1 /* drivers/net/ks8851.c
3 * Copyright 2009 Simtec Electronics
4 * http://www.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/cache.h>
22 #include <linux/crc32.h>
23 #include <linux/mii.h>
25 #include <linux/spi/spi.h>
30 * struct ks8851_rxctrl - KS8851 driver rx control
31 * @mchash: Multicast hash-table data.
32 * @rxcr1: KS_RXCR1 register setting
33 * @rxcr2: KS_RXCR2 register setting
35 * Representation of the settings needs to control the receive filtering
36 * such as the multicast hash-filter and the receive register settings. This
37 * is used to make the job of working out if the receive settings change and
38 * then issuing the new settings to the worker that will send the necessary
41 struct ks8851_rxctrl
{
48 * union ks8851_tx_hdr - tx header data
49 * @txb: The header as bytes
50 * @txw: The header as 16bit, little-endian words
52 * A dual representation of the tx header data to allow
53 * access to individual bytes, and to allow 16bit accesses
54 * with 16bit alignment.
62 * struct ks8851_net - KS8851 driver private data
63 * @netdev: The network device we're bound to
64 * @spidev: The spi device we're bound to.
65 * @lock: Lock to ensure that the device is not accessed when busy.
66 * @statelock: Lock on this structure for tx list.
67 * @mii: The MII state information for the mii calls.
68 * @rxctrl: RX settings for @rxctrl_work.
69 * @tx_work: Work queue for tx packets
70 * @irq_work: Work queue for servicing interrupts
71 * @rxctrl_work: Work queue for updating RX mode and multicast lists
72 * @txq: Queue of packets for transmission.
73 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
74 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
75 * @txh: Space for generating packet TX header in DMA-able data
76 * @rxd: Space for receiving SPI data, in DMA-able space.
77 * @txd: Space for transmitting SPI data, in DMA-able space.
78 * @msg_enable: The message flags controlling driver output (see ethtool).
79 * @fid: Incrementing frame id tag.
80 * @rc_ier: Cached copy of KS_IER.
81 * @rc_ccr: Cached copy of KS_CCR.
82 * @rc_rxqcr: Cached copy of KS_RXQCR.
83 * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
85 * The @lock ensures that the chip is protected when certain operations are
86 * in progress. When the read or write packet transfer is in progress, most
87 * of the chip registers are not ccessible until the transfer is finished and
88 * the DMA has been de-asserted.
90 * The @statelock is used to protect information in the structure which may
91 * need to be accessed via several sources, such as the network driver layer
92 * or one of the work queues.
94 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
95 * wants to DMA map them, it will not have any problems with data the driver
99 struct net_device
*netdev
;
100 struct spi_device
*spidev
;
102 spinlock_t statelock
;
104 union ks8851_tx_hdr txh ____cacheline_aligned
;
108 u32 msg_enable ____cacheline_aligned
;
117 struct mii_if_info mii
;
118 struct ks8851_rxctrl rxctrl
;
120 struct work_struct tx_work
;
121 struct work_struct irq_work
;
122 struct work_struct rxctrl_work
;
124 struct sk_buff_head txq
;
126 struct spi_message spi_msg1
;
127 struct spi_message spi_msg2
;
128 struct spi_transfer spi_xfer1
;
129 struct spi_transfer spi_xfer2
[2];
132 static int msg_enable
;
134 /* shift for byte-enable data */
135 #define BYTE_EN(_x) ((_x) << 2)
137 /* turn register number and byte-enable mask into data for start of packet */
138 #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6)
140 /* SPI register read/write calls.
142 * All these calls issue SPI transactions to access the chip's registers. They
143 * all require that the necessary lock is held to prevent accesses when the
144 * chip is busy transfering packet data (RX/TX FIFO accesses).
148 * ks8851_wrreg16 - write 16bit register value to chip
149 * @ks: The chip state
150 * @reg: The register address
151 * @val: The value to write
153 * Issue a write to put the value @val into the register specified in @reg.
155 static void ks8851_wrreg16(struct ks8851_net
*ks
, unsigned reg
, unsigned val
)
157 struct spi_transfer
*xfer
= &ks
->spi_xfer1
;
158 struct spi_message
*msg
= &ks
->spi_msg1
;
162 txb
[0] = cpu_to_le16(MK_OP(reg
& 2 ? 0xC : 0x03, reg
) | KS_SPIOP_WR
);
163 txb
[1] = cpu_to_le16(val
);
169 ret
= spi_sync(ks
->spidev
, msg
);
171 netdev_err(ks
->netdev
, "spi_sync() failed\n");
175 * ks8851_wrreg8 - write 8bit register value to chip
176 * @ks: The chip state
177 * @reg: The register address
178 * @val: The value to write
180 * Issue a write to put the value @val into the register specified in @reg.
182 static void ks8851_wrreg8(struct ks8851_net
*ks
, unsigned reg
, unsigned val
)
184 struct spi_transfer
*xfer
= &ks
->spi_xfer1
;
185 struct spi_message
*msg
= &ks
->spi_msg1
;
190 bit
= 1 << (reg
& 3);
192 txb
[0] = cpu_to_le16(MK_OP(bit
, reg
) | KS_SPIOP_WR
);
199 ret
= spi_sync(ks
->spidev
, msg
);
201 netdev_err(ks
->netdev
, "spi_sync() failed\n");
205 * ks8851_rx_1msg - select whether to use one or two messages for spi read
206 * @ks: The device structure
208 * Return whether to generate a single message with a tx and rx buffer
209 * supplied to spi_sync(), or alternatively send the tx and rx buffers
210 * as separate messages.
212 * Depending on the hardware in use, a single message may be more efficient
213 * on interrupts or work done by the driver.
215 * This currently always returns true until we add some per-device data passed
216 * from the platform code to specify which mode is better.
218 static inline bool ks8851_rx_1msg(struct ks8851_net
*ks
)
224 * ks8851_rdreg - issue read register command and return the data
225 * @ks: The device state
226 * @op: The register address and byte enables in message format.
227 * @rxb: The RX buffer to return the result into
228 * @rxl: The length of data expected.
230 * This is the low level read call that issues the necessary spi message(s)
231 * to read data from the register specified in @op.
