= readq(&bar0
->xmsi_address
);
3648 unsigned long long x
= val64
;
3650 "Write failed, Xmsi_addr reads:0x%llx\n", x
);
3654 val64
= readq(&bar0
->swapper_ctrl
);
3655 val64
&= 0xFFFF000000000000ULL
;
3659 * The device by default set to a big endian format, so a
3660 * big endian driver need not set anything.
3662 val64
|= (SWAPPER_CTRL_TXP_FE
|
3663 SWAPPER_CTRL_TXP_SE
|
3664 SWAPPER_CTRL_TXD_R_FE
|
3665 SWAPPER_CTRL_TXD_W_FE
|
3666 SWAPPER_CTRL_TXF_R_FE
|
3667 SWAPPER_CTRL_RXD_R_FE
|
3668 SWAPPER_CTRL_RXD_W_FE
|
3669 SWAPPER_CTRL_RXF_W_FE
|
3670 SWAPPER_CTRL_XMSI_FE
|
3671 SWAPPER_CTRL_STATS_FE
|
3672 SWAPPER_CTRL_STATS_SE
);
3673 if (sp
->config
.intr_type
== INTA
)
3674 val64
|= SWAPPER_CTRL_XMSI_SE
;
3675 writeq(val64
, &bar0
->swapper_ctrl
);
3678 * Initially we enable all bits to make it accessible by the
3679 * driver, then we selectively enable only those bits that
3682 val64
|= (SWAPPER_CTRL_TXP_FE
|
3683 SWAPPER_CTRL_TXP_SE
|
3684 SWAPPER_CTRL_TXD_R_FE
|
3685 SWAPPER_CTRL_TXD_R_SE
|
3686 SWAPPER_CTRL_TXD_W_FE
|
3687 SWAPPER_CTRL_TXD_W_SE
|
3688 SWAPPER_CTRL_TXF_R_FE
|
3689 SWAPPER_CTRL_RXD_R_FE
|
3690 SWAPPER_CTRL_RXD_R_SE
|
3691 SWAPPER_CTRL_RXD_W_FE
|
3692 SWAPPER_CTRL_RXD_W_SE
|
3693 SWAPPER_CTRL_RXF_W_FE
|
3694 SWAPPER_CTRL_XMSI_FE
|
3695 SWAPPER_CTRL_STATS_FE
|
3696 SWAPPER_CTRL_STATS_SE
);
3697 if (sp
->config
.intr_type
== INTA
)
3698 val64
|= SWAPPER_CTRL_XMSI_SE
;
3699 writeq(val64
, &bar0
->swapper_ctrl
);
3701 val64
= readq(&bar0
->swapper_ctrl
);
3704 * Verifying if endian settings are accurate by reading a
3705 * feedback register.
3707 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3708 if (val64
!= 0x0123456789ABCDEFULL
) {
3709 /* Endian settings are incorrect, calls for another dekko. */
3711 "%s: Endian settings are wrong, feedback read %llx\n",
3712 dev
->name
, (unsigned long long)val64
);
3719 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3721 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3723 int ret
= 0, cnt
= 0;
3726 val64
= readq(&bar0
->xmsi_access
);
3727 if (!(val64
& s2BIT(15)))
3733 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3740 static void restore_xmsi_data(struct s2io_nic
*nic
)
3742 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3746 if (nic
->device_type
== XFRAME_I_DEVICE
)
3749 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3750 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3751 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3752 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3753 val64
= (s2BIT(7) | s2BIT(15) | vBIT(msix_index
, 26, 6));
3754 writeq(val64
, &bar0
->xmsi_access
);
3755 if (wait_for_msix_trans(nic
, msix_index
)) {
3756 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3757 __func__
, msix_index
);
3763 static void store_xmsi_data(struct s2io_nic
*nic
)
3765 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3766 u64 val64
, addr
, data
;
3769 if (nic
->device_type
== XFRAME_I_DEVICE
)
3772 /* Store and display */
3773 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3774 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3775 val64
= (s2BIT(15) | vBIT(msix_index
, 26, 6));
3776 writeq(val64
, &bar0
->xmsi_access
);
3777 if (wait_for_msix_trans(nic
, msix_index
)) {
3778 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3779 __func__
, msix_index
);
3782 addr
= readq(&bar0
->xmsi_address
);
3783 data
= readq(&bar0
->xmsi_data
);
3785 nic
->msix_info
[i
].addr
= addr
;
3786 nic
->msix_info
[i
].data
= data
;
3791 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3793 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3795 u16 msi_control
; /* Temp variable */
3796 int ret
, i
, j
, msix_indx
= 1;
3798 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3799 struct swStat
*swstats
= &stats
->sw_stat
;
3801 size
= nic
->num_entries
* sizeof(struct msix_entry
);
3802 nic
->entries
= kzalloc(size
, GFP_KERNEL
);
3803 if (!nic
->entries
) {
3804 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3806 swstats
->mem_alloc_fail_cnt
++;
3809 swstats
->mem_allocated
+= size
;
3811 size
= nic
->num_entries
* sizeof(struct s2io_msix_entry
);
3812 nic
->s2io_entries
= kzalloc(size
, GFP_KERNEL
);
3813 if (!nic
->s2io_entries
) {
3814 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3816 swstats
->mem_alloc_fail_cnt
++;
3817 kfree(nic
->entries
);
3819 += (nic
->num_entries
* sizeof(struct msix_entry
));
3822 swstats
->mem_allocated
+= size
;
3824 nic
->entries
[0].entry
= 0;
3825 nic
->s2io_entries
[0].entry
= 0;
3826 nic
->s2io_entries
[0].in_use
= MSIX_FLG
;
3827 nic
->s2io_entries
[0].type
= MSIX_ALARM_TYPE
;
3828 nic
->s2io_entries
[0].arg
= &nic
->mac_control
.fifos
;
3830 for (i
= 1; i
< nic
->num_entries
; i
++) {
3831 nic
->entries
[i
].entry
= ((i
- 1) * 8) + 1;
3832 nic
->s2io_entries
[i
].entry
= ((i
- 1) * 8) + 1;
3833 nic
->s2io_entries
[i
].arg
= NULL
;
3834 nic
->s2io_entries
[i
].in_use
= 0;
3837 rx_mat
= readq(&bar0
->rx_mat
);
3838 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++) {
3839 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3840 nic
->s2io_entries
[j
+1].arg
= &nic
->mac_control
.rings
[j
];
3841 nic
->s2io_entries
[j
+1].type
= MSIX_RING_TYPE
;
3842 nic
->s2io_entries
[j
+1].in_use
= MSIX_FLG
;
3845 writeq(rx_mat
, &bar0
->rx_mat
);
3846 readq(&bar0
->rx_mat
);
3848 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, nic
->num_entries
);
3849 /* We fail init if error or we get less vectors than min required */
3851 DBG_PRINT(ERR_DBG
, "Enabling MSI-X failed\n");
3852 kfree(nic
->entries
);
3853 swstats
->mem_freed
+= nic
->num_entries
*
3854 sizeof(struct msix_entry
);
3855 kfree(nic
->s2io_entries
);
3856 swstats
->mem_freed
+= nic
->num_entries
*
3857 sizeof(struct s2io_msix_entry
);
3858 nic
->entries
= NULL
;
3859 nic
->s2io_entries
= NULL
;
3864 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3865 * in the herc NIC. (Temp change, needs to be removed later)
3867 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3868 msi_control
|= 0x1; /* Enable MSI */
3869 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3874 /* Handle software interrupt used during MSI(X) test */
3875 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3877 struct s2io_nic
*sp
= dev_id
;
3879 sp
->msi_detected
= 1;
3880 wake_up(&sp
->msi_wait
);
3885 /* Test interrupt path by forcing a a software IRQ */
3886 static int s2io_test_msi(struct s2io_nic
*sp
)
3888 struct pci_dev
*pdev
= sp
->pdev
;
3889 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3893 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3896 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3897 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3901 init_waitqueue_head(&sp
->msi_wait
);
3902 sp
->msi_detected
= 0;
3904 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3905 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3906 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3907 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3908 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3910 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3912 if (!sp
->msi_detected
) {
3913 /* MSI(X) test failed, go back to INTx mode */
3914 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3915 "using MSI(X) during test\n",
3916 sp
->dev
->name
, pci_name(pdev
));
3921 free_irq(sp
->entries
[1].vector
, sp
);
3923 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3928 static void remove_msix_isr(struct s2io_nic
*sp
)
3933 for (i
= 0; i
< sp
->num_entries
; i
++) {
3934 if (sp
->s2io_entries
[i
].in_use
== MSIX_REGISTERED_SUCCESS
) {
3935 int vector
= sp
->entries
[i
].vector
;
3936 void *arg
= sp
->s2io_entries
[i
].arg
;
3937 free_irq(vector
, arg
);
3942 kfree(sp
->s2io_entries
);
3944 sp
->s2io_entries
= NULL
;
3946 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3947 msi_control
&= 0xFFFE; /* Disable MSI */
3948 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3950 pci_disable_msix(sp
->pdev
);
3953 static void remove_inta_isr(struct s2io_nic
*sp
)
3955 struct net_device
*dev
= sp
->dev
;
3957 free_irq(sp
->pdev
->irq
, dev
);
3960 /* ********************************************************* *
3961 * Functions defined below concern the OS part of the driver *
3962 * ********************************************************* */
3965 * s2io_open - open entry point of the driver
3966 * @dev : pointer to the device structure.
3968 * This function is the open entry point of the driver. It mainly calls a
3969 * function to allocate Rx buffers and inserts them into the buffer
3970 * descriptors and then enables the Rx part of the NIC.
3972 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3976 static int s2io_open(struct net_device
*dev
)
3978 struct s2io_nic
*sp
= netdev_priv(dev
);
3979 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
3983 * Make sure you have link off by default every time
3984 * Nic is initialized
3986 netif_carrier_off(dev
);
3987 sp
->last_link_state
= 0;
3989 /* Initialize H/W and enable interrupts */
3990 err
= s2io_card_up(sp
);
3992 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3994 goto hw_init_failed
;
3997 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
3998 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
4001 goto hw_init_failed
;
4003 s2io_start_all_tx_queue(sp
);
4007 if (sp
->config
.intr_type
== MSI_X
) {
4010 swstats
->mem_freed
+= sp
->num_entries
*
4011 sizeof(struct msix_entry
);
4013 if (sp
->s2io_entries
) {
4014 kfree(sp
->s2io_entries
);
4015 swstats
->mem_freed
+= sp
->num_entries
*
4016 sizeof(struct s2io_msix_entry
);
4023 * s2io_close -close entry point of the driver
4024 * @dev : device pointer.
4026 * This is the stop entry point of the driver. It needs to undo exactly
4027 * whatever was done by the open entry point,thus it's usually referred to
4028 * as the close function.Among other things this function mainly stops the
4029 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4031 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4035 static int s2io_close(struct net_device
*dev
)
4037 struct s2io_nic
*sp
= netdev_priv(dev
);
4038 struct config_param
*config
= &sp
->config
;
4042 /* Return if the device is already closed *
4043 * Can happen when s2io_card_up failed in change_mtu *
4045 if (!is_s2io_card_up(sp
))
4048 s2io_stop_all_tx_queue(sp
);
4049 /* delete all populated mac entries */
4050 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
4051 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
4052 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
4053 do_s2io_delete_unicast_mc(sp
, tmp64
);
4062 * s2io_xmit - Tx entry point of te driver
4063 * @skb : the socket buffer containing the Tx data.
4064 * @dev : device pointer.
4066 * This function is the Tx entry point of the driver. S2IO NIC supports
4067 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4068 * NOTE: when device cant queue the pkt,just the trans_start variable will
4071 * 0 on success & 1 on failure.
4074 static netdev_tx_t
s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4076 struct s2io_nic
*sp
= netdev_priv(dev
);
4077 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4080 struct TxFIFO_element __iomem
*tx_fifo
;
4081 unsigned long flags
= 0;
4083 struct fifo_info
*fifo
= NULL
;
4084 int do_spin_lock
= 1;
4086 int enable_per_list_interrupt
= 0;
4087 struct config_param
*config
= &sp
->config
;
4088 struct mac_info
*mac_control
= &sp
->mac_control
;
4089 struct stat_block
*stats
= mac_control
->stats_info
;
4090 struct swStat
*swstats
= &stats
->sw_stat
;
4092 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4094 if (unlikely(skb
->len
<= 0)) {
4095 DBG_PRINT(TX_DBG
, "%s: Buffer has no data..\n", dev
->name
);
4096 dev_kfree_skb_any(skb
);
4097 return NETDEV_TX_OK
;
4100 if (!is_s2io_card_up(sp
)) {
4101 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4104 return NETDEV_TX_OK
;
4108 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
))
4109 vlan_tag
= vlan_tx_tag_get(skb
);
4110 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4111 if (skb
->protocol
== htons(ETH_P_IP
)) {
4116 if ((ip
->frag_off
& htons(IP_OFFSET
|IP_MF
)) == 0) {
4117 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4120 if (ip
->protocol
== IPPROTO_TCP
) {
4121 queue_len
= sp
->total_tcp_fifos
;
4122 queue
= (ntohs(th
->source
) +
4124 sp
->fifo_selector
[queue_len
- 1];
4125 if (queue
>= queue_len
)
4126 queue
= queue_len
- 1;
4127 } else if (ip
->protocol
== IPPROTO_UDP
) {
4128 queue_len
= sp
->total_udp_fifos
;
4129 queue
= (ntohs(th
->source
) +
4131 sp
->fifo_selector
[queue_len
- 1];
4132 if (queue
>= queue_len
)
4133 queue
= queue_len
- 1;
4134 queue
+= sp
->udp_fifo_idx
;
4135 if (skb
->len
> 1024)
4136 enable_per_list_interrupt
= 1;
4141 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4142 /* get fifo number based on skb->priority value */
4143 queue
= config
->fifo_mapping
4144 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4145 fifo
= &mac_control
->fifos
[queue
];
4148 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4150 if (unlikely(!spin_trylock_irqsave(&fifo
->tx_lock
, flags
)))
4151 return NETDEV_TX_LOCKED
;
4154 if (sp
->config
.multiq
) {
4155 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4156 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4157 return NETDEV_TX_BUSY
;
4159 } else if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4160 if (netif_queue_stopped(dev
)) {
4161 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4162 return NETDEV_TX_BUSY
;
4166 put_off
= (u16
)fifo
->tx_curr_put_info
.offset
;
4167 get_off
= (u16
)fifo
->tx_curr_get_info
.offset
;
4168 txdp
= (struct TxD
*)fifo
->list_info
[put_off
].list_virt_addr
;
4170 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4171 /* Avoid "put" pointer going beyond "get" pointer */
4172 if (txdp
->Host_Control
||
4173 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4174 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4175 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4177 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4178 return NETDEV_TX_OK
;
4181 offload_type
= s2io_offload_type(skb
);
4182 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4183 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4184 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4186 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4187 txdp
->Control_2
|= (TXD_TX_CKO_IPV4_EN
|
4191 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4192 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4193 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4194 if (enable_per_list_interrupt
)
4195 if (put_off
& (queue_len
>> 5))
4196 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4198 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4199 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4202 frg_len
= skb_headlen(skb
);
4203 if (offload_type
== SKB_GSO_UDP
) {
4206 ufo_size
= s2io_udp_mss(skb
);
4208 txdp
->Control_1
|= TXD_UFO_EN
;
4209 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4210 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4212 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4213 fifo
->ufo_in_band_v
[put_off
] =
4214 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
;
4216 fifo
->ufo_in_band_v
[put_off
] =
4217 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4219 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4220 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4221 fifo
->ufo_in_band_v
,
4224 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4225 goto pci_map_failed
;
4229 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
, skb
->data
,
4230 frg_len
, PCI_DMA_TODEVICE
);
4231 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4232 goto pci_map_failed
;
4234 txdp
->Host_Control
= (unsigned long)skb
;
4235 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4236 if (offload_type
== SKB_GSO_UDP
)
4237 txdp
->Control_1
|= TXD_UFO_EN
;
4239 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4240 /* For fragmented SKB. */
4241 for (i
= 0; i
< frg_cnt
; i
++) {
4242 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4243 /* A '0' length fragment will be ignored */
4247 txdp
->Buffer_Pointer
= (u64
)pci_map_page(sp
->pdev
, frag
->page
,
4251 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4252 if (offload_type
== SKB_GSO_UDP
)
4253 txdp
->Control_1
|= TXD_UFO_EN
;
4255 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4257 if (offload_type
== SKB_GSO_UDP
)
4258 frg_cnt
++; /* as Txd0 was used for inband header */
4260 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4261 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4262 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4264 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4267 val64
|= TX_FIFO_SPECIAL_FUNC
;
4269 writeq(val64
, &tx_fifo
->List_Control
);
4274 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4276 fifo
->tx_curr_put_info
.offset
= put_off
;
4278 /* Avoid "put" pointer going beyond "get" pointer */
4279 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4280 swstats
->fifo_full_cnt
++;
4282 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4284 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4286 swstats
->mem_allocated
+= skb
->truesize
;
4287 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4289 if (sp
->config
.intr_type
== MSI_X
)
4290 tx_intr_handler(fifo
);
4292 return NETDEV_TX_OK
;
4295 swstats
->pci_map_fail_cnt
++;
4296 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4297 swstats
->mem_freed
+= skb
->truesize
;
4299 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4300 return NETDEV_TX_OK
;
4304 s2io_alarm_handle(unsigned long data
)
4306 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4307 struct net_device
*dev
= sp
->dev
;
4309 s2io_handle_errors(dev
);
4310 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4313 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4315 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4316 struct s2io_nic
*sp
= ring
->nic
;
4317 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4319 if (unlikely(!is_s2io_card_up(sp
)))
4322 if (sp
->config
.napi
) {
4323 u8 __iomem
*addr
= NULL
;
4326 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
4327 addr
+= (7 - ring
->ring_no
);
4328 val8
= (ring
->ring_no
== 0) ? 0x7f : 0xff;
4331 napi_schedule(&ring
->napi
);
4333 rx_intr_handler(ring
, 0);
4334 s2io_chk_rx_buffers(sp
, ring
);
4340 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4343 struct fifo_info
*fifos
= (struct fifo_info
*)dev_id
;
4344 struct s2io_nic
*sp
= fifos
->nic
;
4345 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4346 struct config_param
*config
= &sp
->config
;
4349 if (unlikely(!is_s2io_card_up(sp
)))
4352 reason
= readq(&bar0
->general_int_status
);
4353 if (unlikely(reason
== S2IO_MINUS_ONE
))
4354 /* Nothing much can be done. Get out */
4357 if (reason
& (GEN_INTR_TXPIC
| GEN_INTR_TXTRAFFIC
)) {
4358 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4360 if (reason
& GEN_INTR_TXPIC
)
4361 s2io_txpic_intr_handle(sp
);
4363 if (reason
& GEN_INTR_TXTRAFFIC
)
4364 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4366 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4367 tx_intr_handler(&fifos
[i
]);
4369 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4370 readl(&bar0
->general_int_status
);
4373 /* The interrupt was not raised by us */
4377 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4379 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4382 val64
= readq(&bar0
->pic_int_status
);
4383 if (val64
& PIC_INT_GPIO
) {
4384 val64
= readq(&bar0
->gpio_int_reg
);
4385 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4386 (val64
& GPIO_INT_REG_LINK_UP
)) {
4388 * This is unstable state so clear both up/down
4389 * interrupt and adapter to re-evaluate the link state.
