[DNS RESOLVER] Minor typo correction
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / epic100.c
blob57c8ac0ef3f1232d41e4f00399eb27b18170dcf6
1 /* epic100.c: A SMC 83c170 EPIC/100 Fast Ethernet driver for Linux. */
2 /*
3 Written/copyright 1997-2001 by Donald Becker.
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
12 This driver is for the SMC83c170/175 "EPIC" series, as used on the
13 SMC EtherPower II 9432 PCI adapter, and several CardBus cards.
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
20 Information and updates available at
21 http://www.scyld.com/network/epic100.html
22 [this link no longer provides anything useful -jgarzik]
24 ---------------------------------------------------------------------
28 #define DRV_NAME "epic100"
29 #define DRV_VERSION "2.1"
30 #define DRV_RELDATE "Sept 11, 2006"
32 /* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
37 /* Used to pass the full-duplex flag, etc. */
38 #define MAX_UNITS 8 /* More are supported, limit only on options */
39 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
40 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
42 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
43 Setting to > 1518 effectively disables this feature. */
44 static int rx_copybreak;
46 /* Operational parameters that are set at compile time. */
48 /* Keep the ring sizes a power of two for operational efficiency.
49 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
50 Making the Tx ring too large decreases the effectiveness of channel
51 bonding and packet priority.
52 There are no ill effects from too-large receive rings. */
53 #define TX_RING_SIZE 256
54 #define TX_QUEUE_LEN 240 /* Limit ring entries actually used. */
55 #define RX_RING_SIZE 256
56 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct epic_tx_desc)
57 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct epic_rx_desc)
59 /* Operational parameters that usually are not changed. */
60 /* Time in jiffies before concluding the transmitter is hung. */
61 #define TX_TIMEOUT (2*HZ)
63 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
65 /* Bytes transferred to chip before transmission starts. */
66 /* Initial threshold, increased on underflow, rounded down to 4 byte units. */
67 #define TX_FIFO_THRESH 256
68 #define RX_FIFO_THRESH 1 /* 0-3, 0==32, 64,96, or 3==128 bytes */
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/string.h>
73 #include <linux/timer.h>
74 #include <linux/errno.h>
75 #include <linux/ioport.h>
76 #include <linux/interrupt.h>
77 #include <linux/pci.h>
78 #include <linux/delay.h>
79 #include <linux/netdevice.h>
80 #include <linux/etherdevice.h>
81 #include <linux/skbuff.h>
82 #include <linux/init.h>
83 #include <linux/spinlock.h>
84 #include <linux/ethtool.h>
85 #include <linux/mii.h>
86 #include <linux/crc32.h>
87 #include <linux/bitops.h>
88 #include <asm/io.h>
89 #include <asm/uaccess.h>
90 #include <asm/byteorder.h>
92 /* These identify the driver base version and may not be removed. */
93 static char version[] __devinitdata =
94 DRV_NAME ".c:v1.11 1/7/2001 Written by Donald Becker <becker@scyld.com>\n";
95 static char version2[] __devinitdata =
96 " (unofficial 2.4.x kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
98 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
99 MODULE_DESCRIPTION("SMC 83c170 EPIC series Ethernet driver");
100 MODULE_LICENSE("GPL");
102 module_param(debug, int, 0);
103 module_param(rx_copybreak, int, 0);
104 module_param_array(options, int, NULL, 0);
105 module_param_array(full_duplex, int, NULL, 0);
106 MODULE_PARM_DESC(debug, "EPIC/100 debug level (0-5)");
107 MODULE_PARM_DESC(options, "EPIC/100: Bits 0-3: media type, bit 4: full duplex");
108 MODULE_PARM_DESC(rx_copybreak, "EPIC/100 copy breakpoint for copy-only-tiny-frames");
109 MODULE_PARM_DESC(full_duplex, "EPIC/100 full duplex setting(s) (1)");
112 Theory of Operation
114 I. Board Compatibility
116 This device driver is designed for the SMC "EPIC/100", the SMC
117 single-chip Ethernet controllers for PCI. This chip is used on
118 the SMC EtherPower II boards.
120 II. Board-specific settings
122 PCI bus devices are configured by the system at boot time, so no jumpers
123 need to be set on the board. The system BIOS will assign the
124 PCI INTA signal to a (preferably otherwise unused) system IRQ line.
125 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
126 interrupt lines.
128 III. Driver operation
130 IIIa. Ring buffers
132 IVb. References
134 http://www.smsc.com/main/tools/discontinued/83c171.pdf
135 http://www.smsc.com/main/tools/discontinued/83c175.pdf
136 http://scyld.com/expert/NWay.html
137 http://www.national.com/pf/DP/DP83840A.html
139 IVc. Errata
144 enum chip_capability_flags { MII_PWRDWN=1, TYPE2_INTR=2, NO_MII=4 };
146 #define EPIC_TOTAL_SIZE 0x100
147 #define USE_IO_OPS 1
149 typedef enum {
150 SMSC_83C170_0,
151 SMSC_83C170,
152 SMSC_83C175,
153 } chip_t;
156 struct epic_chip_info {
157 const char *name;
158 int drv_flags; /* Driver use, intended as capability flags. */
162 /* indexed by chip_t */
163 static const struct epic_chip_info pci_id_tbl[] = {
164 { "SMSC EPIC/100 83c170", TYPE2_INTR | NO_MII | MII_PWRDWN },
165 { "SMSC EPIC/100 83c170", TYPE2_INTR },
166 { "SMSC EPIC/C 83c175", TYPE2_INTR | MII_PWRDWN },
170 static DEFINE_PCI_DEVICE_TABLE(epic_pci_tbl) = {
171 { 0x10B8, 0x0005, 0x1092, 0x0AB4, 0, 0, SMSC_83C170_0 },
172 { 0x10B8, 0x0005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, SMSC_83C170 },
173 { 0x10B8, 0x0006, PCI_ANY_ID, PCI_ANY_ID,
174 PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, SMSC_83C175 },
175 { 0,}
177 MODULE_DEVICE_TABLE (pci, epic_pci_tbl);
180 #ifndef USE_IO_OPS
181 #undef inb
182 #undef inw
183 #undef inl
184 #undef outb
185 #undef outw
186 #undef outl
187 #define inb readb
188 #define inw readw
189 #define inl readl
190 #define outb writeb
191 #define outw writew
192 #define outl writel
193 #endif
195 /* Offsets to registers, using the (ugh) SMC names. */
196 enum epic_registers {
197 COMMAND=0, INTSTAT=4, INTMASK=8, GENCTL=0x0C, NVCTL=0x10, EECTL=0x14,
198 PCIBurstCnt=0x18,
199 TEST1=0x1C, CRCCNT=0x20, ALICNT=0x24, MPCNT=0x28, /* Rx error counters. */
200 MIICtrl=0x30, MIIData=0x34, MIICfg=0x38,
201 LAN0=64, /* MAC address. */
202 MC0=80, /* Multicast filter table. */
203 RxCtrl=96, TxCtrl=112, TxSTAT=0x74,
204 PRxCDAR=0x84, RxSTAT=0xA4, EarlyRx=0xB0, PTxCDAR=0xC4, TxThresh=0xDC,
207 /* Interrupt register bits, using my own meaningful names. */
208 enum IntrStatus {
209 TxIdle=0x40000, RxIdle=0x20000, IntrSummary=0x010000,
210 PCIBusErr170=0x7000, PCIBusErr175=0x1000, PhyEvent175=0x8000,
211 RxStarted=0x0800, RxEarlyWarn=0x0400, CntFull=0x0200, TxUnderrun=0x0100,
212 TxEmpty=0x0080, TxDone=0x0020, RxError=0x0010,
213 RxOverflow=0x0008, RxFull=0x0004, RxHeader=0x0002, RxDone=0x0001,
215 enum CommandBits {
216 StopRx=1, StartRx=2, TxQueued=4, RxQueued=8,
217 StopTxDMA=0x20, StopRxDMA=0x40, RestartTx=0x80,
220 #define EpicRemoved 0xffffffff /* Chip failed or removed (CardBus) */
222 #define EpicNapiEvent (TxEmpty | TxDone | \
223 RxDone | RxStarted | RxEarlyWarn | RxOverflow | RxFull)
224 #define EpicNormalEvent (0x0000ffff & ~EpicNapiEvent)
226 static const u16 media2miictl[16] = {
227 0, 0x0C00, 0x0C00, 0x2000, 0x0100, 0x2100, 0, 0,
228 0, 0, 0, 0, 0, 0, 0, 0 };
231 * The EPIC100 Rx and Tx buffer descriptors. Note that these
232 * really ARE host-endian; it's not a misannotation. We tell
233 * the card to byteswap them internally on big-endian hosts -
234 * look for #ifdef __BIG_ENDIAN in epic_open().