233 static void ks8851_rdreg(struct ks8851_net
*ks
, unsigned op
,
234 u8
*rxb
, unsigned rxl
)
236 struct spi_transfer
*xfer
;
237 struct spi_message
*msg
;
238 __le16
*txb
= (__le16
*)ks
->txd
;
242 txb
[0] = cpu_to_le16(op
| KS_SPIOP_RD
);
244 if (ks8851_rx_1msg(ks
)) {
246 xfer
= &ks
->spi_xfer1
;
253 xfer
= ks
->spi_xfer2
;
265 ret
= spi_sync(ks
->spidev
, msg
);
267 netdev_err(ks
->netdev
, "read: spi_sync() failed\n");
268 else if (ks8851_rx_1msg(ks
))
269 memcpy(rxb
, trx
+ 2, rxl
);
271 memcpy(rxb
, trx
, rxl
);
275 * ks8851_rdreg8 - read 8 bit register from device
276 * @ks: The chip information
277 * @reg: The register address
279 * Read a 8bit register from the chip, returning the result
281 static unsigned ks8851_rdreg8(struct ks8851_net
*ks
, unsigned reg
)
285 ks8851_rdreg(ks
, MK_OP(1 << (reg
& 3), reg
), rxb
, 1);
290 * ks8851_rdreg16 - read 16 bit register from device
291 * @ks: The chip information
292 * @reg: The register address
294 * Read a 16bit register from the chip, returning the result
296 static unsigned ks8851_rdreg16(struct ks8851_net
*ks
, unsigned reg
)
300 ks8851_rdreg(ks
, MK_OP(reg
& 2 ? 0xC : 0x3, reg
), (u8
*)&rx
, 2);
301 return le16_to_cpu(rx
);
305 * ks8851_rdreg32 - read 32 bit register from device
306 * @ks: The chip information
307 * @reg: The register address
309 * Read a 32bit register from the chip.
311 * Note, this read requires the address be aligned to 4 bytes.
313 static unsigned ks8851_rdreg32(struct ks8851_net
*ks
, unsigned reg
)
319 ks8851_rdreg(ks
, MK_OP(0xf, reg
), (u8
*)&rx
, 4);
320 return le32_to_cpu(rx
);
324 * ks8851_soft_reset - issue one of the soft reset to the device
325 * @ks: The device state.
326 * @op: The bit(s) to set in the GRR
328 * Issue the relevant soft-reset command to the device's GRR register
331 * Note, the delays are in there as a caution to ensure that the reset
332 * has time to take effect and then complete. Since the datasheet does
333 * not currently specify the exact sequence, we have chosen something
334 * that seems to work with our device.
336 static void ks8851_soft_reset(struct ks8851_net
*ks
, unsigned op
)
338 ks8851_wrreg16(ks
, KS_GRR
, op
);
339 mdelay(1); /* wait a short time to effect reset */
340 ks8851_wrreg16(ks
, KS_GRR
, 0);
341 mdelay(1); /* wait for condition to clear */
345 * ks8851_write_mac_addr - write mac address to device registers
346 * @dev: The network device
348 * Update the KS8851 MAC address registers from the address in @dev.
350 * This call assumes that the chip is not running, so there is no need to
351 * shutdown the RXQ process whilst setting this.
353 static int ks8851_write_mac_addr(struct net_device
*dev
)
355 struct ks8851_net
*ks
= netdev_priv(dev
);
358 mutex_lock(&ks
->lock
);
360 for (i
= 0; i
< ETH_ALEN
; i
++)
361 ks8851_wrreg8(ks
, KS_MAR(i
), dev
->dev_addr
[i
]);
363 mutex_unlock(&ks
->lock
);
369 * ks8851_init_mac - initialise the mac address
370 * @ks: The device structure
372 * Get or create the initial mac address for the device and then set that
373 * into the station address register. Currently we assume that the device
374 * does not have a valid mac address in it, and so we use random_ether_addr()
375 * to create a new one.
377 * In future, the driver should check to see if the device has an EEPROM
378 * attached and whether that has a valid ethernet address in it.
380 static void ks8851_init_mac(struct ks8851_net
*ks
)
382 struct net_device
*dev
= ks
->netdev
;
384 random_ether_addr(dev
->dev_addr
);
385 ks8851_write_mac_addr(dev
);
389 * ks8851_irq - device interrupt handler
390 * @irq: Interrupt number passed from the IRQ hnalder.
391 * @pw: The private word passed to register_irq(), our struct ks8851_net.
393 * Disable the interrupt from happening again until we've processed the
394 * current status by scheduling ks8851_irq_work().
396 static irqreturn_t
ks8851_irq(int irq
, void *pw
)
398 struct ks8851_net
*ks
= pw
;
400 disable_irq_nosync(irq
);
401 schedule_work(&ks
->irq_work
);
406 * ks8851_rdfifo - read data from the receive fifo
407 * @ks: The device state.
408 * @buff: The buffer address
409 * @len: The length of the data to read
411 * Issue an RXQ FIFO read command and read the @len amount of data from
412 * the FIFO into the buffer specified by @buff.
414 static void ks8851_rdfifo(struct ks8851_net
*ks
, u8
*buff
, unsigned len
)
416 struct spi_transfer
*xfer
= ks
->spi_xfer2
;
417 struct spi_message
*msg
= &ks
->spi_msg2
;
421 netif_dbg(ks
, rx_status
, ks
->netdev
,
422 "%s: %d@%p\n", __func__
, len
, buff
);
424 /* set the operation we're issuing */
425 txb
[0] = KS_SPIOP_RXFIFO
;
436 ret
= spi_sync(ks
->spidev
, msg
);
438 netdev_err(ks
->netdev
, "%s: spi_sync() failed\n", __func__
);
442 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
443 * @ks: The device state
444 * @rxpkt: The data for the received packet
446 * Dump the initial data from the packet to dev_dbg().
448 static void ks8851_dbg_dumpkkt(struct ks8851_net
*ks
, u8
*rxpkt
)
450 netdev_dbg(ks
->netdev
,
451 "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
452 rxpkt
[4], rxpkt
[5], rxpkt
[6], rxpkt
[7],
453 rxpkt
[8], rxpkt
[9], rxpkt
[10], rxpkt
[11],
454 rxpkt
[12], rxpkt
[13], rxpkt
[14], rxpkt
[15]);
458 * ks8851_rx_pkts - receive packets from the host
459 * @ks: The device information.
461 * This is called from the IRQ work queue when the system detects that there
462 * are packets in the receive queue. Find out how many packets there are and
463 * read them from the FIFO.
465 static void ks8851_rx_pkts(struct ks8851_net
*ks
)
474 rxfc
= ks8851_rdreg8(ks
, KS_RXFC
);
476 netif_dbg(ks
, rx_status
, ks
->netdev
,
477 "%s: %d packets\n", __func__
, rxfc
);
479 /* Currently we're issuing a read per packet, but we could possibly
480 * improve the code by issuing a single read, getting the receive
481 * header, allocating the packet and then reading the packet data
484 * This form of operation would require us to hold the SPI bus'
485 * chipselect low during the entie transaction to avoid any
486 * reset to the data stream comming from the chip.