4391 val64
|= GPIO_INT_REG_LINK_DOWN
;
4392 val64
|= GPIO_INT_REG_LINK_UP
;
4393 writeq(val64
, &bar0
->gpio_int_reg
);
4394 val64
= readq(&bar0
->gpio_int_mask
);
4395 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4396 GPIO_INT_MASK_LINK_DOWN
);
4397 writeq(val64
, &bar0
->gpio_int_mask
);
4398 } else if (val64
& GPIO_INT_REG_LINK_UP
) {
4399 val64
= readq(&bar0
->adapter_status
);
4400 /* Enable Adapter */
4401 val64
= readq(&bar0
->adapter_control
);
4402 val64
|= ADAPTER_CNTL_EN
;
4403 writeq(val64
, &bar0
->adapter_control
);
4404 val64
|= ADAPTER_LED_ON
;
4405 writeq(val64
, &bar0
->adapter_control
);
4406 if (!sp
->device_enabled_once
)
4407 sp
->device_enabled_once
= 1;
4409 s2io_link(sp
, LINK_UP
);
4411 * unmask link down interrupt and mask link-up
4414 val64
= readq(&bar0
->gpio_int_mask
);
4415 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4416 val64
|= GPIO_INT_MASK_LINK_UP
;
4417 writeq(val64
, &bar0
->gpio_int_mask
);
4419 } else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4420 val64
= readq(&bar0
->adapter_status
);
4421 s2io_link(sp
, LINK_DOWN
);
4422 /* Link is down so unmaks link up interrupt */
4423 val64
= readq(&bar0
->gpio_int_mask
);
4424 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4425 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4426 writeq(val64
, &bar0
->gpio_int_mask
);
4429 val64
= readq(&bar0
->adapter_control
);
4430 val64
= val64
& (~ADAPTER_LED_ON
);
4431 writeq(val64
, &bar0
->adapter_control
);
4434 val64
= readq(&bar0
->gpio_int_mask
);
4438 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4439 * @value: alarm bits
4440 * @addr: address value
4441 * @cnt: counter variable
4442 * Description: Check for alarm and increment the counter
4444 * 1 - if alarm bit set
4445 * 0 - if alarm bit is not set
4447 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
*addr
,
4448 unsigned long long *cnt
)
4451 val64
= readq(addr
);
4452 if (val64
& value
) {
4453 writeq(val64
, addr
);
4462 * s2io_handle_errors - Xframe error indication handler
4463 * @nic: device private variable
4464 * Description: Handle alarms such as loss of link, single or
4465 * double ECC errors, critical and serious errors.
4469 static void s2io_handle_errors(void *dev_id
)
4471 struct net_device
*dev
= (struct net_device
*)dev_id
;
4472 struct s2io_nic
*sp
= netdev_priv(dev
);
4473 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4474 u64 temp64
= 0, val64
= 0;
4477 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4478 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4480 if (!is_s2io_card_up(sp
))
4483 if (pci_channel_offline(sp
->pdev
))
4486 memset(&sw_stat
->ring_full_cnt
, 0,
4487 sizeof(sw_stat
->ring_full_cnt
));
4489 /* Handling the XPAK counters update */
4490 if (stats
->xpak_timer_count
< 72000) {
4491 /* waiting for an hour */
4492 stats
->xpak_timer_count
++;
4494 s2io_updt_xpak_counter(dev
);
4495 /* reset the count to zero */
4496 stats
->xpak_timer_count
= 0;
4499 /* Handling link status change error Intr */
4500 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4501 val64
= readq(&bar0
->mac_rmac_err_reg
);
4502 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4503 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4504 schedule_work(&sp
->set_link_task
);
4507 /* In case of a serious error, the device will be Reset. */
4508 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4509 &sw_stat
->serious_err_cnt
))
4512 /* Check for data parity error */
4513 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4514 &sw_stat
->parity_err_cnt
))
4517 /* Check for ring full counter */
4518 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4519 val64
= readq(&bar0
->ring_bump_counter1
);
4520 for (i
= 0; i
< 4; i
++) {
4521 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4522 temp64
>>= 64 - ((i
+1)*16);
4523 sw_stat
->ring_full_cnt
[i
] += temp64
;
4526 val64
= readq(&bar0
->ring_bump_counter2
);
4527 for (i
= 0; i
< 4; i
++) {
4528 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4529 temp64
>>= 64 - ((i
+1)*16);
4530 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4534 val64
= readq(&bar0
->txdma_int_status
);
4535 /*check for pfc_err*/
4536 if (val64
& TXDMA_PFC_INT
) {
4537 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4538 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4541 &sw_stat
->pfc_err_cnt
))
4543 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
,
4545 &sw_stat
->pfc_err_cnt
);
4548 /*check for tda_err*/
4549 if (val64
& TXDMA_TDA_INT
) {
4550 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
|
4554 &sw_stat
->tda_err_cnt
))
4556 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4558 &sw_stat
->tda_err_cnt
);
4560 /*check for pcc_err*/
4561 if (val64
& TXDMA_PCC_INT
) {
4562 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
4563 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
4564 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
4565 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
|
4568 &sw_stat
->pcc_err_cnt
))
4570 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4572 &sw_stat
->pcc_err_cnt
);
4575 /*check for tti_err*/
4576 if (val64
& TXDMA_TTI_INT
) {
4577 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
,
4579 &sw_stat
->tti_err_cnt
))
4581 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4583 &sw_stat
->tti_err_cnt
);
4586 /*check for lso_err*/
4587 if (val64
& TXDMA_LSO_INT
) {
4588 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
|
4589 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4591 &sw_stat
->lso_err_cnt
))
4593 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4595 &sw_stat
->lso_err_cnt
);
4598 /*check for tpa_err*/
4599 if (val64
& TXDMA_TPA_INT
) {
4600 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
,
4602 &sw_stat
->tpa_err_cnt
))
4604 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
,
4606 &sw_stat
->tpa_err_cnt
);
4609 /*check for sm_err*/
4610 if (val64
& TXDMA_SM_INT
) {
4611 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
,
4613 &sw_stat
->sm_err_cnt
))
4617 val64
= readq(&bar0
->mac_int_status
);
4618 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4619 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4620 &bar0
->mac_tmac_err_reg
,
4621 &sw_stat
->mac_tmac_err_cnt
))
4623 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
4624 TMAC_DESC_ECC_SG_ERR
|
4625 TMAC_DESC_ECC_DB_ERR
,
4626 &bar0
->mac_tmac_err_reg
,
4627 &sw_stat
->mac_tmac_err_cnt
);
4630 val64
= readq(&bar0
->xgxs_int_status
);
4631 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4632 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4633 &bar0
->xgxs_txgxs_err_reg
,
4634 &sw_stat
->xgxs_txgxs_err_cnt
))
4636 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4637 &bar0
->xgxs_txgxs_err_reg
,
4638 &sw_stat
->xgxs_txgxs_err_cnt
);
4641 val64
= readq(&bar0
->rxdma_int_status
);
4642 if (val64
& RXDMA_INT_RC_INT_M
) {
4643 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
|
4645 RC_PRCn_SM_ERR_ALARM
|
4646 RC_FTC_SM_ERR_ALARM
,
4648 &sw_stat
->rc_err_cnt
))
4650 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
|
4652 RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4653 &sw_stat
->rc_err_cnt
);
4654 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
|
4657 &bar0
->prc_pcix_err_reg
,
4658 &sw_stat
->prc_pcix_err_cnt
))
4660 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
|
4663 &bar0
->prc_pcix_err_reg
,
4664 &sw_stat
->prc_pcix_err_cnt
);
4667 if (val64
& RXDMA_INT_RPA_INT_M
) {
4668 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4670 &sw_stat
->rpa_err_cnt
))
4672 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4674 &sw_stat
->rpa_err_cnt
);
4677 if (val64
& RXDMA_INT_RDA_INT_M
) {
4678 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
|
4679 RDA_FRM_ECC_DB_N_AERR
|
4682 RDA_RXD_ECC_DB_SERR
,
4684 &sw_stat
->rda_err_cnt
))
4686 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
|
4687 RDA_FRM_ECC_SG_ERR
|
4691 &sw_stat
->rda_err_cnt
);
4694 if (val64
& RXDMA_INT_RTI_INT_M
) {
4695 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
,
4697 &sw_stat
->rti_err_cnt
))
4699 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4701 &sw_stat
->rti_err_cnt
);
4704 val64
= readq(&bar0
->mac_int_status
);
4705 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4706 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4707 &bar0
->mac_rmac_err_reg
,
4708 &sw_stat
->mac_rmac_err_cnt
))
4710 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|
4711 RMAC_SINGLE_ECC_ERR
|
4712 RMAC_DOUBLE_ECC_ERR
,
4713 &bar0
->mac_rmac_err_reg
,
4714 &sw_stat
->mac_rmac_err_cnt
);
4717 val64
= readq(&bar0
->xgxs_int_status
);
4718 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4719 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4720 &bar0
->xgxs_rxgxs_err_reg
,
4721 &sw_stat
->xgxs_rxgxs_err_cnt
))
4725 val64
= readq(&bar0
->mc_int_status
);
4726 if (val64
& MC_INT_STATUS_MC_INT
) {
4727 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
,
4729 &sw_stat
->mc_err_cnt
))
4732 /* Handling Ecc errors */
4733 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4734 writeq(val64
, &bar0
->mc_err_reg
);
4735 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4736 sw_stat
->double_ecc_errs
++;
4737 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4739 * Reset XframeI only if critical error
4742 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4743 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4747 sw_stat
->single_ecc_errs
++;
4753 s2io_stop_all_tx_queue(sp
);
4754 schedule_work(&sp
->rst_timer_task
);
4755 sw_stat
->soft_reset_cnt
++;
4759 * s2io_isr - ISR handler of the device .
4760 * @irq: the irq of the device.
4761 * @dev_id: a void pointer to the dev structure of the NIC.
4762 * Description: This function is the ISR handler of the device. It
4763 * identifies the reason for the interrupt and calls the relevant
4764 * service routines. As a contongency measure, this ISR allocates the
4765 * recv buffers, if their numbers are below the panic value which is
4766 * presently set to 25% of the original number of rcv buffers allocated.
4768 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4769 * IRQ_NONE: will be returned if interrupt is not from our device
4771 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4773 struct net_device
*dev
= (struct net_device
*)dev_id
;
4774 struct s2io_nic
*sp
= netdev_priv(dev
);
4775 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4778 struct mac_info
*mac_control
;
4779 struct config_param
*config
;
4781 /* Pretend we handled any irq's from a disconnected card */
4782 if (pci_channel_offline(sp
->pdev
))
4785 if (!is_s2io_card_up(sp
))
4788 config
= &sp
->config
;
4789 mac_control
= &sp
->mac_control
;
4792 * Identify the cause for interrupt and call the appropriate
4793 * interrupt handler. Causes for the interrupt could be;
4798 reason
= readq(&bar0
->general_int_status
);
4800 if (unlikely(reason
== S2IO_MINUS_ONE
))
4801 return IRQ_HANDLED
; /* Nothing much can be done. Get out */
4804 (GEN_INTR_RXTRAFFIC
| GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
)) {
4805 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4808 if (reason
& GEN_INTR_RXTRAFFIC
) {
4809 napi_schedule(&sp
->napi
);
4810 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4811 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4812 readl(&bar0
->rx_traffic_int
);
4816 * rx_traffic_int reg is an R1 register, writing all 1's
4817 * will ensure that the actual interrupt causing bit
4818 * get's cleared and hence a read can be avoided.
4820 if (reason
& GEN_INTR_RXTRAFFIC
)
4821 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4823 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4824 struct ring_info
*ring
= &mac_control
->rings
[i
];
4826 rx_intr_handler(ring
, 0);
4831 * tx_traffic_int reg is an R1 register, writing all 1's
4832 * will ensure that the actual interrupt causing bit get's
4833 * cleared and hence a read can be avoided.
4835 if (reason
& GEN_INTR_TXTRAFFIC
)
4836 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4838 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4839 tx_intr_handler(&mac_control
->fifos
[i
]);
4841 if (reason
& GEN_INTR_TXPIC
)
4842 s2io_txpic_intr_handle(sp
);
4845 * Reallocate the buffers from the interrupt handler itself.
4847 if (!config
->napi
) {
4848 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4849 struct ring_info
*ring
= &mac_control
->rings
[i
];
4851 s2io_chk_rx_buffers(sp
, ring
);
4854 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4855 readl(&bar0
->general_int_status
);
4859 } else if (!reason
) {
4860 /* The interrupt was not raised by us */
4870 static void s2io_updt_stats(struct s2io_nic
*sp
)
4872 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4876 if (is_s2io_card_up(sp
)) {
4877 /* Apprx 30us on a 133 MHz bus */
4878 val64
= SET_UPDT_CLICKS(10) |
4879 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4880 writeq(val64
, &bar0
->stat_cfg
);
4883 val64
= readq(&bar0
->stat_cfg
);
4884 if (!(val64
& s2BIT(0)))
4888 break; /* Updt failed */
4894 * s2io_get_stats - Updates the device statistics structure.
4895 * @dev : pointer to the device structure.
4897 * This function updates the device statistics structure in the s2io_nic
4898 * structure and returns a pointer to the same.
4900 * pointer to the updated net_device_stats structure.
4902 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4904 struct s2io_nic
*sp
= netdev_priv(dev
);
4905 struct mac_info
*mac_control
= &sp
->mac_control
;
4906 struct stat_block
*stats
= mac_control
->stats_info
;
4909 /* Configure Stats for immediate updt */
4910 s2io_updt_stats(sp
);
4912 /* A device reset will cause the on-adapter statistics to be zero'ed.
4913 * This can be done while running by changing the MTU. To prevent the
4914 * system from having the stats zero'ed, the driver keeps a copy of the
4915 * last update to the system (which is also zero'ed on reset). This
4916 * enables the driver to accurately know the delta between the last
4917 * update and the current update.