237 struct epic_tx_desc {
238 u32 txstatus;
239 u32 bufaddr;
240 u32 buflength;
241 u32 next;
244 struct epic_rx_desc {
245 u32 rxstatus;
246 u32 bufaddr;
247 u32 buflength;
248 u32 next;
251 enum desc_status_bits {
252 DescOwn=0x8000,
255 #define PRIV_ALIGN 15 /* Required alignment mask */
256 struct epic_private {
257 struct epic_rx_desc *rx_ring;
258 struct epic_tx_desc *tx_ring;
259 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
260 struct sk_buff* tx_skbuff[TX_RING_SIZE];
261 /* The addresses of receive-in-place skbuffs. */
262 struct sk_buff* rx_skbuff[RX_RING_SIZE];
264 dma_addr_t tx_ring_dma;
265 dma_addr_t rx_ring_dma;
267 /* Ring pointers. */
268 spinlock_t lock; /* Group with Tx control cache line. */
269 spinlock_t napi_lock;
270 struct napi_struct napi;
271 unsigned int reschedule_in_poll;
272 unsigned int cur_tx, dirty_tx;
274 unsigned int cur_rx, dirty_rx;
275 u32 irq_mask;
276 unsigned int rx_buf_sz; /* Based on MTU+slack. */
278 struct pci_dev *pci_dev; /* PCI bus location. */
279 int chip_id, chip_flags;
281 struct timer_list timer; /* Media selection timer. */
282 int tx_threshold;
283 unsigned char mc_filter[8];
284 signed char phys[4]; /* MII device addresses. */
285 u16 advertising; /* NWay media advertisement */
286 int mii_phy_cnt;
287 struct mii_if_info mii;
288 unsigned int tx_full:1; /* The Tx queue is full. */
289 unsigned int default_port:4; /* Last dev->if_port value. */
292 static int epic_open(struct net_device *dev);
293 static int read_eeprom(long ioaddr, int location);
294 static int mdio_read(struct net_device *dev, int phy_id, int location);
295 static void mdio_write(struct net_device *dev, int phy_id, int loc, int val);
296 static void epic_restart(struct net_device *dev);
297 static void epic_timer(unsigned long data);
298 static void epic_tx_timeout(struct net_device *dev);
299 static void epic_init_ring(struct net_device *dev);
300 static netdev_tx_t epic_start_xmit(struct sk_buff *skb,
301 struct net_device *dev);
302 static int epic_rx(struct net_device *dev, int budget);
303 static int epic_poll(struct napi_struct *napi, int budget);
304 static irqreturn_t epic_interrupt(int irq, void *dev_instance);
305 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
306 static const struct ethtool_ops netdev_ethtool_ops;
307 static int epic_close(struct net_device *dev);
308 static struct net_device_stats *epic_get_stats(struct net_device *dev);
309 static void set_rx_mode(struct net_device *dev);
311 static const struct net_device_ops epic_netdev_ops = {
312 .ndo_open = epic_open,
313 .ndo_stop = epic_close,
314 .ndo_start_xmit = epic_start_xmit,
315 .ndo_tx_timeout = epic_tx_timeout,
316 .ndo_get_stats = epic_get_stats,
317 .ndo_set_multicast_list = set_rx_mode,
318 .ndo_do_ioctl = netdev_ioctl,
319 .ndo_change_mtu = eth_change_mtu,
320 .ndo_set_mac_address = eth_mac_addr,
321 .ndo_validate_addr = eth_validate_addr,
324 static int __devinit epic_init_one (struct pci_dev *pdev,
325 const struct pci_device_id *ent)
327 static int card_idx = -1;
328 long ioaddr;
329 int chip_idx = (int) ent->driver_data;
330 int irq;
331 struct net_device *dev;
332 struct epic_private *ep;
333 int i, ret, option = 0, duplex = 0;
334 void *ring_space;
335 dma_addr_t ring_dma;
337 /* when built into the kernel, we only print version if device is found */
338 #ifndef MODULE
339 static int printed_version;
340 if (!printed_version++)
341 printk(KERN_INFO "%s%s", version, version2);
342 #endif
344 card_idx++;
346 ret = pci_enable_device(pdev);
347 if (ret)
348 goto out;
349 irq = pdev->irq;
351 if (pci_resource_len(pdev, 0) < EPIC_TOTAL_SIZE) {
352 dev_err(&pdev->dev, "no PCI region space\n");
353 ret = -ENODEV;
354 goto err_out_disable;
357 pci_set_master(pdev);
359 ret = pci_request_regions(pdev, DRV_NAME);
360 if (ret < 0)
361 goto err_out_disable;
363 ret = -ENOMEM;
365 dev = alloc_etherdev(sizeof (*ep));
366 if (!dev) {
367 dev_err(&pdev->dev, "no memory for eth device\n");
368 goto err_out_free_res;
370 SET_NETDEV_DEV(dev, &pdev->dev);
372 #ifdef USE_IO_OPS
373 ioaddr = pci_resource_start (pdev, 0);
374 #else
375 ioaddr = pci_resource_start (pdev, 1);
376 ioaddr = (long) pci_ioremap_bar(pdev, 1);
377 if (!ioaddr) {
378 dev_err(&pdev->dev, "ioremap failed\n");
379 goto err_out_free_netdev;
381 #endif
383 pci_set_drvdata(pdev, dev);
384 ep = netdev_priv(dev);
385 ep->mii.dev = dev;
386 ep->mii.mdio_read = mdio_read;
387 ep->mii.mdio_write = mdio_write;
388 ep->mii.phy_id_mask = 0x1f;
389 ep->mii.reg_num_mask = 0x1f;
391 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
392 if (!ring_space)
393 goto err_out_iounmap;
394 ep->tx_ring = (struct epic_tx_desc *)ring_space;
395 ep->tx_ring_dma = ring_dma;
397 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
398 if (!ring_space)
399 goto err_out_unmap_tx;
400 ep->rx_ring = (struct epic_rx_desc *)ring_space;
401 ep->rx_ring_dma = ring_dma;
403 if (dev->mem_start) {
404 option = dev->mem_start;
405 duplex = (dev->mem_start & 16) ? 1 : 0;
406 } else if (card_idx >= 0 && card_idx < MAX_UNITS) {
407 if (options[card_idx] >= 0)
408 option = options[card_idx];
409 if (full_duplex[card_idx] >= 0)
410 duplex = full_duplex[card_idx];
413 dev->base_addr = ioaddr;
414 dev->irq = irq;
416 spin_lock_init(&ep->lock);
417 spin_lock_init(&ep->napi_lock);
418 ep->reschedule_in_poll = 0;
420 /* Bring the chip out of low-power mode. */
421 outl(0x4200, ioaddr + GENCTL);
422 /* Magic?! If we don't set this bit the MII interface won't work. */
423 /* This magic is documented in SMSC app note 7.15 */
424 for (i = 16; i > 0; i--)
425 outl(0x0008, ioaddr + TEST1);
427 /* Turn on the MII transceiver. */
428 outl(0x12, ioaddr + MIICfg);
429 if (chip_idx == 1)
430 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
431 outl(0x0200, ioaddr + GENCTL);
433 /* Note: the '175 does not have a serial EEPROM. */
434 for (i = 0; i < 3; i++)
435 ((__le16 *)dev->dev_addr)[i] = cpu_to_le16(inw(ioaddr + LAN0 + i*4));
437 if (debug > 2) {
438 dev_printk(KERN_DEBUG, &pdev->dev, "EEPROM contents:\n");
439 for (i = 0; i < 64; i++)
440 printk(" %4.4x%s", read_eeprom(ioaddr, i),
441 i % 16 == 15 ? "\n" : "");
444 ep->pci_dev = pdev;
445 ep->chip_id = chip_idx;
446 ep->chip_flags = pci_id_tbl[chip_idx].drv_flags;
447 ep->irq_mask =
448 (ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
449 | CntFull | TxUnderrun | EpicNapiEvent;
451 /* Find the connected MII xcvrs.