489 for (; rxfc
!= 0; rxfc
--) {
490 rxh
= ks8851_rdreg32(ks
, KS_RXFHSR
);
491 rxstat
= rxh
& 0xffff;
494 netif_dbg(ks
, rx_status
, ks
->netdev
,
495 "rx: stat 0x%04x, len 0x%04x\n", rxstat
, rxlen
);
497 /* the length of the packet includes the 32bit CRC */
499 /* set dma read address */
500 ks8851_wrreg16(ks
, KS_RXFDPR
, RXFDPR_RXFPAI
| 0x00);
502 /* start the packet dma process, and set auto-dequeue rx */
503 ks8851_wrreg16(ks
, KS_RXQCR
,
504 ks
->rc_rxqcr
| RXQCR_SDA
| RXQCR_ADRFE
);
507 skb
= netdev_alloc_skb(ks
->netdev
, rxlen
+ 2 + 8);
509 /* todo - dump frame and move on */
512 /* two bytes to ensure ip is aligned, and four bytes
513 * for the status header and 4 bytes of garbage */
514 skb_reserve(skb
, 2 + 4 + 4);
516 rxpkt
= skb_put(skb
, rxlen
- 4) - 8;
518 /* align the packet length to 4 bytes, and add 4 bytes
519 * as we're getting the rx status header as well */
520 ks8851_rdfifo(ks
, rxpkt
, ALIGN(rxlen
, 4) + 8);
522 if (netif_msg_pktdata(ks
))
523 ks8851_dbg_dumpkkt(ks
, rxpkt
);
525 skb
->protocol
= eth_type_trans(skb
, ks
->netdev
);
528 ks
->netdev
->stats
.rx_packets
++;
529 ks
->netdev
->stats
.rx_bytes
+= rxlen
- 4;
532 ks8851_wrreg16(ks
, KS_RXQCR
, ks
->rc_rxqcr
);
537 * ks8851_irq_work - work queue handler for dealing with interrupt requests
538 * @work: The work structure that was scheduled by schedule_work()
540 * This is the handler invoked when the ks8851_irq() is called to find out
541 * what happened, as we cannot allow ourselves to sleep whilst waiting for
542 * anything other process has the chip's lock.
544 * Read the interrupt status, work out what needs to be done and then clear
545 * any of the interrupts that are not needed.
547 static void ks8851_irq_work(struct work_struct
*work
)
549 struct ks8851_net
*ks
= container_of(work
, struct ks8851_net
, irq_work
);
551 unsigned handled
= 0;
553 mutex_lock(&ks
->lock
);
555 status
= ks8851_rdreg16(ks
, KS_ISR
);
557 netif_dbg(ks
, intr
, ks
->netdev
,
558 "%s: status 0x%04x\n", __func__
, status
);
560 if (status
& IRQ_LCI
) {
561 /* should do something about checking link status */
565 if (status
& IRQ_LDI
) {
566 u16 pmecr
= ks8851_rdreg16(ks
, KS_PMECR
);
567 pmecr
&= ~PMECR_WKEVT_MASK
;
568 ks8851_wrreg16(ks
, KS_PMECR
, pmecr
| PMECR_WKEVT_LINK
);
573 if (status
& IRQ_RXPSI
)
574 handled
|= IRQ_RXPSI
;
576 if (status
& IRQ_TXI
) {
579 /* no lock here, tx queue should have been stopped */
581 /* update our idea of how much tx space is available to the
583 ks
->tx_space
= ks8851_rdreg16(ks
, KS_TXMIR
);
585 netif_dbg(ks
, intr
, ks
->netdev
,
586 "%s: txspace %d\n", __func__
, ks
->tx_space
);
589 if (status
& IRQ_RXI
)
592 if (status
& IRQ_SPIBEI
) {
593 dev_err(&ks
->spidev
->dev
, "%s: spi bus error\n", __func__
);
594 handled
|= IRQ_SPIBEI
;
597 ks8851_wrreg16(ks
, KS_ISR
, handled
);
599 if (status
& IRQ_RXI
) {
600 /* the datasheet says to disable the rx interrupt during
601 * packet read-out, however we're masking the interrupt
602 * from the device so do not bother masking just the RX
603 * from the device. */
608 /* if something stopped the rx process, probably due to wanting
609 * to change the rx settings, then do something about restarting
611 if (status
& IRQ_RXPSI
) {
612 struct ks8851_rxctrl
*rxc
= &ks
->rxctrl
;
614 /* update the multicast hash table */
615 ks8851_wrreg16(ks
, KS_MAHTR0
, rxc
->mchash
[0]);
616 ks8851_wrreg16(ks
, KS_MAHTR1
, rxc
->mchash
[1]);
617 ks8851_wrreg16(ks
, KS_MAHTR2
, rxc
->mchash
[2]);
618 ks8851_wrreg16(ks
, KS_MAHTR3
, rxc
->mchash
[3]);
620 ks8851_wrreg16(ks
, KS_RXCR2
, rxc
->rxcr2
);
621 ks8851_wrreg16(ks
, KS_RXCR1
, rxc
->rxcr1
);
624 mutex_unlock(&ks
->lock
);
626 if (status
& IRQ_TXI
)
627 netif_wake_queue(ks
->netdev
);
629 enable_irq(ks
->netdev
->irq
);
633 * calc_txlen - calculate size of message to send packet
634 * @len: Lenght of data
636 * Returns the size of the TXFIFO message needed to send
639 static inline unsigned calc_txlen(unsigned len
)
641 return ALIGN(len
+ 4, 4);
645 * ks8851_wrpkt - write packet to TX FIFO
646 * @ks: The device state.
647 * @txp: The sk_buff to transmit.
648 * @irq: IRQ on completion of the packet.
650 * Send the @txp to the chip. This means creating the relevant packet header
651 * specifying the length of the packet and the other information the chip
652 * needs, such as IRQ on completion. Send the header and the packet data to
655 static void ks8851_wrpkt(struct ks8851_net
*ks
, struct sk_buff
*txp
, bool irq
)
657 struct spi_transfer
*xfer
= ks
->spi_xfer2
;
658 struct spi_message
*msg
= &ks
->spi_msg2
;
662 netif_dbg(ks
, tx_queued
, ks
->netdev
, "%s: skb %p, %d@%p, irq %d\n",
663 __func__
, txp
, txp
->len
, txp
->data
, irq
);
666 fid
&= TXFR_TXFID_MASK
;
669 fid
|= TXFR_TXIC
; /* irq on completion */
671 /* start header at txb[1] to align txw entries */
672 ks
->txh
.txb
[1] = KS_SPIOP_TXFIFO
;
673 ks
->txh
.txw
[1] = cpu_to_le16(fid
);
674 ks
->txh
.txw
[2] = cpu_to_le16(txp
->len
);
676 xfer
->tx_buf
= &ks
->txh
.txb
[1];
681 xfer
->tx_buf
= txp
->data
;
683 xfer
->len
= ALIGN(txp
->len
, 4);
685 ret
= spi_sync(ks
->spidev
, msg
);
687 netdev_err(ks
->netdev
, "%s: spi_sync() failed\n", __func__
);
691 * ks8851_done_tx - update and then free skbuff after transmitting
692 * @ks: The device state
693 * @txb: The buffer transmitted
695 static void ks8851_done_tx(struct ks8851_net
*ks
, struct sk_buff
*txb
)
697 struct net_device
*dev
= ks
->netdev
;
699 dev
->stats
.tx_bytes
+= txb
->len
;
700 dev
->stats
.tx_packets
++;
706 * ks8851_tx_work - process tx packet(s)
707 * @work: The work strucutre what was scheduled.