4919 delta
= ((u64
) le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
4920 le32_to_cpu(stats
->rmac_vld_frms
)) - sp
->stats
.rx_packets
;
4921 sp
->stats
.rx_packets
+= delta
;
4922 dev
->stats
.rx_packets
+= delta
;
4924 delta
= ((u64
) le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
4925 le32_to_cpu(stats
->tmac_frms
)) - sp
->stats
.tx_packets
;
4926 sp
->stats
.tx_packets
+= delta
;
4927 dev
->stats
.tx_packets
+= delta
;
4929 delta
= ((u64
) le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
4930 le32_to_cpu(stats
->rmac_data_octets
)) - sp
->stats
.rx_bytes
;
4931 sp
->stats
.rx_bytes
+= delta
;
4932 dev
->stats
.rx_bytes
+= delta
;
4934 delta
= ((u64
) le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
4935 le32_to_cpu(stats
->tmac_data_octets
)) - sp
->stats
.tx_bytes
;
4936 sp
->stats
.tx_bytes
+= delta
;
4937 dev
->stats
.tx_bytes
+= delta
;
4939 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_errors
;
4940 sp
->stats
.rx_errors
+= delta
;
4941 dev
->stats
.rx_errors
+= delta
;
4943 delta
= ((u64
) le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
4944 le32_to_cpu(stats
->tmac_any_err_frms
)) - sp
->stats
.tx_errors
;
4945 sp
->stats
.tx_errors
+= delta
;
4946 dev
->stats
.tx_errors
+= delta
;
4948 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_dropped
;
4949 sp
->stats
.rx_dropped
+= delta
;
4950 dev
->stats
.rx_dropped
+= delta
;
4952 delta
= le64_to_cpu(stats
->tmac_drop_frms
) - sp
->stats
.tx_dropped
;
4953 sp
->stats
.tx_dropped
+= delta
;
4954 dev
->stats
.tx_dropped
+= delta
;
4956 /* The adapter MAC interprets pause frames as multicast packets, but
4957 * does not pass them up. This erroneously increases the multicast
4958 * packet count and needs to be deducted when the multicast frame count
4961 delta
= (u64
) le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
4962 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
4963 delta
-= le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
4964 delta
-= sp
->stats
.multicast
;
4965 sp
->stats
.multicast
+= delta
;
4966 dev
->stats
.multicast
+= delta
;
4968 delta
= ((u64
) le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
4969 le32_to_cpu(stats
->rmac_usized_frms
)) +
4970 le64_to_cpu(stats
->rmac_long_frms
) - sp
->stats
.rx_length_errors
;
4971 sp
->stats
.rx_length_errors
+= delta
;
4972 dev
->stats
.rx_length_errors
+= delta
;
4974 delta
= le64_to_cpu(stats
->rmac_fcs_err_frms
) - sp
->stats
.rx_crc_errors
;
4975 sp
->stats
.rx_crc_errors
+= delta
;
4976 dev
->stats
.rx_crc_errors
+= delta
;
4982 * s2io_set_multicast - entry point for multicast address enable/disable.
4983 * @dev : pointer to the device structure
4985 * This function is a driver entry point which gets called by the kernel
4986 * whenever multicast addresses must be enabled/disabled. This also gets
4987 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4988 * determine, if multicast address must be enabled or if promiscuous mode
4989 * is to be disabled etc.
4994 static void s2io_set_multicast(struct net_device
*dev
)
4997 struct netdev_hw_addr
*ha
;
4998 struct s2io_nic
*sp
= netdev_priv(dev
);
4999 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5000 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
5002 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
5004 struct config_param
*config
= &sp
->config
;
5006 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
5007 /* Enable all Multicast addresses */
5008 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
5009 &bar0
->rmac_addr_data0_mem
);
5010 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
5011 &bar0
->rmac_addr_data1_mem
);
5012 val64
= RMAC_ADDR_CMD_MEM_WE
|
5013 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5014 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
5015 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5016 /* Wait till command completes */
5017 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5018 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5022 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
5023 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
5024 /* Disable all Multicast addresses */
5025 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5026 &bar0
->rmac_addr_data0_mem
);
5027 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5028 &bar0
->rmac_addr_data1_mem
);
5029 val64
= RMAC_ADDR_CMD_MEM_WE
|
5030 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5031 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
5032 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5033 /* Wait till command completes */
5034 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5035 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5039 sp
->all_multi_pos
= 0;
5042 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
5043 /* Put the NIC into promiscuous mode */
5044 add
= &bar0
->mac_cfg
;
5045 val64
= readq(&bar0
->mac_cfg
);
5046 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
5048 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5049 writel((u32
)val64
, add
);
5050 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5051 writel((u32
) (val64
>> 32), (add
+ 4));
5053 if (vlan_tag_strip
!= 1) {
5054 val64
= readq(&bar0
->rx_pa_cfg
);
5055 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
5056 writeq(val64
, &bar0
->rx_pa_cfg
);
5057 sp
->vlan_strip_flag
= 0;
5060 val64
= readq(&bar0
->mac_cfg
);
5061 sp
->promisc_flg
= 1;
5062 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
5064 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
5065 /* Remove the NIC from promiscuous mode */
5066 add
= &bar0
->mac_cfg
;
5067 val64
= readq(&bar0
->mac_cfg
);
5068 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
5070 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5071 writel((u32
)val64
, add
);
5072 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5073 writel((u32
) (val64
>> 32), (add
+ 4));
5075 if (vlan_tag_strip
!= 0) {
5076 val64
= readq(&bar0
->rx_pa_cfg
);
5077 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
5078 writeq(val64
, &bar0
->rx_pa_cfg
);
5079 sp
->vlan_strip_flag
= 1;
5082 val64
= readq(&bar0
->mac_cfg
);
5083 sp
->promisc_flg
= 0;
5084 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n", dev
->name
);
5087 /* Update individual M_CAST address list */
5088 if ((!sp
->m_cast_flg
) && netdev_mc_count(dev
)) {
5089 if (netdev_mc_count(dev
) >
5090 (config
->max_mc_addr
- config
->max_mac_addr
)) {
5092 "%s: No more Rx filters can be added - "
5093 "please enable ALL_MULTI instead\n",
5098 prev_cnt
= sp
->mc_addr_count
;
5099 sp
->mc_addr_count
= netdev_mc_count(dev
);
5101 /* Clear out the previous list of Mc in the H/W. */
5102 for (i
= 0; i
< prev_cnt
; i
++) {
5103 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5104 &bar0
->rmac_addr_data0_mem
);
5105 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5106 &bar0
->rmac_addr_data1_mem
);
5107 val64
= RMAC_ADDR_CMD_MEM_WE
|
5108 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5109 RMAC_ADDR_CMD_MEM_OFFSET
5110 (config
->mc_start_offset
+ i
);
5111 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5113 /* Wait for command completes */
5114 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5115 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5118 "%s: Adding Multicasts failed\n",
5124 /* Create the new Rx filter list and update the same in H/W. */
5126 netdev_for_each_mc_addr(ha
, dev
) {
5127 memcpy(sp
->usr_addrs
[i
].addr
, ha
->addr
,
5130 for (j
= 0; j
< ETH_ALEN
; j
++) {
5131 mac_addr
|= ha
->addr
[j
];
5135 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5136 &bar0
->rmac_addr_data0_mem
);
5137 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5138 &bar0
->rmac_addr_data1_mem
);
5139 val64
= RMAC_ADDR_CMD_MEM_WE
|
5140 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5141 RMAC_ADDR_CMD_MEM_OFFSET
5142 (i
+ config
->mc_start_offset
);
5143 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5145 /* Wait for command completes */
5146 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5147 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5150 "%s: Adding Multicasts failed\n",
5159 /* read from CAM unicast & multicast addresses and store it in
5160 * def_mac_addr structure
5162 static void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5166 struct config_param
*config
= &sp
->config
;
5168 /* store unicast & multicast mac addresses */
5169 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5170 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5171 /* if read fails disable the entry */
5172 if (mac_addr
== FAILURE
)
5173 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5174 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5178 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5179 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5182 struct config_param
*config
= &sp
->config
;
5183 /* restore unicast mac address */
5184 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5185 do_s2io_prog_unicast(sp
->dev
,
5186 sp
->def_mac_addr
[offset
].mac_addr
);
5188 /* restore multicast mac address */
5189 for (offset
= config
->mc_start_offset
;
5190 offset
< config
->max_mc_addr
; offset
++)
5191 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5194 /* add a multicast MAC address to CAM */
5195 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5199 struct config_param
*config
= &sp
->config
;
5201 for (i
= 0; i
< ETH_ALEN
; i
++) {
5203 mac_addr
|= addr
[i
];
5205 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5208 /* check if the multicast mac already preset in CAM */
5209 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5211 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5212 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5215 if (tmp64
== mac_addr
)
5218 if (i
== config
->max_mc_addr
) {
5220 "CAM full no space left for multicast MAC\n");
5223 /* Update the internal structure with this new mac address */
5224 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5226 return do_s2io_add_mac(sp
, mac_addr
, i
);
5229 /* add MAC address to CAM */
5230 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5233 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5235 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5236 &bar0
->rmac_addr_data0_mem
);
5238 val64
= RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5239 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5240 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5242 /* Wait till command completes */
5243 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5244 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5246 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5251 /* deletes a specified unicast/multicast mac entry from CAM */
5252 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5255 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5256 struct config_param
*config
= &sp
->config
;
5259 offset
< config
->max_mc_addr
; offset
++) {
5260 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5261 if (tmp64
== addr
) {
5262 /* disable the entry by writing 0xffffffffffffULL */
5263 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5265 /* store the new mac list from CAM */
5266 do_s2io_store_unicast_mc(sp
);
5270 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5271 (unsigned long long)addr
);
5275 /* read mac entries from CAM */
5276 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5278 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5279 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5282 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5283 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5284 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5286 /* Wait till command completes */
5287 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5288 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5290 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5293 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5299 * s2io_set_mac_addr driver entry point
5302 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5304 struct sockaddr
*addr
= p
;
5306 if (!is_valid_ether_addr(addr
->sa_data
))
5309 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5311 /* store the MAC address in CAM */
5312 return do_s2io_prog_unicast(dev
, dev
->dev_addr
);
5315 * do_s2io_prog_unicast - Programs the Xframe mac address
5316 * @dev : pointer to the device structure.
5317 * @addr: a uchar pointer to the new mac address which is to be set.
5318 * Description : This procedure will program the Xframe to receive
5319 * frames with new Mac Address
5320 * Return value: SUCCESS on success and an appropriate (-)ve integer
5321 * as defined in errno.h file on failure.
5324 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5326 struct s2io_nic
*sp
= netdev_priv(dev
);
5327 register u64 mac_addr
= 0, perm_addr
= 0;
5330 struct config_param
*config
= &sp
->config
;
5333 * Set the new MAC address as the new unicast filter and reflect this
5334 * change on the device address registered with the OS. It will be
5337 for (i
= 0; i
< ETH_ALEN
; i
++) {
5339 mac_addr
|= addr
[i
];
5341 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5344 /* check if the dev_addr is different than perm_addr */
5345 if (mac_addr
== perm_addr
)
5348 /* check if the mac already preset in CAM */
5349 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5350 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5351 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5354 if (tmp64
== mac_addr
) {
5356 "MAC addr:0x%llx already present in CAM\n",
5357 (unsigned long long)mac_addr
);
5361 if (i
== config
->max_mac_addr
) {
5362 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5365 /* Update the internal structure with this new mac address */
5366 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5368 return do_s2io_add_mac(sp
, mac_addr
, i
);
5372 * s2io_ethtool_sset - Sets different link parameters.
5373 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5374 * @info: pointer to the structure with parameters given by ethtool to set
5377 * The function sets different link parameters provided by the user onto
5383 static int s2io_ethtool_sset(struct net_device
*dev
,
5384 struct ethtool_cmd
*info
)
5386 struct s2io_nic
*sp
= netdev_priv(dev
);
5387 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5388 (info
->speed
!= SPEED_10000
) ||
5389 (info
->duplex
!= DUPLEX_FULL
))
5392 s2io_close(sp
->dev
);
5400 * s2io_ethtol_gset - Return link specific information.
5401 * @sp : private member of the device structure, pointer to the
5402 * s2io_nic structure.
5403 * @info : pointer to the structure with parameters given by ethtool
5404 * to return link information.
5406 * Returns link specific information like speed, duplex etc.. to ethtool.
5408 * return 0 on success.
5411 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5413 struct s2io_nic
*sp
= netdev_priv(dev
);
5414 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5415 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5416 info
->port
= PORT_FIBRE
;
5418 /* info->transceiver */
5419 info
->transceiver
= XCVR_EXTERNAL
;
5421 if (netif_carrier_ok(sp
->dev
)) {
5422 info
->speed
= 10000;
5423 info
->duplex
= DUPLEX_FULL
;
5429 info
->autoneg
= AUTONEG_DISABLE
;
5434 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5435 * @sp : private member of the device structure, which is a pointer to the
5436 * s2io_nic structure.
5437 * @info : pointer to the structure with parameters given by ethtool to
5438 * return driver information.
5440 * Returns driver specefic information like name, version etc.. to ethtool.
5445 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5446 struct ethtool_drvinfo
*info
)
5448 struct s2io_nic
*sp
= netdev_priv(dev
);
5450 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5451 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5452 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
5453 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5454 info
->regdump_len
= XENA_REG_SPACE
;
5455 info
->eedump_len
= XENA_EEPROM_SPACE
;
5459 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5460 * @sp: private member of the device structure, which is a pointer to the
5461 * s2io_nic structure.
5462 * @regs : pointer to the structure with parameters given by ethtool for
5463 * dumping the registers.
5464 * @reg_space: The input argumnet into which all the registers are dumped.
5466 * Dumps the entire register space of xFrame NIC into the user given
5472 static void s2io_ethtool_gregs(struct net_device
*dev
,
5473 struct ethtool_regs
*regs
, void *space
)
5477 u8
*reg_space
= (u8
*)space
;
5478 struct s2io_nic
*sp
= netdev_priv(dev
);
5480 regs
->len
= XENA_REG_SPACE
;
5481 regs
->version
= sp
->pdev
->subsystem_device
;
5483 for (i
= 0; i
< regs
->len
; i
+= 8) {
5484 reg
= readq(sp
->bar0
+ i
);
5485 memcpy((reg_space
+ i
), ®
, 8);
5490 * s2io_phy_id - timer function that alternates adapter LED.
5491 * @data : address of the private member of the device structure, which
5492 * is a pointer to the s2io_nic structure, provided as an u32.
5493 * Description: This is actually the timer function that alternates the
5494 * adapter LED bit of the adapter control bit to set/reset every time on
5495 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5496 * once every second.
5498 static void s2io_phy_id(unsigned long data
)
5500 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
5501 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5505 subid
= sp
->pdev
->subsystem_device
;
5506 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5507 ((subid
& 0xFF) >= 0x07)) {
5508 val64
= readq(&bar0
->gpio_control
);
5509 val64
^= GPIO_CTRL_GPIO_0
;
5510 writeq(val64
, &bar0
->gpio_control
);
5512 val64
= readq(&bar0
->adapter_control
);
5513 val64
^= ADAPTER_LED_ON
;
5514 writeq(val64
, &bar0
->adapter_control
);
5517 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
5521 * s2io_ethtool_idnic - To physically identify the nic on the system.
5522 * @sp : private member of the device structure, which is a pointer to the
5523 * s2io_nic structure.
5524 * @id : pointer to the structure with identification parameters given by
5526 * Description: Used to physically identify the NIC on the system.
5527 * The Link LED will blink for a time specified by the user for
5529 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5530 * identification is possible only if it's link is up.