452 Doing this in open() would allow detecting external xcvrs later, but
453 takes much time and no cards have external MII. */
455 int phy, phy_idx = 0;
456 for (phy = 1; phy < 32 && phy_idx < sizeof(ep->phys); phy++) {
457 int mii_status = mdio_read(dev, phy, MII_BMSR);
458 if (mii_status != 0xffff && mii_status != 0x0000) {
459 ep->phys[phy_idx++] = phy;
460 dev_info(&pdev->dev,
461 "MII transceiver #%d control "
462 "%4.4x status %4.4x.\n",
463 phy, mdio_read(dev, phy, 0), mii_status);
466 ep->mii_phy_cnt = phy_idx;
467 if (phy_idx != 0) {
468 phy = ep->phys[0];
469 ep->mii.advertising = mdio_read(dev, phy, MII_ADVERTISE);
470 dev_info(&pdev->dev,
471 "Autonegotiation advertising %4.4x link "
472 "partner %4.4x.\n",
473 ep->mii.advertising, mdio_read(dev, phy, 5));
474 } else if ( ! (ep->chip_flags & NO_MII)) {
475 dev_warn(&pdev->dev,
476 "***WARNING***: No MII transceiver found!\n");
477 /* Use the known PHY address of the EPII. */
478 ep->phys[0] = 3;
480 ep->mii.phy_id = ep->phys[0];
483 /* Turn off the MII xcvr (175 only!), leave the chip in low-power mode. */
484 if (ep->chip_flags & MII_PWRDWN)
485 outl(inl(ioaddr + NVCTL) & ~0x483C, ioaddr + NVCTL);
486 outl(0x0008, ioaddr + GENCTL);
488 /* The lower four bits are the media type. */
489 if (duplex) {
490 ep->mii.force_media = ep->mii.full_duplex = 1;
491 dev_info(&pdev->dev, "Forced full duplex requested.\n");
493 dev->if_port = ep->default_port = option;
495 /* The Epic-specific entries in the device structure. */
496 dev->netdev_ops = &epic_netdev_ops;
497 dev->ethtool_ops = &netdev_ethtool_ops;
498 dev->watchdog_timeo = TX_TIMEOUT;
499 netif_napi_add(dev, &ep->napi, epic_poll, 64);
501 ret = register_netdev(dev);
502 if (ret < 0)
503 goto err_out_unmap_rx;
505 printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n",
506 dev->name, pci_id_tbl[chip_idx].name, ioaddr, dev->irq,
507 dev->dev_addr);
509 out:
510 return ret;
512 err_out_unmap_rx:
513 pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma);
514 err_out_unmap_tx:
515 pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma);
516 err_out_iounmap:
517 #ifndef USE_IO_OPS
518 iounmap(ioaddr);
519 err_out_free_netdev:
520 #endif
521 free_netdev(dev);
522 err_out_free_res:
523 pci_release_regions(pdev);
524 err_out_disable:
525 pci_disable_device(pdev);
526 goto out;
529 /* Serial EEPROM section. */
531 /* EEPROM_Ctrl bits. */
532 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
533 #define EE_CS 0x02 /* EEPROM chip select. */
534 #define EE_DATA_WRITE 0x08 /* EEPROM chip data in. */
535 #define EE_WRITE_0 0x01
536 #define EE_WRITE_1 0x09
537 #define EE_DATA_READ 0x10 /* EEPROM chip data out. */
538 #define EE_ENB (0x0001 | EE_CS)
540 /* Delay between EEPROM clock transitions.