709 * This is called when a number of packets have been scheduled for
710 * transmission and need to be sent to the device.
712 static void ks8851_tx_work(struct work_struct
*work
)
714 struct ks8851_net
*ks
= container_of(work
, struct ks8851_net
, tx_work
);
716 bool last
= skb_queue_empty(&ks
->txq
);
718 mutex_lock(&ks
->lock
);
721 txb
= skb_dequeue(&ks
->txq
);
722 last
= skb_queue_empty(&ks
->txq
);
725 ks8851_wrreg16(ks
, KS_RXQCR
, ks
->rc_rxqcr
| RXQCR_SDA
);
726 ks8851_wrpkt(ks
, txb
, last
);
727 ks8851_wrreg16(ks
, KS_RXQCR
, ks
->rc_rxqcr
);
728 ks8851_wrreg16(ks
, KS_TXQCR
, TXQCR_METFE
);
730 ks8851_done_tx(ks
, txb
);
734 mutex_unlock(&ks
->lock
);
738 * ks8851_set_powermode - set power mode of the device
739 * @ks: The device state
740 * @pwrmode: The power mode value to write to KS_PMECR.
742 * Change the power mode of the chip.
744 static void ks8851_set_powermode(struct ks8851_net
*ks
, unsigned pwrmode
)
748 netif_dbg(ks
, hw
, ks
->netdev
, "setting power mode %d\n", pwrmode
);
750 pmecr
= ks8851_rdreg16(ks
, KS_PMECR
);
751 pmecr
&= ~PMECR_PM_MASK
;
754 ks8851_wrreg16(ks
, KS_PMECR
, pmecr
);
758 * ks8851_net_open - open network device
759 * @dev: The network device being opened.
761 * Called when the network device is marked active, such as a user executing
762 * 'ifconfig up' on the device.
764 static int ks8851_net_open(struct net_device
*dev
)
766 struct ks8851_net
*ks
= netdev_priv(dev
);
768 /* lock the card, even if we may not actually be doing anything
769 * else at the moment */
770 mutex_lock(&ks
->lock
);
772 netif_dbg(ks
, ifup
, ks
->netdev
, "opening\n");
774 /* bring chip out of any power saving mode it was in */
775 ks8851_set_powermode(ks
, PMECR_PM_NORMAL
);
777 /* issue a soft reset to the RX/TX QMU to put it into a known
779 ks8851_soft_reset(ks
, GRR_QMU
);
781 /* setup transmission parameters */
783 ks8851_wrreg16(ks
, KS_TXCR
, (TXCR_TXE
| /* enable transmit process */
784 TXCR_TXPE
| /* pad to min length */
785 TXCR_TXCRC
| /* add CRC */
786 TXCR_TXFCE
)); /* enable flow control */
788 /* auto-increment tx data, reset tx pointer */
789 ks8851_wrreg16(ks
, KS_TXFDPR
, TXFDPR_TXFPAI
);
791 /* setup receiver control */
793 ks8851_wrreg16(ks
, KS_RXCR1
, (RXCR1_RXPAFMA
| /* from mac filter */
794 RXCR1_RXFCE
| /* enable flow control */
795 RXCR1_RXBE
| /* broadcast enable */
796 RXCR1_RXUE
| /* unicast enable */
797 RXCR1_RXE
)); /* enable rx block */
799 /* transfer entire frames out in one go */
800 ks8851_wrreg16(ks
, KS_RXCR2
, RXCR2_SRDBL_FRAME
);
802 /* set receive counter timeouts */
803 ks8851_wrreg16(ks
, KS_RXDTTR
, 1000); /* 1ms after first frame to IRQ */
804 ks8851_wrreg16(ks
, KS_RXDBCTR
, 4096); /* >4Kbytes in buffer to IRQ */
805 ks8851_wrreg16(ks
, KS_RXFCTR
, 10); /* 10 frames to IRQ */
807 ks
->rc_rxqcr
= (RXQCR_RXFCTE
| /* IRQ on frame count exceeded */
808 RXQCR_RXDBCTE
| /* IRQ on byte count exceeded */
809 RXQCR_RXDTTE
); /* IRQ on time exceeded */
811 ks8851_wrreg16(ks
, KS_RXQCR
, ks
->rc_rxqcr
);
813 /* clear then enable interrupts */
815 #define STD_IRQ (IRQ_LCI | /* Link Change */ \
816 IRQ_TXI | /* TX done */ \
817 IRQ_RXI | /* RX done */ \
818 IRQ_SPIBEI | /* SPI bus error */ \
819 IRQ_TXPSI | /* TX process stop */ \
820 IRQ_RXPSI) /* RX process stop */
822 ks
->rc_ier
= STD_IRQ
;
823 ks8851_wrreg16(ks
, KS_ISR
, STD_IRQ
);
824 ks8851_wrreg16(ks
, KS_IER
, STD_IRQ
);
826 netif_start_queue(ks
->netdev
);
828 netif_dbg(ks
, ifup
, ks
->netdev
, "network device up\n");
830 mutex_unlock(&ks
->lock
);
835 * ks8851_net_stop - close network device
836 * @dev: The device being closed.
838 * Called to close down a network device which has been active. Cancell any
839 * work, shutdown the RX and TX process and then place the chip into a low
840 * power state whilst it is not being used.