5532 * int , returns 0 on success
5535 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
5537 u64 val64
= 0, last_gpio_ctrl_val
;
5538 struct s2io_nic
*sp
= netdev_priv(dev
);
5539 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5542 subid
= sp
->pdev
->subsystem_device
;
5543 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5544 if ((sp
->device_type
== XFRAME_I_DEVICE
) && ((subid
& 0xFF) < 0x07)) {
5545 val64
= readq(&bar0
->adapter_control
);
5546 if (!(val64
& ADAPTER_CNTL_EN
)) {
5547 pr_err("Adapter Link down, cannot blink LED\n");
5551 if (sp
->id_timer
.function
== NULL
) {
5552 init_timer(&sp
->id_timer
);
5553 sp
->id_timer
.function
= s2io_phy_id
;
5554 sp
->id_timer
.data
= (unsigned long)sp
;
5556 mod_timer(&sp
->id_timer
, jiffies
);
5558 msleep_interruptible(data
* HZ
);
5560 msleep_interruptible(MAX_FLICKER_TIME
);
5561 del_timer_sync(&sp
->id_timer
);
5563 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
5564 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
5565 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5571 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5572 struct ethtool_ringparam
*ering
)
5574 struct s2io_nic
*sp
= netdev_priv(dev
);
5575 int i
, tx_desc_count
= 0, rx_desc_count
= 0;
5577 if (sp
->rxd_mode
== RXD_MODE_1
)
5578 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5579 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5580 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5582 ering
->tx_max_pending
= MAX_TX_DESC
;
5583 for (i
= 0 ; i
< sp
->config
.tx_fifo_num
; i
++)
5584 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5586 DBG_PRINT(INFO_DBG
, "max txds: %d\n", sp
->config
.max_txds
);
5587 ering
->tx_pending
= tx_desc_count
;
5589 for (i
= 0 ; i
< sp
->config
.rx_ring_num
; i
++)
5590 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5592 ering
->rx_pending
= rx_desc_count
;
5594 ering
->rx_mini_max_pending
= 0;
5595 ering
->rx_mini_pending
= 0;
5596 if (sp
->rxd_mode
== RXD_MODE_1
)
5597 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5598 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5599 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5600 ering
->rx_jumbo_pending
= rx_desc_count
;
5604 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5605 * @sp : private member of the device structure, which is a pointer to the
5606 * s2io_nic structure.
5607 * @ep : pointer to the structure with pause parameters given by ethtool.
5609 * Returns the Pause frame generation and reception capability of the NIC.
5613 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5614 struct ethtool_pauseparam
*ep
)
5617 struct s2io_nic
*sp
= netdev_priv(dev
);
5618 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5620 val64
= readq(&bar0
->rmac_pause_cfg
);
5621 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5622 ep
->tx_pause
= true;
5623 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5624 ep
->rx_pause
= true;
5625 ep
->autoneg
= false;
5629 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5630 * @sp : private member of the device structure, which is a pointer to the
5631 * s2io_nic structure.
5632 * @ep : pointer to the structure with pause parameters given by ethtool.
5634 * It can be used to set or reset Pause frame generation or reception
5635 * support of the NIC.
5637 * int, returns 0 on Success
5640 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5641 struct ethtool_pauseparam
*ep
)
5644 struct s2io_nic
*sp
= netdev_priv(dev
);
5645 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5647 val64
= readq(&bar0
->rmac_pause_cfg
);
5649 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5651 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5653 val64
|= RMAC_PAUSE_RX_ENABLE
;
5655 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5656 writeq(val64
, &bar0
->rmac_pause_cfg
);
5661 * read_eeprom - reads 4 bytes of data from user given offset.
5662 * @sp : private member of the device structure, which is a pointer to the
5663 * s2io_nic structure.
5664 * @off : offset at which the data must be written
5665 * @data : Its an output parameter where the data read at the given
5668 * Will read 4 bytes of data from the user given offset and return the
5670 * NOTE: Will allow to read only part of the EEPROM visible through the
5673 * -1 on failure and 0 on success.
5676 #define S2IO_DEV_ID 5
5677 static int read_eeprom(struct s2io_nic
*sp
, int off
, u64
*data
)
5682 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5684 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5685 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5686 I2C_CONTROL_ADDR(off
) |
5687 I2C_CONTROL_BYTE_CNT(0x3) |
5689 I2C_CONTROL_CNTL_START
;
5690 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5692 while (exit_cnt
< 5) {
5693 val64
= readq(&bar0
->i2c_control
);
5694 if (I2C_CONTROL_CNTL_END(val64
)) {
5695 *data
= I2C_CONTROL_GET_DATA(val64
);
5704 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5705 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5706 SPI_CONTROL_BYTECNT(0x3) |
5707 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5708 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5709 val64
|= SPI_CONTROL_REQ
;
5710 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5711 while (exit_cnt
< 5) {
5712 val64
= readq(&bar0
->spi_control
);
5713 if (val64
& SPI_CONTROL_NACK
) {
5716 } else if (val64
& SPI_CONTROL_DONE
) {
5717 *data
= readq(&bar0
->spi_data
);
5730 * write_eeprom - actually writes the relevant part of the data value.
5731 * @sp : private member of the device structure, which is a pointer to the
5732 * s2io_nic structure.
5733 * @off : offset at which the data must be written
5734 * @data : The data that is to be written
5735 * @cnt : Number of bytes of the data that are actually to be written into
5736 * the Eeprom. (max of 3)
5738 * Actually writes the relevant part of the data value into the Eeprom
5739 * through the I2C bus.
5741 * 0 on success, -1 on failure.
5744 static int write_eeprom(struct s2io_nic
*sp
, int off
, u64 data
, int cnt
)
5746 int exit_cnt
= 0, ret
= -1;
5748 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5750 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5751 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5752 I2C_CONTROL_ADDR(off
) |
5753 I2C_CONTROL_BYTE_CNT(cnt
) |
5754 I2C_CONTROL_SET_DATA((u32
)data
) |
5755 I2C_CONTROL_CNTL_START
;
5756 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5758 while (exit_cnt
< 5) {
5759 val64
= readq(&bar0
->i2c_control
);
5760 if (I2C_CONTROL_CNTL_END(val64
)) {
5761 if (!(val64
& I2C_CONTROL_NACK
))
5770 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5771 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5772 writeq(SPI_DATA_WRITE(data
, (cnt
<< 3)), &bar0
->spi_data
);
5774 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5775 SPI_CONTROL_BYTECNT(write_cnt
) |
5776 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5777 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5778 val64
|= SPI_CONTROL_REQ
;
5779 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5780 while (exit_cnt
< 5) {
5781 val64
= readq(&bar0
->spi_control
);
5782 if (val64
& SPI_CONTROL_NACK
) {
5785 } else if (val64
& SPI_CONTROL_DONE
) {
5795 static void s2io_vpd_read(struct s2io_nic
*nic
)
5799 int i
= 0, cnt
, len
, fail
= 0;
5800 int vpd_addr
= 0x80;
5801 struct swStat
*swstats
= &nic
->mac_control
.stats_info
->sw_stat
;
5803 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5804 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5807 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5810 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5812 vpd_data
= kmalloc(256, GFP_KERNEL
);
5814 swstats
->mem_alloc_fail_cnt
++;
5817 swstats
->mem_allocated
+= 256;
5819 for (i
= 0; i
< 256; i
+= 4) {
5820 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5821 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5822 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5823 for (cnt
= 0; cnt
< 5; cnt
++) {
5825 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5830 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5834 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5835 (u32
*)&vpd_data
[i
]);
5839 /* read serial number of adapter */
5840 for (cnt
= 0; cnt
< 252; cnt
++) {
5841 if ((vpd_data
[cnt
] == 'S') &&
5842 (vpd_data
[cnt
+1] == 'N')) {
5843 len
= vpd_data
[cnt
+2];
5844 if (len
< min(VPD_STRING_LEN
, 256-cnt
-2)) {
5845 memcpy(nic
->serial_num
,
5848 memset(nic
->serial_num
+len
,
5850 VPD_STRING_LEN
-len
);
5857 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5859 memcpy(nic
->product_name
, &vpd_data
[3], len
);
5860 nic
->product_name
[len
] = 0;
5863 swstats
->mem_freed
+= 256;
5867 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5868 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5869 * @eeprom : pointer to the user level structure provided by ethtool,
5870 * containing all relevant information.
5871 * @data_buf : user defined value to be written into Eeprom.
5872 * Description: Reads the values stored in the Eeprom at given offset
5873 * for a given length. Stores these values int the input argument data
5874 * buffer 'data_buf' and returns these to the caller (ethtool.)
5879 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5880 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5884 struct s2io_nic
*sp
= netdev_priv(dev
);
5886 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5888 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5889 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5891 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5892 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5893 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5897 memcpy((data_buf
+ i
), &valid
, 4);
5903 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5904 * @sp : private member of the device structure, which is a pointer to the
5905 * s2io_nic structure.
5906 * @eeprom : pointer to the user level structure provided by ethtool,
5907 * containing all relevant information.
5908 * @data_buf ; user defined value to be written into Eeprom.
5910 * Tries to write the user provided value in the Eeprom, at the offset
5911 * given by the user.
5913 * 0 on success, -EFAULT on failure.
5916 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5917 struct ethtool_eeprom
*eeprom
,
5920 int len
= eeprom
->len
, cnt
= 0;
5921 u64 valid
= 0, data
;
5922 struct s2io_nic
*sp
= netdev_priv(dev
);
5924 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5926 "ETHTOOL_WRITE_EEPROM Err: "
5927 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5928 (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16)),
5934 data
= (u32
)data_buf
[cnt
] & 0x000000FF;
5936 valid
= (u32
)(data
<< 24);
5940 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5942 "ETHTOOL_WRITE_EEPROM Err: "
5943 "Cannot write into the specified offset\n");
5954 * s2io_register_test - reads and writes into all clock domains.
5955 * @sp : private member of the device structure, which is a pointer to the
5956 * s2io_nic structure.
5957 * @data : variable that returns the result of each of the test conducted b
5960 * Read and write into all clock domains. The NIC has 3 clock domains,
5961 * see that registers in all the three regions are accessible.
5966 static int s2io_register_test(struct s2io_nic
*sp
, uint64_t *data
)
5968 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5969 u64 val64
= 0, exp_val
;
5972 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5973 if (val64
!= 0x123456789abcdefULL
) {
5975 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 1);
5978 val64
= readq(&bar0
->rmac_pause_cfg
);
5979 if (val64
!= 0xc000ffff00000000ULL
) {
5981 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 2);
5984 val64
= readq(&bar0
->rx_queue_cfg
);
5985 if (sp
->device_type
== XFRAME_II_DEVICE
)
5986 exp_val
= 0x0404040404040404ULL
;
5988 exp_val
= 0x0808080808080808ULL
;
5989 if (val64
!= exp_val
) {
5991 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 3);
5994 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5995 if (val64
!= 0x000000001923141EULL
) {
5997 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 4);
6000 val64
= 0x5A5A5A5A5A5A5A5AULL
;
6001 writeq(val64
, &bar0
->xmsi_data
);
6002 val64
= readq(&bar0
->xmsi_data
);
6003 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
6005 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 1);
6008 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
6009 writeq(val64
, &bar0
->xmsi_data
);
6010 val64
= readq(&bar0
->xmsi_data
);
6011 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
6013 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 2);
6021 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
6022 * @sp : private member of the device structure, which is a pointer to the
6023 * s2io_nic structure.
6024 * @data:variable that returns the result of each of the test conducted by
6027 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
6033 static int s2io_eeprom_test(struct s2io_nic
*sp
, uint64_t *data
)
6036 u64 ret_data
, org_4F0
, org_7F0
;
6037 u8 saved_4F0
= 0, saved_7F0
= 0;
6038 struct net_device
*dev
= sp
->dev
;
6040 /* Test Write Error at offset 0 */
6041 /* Note that SPI interface allows write access to all areas
6042 * of EEPROM. Hence doing all negative testing only for Xframe I.
6044 if (sp
->device_type
== XFRAME_I_DEVICE
)
6045 if (!write_eeprom(sp
, 0, 0, 3))
6048 /* Save current values at offsets 0x4F0 and 0x7F0 */
6049 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
6051 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
6054 /* Test Write at offset 4f0 */
6055 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
6057 if (read_eeprom(sp
, 0x4F0, &ret_data
))
6060 if (ret_data
!= 0x012345) {
6061 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
6062 "Data written %llx Data read %llx\n",
6063 dev
->name
, (unsigned long long)0x12345,
6064 (unsigned long long)ret_data
);
6068 /* Reset the EEPROM data go FFFF */
6069 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
6071 /* Test Write Request Error at offset 0x7c */
6072 if (sp
->device_type
== XFRAME_I_DEVICE
)
6073 if (!write_eeprom(sp
, 0x07C, 0, 3))
6076 /* Test Write Request at offset 0x7f0 */
6077 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
6079 if (read_eeprom(sp
, 0x7F0, &ret_data
))
6082 if (ret_data
!= 0x012345) {
6083 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
6084 "Data written %llx Data read %llx\n",
6085 dev
->name
, (unsigned long long)0x12345,
6086 (unsigned long long)ret_data
);
6090 /* Reset the EEPROM data go FFFF */
6091 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
6093 if (sp
->device_type
== XFRAME_I_DEVICE
) {
6094 /* Test Write Error at offset 0x80 */
6095 if (!write_eeprom(sp
, 0x080, 0, 3))
6098 /* Test Write Error at offset 0xfc */
6099 if (!write_eeprom(sp
, 0x0FC, 0, 3))
6102 /* Test Write Error at offset 0x100 */
6103 if (!write_eeprom(sp
, 0x100, 0, 3))
6106 /* Test Write Error at offset 4ec */
6107 if (!write_eeprom(sp
, 0x4EC, 0, 3))
6111 /* Restore values at offsets 0x4F0 and 0x7F0 */
6113 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
6115 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6122 * s2io_bist_test - invokes the MemBist test of the card .
6123 * @sp : private member of the device structure, which is a pointer to the
6124 * s2io_nic structure.
6125 * @data:variable that returns the result of each of the test conducted by
6128 * This invokes the MemBist test of the card. We give around
6129 * 2 secs time for the Test to complete. If it's still not complete
6130 * within this peiod, we consider that the test failed.
6132 * 0 on success and -1 on failure.
6135 static int s2io_bist_test(struct s2io_nic
*sp
, uint64_t *data
)
6138 int cnt
= 0, ret
= -1;
6140 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6141 bist
|= PCI_BIST_START
;
6142 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6145 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6146 if (!(bist
& PCI_BIST_START
)) {
6147 *data
= (bist
& PCI_BIST_CODE_MASK
);
6159 * s2io-link_test - verifies the link state of the nic
6160 * @sp ; private member of the device structure, which is a pointer to the
6161 * s2io_nic structure.
6162 * @data: variable that returns the result of each of the test conducted by
6165 * The function verifies the link state of the NIC and updates the input
6166 * argument 'data' appropriately.
6171 static int s2io_link_test(struct s2io_nic
*sp
, uint64_t *data
)
6173 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6176 val64
= readq(&bar0
->adapter_status
);
6177 if (!(LINK_IS_UP(val64
)))
6186 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6187 * @sp - private member of the device structure, which is a pointer to the
6188 * s2io_nic structure.
6189 * @data - variable that returns the result of each of the test
6190 * conducted by the driver.
6192 * This is one of the offline test that tests the read and write
6193 * access to the RldRam chip on the NIC.
6198 static int s2io_rldram_test(struct s2io_nic
*sp
, uint64_t *data
)
6200 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6202 int cnt
, iteration
= 0, test_fail
= 0;
6204 val64
= readq(&bar0
->adapter_control
);
6205 val64
&= ~ADAPTER_ECC_EN
;
6206 writeq(val64
, &bar0
->adapter_control
);
6208 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6209 val64
|= MC_RLDRAM_TEST_MODE
;
6210 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6212 val64
= readq(&bar0
->mc_rldram_mrs
);
6213 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6214 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6216 val64
|= MC_RLDRAM_MRS_ENABLE
;
6217 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6219 while (iteration
< 2) {
6220 val64
= 0x55555555aaaa0000ULL
;
6222 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6223 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6225 val64
= 0xaaaa5a5555550000ULL
;
6227 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6228 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6230 val64
= 0x55aaaaaaaa5a0000ULL
;
6232 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6233 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6235 val64
= (u64
) (0x0000003ffffe0100ULL
);
6236 writeq(val64
, &bar0
->mc_rldram_test_add
);
6238 val64
= MC_RLDRAM_TEST_MODE
|
6239 MC_RLDRAM_TEST_WRITE
|
6241 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6243 for (cnt
= 0; cnt
< 5; cnt
++) {
6244 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6245 if (val64
& MC_RLDRAM_TEST_DONE
)
6253 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6254 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6256 for (cnt
= 0; cnt
< 5; cnt
++) {
6257 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6258 if (val64
& MC_RLDRAM_TEST_DONE
)
6266 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6267 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6275 /* Bring the adapter out of test mode */
6276 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6282 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6283 * @sp : private member of the device structure, which is a pointer to the
6284 * s2io_nic structure.
6285 * @ethtest : pointer to a ethtool command specific structure that will be
6286 * returned to the user.
6287 * @data : variable that returns the result of each of the test
6288 * conducted by the driver.
6290 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6291 * the health of the card.