541 This serves to flush the operation to the PCI bus.
544 #define eeprom_delay() inl(ee_addr)
546 /* The EEPROM commands include the alway-set leading bit. */
547 #define EE_WRITE_CMD (5 << 6)
548 #define EE_READ64_CMD (6 << 6)
549 #define EE_READ256_CMD (6 << 8)
550 #define EE_ERASE_CMD (7 << 6)
552 static void epic_disable_int(struct net_device *dev, struct epic_private *ep)
554 long ioaddr = dev->base_addr;
556 outl(0x00000000, ioaddr + INTMASK);
559 static inline void __epic_pci_commit(long ioaddr)
561 #ifndef USE_IO_OPS
562 inl(ioaddr + INTMASK);
563 #endif
566 static inline void epic_napi_irq_off(struct net_device *dev,
567 struct epic_private *ep)
569 long ioaddr = dev->base_addr;
571 outl(ep->irq_mask & ~EpicNapiEvent, ioaddr + INTMASK);
572 __epic_pci_commit(ioaddr);
575 static inline void epic_napi_irq_on(struct net_device *dev,
576 struct epic_private *ep)
578 long ioaddr = dev->base_addr;
580 /* No need to commit possible posted write */
581 outl(ep->irq_mask | EpicNapiEvent, ioaddr + INTMASK);
584 static int __devinit read_eeprom(long ioaddr, int location)
586 int i;
587 int retval = 0;
588 long ee_addr = ioaddr + EECTL;
589 int read_cmd = location |
590 (inl(ee_addr) & 0x40 ? EE_READ64_CMD : EE_READ256_CMD);
592 outl(EE_ENB & ~EE_CS, ee_addr);
593 outl(EE_ENB, ee_addr);
595 /* Shift the read command bits out. */
596 for (i = 12; i >= 0; i--) {
597 short dataval = (read_cmd & (1 << i)) ? EE_WRITE_1 : EE_WRITE_0;
598 outl(EE_ENB | dataval, ee_addr);
599 eeprom_delay();
600 outl(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
601 eeprom_delay();
603 outl(EE_ENB, ee_addr);
605 for (i = 16; i > 0; i--) {
606 outl(EE_ENB | EE_SHIFT_CLK, ee_addr);
607 eeprom_delay();
608 retval = (retval << 1) | ((inl(ee_addr) & EE_DATA_READ) ? 1 : 0);
609 outl(EE_ENB, ee_addr);
610 eeprom_delay();
613 /* Terminate the EEPROM access. */
614 outl(EE_ENB & ~EE_CS, ee_addr);
615 return retval;
618 #define MII_READOP 1
619 #define MII_WRITEOP 2
620 static int mdio_read(struct net_device *dev, int phy_id, int location)
622 long ioaddr = dev->base_addr;
623 int read_cmd = (phy_id << 9) | (location << 4) | MII_READOP;
624 int i;
626 outl(read_cmd, ioaddr + MIICtrl);
627 /* Typical operation takes 25 loops. */
628 for (i = 400; i > 0; i--) {
629 barrier();
630 if ((inl(ioaddr + MIICtrl) & MII_READOP) == 0) {
631 /* Work around read failure bug. */
632 if (phy_id == 1 && location < 6 &&
633 inw(ioaddr + MIIData) == 0xffff) {
634 outl(read_cmd, ioaddr + MIICtrl);
635 continue;
637 return inw(ioaddr + MIIData);
640 return 0xffff;
643 static void mdio_write(struct net_device *dev, int phy_id, int loc, int value)
645 long ioaddr = dev->base_addr;
646 int i;
648 outw(value, ioaddr + MIIData);
649 outl((phy_id << 9) | (loc << 4) | MII_WRITEOP, ioaddr + MIICtrl);
650 for (i = 10000; i > 0; i--) {
651 barrier();
652 if ((inl(ioaddr + MIICtrl) & MII_WRITEOP) == 0)
653 break;
658 static int epic_open(struct net_device *dev)
660 struct epic_private *ep = netdev_priv(dev);
661 long ioaddr = dev->base_addr;
662 int i;
663 int retval;
665 /* Soft reset the chip. */
666 outl(0x4001, ioaddr + GENCTL);
668 napi_enable(&ep->napi);
669 if ((retval = request_irq(dev->irq, epic_interrupt, IRQF_SHARED, dev->name, dev))) {
670 napi_disable(&ep->napi);
671 return retval;
674 epic_init_ring(dev);
676 outl(0x4000, ioaddr + GENCTL);
677 /* This magic is documented in SMSC app note 7.15 */
678 for (i = 16; i > 0; i--)
679 outl(0x0008, ioaddr + TEST1);
681 /* Pull the chip out of low-power mode, enable interrupts, and set for
682 PCI read multiple. The MIIcfg setting and strange write order are
683 required by the details of which bits are reset and the transceiver
684 wiring on the Ositech CardBus card.
686 #if 0
687 outl(dev->if_port == 1 ? 0x13 : 0x12, ioaddr + MIICfg);
688 #endif
689 if (ep->chip_flags & MII_PWRDWN)
690 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
692 /* Tell the chip to byteswap descriptors on big-endian hosts */
693 #ifdef __BIG_ENDIAN
694 outl(0x4432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
695 inl(ioaddr + GENCTL);
696 outl(0x0432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
697 #else
698 outl(0x4412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
699 inl(ioaddr + GENCTL);
700 outl(0x0412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
701 #endif
703 udelay(20); /* Looks like EPII needs that if you want reliable RX init. FIXME: pci posting bug? */
705 for (i = 0; i < 3; i++)
706 outl(le16_to_cpu(((__le16*)dev->dev_addr)[i]), ioaddr + LAN0 + i*4);
708 ep->tx_threshold = TX_FIFO_THRESH;
709 outl(ep->tx_threshold, ioaddr + TxThresh);
711 if (media2miictl[dev->if_port & 15]) {
712 if (ep->mii_phy_cnt)
713 mdio_write(dev, ep->phys[0], MII_BMCR, media2miictl[dev->if_port&15]);
714 if (dev->if_port == 1) {
715 if (debug > 1)
716 printk(KERN_INFO "%s: Using the 10base2 transceiver, MII "
717 "status %4.4x.\n",
718 dev->name, mdio_read(dev, ep->phys[0], MII_BMSR));
720 } else {
721 int mii_lpa = mdio_read(dev, ep->phys[0], MII_LPA);
722 if (mii_lpa != 0xffff) {
723 if ((mii_lpa & LPA_100FULL) || (mii_lpa & 0x01C0) == LPA_10FULL)
724 ep->mii.full_duplex = 1;
725 else if (! (mii_lpa & LPA_LPACK))
726 mdio_write(dev, ep->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
727 if (debug > 1)
728 printk(KERN_INFO "%s: Setting %s-duplex based on MII xcvr %d"
729 " register read of %4.4x.\n", dev->name,
730 ep->mii.full_duplex ? "full" : "half",
731 ep->phys[0], mii_lpa);
735 outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
736 outl(ep->rx_ring_dma, ioaddr + PRxCDAR);
737 outl(ep->tx_ring_dma, ioaddr + PTxCDAR);
739 /* Start the chip's Rx process. */
740 set_rx_mode(dev);
741 outl(StartRx | RxQueued, ioaddr + COMMAND);
743 netif_start_queue(dev);
745 /* Enable interrupts by setting the interrupt mask. */
746 outl((ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
747 | CntFull | TxUnderrun
748 | RxError | RxHeader | EpicNapiEvent, ioaddr + INTMASK);
750 if (debug > 1)
751 printk(KERN_DEBUG "%s: epic_open() ioaddr %lx IRQ %d status %4.4x "
752 "%s-duplex.\n",
753 dev->name, ioaddr, dev->irq, (int)inl(ioaddr + GENCTL),
754 ep->mii.full_duplex ? "full" : "half");
756 /* Set the timer to switch to check for link beat and perhaps switch
757 to an alternate media type. */
758 init_timer(&ep->timer);
759 ep->timer.expires = jiffies + 3*HZ;
760 ep->timer.data = (unsigned long)dev;
761 ep->timer.function = &epic_timer; /* timer handler */
762 add_timer(&ep->timer);
764 return 0;
767 /* Reset the chip to recover from a PCI transaction error.