842 static int ks8851_net_stop(struct net_device
*dev
)
844 struct ks8851_net
*ks
= netdev_priv(dev
);
846 netif_info(ks
, ifdown
, dev
, "shutting down\n");
848 netif_stop_queue(dev
);
850 mutex_lock(&ks
->lock
);
852 /* stop any outstanding work */
853 flush_work(&ks
->irq_work
);
854 flush_work(&ks
->tx_work
);
855 flush_work(&ks
->rxctrl_work
);
857 /* turn off the IRQs and ack any outstanding */
858 ks8851_wrreg16(ks
, KS_IER
, 0x0000);
859 ks8851_wrreg16(ks
, KS_ISR
, 0xffff);
861 /* shutdown RX process */
862 ks8851_wrreg16(ks
, KS_RXCR1
, 0x0000);
864 /* shutdown TX process */
865 ks8851_wrreg16(ks
, KS_TXCR
, 0x0000);
867 /* set powermode to soft power down to save power */
868 ks8851_set_powermode(ks
, PMECR_PM_SOFTDOWN
);
870 /* ensure any queued tx buffers are dumped */
871 while (!skb_queue_empty(&ks
->txq
)) {
872 struct sk_buff
*txb
= skb_dequeue(&ks
->txq
);
874 netif_dbg(ks
, ifdown
, ks
->netdev
,
875 "%s: freeing txb %p\n", __func__
, txb
);
880 mutex_unlock(&ks
->lock
);
885 * ks8851_start_xmit - transmit packet
886 * @skb: The buffer to transmit
887 * @dev: The device used to transmit the packet.
889 * Called by the network layer to transmit the @skb. Queue the packet for
890 * the device and schedule the necessary work to transmit the packet when
893 * We do this to firstly avoid sleeping with the network device locked,
894 * and secondly so we can round up more than one packet to transmit which
895 * means we can try and avoid generating too many transmit done interrupts.
897 static netdev_tx_t
ks8851_start_xmit(struct sk_buff
*skb
,
898 struct net_device
*dev
)
900 struct ks8851_net
*ks
= netdev_priv(dev
);
901 unsigned needed
= calc_txlen(skb
->len
);
902 netdev_tx_t ret
= NETDEV_TX_OK
;
904 netif_dbg(ks
, tx_queued
, ks
->netdev
,
905 "%s: skb %p, %d@%p\n", __func__
, skb
, skb
->len
, skb
->data
);
907 spin_lock(&ks
->statelock
);
909 if (needed
> ks
->tx_space
) {
910 netif_stop_queue(dev
);
911 ret
= NETDEV_TX_BUSY
;
913 ks
->tx_space
-= needed
;
914 skb_queue_tail(&ks
->txq
, skb
);
917 spin_unlock(&ks
->statelock
);
918 schedule_work(&ks
->tx_work
);
924 * ks8851_rxctrl_work - work handler to change rx mode
925 * @work: The work structure this belongs to.
927 * Lock the device and issue the necessary changes to the receive mode from
928 * the network device layer. This is done so that we can do this without
929 * having to sleep whilst holding the network device lock.
931 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
932 * receive parameters are programmed, we issue a write to disable the RXQ and
933 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
934 * complete. The interrupt handler then writes the new values into the chip.
936 static void ks8851_rxctrl_work(struct work_struct
*work
)
938 struct ks8851_net
*ks
= container_of(work
, struct ks8851_net
, rxctrl_work
);
940 mutex_lock(&ks
->lock
);
942 /* need to shutdown RXQ before modifying filter parameters */
943 ks8851_wrreg16(ks
, KS_RXCR1
, 0x00);
945 mutex_unlock(&ks
->lock
);
948 static void ks8851_set_rx_mode(struct net_device
*dev
)
950 struct ks8851_net
*ks
= netdev_priv(dev
);
951 struct ks8851_rxctrl rxctrl
;
953 memset(&rxctrl
, 0, sizeof(rxctrl
));
955 if (dev
->flags
& IFF_PROMISC
) {
956 /* interface to receive everything */
958 rxctrl
.rxcr1
= RXCR1_RXAE
| RXCR1_RXINVF
;
959 } else if (dev
->flags
& IFF_ALLMULTI
) {
960 /* accept all multicast packets */
962 rxctrl
.rxcr1
= (RXCR1_RXME
| RXCR1_RXAE
|
963 RXCR1_RXPAFMA
| RXCR1_RXMAFMA
);
964 } else if (dev
->flags
& IFF_MULTICAST
&& !netdev_mc_empty(dev
)) {
965 struct netdev_hw_addr
*ha
;
968 /* accept some multicast */
970 netdev_for_each_mc_addr(ha
, dev
) {
971 crc
= ether_crc(ETH_ALEN
, ha
->addr
);
972 crc
>>= (32 - 6); /* get top six bits */
974 rxctrl
.mchash
[crc
>> 4] |= (1 << (crc
& 0xf));
977 rxctrl
.rxcr1
= RXCR1_RXME
| RXCR1_RXPAFMA
;
979 /* just accept broadcast / unicast */
980 rxctrl
.rxcr1
= RXCR1_RXPAFMA
;
983 rxctrl
.rxcr1
|= (RXCR1_RXUE
| /* unicast enable */
984 RXCR1_RXBE
| /* broadcast enable */
985 RXCR1_RXE
| /* RX process enable */
986 RXCR1_RXFCE
); /* enable flow control */
988 rxctrl
.rxcr2
|= RXCR2_SRDBL_FRAME
;
990 /* schedule work to do the actual set of the data if needed */
992 spin_lock(&ks
->statelock
);
994 if (memcmp(&rxctrl
, &ks
->rxctrl
, sizeof(rxctrl
)) != 0) {
995 memcpy(&ks
->rxctrl
, &rxctrl
, sizeof(ks
->rxctrl
));
996 schedule_work(&ks
->rxctrl_work
);
999 spin_unlock(&ks
->statelock
);
1002 static int ks8851_set_mac_address(struct net_device
*dev
, void *addr
)
1004 struct sockaddr
*sa
= addr
;
1006 if (netif_running(dev
))
1009 if (!is_valid_ether_addr(sa
->sa_data
))
1010 return -EADDRNOTAVAIL
;
1012 memcpy(dev
->dev_addr
, sa
->sa_data
, ETH_ALEN
);
1013 return ks8851_write_mac_addr(dev
);
1016 static int ks8851_net_ioctl(struct net_device
*dev
, struct ifreq
*req
, int cmd
)
1018 struct ks8851_net
*ks
= netdev_priv(dev
);
1020 if (!netif_running(dev
))
1023 return generic_mii_ioctl(&ks
->mii
, if_mii(req
), cmd
, NULL
);
1026 static const struct net_device_ops ks8851_netdev_ops
= {
1027 .ndo_open
= ks8851_net_open
,
1028 .ndo_stop
= ks8851_net_stop
,
1029 .ndo_do_ioctl
= ks8851_net_ioctl
,
1030 .ndo_start_xmit
= ks8851_start_xmit
,
1031 .ndo_set_mac_address
= ks8851_set_mac_address
,
1032 .ndo_set_rx_mode
= ks8851_set_rx_mode
,
1033 .ndo_change_mtu
= eth_change_mtu
,
1034 .ndo_validate_addr
= eth_validate_addr
,
1037 /* Companion eeprom access */
1039 enum { /* EEPROM programming states */
1047 * ks8851_eeprom_read - read a 16bits word in ks8851 companion EEPROM
1048 * @dev: The network device the PHY is on.