6296 static void s2io_ethtool_test(struct net_device
*dev
,
6297 struct ethtool_test
*ethtest
,
6300 struct s2io_nic
*sp
= netdev_priv(dev
);
6301 int orig_state
= netif_running(sp
->dev
);
6303 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6304 /* Offline Tests. */
6306 s2io_close(sp
->dev
);
6308 if (s2io_register_test(sp
, &data
[0]))
6309 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6313 if (s2io_rldram_test(sp
, &data
[3]))
6314 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6318 if (s2io_eeprom_test(sp
, &data
[1]))
6319 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6321 if (s2io_bist_test(sp
, &data
[4]))
6322 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6331 DBG_PRINT(ERR_DBG
, "%s: is not up, cannot run test\n",
6340 if (s2io_link_test(sp
, &data
[2]))
6341 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6350 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6351 struct ethtool_stats
*estats
,
6355 struct s2io_nic
*sp
= netdev_priv(dev
);
6356 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
6357 struct swStat
*swstats
= &stats
->sw_stat
;
6358 struct xpakStat
*xstats
= &stats
->xpak_stat
;
6360 s2io_updt_stats(sp
);
6362 (u64
)le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
6363 le32_to_cpu(stats
->tmac_frms
);
6365 (u64
)le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
6366 le32_to_cpu(stats
->tmac_data_octets
);
6367 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_drop_frms
);
6369 (u64
)le32_to_cpu(stats
->tmac_mcst_frms_oflow
) << 32 |
6370 le32_to_cpu(stats
->tmac_mcst_frms
);
6372 (u64
)le32_to_cpu(stats
->tmac_bcst_frms_oflow
) << 32 |
6373 le32_to_cpu(stats
->tmac_bcst_frms
);
6374 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_pause_ctrl_frms
);
6376 (u64
)le32_to_cpu(stats
->tmac_ttl_octets_oflow
) << 32 |
6377 le32_to_cpu(stats
->tmac_ttl_octets
);
6379 (u64
)le32_to_cpu(stats
->tmac_ucst_frms_oflow
) << 32 |
6380 le32_to_cpu(stats
->tmac_ucst_frms
);
6382 (u64
)le32_to_cpu(stats
->tmac_nucst_frms_oflow
) << 32 |
6383 le32_to_cpu(stats
->tmac_nucst_frms
);
6385 (u64
)le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
6386 le32_to_cpu(stats
->tmac_any_err_frms
);
6387 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_ttl_less_fb_octets
);
6388 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_vld_ip_octets
);
6390 (u64
)le32_to_cpu(stats
->tmac_vld_ip_oflow
) << 32 |
6391 le32_to_cpu(stats
->tmac_vld_ip
);
6393 (u64
)le32_to_cpu(stats
->tmac_drop_ip_oflow
) << 32 |
6394 le32_to_cpu(stats
->tmac_drop_ip
);
6396 (u64
)le32_to_cpu(stats
->tmac_icmp_oflow
) << 32 |
6397 le32_to_cpu(stats
->tmac_icmp
);
6399 (u64
)le32_to_cpu(stats
->tmac_rst_tcp_oflow
) << 32 |
6400 le32_to_cpu(stats
->tmac_rst_tcp
);
6401 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_tcp
);
6402 tmp_stats
[i
++] = (u64
)le32_to_cpu(stats
->tmac_udp_oflow
) << 32 |
6403 le32_to_cpu(stats
->tmac_udp
);
6405 (u64
)le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
6406 le32_to_cpu(stats
->rmac_vld_frms
);
6408 (u64
)le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
6409 le32_to_cpu(stats
->rmac_data_octets
);
6410 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_fcs_err_frms
);
6411 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_drop_frms
);
6413 (u64
)le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
6414 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
6416 (u64
)le32_to_cpu(stats
->rmac_vld_bcst_frms_oflow
) << 32 |
6417 le32_to_cpu(stats
->rmac_vld_bcst_frms
);
6418 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_in_rng_len_err_frms
);
6419 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_out_rng_len_err_frms
);
6420 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_long_frms
);
6421 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
6422 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_unsup_ctrl_frms
);
6424 (u64
)le32_to_cpu(stats
->rmac_ttl_octets_oflow
) << 32 |
6425 le32_to_cpu(stats
->rmac_ttl_octets
);
6427 (u64
)le32_to_cpu(stats
->rmac_accepted_ucst_frms_oflow
) << 32
6428 | le32_to_cpu(stats
->rmac_accepted_ucst_frms
);
6430 (u64
)le32_to_cpu(stats
->rmac_accepted_nucst_frms_oflow
)
6431 << 32 | le32_to_cpu(stats
->rmac_accepted_nucst_frms
);
6433 (u64
)le32_to_cpu(stats
->rmac_discarded_frms_oflow
) << 32 |
6434 le32_to_cpu(stats
->rmac_discarded_frms
);
6436 (u64
)le32_to_cpu(stats
->rmac_drop_events_oflow
)
6437 << 32 | le32_to_cpu(stats
->rmac_drop_events
);
6438 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_less_fb_octets
);
6439 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_frms
);
6441 (u64
)le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
6442 le32_to_cpu(stats
->rmac_usized_frms
);
6444 (u64
)le32_to_cpu(stats
->rmac_osized_frms_oflow
) << 32 |
6445 le32_to_cpu(stats
->rmac_osized_frms
);
6447 (u64
)le32_to_cpu(stats
->rmac_frag_frms_oflow
) << 32 |
6448 le32_to_cpu(stats
->rmac_frag_frms
);
6450 (u64
)le32_to_cpu(stats
->rmac_jabber_frms_oflow
) << 32 |
6451 le32_to_cpu(stats
->rmac_jabber_frms
);
6452 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_64_frms
);
6453 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_65_127_frms
);
6454 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_128_255_frms
);
6455 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_256_511_frms
);
6456 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_512_1023_frms
);
6457 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_1024_1518_frms
);
6459 (u64
)le32_to_cpu(stats
->rmac_ip_oflow
) << 32 |
6460 le32_to_cpu(stats
->rmac_ip
);
6461 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ip_octets
);
6462 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_hdr_err_ip
);
6464 (u64
)le32_to_cpu(stats
->rmac_drop_ip_oflow
) << 32 |
6465 le32_to_cpu(stats
->rmac_drop_ip
);
6467 (u64
)le32_to_cpu(stats
->rmac_icmp_oflow
) << 32 |
6468 le32_to_cpu(stats
->rmac_icmp
);
6469 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_tcp
);
6471 (u64
)le32_to_cpu(stats
->rmac_udp_oflow
) << 32 |
6472 le32_to_cpu(stats
->rmac_udp
);
6474 (u64
)le32_to_cpu(stats
->rmac_err_drp_udp_oflow
) << 32 |
6475 le32_to_cpu(stats
->rmac_err_drp_udp
);
6476 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_err_sym
);
6477 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q0
);
6478 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q1
);
6479 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q2
);
6480 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q3
);
6481 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q4
);
6482 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q5
);
6483 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q6
);
6484 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q7
);
6485 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q0
);
6486 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q1
);
6487 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q2
);
6488 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q3
);
6489 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q4
);
6490 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q5
);
6491 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q6
);
6492 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q7
);
6494 (u64
)le32_to_cpu(stats
->rmac_pause_cnt_oflow
) << 32 |
6495 le32_to_cpu(stats
->rmac_pause_cnt
);
6496 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_data_err_cnt
);
6497 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_ctrl_err_cnt
);
6499 (u64
)le32_to_cpu(stats
->rmac_accepted_ip_oflow
) << 32 |
6500 le32_to_cpu(stats
->rmac_accepted_ip
);
6501 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_err_tcp
);
6502 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_req_cnt
);
6503 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_cnt
);
6504 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_rtry_cnt
);
6505 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_cnt
);
6506 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_rd_ack_cnt
);
6507 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_req_cnt
);
6508 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_cnt
);
6509 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_rtry_cnt
);
6510 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_cnt
);
6511 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_disc_cnt
);
6512 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_wr_ack_cnt
);
6513 tmp_stats
[i
++] = le32_to_cpu(stats
->txp_wr_cnt
);
6514 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_rd_cnt
);
6515 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_wr_cnt
);
6516 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_rd_cnt
);
6517 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_wr_cnt
);
6518 tmp_stats
[i
++] = le32_to_cpu(stats
->txf_rd_cnt
);
6519 tmp_stats
[i
++] = le32_to_cpu(stats
->rxf_wr_cnt
);
6521 /* Enhanced statistics exist only for Hercules */
6522 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6524 le64_to_cpu(stats
->rmac_ttl_1519_4095_frms
);
6526 le64_to_cpu(stats
->rmac_ttl_4096_8191_frms
);
6528 le64_to_cpu(stats
->rmac_ttl_8192_max_frms
);
6529 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_gt_max_frms
);
6530 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_osized_alt_frms
);
6531 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_jabber_alt_frms
);
6532 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_gt_max_alt_frms
);
6533 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_vlan_frms
);
6534 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_len_discard
);
6535 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_fcs_discard
);
6536 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_pf_discard
);
6537 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_da_discard
);
6538 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_red_discard
);
6539 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_rts_discard
);
6540 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_ingm_full_discard
);
6541 tmp_stats
[i
++] = le32_to_cpu(stats
->link_fault_cnt
);
6545 tmp_stats
[i
++] = swstats
->single_ecc_errs
;
6546 tmp_stats
[i
++] = swstats
->double_ecc_errs
;
6547 tmp_stats
[i
++] = swstats
->parity_err_cnt
;
6548 tmp_stats
[i
++] = swstats
->serious_err_cnt
;
6549 tmp_stats
[i
++] = swstats
->soft_reset_cnt
;
6550 tmp_stats
[i
++] = swstats
->fifo_full_cnt
;
6551 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6552 tmp_stats
[i
++] = swstats
->ring_full_cnt
[k
];
6553 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_high
;
6554 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_low
;
6555 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_high
;
6556 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_low
;
6557 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_high
;
6558 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_low
;
6559 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_high
;
6560 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_low
;
6561 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_high
;
6562 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_low
;
6563 tmp_stats
[i
++] = xstats
->warn_laser_output_power_high
;
6564 tmp_stats
[i
++] = xstats
->warn_laser_output_power_low
;
6565 tmp_stats
[i
++] = swstats
->clubbed_frms_cnt
;
6566 tmp_stats
[i
++] = swstats
->sending_both
;
6567 tmp_stats
[i
++] = swstats
->outof_sequence_pkts
;
6568 tmp_stats
[i
++] = swstats
->flush_max_pkts
;
6569 if (swstats
->num_aggregations
) {
6570 u64 tmp
= swstats
->sum_avg_pkts_aggregated
;
6573 * Since 64-bit divide does not work on all platforms,
6574 * do repeated subtraction.
6576 while (tmp
>= swstats
->num_aggregations
) {
6577 tmp
-= swstats
->num_aggregations
;
6580 tmp_stats
[i
++] = count
;
6583 tmp_stats
[i
++] = swstats
->mem_alloc_fail_cnt
;
6584 tmp_stats
[i
++] = swstats
->pci_map_fail_cnt
;
6585 tmp_stats
[i
++] = swstats
->watchdog_timer_cnt
;
6586 tmp_stats
[i
++] = swstats
->mem_allocated
;
6587 tmp_stats
[i
++] = swstats
->mem_freed
;
6588 tmp_stats
[i
++] = swstats
->link_up_cnt
;
6589 tmp_stats
[i
++] = swstats
->link_down_cnt
;
6590 tmp_stats
[i
++] = swstats
->link_up_time
;
6591 tmp_stats
[i
++] = swstats
->link_down_time
;
6593 tmp_stats
[i
++] = swstats
->tx_buf_abort_cnt
;
6594 tmp_stats
[i
++] = swstats
->tx_desc_abort_cnt
;
6595 tmp_stats
[i
++] = swstats
->tx_parity_err_cnt
;
6596 tmp_stats
[i
++] = swstats
->tx_link_loss_cnt
;
6597 tmp_stats
[i
++] = swstats
->tx_list_proc_err_cnt
;
6599 tmp_stats
[i
++] = swstats
->rx_parity_err_cnt
;
6600 tmp_stats
[i
++] = swstats
->rx_abort_cnt
;
6601 tmp_stats
[i
++] = swstats
->rx_parity_abort_cnt
;
6602 tmp_stats
[i
++] = swstats
->rx_rda_fail_cnt
;
6603 tmp_stats
[i
++] = swstats
->rx_unkn_prot_cnt
;
6604 tmp_stats
[i
++] = swstats
->rx_fcs_err_cnt
;
6605 tmp_stats
[i
++] = swstats
->rx_buf_size_err_cnt
;
6606 tmp_stats
[i
++] = swstats
->rx_rxd_corrupt_cnt
;
6607 tmp_stats
[i
++] = swstats
->rx_unkn_err_cnt
;
6608 tmp_stats
[i
++] = swstats
->tda_err_cnt
;
6609 tmp_stats
[i
++] = swstats
->pfc_err_cnt
;
6610 tmp_stats
[i
++] = swstats
->pcc_err_cnt
;
6611 tmp_stats
[i
++] = swstats
->tti_err_cnt
;
6612 tmp_stats
[i
++] = swstats
->tpa_err_cnt
;
6613 tmp_stats
[i
++] = swstats
->sm_err_cnt
;
6614 tmp_stats
[i
++] = swstats
->lso_err_cnt
;
6615 tmp_stats
[i
++] = swstats
->mac_tmac_err_cnt
;
6616 tmp_stats
[i
++] = swstats
->mac_rmac_err_cnt
;
6617 tmp_stats
[i
++] = swstats
->xgxs_txgxs_err_cnt
;
6618 tmp_stats
[i
++] = swstats
->xgxs_rxgxs_err_cnt
;
6619 tmp_stats
[i
++] = swstats
->rc_err_cnt
;
6620 tmp_stats
[i
++] = swstats
->prc_pcix_err_cnt
;
6621 tmp_stats
[i
++] = swstats
->rpa_err_cnt
;
6622 tmp_stats
[i
++] = swstats
->rda_err_cnt
;
6623 tmp_stats
[i
++] = swstats
->rti_err_cnt
;
6624 tmp_stats
[i
++] = swstats
->mc_err_cnt
;
6627 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6629 return XENA_REG_SPACE
;
6633 static u32
s2io_ethtool_get_rx_csum(struct net_device
*dev
)
6635 struct s2io_nic
*sp
= netdev_priv(dev
);
6640 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
6642 struct s2io_nic
*sp
= netdev_priv(dev
);
6652 static int s2io_get_eeprom_len(struct net_device
*dev
)
6654 return XENA_EEPROM_SPACE
;
6657 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6659 struct s2io_nic
*sp
= netdev_priv(dev
);
6663 return S2IO_TEST_LEN
;
6665 switch (sp
->device_type
) {
6666 case XFRAME_I_DEVICE
:
6667 return XFRAME_I_STAT_LEN
;
6668 case XFRAME_II_DEVICE
:
6669 return XFRAME_II_STAT_LEN
;
6678 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6679 u32 stringset
, u8
*data
)
6682 struct s2io_nic
*sp
= netdev_priv(dev
);
6684 switch (stringset
) {
6686 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6689 stat_size
= sizeof(ethtool_xena_stats_keys
);
6690 memcpy(data
, ðtool_xena_stats_keys
, stat_size
);
6691 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6692 memcpy(data
+ stat_size
,
6693 ðtool_enhanced_stats_keys
,
6694 sizeof(ethtool_enhanced_stats_keys
));
6695 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6698 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6699 sizeof(ethtool_driver_stats_keys
));
6703 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
6706 dev
->features
|= NETIF_F_IP_CSUM
;
6708 dev
->features
&= ~NETIF_F_IP_CSUM
;
6713 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
6715 return (dev
->features
& NETIF_F_TSO
) != 0;
6718 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
6721 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
6723 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
6728 static int s2io_ethtool_set_flags(struct net_device
*dev
, u32 data
)
6730 struct s2io_nic
*sp
= netdev_priv(dev
);
6734 if (data
& ~ETH_FLAG_LRO
)
6737 if (data
& ETH_FLAG_LRO
) {
6739 if (!(dev
->features
& NETIF_F_LRO
)) {
6740 dev
->features
|= NETIF_F_LRO
;
6745 } else if (dev
->features
& NETIF_F_LRO
) {
6746 dev
->features
&= ~NETIF_F_LRO
;
6750 if (changed
&& netif_running(dev
)) {
6751 s2io_stop_all_tx_queue(sp
);
6753 sp
->lro
= !!(dev
->features
& NETIF_F_LRO
);
6754 rc
= s2io_card_up(sp
);
6758 s2io_start_all_tx_queue(sp
);
6764 static const struct ethtool_ops netdev_ethtool_ops
= {
6765 .get_settings
= s2io_ethtool_gset
,
6766 .set_settings
= s2io_ethtool_sset
,
6767 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6768 .get_regs_len
= s2io_ethtool_get_regs_len
,
6769 .get_regs
= s2io_ethtool_gregs
,
6770 .get_link
= ethtool_op_get_link
,
6771 .get_eeprom_len
= s2io_get_eeprom_len
,
6772 .get_eeprom
= s2io_ethtool_geeprom
,
6773 .set_eeprom
= s2io_ethtool_seeprom
,
6774 .get_ringparam
= s2io_ethtool_gringparam
,
6775 .get_pauseparam
= s2io_ethtool_getpause_data
,
6776 .set_pauseparam
= s2io_ethtool_setpause_data
,
6777 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
6778 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
6779 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
6780 .set_flags
= s2io_ethtool_set_flags
,
6781 .get_flags
= ethtool_op_get_flags
,
6782 .set_sg
= ethtool_op_set_sg
,
6783 .get_tso
= s2io_ethtool_op_get_tso
,
6784 .set_tso
= s2io_ethtool_op_set_tso
,
6785 .set_ufo
= ethtool_op_set_ufo
,
6786 .self_test
= s2io_ethtool_test
,
6787 .get_strings
= s2io_ethtool_get_strings
,
6788 .phys_id
= s2io_ethtool_idnic
,
6789 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6790 .get_sset_count
= s2io_get_sset_count
,
6794 * s2io_ioctl - Entry point for the Ioctl
6795 * @dev : Device pointer.