768 This may occur at interrupt time. */
769 static void epic_pause(struct net_device *dev)
771 long ioaddr = dev->base_addr;
773 netif_stop_queue (dev);
775 /* Disable interrupts by clearing the interrupt mask. */
776 outl(0x00000000, ioaddr + INTMASK);
777 /* Stop the chip's Tx and Rx DMA processes. */
778 outw(StopRx | StopTxDMA | StopRxDMA, ioaddr + COMMAND);
780 /* Update the error counts. */
781 if (inw(ioaddr + COMMAND) != 0xffff) {
782 dev->stats.rx_missed_errors += inb(ioaddr + MPCNT);
783 dev->stats.rx_frame_errors += inb(ioaddr + ALICNT);
784 dev->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
787 /* Remove the packets on the Rx queue. */
788 epic_rx(dev, RX_RING_SIZE);
791 static void epic_restart(struct net_device *dev)
793 long ioaddr = dev->base_addr;
794 struct epic_private *ep = netdev_priv(dev);
795 int i;
797 /* Soft reset the chip. */
798 outl(0x4001, ioaddr + GENCTL);
800 printk(KERN_DEBUG "%s: Restarting the EPIC chip, Rx %d/%d Tx %d/%d.\n",
801 dev->name, ep->cur_rx, ep->dirty_rx, ep->dirty_tx, ep->cur_tx);
802 udelay(1);
804 /* This magic is documented in SMSC app note 7.15 */
805 for (i = 16; i > 0; i--)
806 outl(0x0008, ioaddr + TEST1);
808 #ifdef __BIG_ENDIAN
809 outl(0x0432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
810 #else
811 outl(0x0412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
812 #endif
813 outl(dev->if_port == 1 ? 0x13 : 0x12, ioaddr + MIICfg);
814 if (ep->chip_flags & MII_PWRDWN)
815 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
817 for (i = 0; i < 3; i++)
818 outl(le16_to_cpu(((__le16*)dev->dev_addr)[i]), ioaddr + LAN0 + i*4);
820 ep->tx_threshold = TX_FIFO_THRESH;
821 outl(ep->tx_threshold, ioaddr + TxThresh);
822 outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
823 outl(ep->rx_ring_dma + (ep->cur_rx%RX_RING_SIZE)*
824 sizeof(struct epic_rx_desc), ioaddr + PRxCDAR);
825 outl(ep->tx_ring_dma + (ep->dirty_tx%TX_RING_SIZE)*
826 sizeof(struct epic_tx_desc), ioaddr + PTxCDAR);
828 /* Start the chip's Rx process. */
829 set_rx_mode(dev);
830 outl(StartRx | RxQueued, ioaddr + COMMAND);
832 /* Enable interrupts by setting the interrupt mask. */
833 outl((ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
834 | CntFull | TxUnderrun
835 | RxError | RxHeader | EpicNapiEvent, ioaddr + INTMASK);
837 printk(KERN_DEBUG "%s: epic_restart() done, cmd status %4.4x, ctl %4.4x"
838 " interrupt %4.4x.\n",
839 dev->name, (int)inl(ioaddr + COMMAND), (int)inl(ioaddr + GENCTL),
840 (int)inl(ioaddr + INTSTAT));
843 static void check_media(struct net_device *dev)
845 struct epic_private *ep = netdev_priv(dev);
846 long ioaddr = dev->base_addr;
847 int mii_lpa = ep->mii_phy_cnt ? mdio_read(dev, ep->phys[0], MII_LPA) : 0;
848 int negotiated = mii_lpa & ep->mii.advertising;
849 int duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
851 if (ep->mii.force_media)
852 return;
853 if (mii_lpa == 0xffff) /* Bogus read */
854 return;
855 if (ep->mii.full_duplex != duplex) {
856 ep->mii.full_duplex = duplex;
857 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d link"
858 " partner capability of %4.4x.\n", dev->name,
859 ep->mii.full_duplex ? "full" : "half", ep->phys[0], mii_lpa);
860 outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
864 static void epic_timer(unsigned long data)
866 struct net_device *dev = (struct net_device *)data;
867 struct epic_private *ep = netdev_priv(dev);
868 long ioaddr = dev->base_addr;
869 int next_tick = 5*HZ;
871 if (debug > 3) {
872 printk(KERN_DEBUG "%s: Media monitor tick, Tx status %8.8x.\n",
873 dev->name, (int)inl(ioaddr + TxSTAT));
874 printk(KERN_DEBUG "%s: Other registers are IntMask %4.4x "
875 "IntStatus %4.4x RxStatus %4.4x.\n",
876 dev->name, (int)inl(ioaddr + INTMASK),
877 (int)inl(ioaddr + INTSTAT), (int)inl(ioaddr + RxSTAT));
880 check_media(dev);
882 ep->timer.expires = jiffies + next_tick;
883 add_timer(&ep->timer);
886 static void epic_tx_timeout(struct net_device *dev)
888 struct epic_private *ep = netdev_priv(dev);
889 long ioaddr = dev->base_addr;
891 if (debug > 0) {
892 printk(KERN_WARNING "%s: Transmit timeout using MII device, "
893 "Tx status %4.4x.\n",
894 dev->name, (int)inw(ioaddr + TxSTAT));
895 if (debug > 1) {
896 printk(KERN_DEBUG "%s: Tx indices: dirty_tx %d, cur_tx %d.\n",
897 dev->name, ep->dirty_tx, ep->cur_tx);
900 if (inw(ioaddr + TxSTAT) & 0x10) { /* Tx FIFO underflow. */
901 dev->stats.tx_fifo_errors++;
902 outl(RestartTx, ioaddr + COMMAND);
903 } else {
904 epic_restart(dev);
905 outl(TxQueued, dev->base_addr + COMMAND);
908 dev->trans_start = jiffies; /* prevent tx timeout */
909 dev->stats.tx_errors++;
910 if (!ep->tx_full)
911 netif_wake_queue(dev);
914 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
915 static void epic_init_ring(struct net_device *dev)
917 struct epic_private *ep = netdev_priv(dev);
918 int i;
920 ep->tx_full = 0;
921 ep->dirty_tx = ep->cur_tx = 0;
922 ep->cur_rx = ep->dirty_rx = 0;
923 ep->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
925 /* Initialize all Rx descriptors. */
926 for (i = 0; i < RX_RING_SIZE; i++) {
927 ep->rx_ring[i].rxstatus = 0;
928 ep->rx_ring[i].buflength = ep->rx_buf_sz;
929 ep->rx_ring[i].next = ep->rx_ring_dma +
930 (i+1)*sizeof(struct epic_rx_desc);
931 ep->rx_skbuff[i] = NULL;
933 /* Mark the last entry as wrapping the ring. */
934 ep->rx_ring[i-1].next = ep->rx_ring_dma;
936 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
937 for (i = 0; i < RX_RING_SIZE; i++) {
938 struct sk_buff *skb = dev_alloc_skb(ep->rx_buf_sz);
939 ep->rx_skbuff[i] = skb;
940 if (skb == NULL)
941 break;
942 skb_reserve(skb, 2); /* 16 byte align the IP header. */
943 ep->rx_ring[i].bufaddr = pci_map_single(ep->pci_dev,
944 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
945 ep->rx_ring[i].rxstatus = DescOwn;
947 ep->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
949 /* The Tx buffer descriptor is filled in as needed, but we
950 do need to clear the ownership bit. */
951 for (i = 0; i < TX_RING_SIZE; i++) {
952 ep->tx_skbuff[i] = NULL;
953 ep->tx_ring[i].txstatus = 0x0000;