1049 * @addr: EEPROM address to read
1051 * eeprom_size: used to define the data coding length. Can be changed
1054 * Programs a read on the EEPROM using ks8851 EEPROM SW access feature.
1055 * Warning: The READ feature is not supported on ks8851 revision 0.
1057 * Rough programming model:
1058 * - on period start: set clock high and read value on bus
1059 * - on period / 2: set clock low and program value on bus
1060 * - start on period / 2
1062 unsigned int ks8851_eeprom_read(struct net_device
*dev
, unsigned int addr
)
1064 struct ks8851_net
*ks
= netdev_priv(dev
);
1066 int ctrl
= EEPROM_OP_READ
;
1067 int state
= EEPROM_CONTROL
;
1068 int bit_count
= EEPROM_OP_LEN
- 1;
1069 unsigned int data
= 0;
1071 unsigned int addr_len
;
1073 addr_len
= (ks
->eeprom_size
== 128) ? 6 : 8;
1075 /* start transaction: chip select high, authorize write */
1076 mutex_lock(&ks
->lock
);
1077 eepcr
= EEPCR_EESA
| EEPCR_EESRWA
;
1078 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1079 eepcr
|= EEPCR_EECS
;
1080 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1081 mutex_unlock(&ks
->lock
);
1083 while (state
!= EEPROM_COMPLETE
) {
1084 /* falling clock period starts... */
1085 /* set EED_IO pin for control and address */
1086 eepcr
&= ~EEPCR_EEDO
;
1088 case EEPROM_CONTROL
:
1089 eepcr
|= ((ctrl
>> bit_count
) & 1) << 2;
1090 if (bit_count
-- <= 0) {
1091 bit_count
= addr_len
- 1;
1092 state
= EEPROM_ADDRESS
;
1095 case EEPROM_ADDRESS
:
1096 eepcr
|= ((addr
>> bit_count
) & 1) << 2;
1100 /* Change to receive mode */
1101 eepcr
&= ~EEPCR_EESRWA
;
1106 eepcr
&= ~EEPCR_EESCK
;
1108 mutex_lock(&ks
->lock
);
1109 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1110 mutex_unlock(&ks
->lock
);
1112 /* waitread period / 2 */
1113 udelay(EEPROM_SK_PERIOD
/ 2);
1115 /* rising clock period starts... */
1118 mutex_lock(&ks
->lock
);
1119 eepcr
|= EEPCR_EESCK
;
1120 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1121 mutex_unlock(&ks
->lock
);
1125 case EEPROM_ADDRESS
:
1126 if (bit_count
< 0) {
1127 bit_count
= EEPROM_DATA_LEN
- 1;
1128 state
= EEPROM_DATA
;
1132 mutex_lock(&ks
->lock
);
1133 dummy
= ks8851_rdreg16(ks
, KS_EEPCR
);
1134 mutex_unlock(&ks
->lock
);
1135 data
|= ((dummy
>> EEPCR_EESB_OFFSET
) & 1) << bit_count
;
1136 if (bit_count
-- <= 0)
1137 state
= EEPROM_COMPLETE
;
1141 /* wait period / 2 */
1142 udelay(EEPROM_SK_PERIOD
/ 2);
1145 /* close transaction */
1146 mutex_lock(&ks
->lock
);
1147 eepcr
&= ~EEPCR_EECS
;
1148 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1150 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1151 mutex_unlock(&ks
->lock
);
1157 * ks8851_eeprom_write - write a 16bits word in ks8851 companion EEPROM
1158 * @dev: The network device the PHY is on.
1159 * @op: operand (can be WRITE, EWEN, EWDS)
1160 * @addr: EEPROM address to write
1161 * @data: data to write
1163 * eeprom_size: used to define the data coding length. Can be changed
1166 * Programs a write on the EEPROM using ks8851 EEPROM SW access feature.
1168 * Note that a write enable is required before writing data.
1170 * Rough programming model:
1171 * - on period start: set clock high
1172 * - on period / 2: set clock low and program value on bus
1173 * - start on period / 2
1175 void ks8851_eeprom_write(struct net_device
*dev
, unsigned int op
,
1176 unsigned int addr
, unsigned int data
)
1178 struct ks8851_net
*ks
= netdev_priv(dev
);
1180 int state
= EEPROM_CONTROL
;
1181 int bit_count
= EEPROM_OP_LEN
- 1;
1182 unsigned int addr_len
;
1184 addr_len
= (ks
->eeprom_size
== 128) ? 6 : 8;
1187 case EEPROM_OP_EWEN
:
1190 case EEPROM_OP_EWDS
:
1195 /* start transaction: chip select high, authorize write */
1196 mutex_lock(&ks
->lock
);
1197 eepcr
= EEPCR_EESA
| EEPCR_EESRWA
;
1198 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1199 eepcr
|= EEPCR_EECS
;
1200 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1201 mutex_unlock(&ks
->lock
);
1203 while (state
!= EEPROM_COMPLETE
) {
1204 /* falling clock period starts... */
1205 /* set EED_IO pin for control and address */
1206 eepcr
&= ~EEPCR_EEDO
;
1208 case EEPROM_CONTROL
:
1209 eepcr
|= ((op
>> bit_count
) & 1) << 2;
1210 if (bit_count
-- <= 0) {
1211 bit_count
= addr_len
- 1;
1212 state
= EEPROM_ADDRESS
;
1215 case EEPROM_ADDRESS
:
1216 eepcr
|= ((addr
>> bit_count
) & 1) << 2;
1217 if (bit_count
-- <= 0) {
1218 if (op
== EEPROM_OP_WRITE
) {
1219 bit_count
= EEPROM_DATA_LEN
- 1;
1220 state
= EEPROM_DATA
;
1222 state
= EEPROM_COMPLETE
;
1227 eepcr
|= ((data
>> bit_count
) & 1) << 2;
1228 if (bit_count
-- <= 0)
1229 state
= EEPROM_COMPLETE
;
1234 eepcr
&= ~EEPCR_EESCK
;
1236 mutex_lock(&ks
->lock
);
1237 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1238 mutex_unlock(&ks
->lock
);
1240 /* wait period / 2 */
1241 udelay(EEPROM_SK_PERIOD
/ 2);
1243 /* rising clock period starts... */
1246 eepcr
|= EEPCR_EESCK
;
1247 mutex_lock(&ks
->lock
);
1248 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1249 mutex_unlock(&ks
->lock
);
1251 /* wait period / 2 */
1252 udelay(EEPROM_SK_PERIOD
/ 2);
1255 /* close transaction */
1256 mutex_lock(&ks
->lock
);
1257 eepcr
&= ~EEPCR_EECS
;
1258 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1260 ks8851_wrreg16(ks
, KS_EEPCR
, eepcr
);
1261 mutex_unlock(&ks
->lock
);
1265 /* ethtool support */
1267 static void ks8851_get_drvinfo(struct net_device