6796 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6797 * a proprietary structure used to pass information to the driver.
6798 * @cmd : This is used to distinguish between the different commands that
6799 * can be passed to the IOCTL functions.
6801 * Currently there are no special functionality supported in IOCTL, hence
6802 * function always return EOPNOTSUPPORTED
6805 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6811 * s2io_change_mtu - entry point to change MTU size for the device.
6812 * @dev : device pointer.
6813 * @new_mtu : the new MTU size for the device.
6814 * Description: A driver entry point to change MTU size for the device.
6815 * Before changing the MTU the device must be stopped.
6817 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6821 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6823 struct s2io_nic
*sp
= netdev_priv(dev
);
6826 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6827 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n", dev
->name
);
6832 if (netif_running(dev
)) {
6833 s2io_stop_all_tx_queue(sp
);
6835 ret
= s2io_card_up(sp
);
6837 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6841 s2io_wake_all_tx_queue(sp
);
6842 } else { /* Device is down */
6843 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6844 u64 val64
= new_mtu
;
6846 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6853 * s2io_set_link - Set the LInk status
6854 * @data: long pointer to device private structue
6855 * Description: Sets the link status for the adapter
6858 static void s2io_set_link(struct work_struct
*work
)
6860 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
,
6862 struct net_device
*dev
= nic
->dev
;
6863 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6869 if (!netif_running(dev
))
6872 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6873 /* The card is being reset, no point doing anything */
6877 subid
= nic
->pdev
->subsystem_device
;
6878 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6880 * Allow a small delay for the NICs self initiated
6881 * cleanup to complete.
6886 val64
= readq(&bar0
->adapter_status
);
6887 if (LINK_IS_UP(val64
)) {
6888 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6889 if (verify_xena_quiescence(nic
)) {
6890 val64
= readq(&bar0
->adapter_control
);
6891 val64
|= ADAPTER_CNTL_EN
;
6892 writeq(val64
, &bar0
->adapter_control
);
6893 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6894 nic
->device_type
, subid
)) {
6895 val64
= readq(&bar0
->gpio_control
);
6896 val64
|= GPIO_CTRL_GPIO_0
;
6897 writeq(val64
, &bar0
->gpio_control
);
6898 val64
= readq(&bar0
->gpio_control
);
6900 val64
|= ADAPTER_LED_ON
;
6901 writeq(val64
, &bar0
->adapter_control
);
6903 nic
->device_enabled_once
= true;
6906 "%s: Error: device is not Quiescent\n",
6908 s2io_stop_all_tx_queue(nic
);
6911 val64
= readq(&bar0
->adapter_control
);
6912 val64
|= ADAPTER_LED_ON
;
6913 writeq(val64
, &bar0
->adapter_control
);
6914 s2io_link(nic
, LINK_UP
);
6916 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6918 val64
= readq(&bar0
->gpio_control
);
6919 val64
&= ~GPIO_CTRL_GPIO_0
;
6920 writeq(val64
, &bar0
->gpio_control
);
6921 val64
= readq(&bar0
->gpio_control
);
6924 val64
= readq(&bar0
->adapter_control
);
6925 val64
= val64
& (~ADAPTER_LED_ON
);
6926 writeq(val64
, &bar0
->adapter_control
);
6927 s2io_link(nic
, LINK_DOWN
);
6929 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6935 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6937 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6938 u64
*temp2
, int size
)
6940 struct net_device
*dev
= sp
->dev
;
6941 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6943 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6944 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6947 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6949 * As Rx frame are not going to be processed,
6950 * using same mapped address for the Rxd
6953 rxdp1
->Buffer0_ptr
= *temp0
;
6955 *skb
= dev_alloc_skb(size
);
6958 "%s: Out of memory to allocate %s\n",
6959 dev
->name
, "1 buf mode SKBs");
6960 stats
->mem_alloc_fail_cnt
++;
6963 stats
->mem_allocated
+= (*skb
)->truesize
;
6964 /* storing the mapped addr in a temp variable
6965 * such it will be used for next rxd whose
6966 * Host Control is NULL
6968 rxdp1
->Buffer0_ptr
= *temp0
=
6969 pci_map_single(sp
->pdev
, (*skb
)->data
,
6970 size
- NET_IP_ALIGN
,
6971 PCI_DMA_FROMDEVICE
);
6972 if (pci_dma_mapping_error(sp
->pdev
, rxdp1
->Buffer0_ptr
))
6973 goto memalloc_failed
;
6974 rxdp
->Host_Control
= (unsigned long) (*skb
);
6976 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6977 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6978 /* Two buffer Mode */
6980 rxdp3
->Buffer2_ptr
= *temp2
;
6981 rxdp3
->Buffer0_ptr
= *temp0
;
6982 rxdp3
->Buffer1_ptr
= *temp1
;
6984 *skb
= dev_alloc_skb(size
);
6987 "%s: Out of memory to allocate %s\n",
6990 stats
->mem_alloc_fail_cnt
++;
6993 stats
->mem_allocated
+= (*skb
)->truesize
;
6994 rxdp3
->Buffer2_ptr
= *temp2
=
6995 pci_map_single(sp
->pdev
, (*skb
)->data
,
6997 PCI_DMA_FROMDEVICE
);
6998 if (pci_dma_mapping_error(sp
->pdev
, rxdp3
->Buffer2_ptr
))
6999 goto memalloc_failed
;
7000 rxdp3
->Buffer0_ptr
= *temp0
=
7001 pci_map_single(sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
7002 PCI_DMA_FROMDEVICE
);
7003 if (pci_dma_mapping_error(sp
->pdev
,
7004 rxdp3
->Buffer0_ptr
)) {
7005 pci_unmap_single(sp
->pdev
,
7006 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
7008 PCI_DMA_FROMDEVICE
);
7009 goto memalloc_failed
;
7011 rxdp
->Host_Control
= (unsigned long) (*skb
);
7013 /* Buffer-1 will be dummy buffer not used */
7014 rxdp3
->Buffer1_ptr
= *temp1
=
7015 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
7016 PCI_DMA_FROMDEVICE
);
7017 if (pci_dma_mapping_error(sp
->pdev
,
7018 rxdp3
->Buffer1_ptr
)) {
7019 pci_unmap_single(sp
->pdev
,
7020 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
7021 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
7022 pci_unmap_single(sp
->pdev
,
7023 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
7025 PCI_DMA_FROMDEVICE
);
7026 goto memalloc_failed
;
7033 stats
->pci_map_fail_cnt
++;
7034 stats
->mem_freed
+= (*skb
)->truesize
;
7035 dev_kfree_skb(*skb
);
7039 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
7042 struct net_device
*dev
= sp
->dev
;
7043 if (sp
->rxd_mode
== RXD_MODE_1
) {
7044 rxdp
->Control_2
= SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
7045 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7046 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
7047 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
7048 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
+ 4);
7052 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
7054 int i
, j
, k
, blk_cnt
= 0, size
;
7055 struct config_param
*config
= &sp
->config
;
7056 struct mac_info
*mac_control
= &sp
->mac_control
;
7057 struct net_device
*dev
= sp
->dev
;
7058 struct RxD_t
*rxdp
= NULL
;
7059 struct sk_buff
*skb
= NULL
;
7060 struct buffAdd
*ba
= NULL
;
7061 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
7063 /* Calculate the size based on ring mode */
7064 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
7065 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
7066 if (sp
->rxd_mode
== RXD_MODE_1
)
7067 size
+= NET_IP_ALIGN
;
7068 else if (sp
->rxd_mode
== RXD_MODE_3B
)
7069 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
7071 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7072 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7073 struct ring_info
*ring
= &mac_control
->rings
[i
];
7075 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[sp
->rxd_mode
] + 1);
7077 for (j
= 0; j
< blk_cnt
; j
++) {
7078 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
7079 rxdp
= ring
->rx_blocks
[j
].rxds
[k
].virt_addr
;
7080 if (sp
->rxd_mode
== RXD_MODE_3B
)
7081 ba
= &ring
->ba
[j
][k
];
7082 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
, &skb
,
7090 set_rxd_buffer_size(sp
, rxdp
, size
);
7092 /* flip the Ownership bit to Hardware */
7093 rxdp
->Control_1
|= RXD_OWN_XENA
;
7101 static int s2io_add_isr(struct s2io_nic
*sp
)
7104 struct net_device
*dev
= sp
->dev
;
7107 if (sp
->config
.intr_type
== MSI_X
)
7108 ret
= s2io_enable_msi_x(sp
);
7110 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
7111 sp
->config
.intr_type
= INTA
;
7115 * Store the values of the MSIX table in
7116 * the struct s2io_nic structure
7118 store_xmsi_data(sp
);
7120 /* After proper initialization of H/W, register ISR */
7121 if (sp
->config
.intr_type
== MSI_X
) {
7122 int i
, msix_rx_cnt
= 0;
7124 for (i
= 0; i
< sp
->num_entries
; i
++) {
7125 if (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
) {
7126 if (sp
->s2io_entries
[i
].type
==
7128 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
7130 err
= request_irq(sp
->entries
[i
].vector
,
7131 s2io_msix_ring_handle
,
7134 sp
->s2io_entries
[i
].arg
);
7135 } else if (sp
->s2io_entries
[i
].type
==
7137 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
7139 err
= request_irq(sp
->entries
[i
].vector
,
7140 s2io_msix_fifo_handle
,
7143 sp
->s2io_entries
[i
].arg
);
7146 /* if either data or addr is zero print it. */
7147 if (!(sp
->msix_info
[i
].addr
&&
7148 sp
->msix_info
[i
].data
)) {
7150 "%s @Addr:0x%llx Data:0x%llx\n",
7152 (unsigned long long)
7153 sp
->msix_info
[i
].addr
,
7154 (unsigned long long)
7155 ntohl(sp
->msix_info
[i
].data
));
7159 remove_msix_isr(sp
);
7162 "%s:MSI-X-%d registration "
7163 "failed\n", dev
->name
, i
);
7166 "%s: Defaulting to INTA\n",
7168 sp
->config
.intr_type
= INTA
;
7171 sp
->s2io_entries
[i
].in_use
=
7172 MSIX_REGISTERED_SUCCESS
;
7176 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt
);
7178 "MSI-X-TX entries enabled through alarm vector\n");
7181 if (sp
->config
.intr_type
== INTA
) {
7182 err
= request_irq((int)sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
7185 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7193 static void s2io_rem_isr(struct s2io_nic
*sp
)
7195 if (sp
->config
.intr_type
== MSI_X
)
7196 remove_msix_isr(sp
);
7198 remove_inta_isr(sp
);
7201 static void do_s2io_card_down(struct s2io_nic
*sp
, int do_io
)
7204 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7205 register u64 val64
= 0;
7206 struct config_param
*config
;
7207 config
= &sp
->config
;
7209 if (!is_s2io_card_up(sp
))
7212 del_timer_sync(&sp
->alarm_timer
);
7213 /* If s2io_set_link task is executing, wait till it completes. */
7214 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
)))
7216 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7219 if (sp
->config
.napi
) {
7221 if (config
->intr_type
== MSI_X
) {
7222 for (; off
< sp
->config
.rx_ring_num
; off
++)
7223 napi_disable(&sp
->mac_control
.rings
[off
].napi
);
7226 napi_disable(&sp
->napi
);
7229 /* disable Tx and Rx traffic on the NIC */
7235 /* stop the tx queue, indicate link down */
7236 s2io_link(sp
, LINK_DOWN
);
7238 /* Check if the device is Quiescent and then Reset the NIC */
7240 /* As per the HW requirement we need to replenish the
7241 * receive buffer to avoid the ring bump. Since there is
7242 * no intention of processing the Rx frame at this pointwe are
7243 * just settting the ownership bit of rxd in Each Rx
7244 * ring to HW and set the appropriate buffer size
7245 * based on the ring mode
7247 rxd_owner_bit_reset(sp
);
7249 val64
= readq(&bar0
->adapter_status
);
7250 if (verify_xena_quiescence(sp
)) {
7251 if (verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7258 DBG_PRINT(ERR_DBG
, "Device not Quiescent - "
7259 "adapter status reads 0x%llx\n",
7260 (unsigned long long)val64
);
7267 /* Free all Tx buffers */
7268 free_tx_buffers(sp
);
7270 /* Free all Rx buffers */
7271 free_rx_buffers(sp
);
7273 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7276 static void s2io_card_down(struct s2io_nic
*sp
)
7278 do_s2io_card_down(sp
, 1);
7281 static int s2io_card_up(struct s2io_nic
*sp
)
7284 struct config_param
*config
;
7285 struct mac_info
*mac_control
;
7286 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7289 /* Initialize the H/W I/O registers */
7292 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7300 * Initializing the Rx buffers. For now we are considering only 1
7301 * Rx ring and initializing buffers into 30 Rx blocks
7303 config
= &sp
->config
;
7304 mac_control
= &sp
->mac_control
;
7306 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7307 struct ring_info
*ring
= &mac_control
->rings
[i
];
7309 ring
->mtu
= dev
->mtu
;
7310 ring
->lro
= sp
->lro
;
7311 ret
= fill_rx_buffers(sp
, ring
, 1);
7313 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7316 free_rx_buffers(sp
);
7319 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7320 ring
->rx_bufs_left
);
7323 /* Initialise napi */
7325 if (config
->intr_type
== MSI_X
) {
7326 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
7327 napi_enable(&sp
->mac_control
.rings
[i
].napi
);
7329 napi_enable(&sp
->napi
);
7333 /* Maintain the state prior to the open */
7334 if (sp
->promisc_flg
)
7335 sp
->promisc_flg
= 0;
7336 if (sp
->m_cast_flg
) {
7338 sp
->all_multi_pos
= 0;
7341 /* Setting its receive mode */
7342 s2io_set_multicast(dev
);
7345 /* Initialize max aggregatable pkts per session based on MTU */
7346 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7347 /* Check if we can use (if specified) user provided value */
7348 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7349 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7352 /* Enable Rx Traffic and interrupts on the NIC */
7353 if (start_nic(sp
)) {
7354 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7356 free_rx_buffers(sp
);
7360 /* Add interrupt service routine */
7361 if (s2io_add_isr(sp
) != 0) {
7362 if (sp
->config
.intr_type
== MSI_X
)
7365 free_rx_buffers(sp
);
7369 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7371 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7373 /* Enable select interrupts */
7374 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7375 if (sp
->config
.intr_type
!= INTA
) {
7376 interruptible
= TX_TRAFFIC_INTR
| TX_PIC_INTR
;
7377 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7379 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7380 interruptible
|= TX_PIC_INTR
;
7381 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7388 * s2io_restart_nic - Resets the NIC.
7389 * @data : long pointer to the device private structure
7391 * This function is scheduled to be run by the s2io_tx_watchdog
7392 * function after 0.5 secs to reset the NIC. The idea is to reduce
7393 * the run time of the watch dog routine which is run holding a
7397 static void s2io_restart_nic(struct work_struct
*work
)
7399 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7400 struct net_device
*dev
= sp
->dev
;
7404 if (!netif_running(dev
))
7408 if (s2io_card_up(sp
)) {
7409 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n", dev
->name
);
7411 s2io_wake_all_tx_queue(sp
);
7412 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n", dev
->name
);
7418 * s2io_tx_watchdog - Watchdog for transmit side.