954 ep->tx_ring[i].next = ep->tx_ring_dma +
955 (i+1)*sizeof(struct epic_tx_desc);
957 ep->tx_ring[i-1].next = ep->tx_ring_dma;
960 static netdev_tx_t epic_start_xmit(struct sk_buff *skb, struct net_device *dev)
962 struct epic_private *ep = netdev_priv(dev);
963 int entry, free_count;
964 u32 ctrl_word;
965 unsigned long flags;
967 if (skb_padto(skb, ETH_ZLEN))
968 return NETDEV_TX_OK;
970 /* Caution: the write order is important here, set the field with the
971 "ownership" bit last. */
973 /* Calculate the next Tx descriptor entry. */
974 spin_lock_irqsave(&ep->lock, flags);
975 free_count = ep->cur_tx - ep->dirty_tx;
976 entry = ep->cur_tx % TX_RING_SIZE;
978 ep->tx_skbuff[entry] = skb;
979 ep->tx_ring[entry].bufaddr = pci_map_single(ep->pci_dev, skb->data,
980 skb->len, PCI_DMA_TODEVICE);
981 if (free_count < TX_QUEUE_LEN/2) {/* Typical path */
982 ctrl_word = 0x100000; /* No interrupt */
983 } else if (free_count == TX_QUEUE_LEN/2) {
984 ctrl_word = 0x140000; /* Tx-done intr. */
985 } else if (free_count < TX_QUEUE_LEN - 1) {
986 ctrl_word = 0x100000; /* No Tx-done intr. */
987 } else {
988 /* Leave room for an additional entry. */
989 ctrl_word = 0x140000; /* Tx-done intr. */
990 ep->tx_full = 1;
992 ep->tx_ring[entry].buflength = ctrl_word | skb->len;
993 ep->tx_ring[entry].txstatus =
994 ((skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN) << 16)
995 | DescOwn;
997 ep->cur_tx++;
998 if (ep->tx_full)
999 netif_stop_queue(dev);
1001 spin_unlock_irqrestore(&ep->lock, flags);
1002 /* Trigger an immediate transmit demand. */
1003 outl(TxQueued, dev->base_addr + COMMAND);
1005 if (debug > 4)
1006 printk(KERN_DEBUG "%s: Queued Tx packet size %d to slot %d, "
1007 "flag %2.2x Tx status %8.8x.\n",
1008 dev->name, (int)skb->len, entry, ctrl_word,
1009 (int)inl(dev->base_addr + TxSTAT));
1011 return NETDEV_TX_OK;
1014 static void epic_tx_error(struct net_device *dev, struct epic_private *ep,
1015 int status)
1017 struct net_device_stats *stats = &dev->stats;
1019 #ifndef final_version
1020 /* There was an major error, log it. */
1021 if (debug > 1)
1022 printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n",
1023 dev->name, status);
1024 #endif
1025 stats->tx_errors++;
1026 if (status & 0x1050)
1027 stats->tx_aborted_errors++;
1028 if (status & 0x0008)
1029 stats->tx_carrier_errors++;
1030 if (status & 0x0040)
1031 stats->tx_window_errors++;
1032 if (status & 0x0010)
1033 stats->tx_fifo_errors++;
1036 static void epic_tx(struct net_device *dev, struct epic_private *ep)
1038 unsigned int dirty_tx, cur_tx;
1041 * Note: if this lock becomes a problem we can narrow the locked
1042 * region at the cost of occasionally grabbing the lock more times.
1044 cur_tx = ep->cur_tx;
1045 for (dirty_tx = ep->dirty_tx; cur_tx - dirty_tx > 0; dirty_tx++) {
1046 struct sk_buff *skb;
1047 int entry = dirty_tx % TX_RING_SIZE;
1048 int txstatus = ep->tx_ring[entry].txstatus;
1050 if (txstatus & DescOwn)
1051 break; /* It still hasn't been Txed */
1053 if (likely(txstatus & 0x0001)) {
1054 dev->stats.collisions += (txstatus >> 8) & 15;
1055 dev->stats.tx_packets++;
1056 dev->stats.tx_bytes += ep->tx_skbuff[entry]->len;
1057 } else
1058 epic_tx_error(dev, ep, txstatus);
1060 /* Free the original skb. */
1061 skb = ep->tx_skbuff[entry];
1062 pci_unmap_single(ep->pci_dev, ep->tx_ring[entry].bufaddr,
1063 skb->len, PCI_DMA_TODEVICE);
1064 dev_kfree_skb_irq(skb);
1065 ep->tx_skbuff[entry] = NULL;
1068 #ifndef final_version
1069 if (cur_tx - dirty_tx > TX_RING_SIZE) {
1070 printk(KERN_WARNING
1071 "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
1072 dev->name, dirty_tx, cur_tx, ep->tx_full);
1073 dirty_tx += TX_RING_SIZE;
1075 #endif
1076 ep->dirty_tx = dirty_tx;
1077 if (ep->tx_full && cur_tx - dirty_tx < TX_QUEUE_LEN - 4) {
1078 /* The ring is no longer full, allow new TX entries. */
1079 ep->tx_full = 0;
1080 netif_wake_queue(dev);
1084 /* The interrupt handler does all of the Rx thread work and cleans up
1085 after the Tx thread. */
1086 static irqreturn_t epic_interrupt(int irq, void *dev_instance)
1088 struct net_device *dev = dev_instance;
1089 struct epic_private *ep = netdev_priv(dev);
1090 long ioaddr = dev->base_addr;
1091 unsigned int handled = 0;
1092 int status;
1094 status = inl(ioaddr + INTSTAT);
1095 /* Acknowledge all of the current interrupt sources ASAP. */
1096 outl(status & EpicNormalEvent, ioaddr + INTSTAT);
1098 if (debug > 4) {
1099 printk(KERN_DEBUG "%s: Interrupt, status=%#8.8x new "
1100 "intstat=%#8.8x.\n", dev->name, status,
1101 (int)inl(ioaddr + INTSTAT));
1104 if ((status & IntrSummary) == 0)
1105 goto out;
1107 handled = 1;
1109 if ((status & EpicNapiEvent) && !ep->reschedule_in_poll) {
1110 spin_lock(&ep->napi_lock);
1111 if (napi_schedule_prep(&ep->napi)) {
1112 epic_napi_irq_off(dev, ep);
1113 __napi_schedule(&ep->napi);
1114 } else
1115 ep->reschedule_in_poll++;
1116 spin_unlock(&ep->napi_lock);
1118 status &= ~EpicNapiEvent;
1120 /* Check uncommon events all at once. */
1121 if (status & (CntFull | TxUnderrun | PCIBusErr170 | PCIBusErr175)) {
1122 if (status == EpicRemoved)
1123 goto out;
1125 /* Always update the error counts to avoid overhead later. */
1126 dev->stats.rx_missed_errors += inb(ioaddr + MPCNT);
1127 dev->stats.rx_frame_errors += inb(ioaddr + ALICNT);
1128 dev->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
1130 if (status & TxUnderrun) { /* Tx FIFO underflow. */
1131 dev->stats.tx_fifo_errors++;
1132 outl(ep->tx_threshold += 128, ioaddr + TxThresh);
1133 /* Restart the transmit process. */
1134 outl(RestartTx, ioaddr + COMMAND);
1136 if (status & PCIBusErr170) {
1137 printk(KERN_ERR "%s: PCI Bus Error! status %4.4x.\n",
1138 dev->name, status);
1139 epic_pause(dev);
1140 epic_restart(dev);
1142 /* Clear all error sources. */
1143 outl(status & 0x7f18, ioaddr + INTSTAT);
1146 out:
1147 if (debug > 3) {
1148 printk(KERN_DEBUG "%s: exit interrupt, intr_status=%#4.4x.\n",
1149 dev->name, status);
1152 return IRQ_RETVAL(handled);
1155 static int epic_rx(struct net_device *dev, int budget)
1157 struct epic_private *ep = netdev_priv(dev);
