2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
69 * Slabs with free elements are kept on a partial list.
70 * There is no list for full slabs. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * Otherwise there is no need to track full slabs unless we have to
73 * track full slabs for debugging purposes.
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
79 * Overloading of page flags that are otherwise used for LRU management.
81 * PageActive The slab is used as a cpu cache. Allocations
82 * may be performed from the slab. The slab is not
83 * on any slab list and cannot be moved onto one.
85 * PageError Slab requires special handling due to debug
86 * options set. This moves slab handling out of
91 * Issues still to be resolved:
93 * - The per cpu array is updated for each new slab and and is a remote
94 * cacheline for most nodes. This could become a bouncing cacheline given
95 * enough frequent updates. There are 16 pointers in a cacheline.so at
96 * max 16 cpus could compete. Likely okay.
98 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
100 * - Variable sizing of the per node arrays
103 /* Enable to test recovery from slab corruption on boot */
104 #undef SLUB_RESILIENCY_TEST
109 * Small page size. Make sure that we do not fragment memory
111 #define DEFAULT_MAX_ORDER 1
112 #define DEFAULT_MIN_OBJECTS 4
117 * Large page machines are customarily able to handle larger
120 #define DEFAULT_MAX_ORDER 2
121 #define DEFAULT_MIN_OBJECTS 8
126 * Mininum number of partial slabs. These will be left on the partial
127 * lists even if they are empty. kmem_cache_shrink may reclaim them.
129 #define MIN_PARTIAL 2
132 * Maximum number of desirable partial slabs.
133 * The existence of more partial slabs makes kmem_cache_shrink
134 * sort the partial list by the number of objects in the.
136 #define MAX_PARTIAL 10
138 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
139 SLAB_POISON | SLAB_STORE_USER)
141 * Set of flags that will prevent slab merging
143 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
144 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
146 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
149 #ifndef ARCH_KMALLOC_MINALIGN
150 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
153 #ifndef ARCH_SLAB_MINALIGN
154 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
157 /* Internal SLUB flags */
158 #define __OBJECT_POISON 0x80000000 /* Poison object */
160 static int kmem_size
= sizeof(struct kmem_cache
);
163 static struct notifier_block slab_notifier
;
167 DOWN
, /* No slab functionality available */
168 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
169 UP
, /* Everything works */
173 /* A list of all slab caches on the system */
174 static DECLARE_RWSEM(slub_lock
);
175 LIST_HEAD(slab_caches
);
178 static int sysfs_slab_add(struct kmem_cache
*);
179 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
180 static void sysfs_slab_remove(struct kmem_cache
*);
182 static int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
183 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
) { return 0; }
184 static void sysfs_slab_remove(struct kmem_cache
*s
) {}
187 /********************************************************************
188 * Core slab cache functions
189 *******************************************************************/
191 int slab_is_available(void)
193 return slab_state
>= UP
;
196 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
199 return s
->node
[node
];
201 return &s
->local_node
;
208 static void print_section(char *text
, u8
*addr
, unsigned int length
)
216 for (i
= 0; i
< length
; i
++) {
218 printk(KERN_ERR
"%10s 0x%p: ", text
, addr
+ i
);
221 printk(" %02x", addr
[i
]);
223 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
225 printk(" %s\n",ascii
);
236 printk(" %s\n", ascii
);
241 * Slow version of get and set free pointer.
243 * This requires touching the cache lines of kmem_cache.
244 * The offset can also be obtained from the page. In that
245 * case it is in the cacheline that we already need to touch.
247 static void *get_freepointer(struct kmem_cache
*s
, void *object
)
249 return *(void **)(object
+ s
->offset
);
252 static void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
254 *(void **)(object
+ s
->offset
) = fp
;
258 * Tracking user of a slab.
261 void *addr
; /* Called from address */
262 int cpu
; /* Was running on cpu */
263 int pid
; /* Pid context */
264 unsigned long when
; /* When did the operation occur */
267 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
269 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
270 enum track_item alloc
)
275 p
= object
+ s
->offset
+ sizeof(void *);
277 p
= object
+ s
->inuse
;
282 static void set_track(struct kmem_cache
*s
, void *object
,
283 enum track_item alloc
, void *addr
)
288 p
= object
+ s
->offset
+ sizeof(void *);
290 p
= object
+ s
->inuse
;
295 p
->cpu
= smp_processor_id();
296 p
->pid
= current
? current
->pid
: -1;
299 memset(p
, 0, sizeof(struct track
));
302 static void init_tracking(struct kmem_cache
*s
, void *object
)
304 if (s
->flags
& SLAB_STORE_USER
) {
305 set_track(s
, object
, TRACK_FREE
, NULL
);
306 set_track(s
, object
, TRACK_ALLOC
, NULL
);
310 static void print_track(const char *s
, struct track
*t
)
315 printk(KERN_ERR
"%s: ", s
);
316 __print_symbol("%s", (unsigned long)t
->addr
);
317 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies
- t
->when
, t
->cpu
, t
->pid
);
320 static void print_trailer(struct kmem_cache
*s
, u8
*p
)
322 unsigned int off
; /* Offset of last byte */
324 if (s
->flags
& SLAB_RED_ZONE
)
325 print_section("Redzone", p
+ s
->objsize
,
326 s
->inuse
- s
->objsize
);
328 printk(KERN_ERR
"FreePointer 0x%p -> 0x%p\n",
330 get_freepointer(s
, p
));
333 off
= s
->offset
+ sizeof(void *);
337 if (s
->flags
& SLAB_STORE_USER
) {
338 print_track("Last alloc", get_track(s
, p
, TRACK_ALLOC
));
339 print_track("Last free ", get_track(s
, p
, TRACK_FREE
));
340 off
+= 2 * sizeof(struct track
);
344 /* Beginning of the filler is the free pointer */
345 print_section("Filler", p
+ off
, s
->size
- off
);
348 static void object_err(struct kmem_cache
*s
, struct page
*page
,
349 u8
*object
, char *reason
)
351 u8
*addr
= page_address(page
);
353 printk(KERN_ERR
"*** SLUB %s: %s@0x%p slab 0x%p\n",
354 s
->name
, reason
, object
, page
);
355 printk(KERN_ERR
" offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
356 object
- addr
, page
->flags
, page
->inuse
, page
->freelist
);
357 if (object
> addr
+ 16)
358 print_section("Bytes b4", object
- 16, 16);
359 print_section("Object", object
, min(s
->objsize
, 128));
360 print_trailer(s
, object
);
364 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *reason
, ...)