7419 * @dev : Pointer to net device structure
7421 * This function is triggered if the Tx Queue is stopped
7422 * for a pre-defined amount of time when the Interface is still up.
7423 * If the Interface is jammed in such a situation, the hardware is
7424 * reset (by s2io_close) and restarted again (by s2io_open) to
7425 * overcome any problem that might have been caused in the hardware.
7430 static void s2io_tx_watchdog(struct net_device
*dev
)
7432 struct s2io_nic
*sp
= netdev_priv(dev
);
7433 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7435 if (netif_carrier_ok(dev
)) {
7436 swstats
->watchdog_timer_cnt
++;
7437 schedule_work(&sp
->rst_timer_task
);
7438 swstats
->soft_reset_cnt
++;
7443 * rx_osm_handler - To perform some OS related operations on SKB.
7444 * @sp: private member of the device structure,pointer to s2io_nic structure.
7445 * @skb : the socket buffer pointer.
7446 * @len : length of the packet
7447 * @cksum : FCS checksum of the frame.
7448 * @ring_no : the ring from which this RxD was extracted.
7450 * This function is called by the Rx interrupt serivce routine to perform
7451 * some OS related operations on the SKB before passing it to the upper
7452 * layers. It mainly checks if the checksum is OK, if so adds it to the
7453 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7454 * to the upper layer. If the checksum is wrong, it increments the Rx
7455 * packet error count, frees the SKB and returns error.
7457 * SUCCESS on success and -1 on failure.
7459 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7461 struct s2io_nic
*sp
= ring_data
->nic
;
7462 struct net_device
*dev
= (struct net_device
*)ring_data
->dev
;
7463 struct sk_buff
*skb
= (struct sk_buff
*)
7464 ((unsigned long)rxdp
->Host_Control
);
7465 int ring_no
= ring_data
->ring_no
;
7466 u16 l3_csum
, l4_csum
;
7467 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7468 struct lro
*uninitialized_var(lro
);
7470 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7475 /* Check for parity error */
7477 swstats
->parity_err_cnt
++;
7479 err_mask
= err
>> 48;
7482 swstats
->rx_parity_err_cnt
++;
7486 swstats
->rx_abort_cnt
++;
7490 swstats
->rx_parity_abort_cnt
++;
7494 swstats
->rx_rda_fail_cnt
++;
7498 swstats
->rx_unkn_prot_cnt
++;
7502 swstats
->rx_fcs_err_cnt
++;
7506 swstats
->rx_buf_size_err_cnt
++;
7510 swstats
->rx_rxd_corrupt_cnt
++;
7514 swstats
->rx_unkn_err_cnt
++;
7518 * Drop the packet if bad transfer code. Exception being
7519 * 0x5, which could be due to unsupported IPv6 extension header.
7520 * In this case, we let stack handle the packet.
7521 * Note that in this case, since checksum will be incorrect,
7522 * stack will validate the same.
7524 if (err_mask
!= 0x5) {
7525 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7526 dev
->name
, err_mask
);
7527 dev
->stats
.rx_crc_errors
++;
7531 ring_data
->rx_bufs_left
-= 1;
7532 rxdp
->Host_Control
= 0;
7537 rxdp
->Host_Control
= 0;
7538 if (sp
->rxd_mode
== RXD_MODE_1
) {
7539 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7542 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7543 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7544 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7545 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7546 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7547 unsigned char *buff
= skb_push(skb
, buf0_len
);
7549 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7550 memcpy(buff
, ba
->ba_0
, buf0_len
);
7551 skb_put(skb
, buf2_len
);
7554 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) &&
7555 ((!ring_data
->lro
) ||
7556 (ring_data
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7558 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7559 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7560 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7562 * NIC verifies if the Checksum of the received
7563 * frame is Ok or not and accordingly returns
7564 * a flag in the RxD.
7566 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7567 if (ring_data
->lro
) {
7572 ret
= s2io_club_tcp_session(ring_data
,
7577 case 3: /* Begin anew */
7580 case 1: /* Aggregate */
7581 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7583 case 4: /* Flush session */
7584 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7585 queue_rx_frame(lro
->parent
,
7587 clear_lro_session(lro
);
7588 swstats
->flush_max_pkts
++;
7590 case 2: /* Flush both */
7591 lro
->parent
->data_len
= lro
->frags_len
;
7592 swstats
->sending_both
++;
7593 queue_rx_frame(lro
->parent
,
7595 clear_lro_session(lro
);
7597 case 0: /* sessions exceeded */
7598 case -1: /* non-TCP or not L2 aggregatable */
7600 * First pkt in session not
7601 * L3/L4 aggregatable
7606 "%s: Samadhana!!\n",
7613 * Packet with erroneous checksum, let the
7614 * upper layers deal with it.
7616 skb
->ip_summed
= CHECKSUM_NONE
;
7619 skb
->ip_summed
= CHECKSUM_NONE
;
7621 swstats
->mem_freed
+= skb
->truesize
;
7623 skb_record_rx_queue(skb
, ring_no
);
7624 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7626 sp
->mac_control
.rings
[ring_no
].rx_bufs_left
-= 1;
7631 * s2io_link - stops/starts the Tx queue.
7632 * @sp : private member of the device structure, which is a pointer to the
7633 * s2io_nic structure.
7634 * @link : inidicates whether link is UP/DOWN.
7636 * This function stops/starts the Tx queue depending on whether the link
7637 * status of the NIC is is down or up. This is called by the Alarm
7638 * interrupt handler whenever a link change interrupt comes up.
7643 static void s2io_link(struct s2io_nic
*sp
, int link
)
7645 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7646 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7648 if (link
!= sp
->last_link_state
) {
7650 if (link
== LINK_DOWN
) {
7651 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7652 s2io_stop_all_tx_queue(sp
);
7653 netif_carrier_off(dev
);
7654 if (swstats
->link_up_cnt
)
7655 swstats
->link_up_time
=
7656 jiffies
- sp
->start_time
;
7657 swstats
->link_down_cnt
++;
7659 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7660 if (swstats
->link_down_cnt
)
7661 swstats
->link_down_time
=
7662 jiffies
- sp
->start_time
;
7663 swstats
->link_up_cnt
++;
7664 netif_carrier_on(dev
);
7665 s2io_wake_all_tx_queue(sp
);
7668 sp
->last_link_state
= link
;
7669 sp
->start_time
= jiffies
;
7673 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7674 * @sp : private member of the device structure, which is a pointer to the
7675 * s2io_nic structure.
7677 * This function initializes a few of the PCI and PCI-X configuration registers
7678 * with recommended values.
7683 static void s2io_init_pci(struct s2io_nic
*sp
)
7685 u16 pci_cmd
= 0, pcix_cmd
= 0;
7687 /* Enable Data Parity Error Recovery in PCI-X command register. */
7688 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7690 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7692 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7695 /* Set the PErr Response bit in PCI command register. */
7696 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7697 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7698 (pci_cmd
| PCI_COMMAND_PARITY
));
7699 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7702 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7705 if ((tx_fifo_num
> MAX_TX_FIFOS
) || (tx_fifo_num
< 1)) {
7706 DBG_PRINT(ERR_DBG
, "Requested number of tx fifos "
7707 "(%d) not supported\n", tx_fifo_num
);
7709 if (tx_fifo_num
< 1)
7712 tx_fifo_num
= MAX_TX_FIFOS
;
7714 DBG_PRINT(ERR_DBG
, "Default to %d tx fifos\n", tx_fifo_num
);
7718 *dev_multiq
= multiq
;
7720 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7721 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7723 "Tx steering is not supported with "
7724 "one fifo. Disabling Tx steering.\n");
7725 tx_steering_type
= NO_STEERING
;
7728 if ((tx_steering_type
< NO_STEERING
) ||
7729 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7731 "Requested transmit steering not supported\n");
7732 DBG_PRINT(ERR_DBG
, "Disabling transmit steering\n");
7733 tx_steering_type
= NO_STEERING
;
7736 if (rx_ring_num
> MAX_RX_RINGS
) {
7738 "Requested number of rx rings not supported\n");
7739 DBG_PRINT(ERR_DBG
, "Default to %d rx rings\n",
7741 rx_ring_num
= MAX_RX_RINGS
;
7744 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7745 DBG_PRINT(ERR_DBG
, "Wrong intr_type requested. "
7746 "Defaulting to INTA\n");
7747 *dev_intr_type
= INTA
;
7750 if ((*dev_intr_type
== MSI_X
) &&
7751 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7752 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7753 DBG_PRINT(ERR_DBG
, "Xframe I does not support MSI_X. "
7754 "Defaulting to INTA\n");
7755 *dev_intr_type
= INTA
;
7758 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7759 DBG_PRINT(ERR_DBG
, "Requested ring mode not supported\n");
7760 DBG_PRINT(ERR_DBG
, "Defaulting to 1-buffer mode\n");
7767 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7768 * or Traffic class respectively.
7769 * @nic: device private variable
7770 * Description: The function configures the receive steering to
7771 * desired receive ring.
7772 * Return Value: SUCCESS on success and
7773 * '-1' on failure (endian settings incorrect).
7775 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7777 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7778 register u64 val64
= 0;
7780 if (ds_codepoint
> 63)
7783 val64
= RTS_DS_MEM_DATA(ring
);
7784 writeq(val64
, &bar0
->rts_ds_mem_data
);
7786 val64
= RTS_DS_MEM_CTRL_WE
|
7787 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7788 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7790 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7792 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7793 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7797 static const struct net_device_ops s2io_netdev_ops
= {
7798 .ndo_open
= s2io_open
,
7799 .ndo_stop
= s2io_close
,
7800 .ndo_get_stats
= s2io_get_stats
,
7801 .ndo_start_xmit
= s2io_xmit
,
7802 .ndo_validate_addr
= eth_validate_addr
,
7803 .ndo_set_multicast_list
= s2io_set_multicast
,
7804 .ndo_do_ioctl
= s2io_ioctl
,
7805 .ndo_set_mac_address
= s2io_set_mac_addr
,
7806 .ndo_change_mtu
= s2io_change_mtu
,
7807 .ndo_vlan_rx_register
= s2io_vlan_rx_register
,
7808 .ndo_vlan_rx_kill_vid
= s2io_vlan_rx_kill_vid
,
7809 .ndo_tx_timeout
= s2io_tx_watchdog
,
7810 #ifdef CONFIG_NET_POLL_CONTROLLER
7811 .ndo_poll_controller
= s2io_netpoll
,
7816 * s2io_init_nic - Initialization of the adapter .
7817 * @pdev : structure containing the PCI related information of the device.
7818 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7820 * The function initializes an adapter identified by the pci_dec structure.
7821 * All OS related initialization including memory and device structure and
7822 * initlaization of the device private variable is done. Also the swapper
7823 * control register is initialized to enable read and write into the I/O
7824 * registers of the device.
7826 * returns 0 on success and negative on failure.
7829 static int __devinit
7830 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7832 struct s2io_nic
*sp
;
7833 struct net_device
*dev
;
7835 int dma_flag
= false;
7836 u32 mac_up
, mac_down
;
7837 u64 val64
= 0, tmp64
= 0;
7838 struct XENA_dev_config __iomem
*bar0
= NULL
;
7840 struct config_param
*config
;
7841 struct mac_info
*mac_control
;
7843 u8 dev_intr_type
= intr_type
;
7846 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7850 ret
= pci_enable_device(pdev
);
7853 "%s: pci_enable_device failed\n", __func__
);
7857 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7858 DBG_PRINT(INIT_DBG
, "%s: Using 64bit DMA\n", __func__
);
7860 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7862 "Unable to obtain 64bit DMA "
7863 "for consistent allocations\n");
7864 pci_disable_device(pdev
);
7867 } else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) {
7868 DBG_PRINT(INIT_DBG
, "%s: Using 32bit DMA\n", __func__
);
7870 pci_disable_device(pdev
);
7873 ret
= pci_request_regions(pdev
, s2io_driver_name
);
7875 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x\n",
7877 pci_disable_device(pdev
);
7881 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7883 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7885 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7886 pci_disable_device(pdev
);
7887 pci_release_regions(pdev
);
7891 pci_set_master(pdev
);
7892 pci_set_drvdata(pdev
, dev
);
7893 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7895 /* Private member variable initialized to s2io NIC structure */
7896 sp
= netdev_priv(dev
);
7899 sp
->high_dma_flag
= dma_flag
;
7900 sp
->device_enabled_once
= false;
7901 if (rx_ring_mode
== 1)
7902 sp
->rxd_mode
= RXD_MODE_1
;
7903 if (rx_ring_mode
== 2)
7904 sp
->rxd_mode
= RXD_MODE_3B
;
7906 sp
->config
.intr_type
= dev_intr_type
;
7908 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7909 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7910 sp
->device_type
= XFRAME_II_DEVICE
;
7912 sp
->device_type
= XFRAME_I_DEVICE
;
7914 sp
->lro
= lro_enable
;
7916 /* Initialize some PCI/PCI-X fields of the NIC. */
7920 * Setting the device configuration parameters.
7921 * Most of these parameters can be specified by the user during
7922 * module insertion as they are module loadable parameters. If
7923 * these parameters are not not specified during load time, they
7924 * are initialized with default values.
7926 config
= &sp
->config
;
7927 mac_control
= &sp
->mac_control
;
7929 config
->napi
= napi
;
7930 config
->tx_steering_type
= tx_steering_type
;
7932 /* Tx side parameters. */
7933 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7934 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7936 config
->tx_fifo_num
= tx_fifo_num
;
7938 /* Initialize the fifos used for tx steering */
7939 if (config
->tx_fifo_num
< 5) {
7940 if (config
->tx_fifo_num
== 1)
7941 sp
->total_tcp_fifos
= 1;
7943 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7944 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7945 sp
->total_udp_fifos
= 1;
7946 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7948 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7949 FIFO_OTHER_MAX_NUM
);
7950 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7951 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7952 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7955 config
->multiq
= dev_multiq
;
7956 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7957 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7959 tx_cfg
->fifo_len
= tx_fifo_len
[i
];
7960 tx_cfg
->fifo_priority
= i
;
7963 /* mapping the QoS priority to the configured fifos */
7964 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7965 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7967 /* map the hashing selector table to the configured fifos */
7968 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7969 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7972 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7973 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7974 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7976 tx_cfg
->f_no_snoop
= (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7977 if (tx_cfg
->fifo_len
< 65) {
7978 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7982 /* + 2 because one Txd for skb->data and one Txd for UFO */
7983 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7985 /* Rx side parameters. */
7986 config
->rx_ring_num
= rx_ring_num
;
7987 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7988 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7989 struct ring_info
*ring
= &mac_control
->rings
[i
];
7991 rx_cfg
->num_rxd
= rx_ring_sz
[i
] * (rxd_count
[sp
->rxd_mode
] + 1);
7992 rx_cfg
->ring_priority
= i
;
7993 ring
->rx_bufs_left
= 0;
7994 ring
->rxd_mode
= sp
->rxd_mode
;
7995 ring
->rxd_count
= rxd_count
[sp
->rxd_mode
];
7996 ring
->pdev
= sp
->pdev
;
7997 ring
->dev
= sp
->dev
;
8000 for (i
= 0; i
< rx_ring_num
; i
++) {
8001 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
8003 rx_cfg
->ring_org
= RING_ORG_BUFF1
;
8004 rx_cfg
->f_no_snoop
= (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
8007 /* Setting Mac Control parameters */
8008 mac_control
->rmac_pause_time
= rmac_pause_time
;
8009 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
8010 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
8013 /* initialize the shared memory used by the NIC and the host */
8014 if (init_shared_mem(sp
)) {
8015 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n", dev
->name
);
8017 goto mem_alloc_failed
;
8020 sp
->bar0
= pci_ioremap_bar(pdev
, 0);
8022 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
8025 goto bar0_remap_failed
;
8028 sp
->bar1
= pci_ioremap_bar(pdev
, 2);
8030 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
8033 goto bar1_remap_failed
;
8036 dev
->irq
= pdev
->irq
;
8037 dev
->base_addr
= (unsigned long)sp
->bar0
;
8039 /* Initializing the BAR1 address as the start of the FIFO pointer. */
8040 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
8041 mac_control
->tx_FIFO_start
[j
] =
8042 (struct TxFIFO_element __iomem
*)
8043 (sp
->bar1
+ (j
* 0x00020000));
8046 /* Driver entry points */
8047 dev
->netdev_ops
= &s2io_netdev_ops
;
8048 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
8049 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
8051 dev
->features
|= NETIF_F_LRO
;
8052 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
8053 if (sp
->high_dma_flag
== true)
8054 dev
->features
|= NETIF_F_HIGHDMA
;
8055 dev
->features
|= NETIF_F_TSO
;
8056 dev
->features
|= NETIF_F_TSO6
;
8057 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
8058 dev
->features
|= NETIF_F_UFO
;
8059 dev
->features
|= NETIF_F_HW_CSUM
;
8061 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
8062 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
8063 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
8065 pci_save_state(sp
->pdev
);
8067 /* Setting swapper control on the NIC, for proper reset operation */
8068 if (s2io_set_swapper(sp
)) {
8069 DBG_PRINT(ERR_DBG
, "%s: swapper settings are wrong\n",
8072 goto set_swap_failed
;
8075 /* Verify if the Herc works on the slot its placed into */
8076 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8077 mode
= s2io_verify_pci_mode(sp
);
8079 DBG_PRINT(ERR_DBG
, "%s: Unsupported PCI bus mode\n",
8082 goto set_swap_failed
;
8086 if (sp
->config
.intr_type
== MSI_X
) {
8087 sp
->num_entries
= config
->rx_ring_num
+ 1;
8088 ret
= s2io_enable_msi_x(sp
);
8091 ret
= s2io_test_msi(sp
);
8092 /* rollback MSI-X, will re-enable during add_isr() */
8093 remove_msix_isr(sp
);
8098 "MSI-X requested but failed to enable\n");
8099 sp
->config
.intr_type
= INTA
;
8103 if (config
->intr_type
== MSI_X
) {
8104 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
8105 struct ring_info
*ring
= &mac_control
->rings
[i
];
8107 netif_napi_add(dev
, &ring
->napi
, s2io_poll_msix
, 64);
8110 netif_napi_add(dev
, &sp
->napi
, s2io_poll_inta
, 64);
8113 /* Not needed for Herc */
8114 if (sp
->device_type
& XFRAME_I_DEVICE
) {
8116 * Fix for all "FFs" MAC address problems observed on
8119 fix_mac_address(sp
);
8124 * MAC address initialization.