1158 int entry = ep->cur_rx % RX_RING_SIZE;
1159 int rx_work_limit = ep->dirty_rx + RX_RING_SIZE - ep->cur_rx;
1160 int work_done = 0;
1162 if (debug > 4)
1163 printk(KERN_DEBUG " In epic_rx(), entry %d %8.8x.\n", entry,
1164 ep->rx_ring[entry].rxstatus);
1166 if (rx_work_limit > budget)
1167 rx_work_limit = budget;
1169 /* If we own the next entry, it's a new packet. Send it up. */
1170 while ((ep->rx_ring[entry].rxstatus & DescOwn) == 0) {
1171 int status = ep->rx_ring[entry].rxstatus;
1173 if (debug > 4)
1174 printk(KERN_DEBUG " epic_rx() status was %8.8x.\n", status);
1175 if (--rx_work_limit < 0)
1176 break;
1177 if (status & 0x2006) {
1178 if (debug > 2)
1179 printk(KERN_DEBUG "%s: epic_rx() error status was %8.8x.\n",
1180 dev->name, status);
1181 if (status & 0x2000) {
1182 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned "
1183 "multiple buffers, status %4.4x!\n", dev->name, status);
1184 dev->stats.rx_length_errors++;
1185 } else if (status & 0x0006)
1186 /* Rx Frame errors are counted in hardware. */
1187 dev->stats.rx_errors++;
1188 } else {
1189 /* Malloc up new buffer, compatible with net-2e. */
1190 /* Omit the four octet CRC from the length. */
1191 short pkt_len = (status >> 16) - 4;
1192 struct sk_buff *skb;
1194 if (pkt_len > PKT_BUF_SZ - 4) {
1195 printk(KERN_ERR "%s: Oversized Ethernet frame, status %x "
1196 "%d bytes.\n",
1197 dev->name, status, pkt_len);
1198 pkt_len = 1514;
1200 /* Check if the packet is long enough to accept without copying
1201 to a minimally-sized skbuff. */
1202 if (pkt_len < rx_copybreak &&
1203 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1204 skb_reserve(skb, 2); /* 16 byte align the IP header */
1205 pci_dma_sync_single_for_cpu(ep->pci_dev,
1206 ep->rx_ring[entry].bufaddr,
1207 ep->rx_buf_sz,
1208 PCI_DMA_FROMDEVICE);
1209 skb_copy_to_linear_data(skb, ep->rx_skbuff[entry]->data, pkt_len);
1210 skb_put(skb, pkt_len);
1211 pci_dma_sync_single_for_device(ep->pci_dev,
1212 ep->rx_ring[entry].bufaddr,
1213 ep->rx_buf_sz,
1214 PCI_DMA_FROMDEVICE);
1215 } else {
1216 pci_unmap_single(ep->pci_dev,
1217 ep->rx_ring[entry].bufaddr,
1218 ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1219 skb_put(skb = ep->rx_skbuff[entry], pkt_len);
1220 ep->rx_skbuff[entry] = NULL;
1222 skb->protocol = eth_type_trans(skb, dev);
1223 netif_receive_skb(skb);
1224 dev->stats.rx_packets++;
1225 dev->stats.rx_bytes += pkt_len;
1227 work_done++;
1228 entry = (++ep->cur_rx) % RX_RING_SIZE;
1231 /* Refill the Rx ring buffers. */
1232 for (; ep->cur_rx - ep->dirty_rx > 0; ep->dirty_rx++) {
1233 entry = ep->dirty_rx % RX_RING_SIZE;
1234 if (ep->rx_skbuff[entry] == NULL) {
1235 struct sk_buff *skb;
1236 skb = ep->rx_skbuff[entry] = dev_alloc_skb(ep->rx_buf_sz);
1237 if (skb == NULL)
1238 break;
1239 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1240 ep->rx_ring[entry].bufaddr = pci_map_single(ep->pci_dev,
1241 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1242 work_done++;
1244 /* AV: shouldn't we add a barrier here? */
1245 ep->rx_ring[entry].rxstatus = DescOwn;
1247 return work_done;
1250 static void epic_rx_err(struct net_device *dev, struct epic_private *ep)
1252 long ioaddr = dev->base_addr;
1253 int status;
1255 status = inl(ioaddr + INTSTAT);
1257 if (status == EpicRemoved)
1258 return;
1259 if (status & RxOverflow) /* Missed a Rx frame. */
1260 dev->stats.rx_errors++;
1261 if (status & (RxOverflow | RxFull))
1262 outw(RxQueued, ioaddr + COMMAND);
1265 static int epic_poll(struct napi_struct *napi, int budget)
1267 struct epic_private *ep = container_of(napi, struct epic_private, napi);
1268 struct net_device *dev = ep->mii.dev;
1269 int work_done = 0;
1270 long ioaddr = dev->base_addr;
1272 rx_action:
1274 epic_tx(dev, ep);
1276 work_done += epic_rx(dev, budget);
1278 epic_rx_err(dev, ep);
1280 if (work_done < budget) {
1281 unsigned long flags;
1282 int more;
1284 /* A bit baroque but it avoids a (space hungry) spin_unlock */
1286 spin_lock_irqsave(&ep->napi_lock, flags);
1288 more = ep->reschedule_in_poll;
1289 if (!more) {
1290 __napi_complete(napi);
1291 outl(EpicNapiEvent, ioaddr + INTSTAT);
1292 epic_napi_irq_on(dev, ep);
1293 } else
1294 ep->reschedule_in_poll--;
1296 spin_unlock_irqrestore(&ep->napi_lock, flags);
1298 if (more)
1299 goto rx_action;
1302 return work_done;
1305 static int epic_close(struct net_device *dev)
1307 long ioaddr = dev->base_addr;
1308 struct epic_private *ep = netdev_priv(dev);
1309 struct sk_buff *skb;
1310 int i;
1312 netif_stop_queue(dev);
1313 napi_disable(&ep->napi);
1315 if (debug > 1)
1316 printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
1317 dev->name, (int)inl(ioaddr + INTSTAT));
1319 del_timer_sync(&ep->timer);
1321 epic_disable_int(dev, ep);
1323 free_irq(dev->irq, dev);
1325 epic_pause(dev);
1327 /* Free all the skbuffs in the Rx queue. */
1328 for (i = 0; i < RX_RING_SIZE; i++) {
1329 skb = ep->rx_skbuff[i];
1330 ep->rx_skbuff[i] = NULL;
1331 ep->rx_ring[i].rxstatus = 0; /* Not owned by Epic chip. */
1332 ep->rx_ring[i].buflength = 0;
1333 if (skb) {
1334 pci_unmap_single(ep->pci_dev, ep->rx_ring[i].bufaddr,
1335 ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1336 dev_kfree_skb(skb);
1338 ep->rx_ring[i].bufaddr = 0xBADF00D0; /* An invalid address. */
1340 for (i = 0; i < TX_RING_SIZE; i++) {
1341 skb = ep->tx_skbuff[i];
1342 ep->tx_skbuff[i] = NULL;
1343 if (!skb)
1344 continue;
1345 pci_unmap_single(ep->pci_dev, ep->tx_ring[i].bufaddr,
1346 skb->len, PCI_DMA_TODEVICE);
1347 dev_kfree_skb(skb);
1350 /* Green! Leave the chip in low-power mode. */
1351 outl(0x0008, ioaddr + GENCTL);
1353 return 0;
1356 static struct net_device_stats *epic_get_stats(struct net_device *dev)
1358 long ioaddr = dev->base_addr;
1360 if (netif_running(dev)) {
1361 /* Update the error counts. */
1362 dev->stats.rx_missed_errors += inb(ioaddr + MPCNT);
1363 dev->stats.rx_frame_errors += inb(ioaddr + ALICNT);
1364 dev->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
1367 return &dev->stats;
1370 /* Set or clear the multicast filter for this adaptor.