*dev
,
1268 struct ethtool_drvinfo
*di
)
1270 strlcpy(di
->driver
, "KS8851", sizeof(di
->driver
));
1271 strlcpy(di
->version
, "1.00", sizeof(di
->version
));
1272 strlcpy(di
->bus_info
, dev_name(dev
->dev
.parent
), sizeof(di
->bus_info
));
1275 static u32
ks8851_get_msglevel(struct net_device
*dev
)
1277 struct ks8851_net
*ks
= netdev_priv(dev
);
1278 return ks
->msg_enable
;
1281 static void ks8851_set_msglevel(struct net_device
*dev
, u32 to
)
1283 struct ks8851_net
*ks
= netdev_priv(dev
);
1284 ks
->msg_enable
= to
;
1287 static int ks8851_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1289 struct ks8851_net
*ks
= netdev_priv(dev
);
1290 return mii_ethtool_gset(&ks
->mii
, cmd
);
1293 static int ks8851_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1295 struct ks8851_net
*ks
= netdev_priv(dev
);
1296 return mii_ethtool_sset(&ks
->mii
, cmd
);
1299 static u32
ks8851_get_link(struct net_device
*dev
)
1301 struct ks8851_net
*ks
= netdev_priv(dev
);
1302 return mii_link_ok(&ks
->mii
);
1305 static int ks8851_nway_reset(struct net_device
*dev
)
1307 struct ks8851_net
*ks
= netdev_priv(dev
);
1308 return mii_nway_restart(&ks
->mii
);
1311 static int ks8851_get_eeprom_len(struct net_device
*dev
)
1313 struct ks8851_net
*ks
= netdev_priv(dev
);
1314 return ks
->eeprom_size
;
1317 static int ks8851_get_eeprom(struct net_device
*dev
,
1318 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
1320 struct ks8851_net
*ks
= netdev_priv(dev
);
1327 if (eeprom
->len
== 0)
1330 if (eeprom
->len
> ks
->eeprom_size
)
1333 eeprom
->magic
= ks8851_rdreg16(ks
, KS_CIDER
);
1335 first_word
= eeprom
->offset
>> 1;
1336 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
1338 eeprom_buff
= kmalloc(sizeof(u16
) *
1339 (last_word
- first_word
+ 1), GFP_KERNEL
);
1343 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
1344 eeprom_buff
[i
] = ks8851_eeprom_read(dev
, first_word
+ 1);
1346 /* Device's eeprom is little-endian, word addressable */
1347 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
1348 le16_to_cpus(&eeprom_buff
[i
]);
1350 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1), eeprom
->len
);
1356 static int ks8851_set_eeprom(struct net_device
*dev
,
1357 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
1359 struct ks8851_net
*ks
= netdev_priv(dev
);
1368 if (eeprom
->len
== 0)
1371 if (eeprom
->len
> ks
->eeprom_size
)
1374 if (eeprom
->magic
!= ks8851_rdreg16(ks
, KS_CIDER
))
1377 first_word
= eeprom
->offset
>> 1;
1378 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
1379 max_len
= (last_word
- first_word
+ 1) * 2;
1380 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
1384 ptr
= (void *)eeprom_buff
;
1386 if (eeprom
->offset
& 1) {
1387 /* need read/modify/write of first changed EEPROM word */
1388 /* only the second byte of the word is being modified */
1389 eeprom_buff
[0] = ks8851_eeprom_read(dev
, first_word
);
1392 if ((eeprom
->offset
+ eeprom
->len
) & 1)
1393 /* need read/modify/write of last changed EEPROM word */
1394 /* only the first byte of the word is being modified */
1395 eeprom_buff
[last_word
- first_word
] =
1396 ks8851_eeprom_read(dev
, last_word
);
1399 /* Device's eeprom is little-endian, word addressable */
1400 le16_to_cpus(&eeprom_buff
[0]);
1401 le16_to_cpus(&eeprom_buff
[last_word
- first_word
]);
1403 memcpy(ptr
, bytes
, eeprom
->len
);
1405 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
1406 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
1408 ks8851_eeprom_write(dev
, EEPROM_OP_EWEN
, 0, 0);
1410 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
1411 ks8851_eeprom_write(dev
, EEPROM_OP_WRITE
, first_word
+ i
,
1413 mdelay(EEPROM_WRITE_TIME
);
1416 ks8851_eeprom_write(dev
, EEPROM_OP_EWDS
, 0, 0);
1422 static const struct ethtool_ops ks8851_ethtool_ops
= {
1423 .get_drvinfo
= ks8851_get_drvinfo
,
1424 .get_msglevel
= ks8851_get_msglevel
,
1425 .set_msglevel
= ks8851_set_msglevel
,
1426 .get_settings
= ks8851_get_settings
,
1427 .set_settings
= ks8851_set_settings
,
1428 .get_link
= ks8851_get_link
,
1429 .nway_reset
= ks8851_nway_reset
,
1430 .get_eeprom_len
= ks8851_get_eeprom_len
,
1431 .get_eeprom
= ks8851_get_eeprom
,
1432 .set_eeprom
= ks8851_set_eeprom
,
1435 /* MII interface controls */
1438 * ks8851_phy_reg - convert MII register into a KS8851 register
1439 * @reg: MII register number.
1441 * Return the KS8851 register number for the corresponding MII PHY register
1442 * if possible. Return zero if the MII register has no direct mapping to the
1443 * KS8851 register set.
1445 static int ks8851_phy_reg(int reg
)
1466 * ks8851_phy_read - MII interface PHY register read.
1467 * @dev: The network device the PHY is on.
1468 * @phy_addr: Address of PHY (ignored as we only have one)
1469 * @reg: The register to read.
1471 * This call reads data from the PHY register specified in @reg. Since the
1472 * device does not support all the MII registers, the non-existant values
1473 * are always returned as zero.
1475 * We return zero for unsupported registers as the MII code does not check
1476 * the value returned for any error status, and simply returns it to the
1477 * caller. The mii-tool that the driver was tested with takes any -ve error
1478 * as real PHY capabilities, thus displaying incorrect data to the user.