8125 * For now only one mac address will be read and used.
8128 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
8129 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
8130 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
8131 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
8132 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
8134 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
8135 mac_down
= (u32
)tmp64
;
8136 mac_up
= (u32
) (tmp64
>> 32);
8138 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
8139 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
8140 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
8141 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
8142 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
8143 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
8145 /* Set the factory defined MAC address initially */
8146 dev
->addr_len
= ETH_ALEN
;
8147 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
8148 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
8150 /* initialize number of multicast & unicast MAC entries variables */
8151 if (sp
->device_type
== XFRAME_I_DEVICE
) {
8152 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
8153 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
8154 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
8155 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
8156 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
8157 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
8158 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
8161 /* store mac addresses from CAM to s2io_nic structure */
8162 do_s2io_store_unicast_mc(sp
);
8164 /* Configure MSIX vector for number of rings configured plus one */
8165 if ((sp
->device_type
== XFRAME_II_DEVICE
) &&
8166 (config
->intr_type
== MSI_X
))
8167 sp
->num_entries
= config
->rx_ring_num
+ 1;
8169 /* Store the values of the MSIX table in the s2io_nic structure */
8170 store_xmsi_data(sp
);
8171 /* reset Nic and bring it to known state */
8175 * Initialize link state flags
8176 * and the card state parameter
8180 /* Initialize spinlocks */
8181 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8182 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8184 spin_lock_init(&fifo
->tx_lock
);
8188 * SXE-002: Configure link and activity LED to init state
8191 subid
= sp
->pdev
->subsystem_device
;
8192 if ((subid
& 0xFF) >= 0x07) {
8193 val64
= readq(&bar0
->gpio_control
);
8194 val64
|= 0x0000800000000000ULL
;
8195 writeq(val64
, &bar0
->gpio_control
);
8196 val64
= 0x0411040400000000ULL
;
8197 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
8198 val64
= readq(&bar0
->gpio_control
);
8201 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8203 if (register_netdev(dev
)) {
8204 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8206 goto register_failed
;
8209 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2010 Exar Corp.\n");
8210 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n", dev
->name
,
8211 sp
->product_name
, pdev
->revision
);
8212 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8213 s2io_driver_version
);
8214 DBG_PRINT(ERR_DBG
, "%s: MAC Address: %pM\n", dev
->name
, dev
->dev_addr
);
8215 DBG_PRINT(ERR_DBG
, "Serial number: %s\n", sp
->serial_num
);
8216 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8217 mode
= s2io_print_pci_mode(sp
);
8220 unregister_netdev(dev
);
8221 goto set_swap_failed
;
8224 switch (sp
->rxd_mode
) {
8226 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8230 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8235 switch (sp
->config
.napi
) {
8237 DBG_PRINT(ERR_DBG
, "%s: NAPI disabled\n", dev
->name
);
8240 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8244 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8245 sp
->config
.tx_fifo_num
);
8247 DBG_PRINT(ERR_DBG
, "%s: Using %d Rx ring(s)\n", dev
->name
,
8248 sp
->config
.rx_ring_num
);
8250 switch (sp
->config
.intr_type
) {
8252 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8255 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8258 if (sp
->config
.multiq
) {
8259 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8260 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8262 fifo
->multiq
= config
->multiq
;
8264 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8267 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8270 switch (sp
->config
.tx_steering_type
) {
8272 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for transmit\n",
8275 case TX_PRIORITY_STEERING
:
8277 "%s: Priority steering enabled for transmit\n",
8280 case TX_DEFAULT_STEERING
:
8282 "%s: Default steering enabled for transmit\n",
8287 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8291 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8293 /* Initialize device name */
8294 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
8297 sp
->vlan_strip_flag
= 1;
8299 sp
->vlan_strip_flag
= 0;
8302 * Make Link state as off at this point, when the Link change
8303 * interrupt comes the state will be automatically changed to
8306 netif_carrier_off(dev
);
8317 free_shared_mem(sp
);
8318 pci_disable_device(pdev
);
8319 pci_release_regions(pdev
);
8320 pci_set_drvdata(pdev
, NULL
);
8327 * s2io_rem_nic - Free the PCI device
8328 * @pdev: structure containing the PCI related information of the device.
8329 * Description: This function is called by the Pci subsystem to release a
8330 * PCI device and free up all resource held up by the device. This could
8331 * be in response to a Hot plug event or when the driver is to be removed
8335 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
8337 struct net_device
*dev
=
8338 (struct net_device
*)pci_get_drvdata(pdev
);
8339 struct s2io_nic
*sp
;
8342 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8346 flush_scheduled_work();
8348 sp
= netdev_priv(dev
);
8349 unregister_netdev(dev
);
8351 free_shared_mem(sp
);
8354 pci_release_regions(pdev
);
8355 pci_set_drvdata(pdev
, NULL
);
8357 pci_disable_device(pdev
);
8361 * s2io_starter - Entry point for the driver
8362 * Description: This function is the entry point for the driver. It verifies
8363 * the module loadable parameters and initializes PCI configuration space.
8366 static int __init
s2io_starter(void)
8368 return pci_register_driver(&s2io_driver
);
8372 * s2io_closer - Cleanup routine for the driver
8373 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8376 static __exit
void s2io_closer(void)
8378 pci_unregister_driver(&s2io_driver
);
8379 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8382 module_init(s2io_starter
);
8383 module_exit(s2io_closer
);
8385 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8386 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8387 struct s2io_nic
*sp
)
8390 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8392 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8394 "%s: Non-TCP frames not supported for LRO\n",
8399 /* Checking for DIX type or DIX type with VLAN */
8400 if ((l2_type
== 0) || (l2_type
== 4)) {
8401 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8403 * If vlan stripping is disabled and the frame is VLAN tagged,
8404 * shift the offset by the VLAN header size bytes.
8406 if ((!sp
->vlan_strip_flag
) &&
8407 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8408 ip_off
+= HEADER_VLAN_SIZE
;
8410 /* LLC, SNAP etc are considered non-mergeable */
8414 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8415 ip_len
= (u8
)((*ip
)->ihl
);
8417 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8422 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8425 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8426 if ((lro
->iph
->saddr
!= ip
->saddr
) ||
8427 (lro
->iph
->daddr
!= ip
->daddr
) ||
8428 (lro
->tcph
->source
!= tcp
->source
) ||
8429 (lro
->tcph
->dest
!= tcp
->dest
))
8434 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8436 return ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2);
8439 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8440 struct iphdr
*ip
, struct tcphdr
*tcp
,
8441 u32 tcp_pyld_len
, u16 vlan_tag
)
8443 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8447 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8448 lro
->tcp_ack
= tcp
->ack_seq
;
8450 lro
->total_len
= ntohs(ip
->tot_len
);
8452 lro
->vlan_tag
= vlan_tag
;
8454 * Check if we saw TCP timestamp.
8455 * Other consistency checks have already been done.
8457 if (tcp
->doff
== 8) {
8459 ptr
= (__be32
*)(tcp
+1);
8461 lro
->cur_tsval
= ntohl(*(ptr
+1));
8462 lro
->cur_tsecr
= *(ptr
+2);
8467 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8469 struct iphdr
*ip
= lro
->iph
;
8470 struct tcphdr
*tcp
= lro
->tcph
;
8472 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8474 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8476 /* Update L3 header */
8477 ip
->tot_len
= htons(lro
->total_len
);
8479 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8482 /* Update L4 header */
8483 tcp
->ack_seq
= lro
->tcp_ack
;
8484 tcp
->window
= lro
->window
;
8486 /* Update tsecr field if this session has timestamps enabled */
8488 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8489 *(ptr
+2) = lro
->cur_tsecr
;
8492 /* Update counters required for calculation of
8493 * average no. of packets aggregated.
8495 swstats
->sum_avg_pkts_aggregated
+= lro
->sg_num
;
8496 swstats
->num_aggregations
++;
8499 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8500 struct tcphdr
*tcp
, u32 l4_pyld
)
8502 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8503 lro
->total_len
+= l4_pyld
;
8504 lro
->frags_len
+= l4_pyld
;
8505 lro
->tcp_next_seq
+= l4_pyld
;
8508 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8509 lro
->tcp_ack
= tcp
->ack_seq
;
8510 lro
->window
= tcp
->window
;
8514 /* Update tsecr and tsval from this packet */
8515 ptr
= (__be32
*)(tcp
+1);
8516 lro
->cur_tsval
= ntohl(*(ptr
+1));
8517 lro
->cur_tsecr
= *(ptr
+ 2);
8521 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8522 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8526 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8528 if (!tcp_pyld_len
) {
8529 /* Runt frame or a pure ack */
8533 if (ip
->ihl
!= 5) /* IP has options */
8536 /* If we see CE codepoint in IP header, packet is not mergeable */
8537 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8540 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8541 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
||
8542 tcp
->syn
|| tcp
->fin
||
8543 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8545 * Currently recognize only the ack control word and
8546 * any other control field being set would result in
8547 * flushing the LRO session
8553 * Allow only one TCP timestamp option. Don't aggregate if
8554 * any other options are detected.
8556 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8559 if (tcp
->doff
== 8) {
8560 ptr
= (u8
*)(tcp
+ 1);
8561 while (*ptr
== TCPOPT_NOP
)
8563 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8566 /* Ensure timestamp value increases monotonically */
8568 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8571 /* timestamp echo reply should be non-zero */
8572 if (*((__be32
*)(ptr
+6)) == 0)
8579 static int s2io_club_tcp_session(struct ring_info
*ring_data
, u8
*buffer
,
8580 u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
8581 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
8584 struct tcphdr
*tcph
;
8587 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8589 ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8594 DBG_PRINT(INFO_DBG
, "IP Saddr: %x Daddr: %x\n", ip
->saddr
, ip
->daddr
);
8596 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8597 tcph
= (struct tcphdr
*)*tcp
;
8598 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8599 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8600 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8601 if (l_lro
->in_use
) {
8602 if (check_for_socket_match(l_lro
, ip
, tcph
))
8604 /* Sock pair matched */
8607 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8608 DBG_PRINT(INFO_DBG
, "%s: Out of sequence. "
8609 "expected 0x%x, actual 0x%x\n",
8611 (*lro
)->tcp_next_seq
,
8614 swstats
->outof_sequence_pkts
++;
8619 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,
8621 ret
= 1; /* Aggregate */
8623 ret
= 2; /* Flush both */
8629 /* Before searching for available LRO objects,
8630 * check if the pkt is L3/L4 aggregatable. If not
8631 * don't create new LRO session. Just send this
8634 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
))
8637 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8638 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8639 if (!(l_lro
->in_use
)) {
8641 ret
= 3; /* Begin anew */
8647 if (ret
== 0) { /* sessions exceeded */
8648 DBG_PRINT(INFO_DBG
, "%s: All LRO sessions already in use\n",
8656 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8660 update_L3L4_header(sp
, *lro
);
8663 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8664 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8665 update_L3L4_header(sp
, *lro
);
8666 ret
= 4; /* Flush the LRO */
8670 DBG_PRINT(ERR_DBG
, "%s: Don't know, can't say!!\n", __func__
);
8677 static void clear_lro_session(struct lro
*lro
)
8679 static u16 lro_struct_size
= sizeof(struct lro
);
8681 memset(lro
, 0, lro_struct_size
);
8684 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8686 struct net_device
*dev
= skb
->dev
;
8687 struct s2io_nic
*sp
= netdev_priv(dev
);
8689 skb
->protocol
= eth_type_trans(skb
, dev
);
8690 if (sp
->vlgrp
&& vlan_tag
&& (sp
->vlan_strip_flag
)) {
8691 /* Queueing the vlan frame to the upper layer */
8692 if (sp
->config
.napi
)
8693 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
, vlan_tag
);
8695 vlan_hwaccel_rx(skb
, sp
->vlgrp
, vlan_tag
);
8697 if (sp
->config
.napi
)
8698 netif_receive_skb(skb
);
8704 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8705 struct sk_buff
*skb
, u32 tcp_len
)
8707 struct sk_buff
*first
= lro
->parent
;
8708 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8710 first
->len
+= tcp_len
;
8711 first
->data_len
= lro
->frags_len
;
8712 skb_pull(skb
, (skb
->len
- tcp_len
));
8713 if (skb_shinfo(first
)->frag_list
)
8714 lro
->last_frag
->next
= skb
;
8716 skb_shinfo(first
)->frag_list
= skb
;
8717 first
->truesize
+= skb
->truesize
;
8718 lro
->last_frag
= skb
;
8719 swstats
->clubbed_frms_cnt
++;
8723 * s2io_io_error_detected - called when PCI error is detected
8724 * @pdev: Pointer to PCI device
8725 * @state: The current pci connection state
8727 * This function is called after a PCI bus error affecting
8728 * this device has been detected.
8730 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8731 pci_channel_state_t state
)
8733 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8734 struct s2io_nic
*sp
= netdev_priv(netdev
);
8736 netif_device_detach(netdev
);
8738 if (state
== pci_channel_io_perm_failure
)
8739 return PCI_ERS_RESULT_DISCONNECT
;
8741 if (netif_running(netdev
)) {
8742 /* Bring down the card, while avoiding PCI I/O */
8743 do_s2io_card_down(sp
, 0);
8745 pci_disable_device(pdev
);
8747 return PCI_ERS_RESULT_NEED_RESET
;
8751 * s2io_io_slot_reset - called after the pci bus has been reset.
8752 * @pdev: Pointer to PCI device
8754 * Restart the card from scratch, as if from a cold-boot.
8755 * At this point, the card has exprienced a hard reset,
8756 * followed by fixups by BIOS, and has its config space
8757 * set up identically to what it was at cold boot.
8759 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8761 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8762 struct s2io_nic
*sp
= netdev_priv(netdev
);
8764 if (pci_enable_device(pdev
)) {
8765 pr_err("Cannot re-enable PCI device after reset.\n");
8766 return PCI_ERS_RESULT_DISCONNECT
;
8769 pci_set_master(pdev
);
8772 return PCI_ERS_RESULT_RECOVERED
;
8776 * s2io_io_resume - called when traffic can start flowing again.
8777 * @pdev: Pointer to PCI device
8779 * This callback is called when the error recovery driver tells
8780 * us that its OK to resume normal operation.
8782 static void s2io_io_resume(struct pci_dev
*pdev
)
8784 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8785 struct s2io_nic
*sp
= netdev_priv(netdev
);
8787 if (netif_running(netdev
)) {
8788 if (s2io_card_up(sp
)) {
8789 pr_err("Can't bring device back up after reset.\n");
8793 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8795 pr_err("Can't restore mac addr after reset.\n");
8800 netif_device_attach(netdev
);
8801 netif_tx_wake_all_queues(netdev
);