1371 Note that we only use exclusion around actually queueing the
1372 new frame, not around filling ep->setup_frame. This is non-deterministic
1373 when re-entered but still correct. */
1375 static void set_rx_mode(struct net_device *dev)
1377 long ioaddr = dev->base_addr;
1378 struct epic_private *ep = netdev_priv(dev);
1379 unsigned char mc_filter[8]; /* Multicast hash filter */
1380 int i;
1382 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1383 outl(0x002C, ioaddr + RxCtrl);
1384 /* Unconditionally log net taps. */
1385 memset(mc_filter, 0xff, sizeof(mc_filter));
1386 } else if ((!netdev_mc_empty(dev)) || (dev->flags & IFF_ALLMULTI)) {
1387 /* There is apparently a chip bug, so the multicast filter
1388 is never enabled. */
1389 /* Too many to filter perfectly -- accept all multicasts. */
1390 memset(mc_filter, 0xff, sizeof(mc_filter));
1391 outl(0x000C, ioaddr + RxCtrl);
1392 } else if (netdev_mc_empty(dev)) {
1393 outl(0x0004, ioaddr + RxCtrl);
1394 return;
1395 } else { /* Never executed, for now. */
1396 struct netdev_hw_addr *ha;
1398 memset(mc_filter, 0, sizeof(mc_filter));
1399 netdev_for_each_mc_addr(ha, dev) {
1400 unsigned int bit_nr =
1401 ether_crc_le(ETH_ALEN, ha->addr) & 0x3f;
1402 mc_filter[bit_nr >> 3] |= (1 << bit_nr);
1405 /* ToDo: perhaps we need to stop the Tx and Rx process here? */
1406 if (memcmp(mc_filter, ep->mc_filter, sizeof(mc_filter))) {
1407 for (i = 0; i < 4; i++)
1408 outw(((u16 *)mc_filter)[i], ioaddr + MC0 + i*4);
1409 memcpy(ep->mc_filter, mc_filter, sizeof(mc_filter));
1413 static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1415 struct epic_private *np = netdev_priv(dev);
1417 strcpy (info->driver, DRV_NAME);
1418 strcpy (info->version, DRV_VERSION);
1419 strcpy (info->bus_info, pci_name(np->pci_dev));
1422 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1424 struct epic_private *np = netdev_priv(dev);
1425 int rc;
1427 spin_lock_irq(&np->lock);
1428 rc = mii_ethtool_gset(&np->mii, cmd);
1429 spin_unlock_irq(&np->lock);
1431 return rc;
1434 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1436 struct epic_private *np = netdev_priv(dev);
1437 int rc;
1439 spin_lock_irq(&np->lock);
1440 rc = mii_ethtool_sset(&np->mii, cmd);
1441 spin_unlock_irq(&np->lock);
1443 return rc;
1446 static int netdev_nway_reset(struct net_device *dev)
1448 struct epic_private *np = netdev_priv(dev);
1449 return mii_nway_restart(&np->mii);
1452 static u32 netdev_get_link(struct net_device *dev)
1454 struct epic_private *np = netdev_priv(dev);
1455 return mii_link_ok(&np->mii);
1458 static u32 netdev_get_msglevel(struct net_device *dev)
1460 return debug;
1463 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1465 debug = value;
1468 static int ethtool_begin(struct net_device *dev)
1470 unsigned long ioaddr = dev->base_addr;
1471 /* power-up, if interface is down */
1472 if (! netif_running(dev)) {
1473 outl(0x0200, ioaddr + GENCTL);
1474 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
1476 return 0;
1479 static void ethtool_complete(struct net_device *dev)
1481 unsigned long ioaddr = dev->base_addr;
1482 /* power-down, if interface is down */
1483 if (! netif_running(dev)) {
1484 outl(0x0008, ioaddr + GENCTL);
1485 outl((inl(ioaddr + NVCTL) & ~0x483C) | 0x0000, ioaddr + NVCTL);
1489 static const struct ethtool_ops netdev_ethtool_ops = {
1490 .get_drvinfo = netdev_get_drvinfo,
1491 .get_settings = netdev_get_settings,
1492 .set_settings = netdev_set_settings,
1493 .nway_reset = netdev_nway_reset,
1494 .get_link = netdev_get_link,
1495 .get_msglevel = netdev_get_msglevel,
1496 .set_msglevel = netdev_set_msglevel,
1497 .begin = ethtool_begin,
1498 .complete = ethtool_complete
1501 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1503 struct epic_private *np = netdev_priv(dev);
1504 long ioaddr = dev->base_addr;
1505 struct mii_ioctl_data *data = if_mii(rq);
1506 int rc;
1508 /* power-up, if interface is down */
1509 if (! netif_running(dev)) {
1510 outl(0x0200, ioaddr + GENCTL);
1511 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
1514 /* all non-ethtool ioctls (the SIOC[GS]MIIxxx ioctls) */
1515 spin_lock_irq(&np->lock);
1516 rc = generic_mii_ioctl(&np->mii, data, cmd, NULL);
1517 spin_unlock_irq(&np->lock);
1519 /* power-down, if interface is down */
1520 if (! netif_running(dev)) {
1521 outl(0x0008, ioaddr + GENCTL);
1522 outl((inl(ioaddr + NVCTL) & ~0x483C) | 0x0000, ioaddr + NVCTL);
1524 return rc;
1528 static void __devexit epic_remove_one (struct pci_dev *pdev)
1530 struct net_device *dev = pci_get_drvdata(pdev);
1531 struct epic_private *ep = netdev_priv(dev);
1533 pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma);
1534 pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma);
1535 unregister_netdev(dev);
1536 #ifndef USE_IO_OPS
1537 iounmap((void*) dev->base_addr);
1538 #endif
1539 pci_release_regions(pdev);
1540 free_netdev(dev);
1541 pci_disable_device(pdev);
1542 pci_set_drvdata(pdev, NULL);
1543 /* pci_power_off(pdev, -1); */
1547 #ifdef CONFIG_PM
1549 static int epic_suspend (struct pci_dev *pdev, pm_message_t state)
1551 struct net_device *dev = pci_get_drvdata(pdev);
1552 long ioaddr = dev->base_addr;
1554 if (!netif_running(dev))
1555 return 0;
1556 epic_pause(dev);
1557 /* Put the chip into low-power mode. */
1558 outl(0x0008, ioaddr + GENCTL);
1559 /* pci_power_off(pdev, -1); */
1560 return 0;
1564 static int epic_resume (struct pci_dev *pdev)
1566 struct net_device *dev = pci_get_drvdata(pdev);
1568 if (!netif_running(dev))
1569 return 0;
1570 epic_restart(dev);
1571 /* pci_power_on(pdev); */
1572 return 0;
1575 #endif /* CONFIG_PM */
1578 static struct pci_driver epic_driver = {
1579 .name = DRV_NAME,
1580 .id_table = epic_pci_tbl,
1581 .probe = epic_init_one,
1582 .remove = __devexit_p(epic_remove_one),
1583 #ifdef CONFIG_PM
1584 .suspend = epic_suspend,
1585 .resume = epic_resume,
1586 #endif /* CONFIG_PM */
1590 static int __init epic_init (void)
1592 /* when a module, this is printed whether or not devices are found in probe */
1593 #ifdef MODULE
1594 printk (KERN_INFO "%s%s",
1595 version, version2);
1596 #endif
1598 return pci_register_driver(&epic_driver);
1602 static void __exit epic_cleanup (void)
1604 pci_unregister_driver (&epic_driver);
1608 module_init(epic_init);
1609 module_exit(epic_cleanup);