1480 static int ks8851_phy_read(struct net_device
*dev
, int phy_addr
, int reg
)
1482 struct ks8851_net
*ks
= netdev_priv(dev
);
1486 ksreg
= ks8851_phy_reg(reg
);
1488 return 0x0; /* no error return allowed, so use zero */
1490 mutex_lock(&ks
->lock
);
1491 result
= ks8851_rdreg16(ks
, ksreg
);
1492 mutex_unlock(&ks
->lock
);
1497 static void ks8851_phy_write(struct net_device
*dev
,
1498 int phy
, int reg
, int value
)
1500 struct ks8851_net
*ks
= netdev_priv(dev
);
1503 ksreg
= ks8851_phy_reg(reg
);
1505 mutex_lock(&ks
->lock
);
1506 ks8851_wrreg16(ks
, ksreg
, value
);
1507 mutex_unlock(&ks
->lock
);
1512 * ks8851_read_selftest - read the selftest memory info.
1513 * @ks: The device state
1515 * Read and check the TX/RX memory selftest information.
1517 static int ks8851_read_selftest(struct ks8851_net
*ks
)
1519 unsigned both_done
= MBIR_TXMBF
| MBIR_RXMBF
;
1523 rd
= ks8851_rdreg16(ks
, KS_MBIR
);
1525 if ((rd
& both_done
) != both_done
) {
1526 netdev_warn(ks
->netdev
, "Memory selftest not finished\n");
1530 if (rd
& MBIR_TXMBFA
) {
1531 netdev_err(ks
->netdev
, "TX memory selftest fail\n");
1535 if (rd
& MBIR_RXMBFA
) {
1536 netdev_err(ks
->netdev
, "RX memory selftest fail\n");
1543 /* driver bus management functions */
1545 static int __devinit
ks8851_probe(struct spi_device
*spi
)
1547 struct net_device
*ndev
;
1548 struct ks8851_net
*ks
;
1551 ndev
= alloc_etherdev(sizeof(struct ks8851_net
));
1553 dev_err(&spi
->dev
, "failed to alloc ethernet device\n");
1557 spi
->bits_per_word
= 8;
1559 ks
= netdev_priv(ndev
);
1563 ks
->tx_space
= 6144;
1565 mutex_init(&ks
->lock
);
1566 spin_lock_init(&ks
->statelock
);
1568 INIT_WORK(&ks
->tx_work
, ks8851_tx_work
);
1569 INIT_WORK(&ks
->irq_work
, ks8851_irq_work
);
1570 INIT_WORK(&ks
->rxctrl_work
, ks8851_rxctrl_work
);
1572 /* initialise pre-made spi transfer messages */
1574 spi_message_init(&ks
->spi_msg1
);
1575 spi_message_add_tail(&ks
->spi_xfer1
, &ks
->spi_msg1
);
1577 spi_message_init(&ks
->spi_msg2
);
1578 spi_message_add_tail(&ks
->spi_xfer2
[0], &ks
->spi_msg2
);
1579 spi_message_add_tail(&ks
->spi_xfer2
[1], &ks
->spi_msg2
);
1581 /* setup mii state */
1584 ks
->mii
.phy_id_mask
= 1;
1585 ks
->mii
.reg_num_mask
= 0xf;
1586 ks
->mii
.mdio_read
= ks8851_phy_read
;
1587 ks
->mii
.mdio_write
= ks8851_phy_write
;
1589 dev_info(&spi
->dev
, "message enable is %d\n", msg_enable
);
1591 /* set the default message enable */
1592 ks
->msg_enable
= netif_msg_init(msg_enable
, (NETIF_MSG_DRV
|
1596 skb_queue_head_init(&ks
->txq
);
1598 SET_ETHTOOL_OPS(ndev
, &ks8851_ethtool_ops
);
1599 SET_NETDEV_DEV(ndev
, &spi
->dev
);
1601 dev_set_drvdata(&spi
->dev
, ks
);
1603 ndev
->if_port
= IF_PORT_100BASET
;
1604 ndev
->netdev_ops
= &ks8851_netdev_ops
;
1605 ndev
->irq
= spi
->irq
;
1607 /* issue a global soft reset to reset the device. */
1608 ks8851_soft_reset(ks
, GRR_GSR
);
1610 /* simple check for a valid chip being connected to the bus */
1612 if ((ks8851_rdreg16(ks
, KS_CIDER
) & ~CIDER_REV_MASK
) != CIDER_ID
) {
1613 dev_err(&spi
->dev
, "failed to read device ID\n");
1618 /* cache the contents of the CCR register for EEPROM, etc. */
1619 ks
->rc_ccr
= ks8851_rdreg16(ks
, KS_CCR
);
1621 if (ks
->rc_ccr
& CCR_EEPROM
)
1622 ks
->eeprom_size
= 128;
1624 ks
->eeprom_size
= 0;
1626 ks8851_read_selftest(ks
);
1627 ks8851_init_mac(ks
);
1629 ret
= request_irq(spi
->irq
, ks8851_irq
, IRQF_TRIGGER_LOW
,
1632 dev_err(&spi
->dev
, "failed to get irq\n");
1636 ret
= register_netdev(ndev
);
1638 dev_err(&spi
->dev
, "failed to register network device\n");
1642 netdev_info(ndev
, "revision %d, MAC %pM, IRQ %d\n",
1643 CIDER_REV_GET(ks8851_rdreg16(ks
, KS_CIDER
)),
1644 ndev
->dev_addr
, ndev
->irq
);
1650 free_irq(ndev
->irq
, ndev
);
1658 static int __devexit
ks8851_remove(struct spi_device
*spi
)
1660 struct ks8851_net
*priv
= dev_get_drvdata(&spi
->dev
);
1662 if (netif_msg_drv(priv
))
1663 dev_info(&spi
->dev
, "remove\n");
1665 unregister_netdev(priv
->netdev
);
1666 free_irq(spi
->irq
, priv
);
1667 free_netdev(priv
->netdev
);
1672 static struct spi_driver ks8851_driver
= {
1675 .owner
= THIS_MODULE
,
1677 .probe
= ks8851_probe
,
1678 .remove
= __devexit_p(ks8851_remove
),
1681 static int __init
ks8851_init(void)
1683 return spi_register_driver(&ks8851_driver
);
1686 static void __exit
ks8851_exit(void)
1688 spi_unregister_driver(&ks8851_driver
);
1691 module_init(ks8851_init
);
1692 module_exit(ks8851_exit
);
1694 MODULE_DESCRIPTION("KS8851 Network driver");
1695 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1696 MODULE_LICENSE("GPL");
1698 module_param_named(message
, msg_enable
, int, 0);
1699 MODULE_PARM_DESC(message
, "Message verbosity level (0=none, 31=all)");
1700 MODULE_ALIAS("spi:ks8851");