369 va_start(args
, reason
);
370 vsnprintf(buf
, sizeof(buf
), reason
, args
);
372 printk(KERN_ERR
"*** SLUB %s: %s in slab @0x%p\n", s
->name
, buf
,
377 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
381 if (s
->flags
& __OBJECT_POISON
) {
382 memset(p
, POISON_FREE
, s
->objsize
- 1);
383 p
[s
->objsize
-1] = POISON_END
;
386 if (s
->flags
& SLAB_RED_ZONE
)
387 memset(p
+ s
->objsize
,
388 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
389 s
->inuse
- s
->objsize
);
392 static int check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
395 if (*start
!= (u8
)value
)
404 static int check_valid_pointer(struct kmem_cache
*s
, struct page
*page
,
412 base
= page_address(page
);
413 if (object
< base
|| object
>= base
+ s
->objects
* s
->size
||
414 (object
- base
) % s
->size
) {
425 * Bytes of the object to be managed.
426 * If the freepointer may overlay the object then the free
427 * pointer is the first word of the object.
428 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
431 * object + s->objsize
432 * Padding to reach word boundary. This is also used for Redzoning.
433 * Padding is extended to word size if Redzoning is enabled
434 * and objsize == inuse.
435 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
436 * 0xcc (RED_ACTIVE) for objects in use.
439 * A. Free pointer (if we cannot overwrite object on free)
440 * B. Tracking data for SLAB_STORE_USER
441 * C. Padding to reach required alignment boundary
442 * Padding is done using 0x5a (POISON_INUSE)
446 * If slabcaches are merged then the objsize and inuse boundaries are to
447 * be ignored. And therefore no slab options that rely on these boundaries
448 * may be used with merged slabcaches.
451 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
452 void *from
, void *to
)
454 printk(KERN_ERR
"@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
455 s
->name
, message
, data
, from
, to
- 1);
456 memset(from
, data
, to
- from
);
459 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
461 unsigned long off
= s
->inuse
; /* The end of info */
464 /* Freepointer is placed after the object. */
465 off
+= sizeof(void *);
467 if (s
->flags
& SLAB_STORE_USER
)
468 /* We also have user information there */
469 off
+= 2 * sizeof(struct track
);
474 if (check_bytes(p
+ off
, POISON_INUSE
, s
->size
- off
))
477 object_err(s
, page
, p
, "Object padding check fails");
482 restore_bytes(s
, "object padding", POISON_INUSE
, p
+ off
, p
+ s
->size
);
486 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
489 int length
, remainder
;
491 if (!(s
->flags
& SLAB_POISON
))
494 p
= page_address(page
);
495 length
= s
->objects
* s
->size
;
496 remainder
= (PAGE_SIZE
<< s
->order
) - length
;
500 if (!check_bytes(p
+ length
, POISON_INUSE
, remainder
)) {
501 slab_err(s
, page
, "Padding check failed");
502 restore_bytes(s
, "slab padding", POISON_INUSE
, p
+ length
,
503 p
+ length
+ remainder
);
509 static int check_object(struct kmem_cache
*s
, struct page
*page
,
510 void *object
, int active
)
513 u8
*endobject
= object
+ s
->objsize
;
515 if (s
->flags
& SLAB_RED_ZONE
) {
517 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
519 if (!check_bytes(endobject
, red
, s
->inuse
- s
->objsize
)) {
520 object_err(s
, page
, object
,
521 active
? "Redzone Active" : "Redzone Inactive");
522 restore_bytes(s
, "redzone", red
,
523 endobject
, object
+ s
->inuse
);
527 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
&&
528 !check_bytes(endobject
, POISON_INUSE
,
529 s
->inuse
- s
->objsize
)) {
530 object_err(s
, page
, p
, "Alignment padding check fails");
532 * Fix it so that there will not be another report.
534 * Hmmm... We may be corrupting an object that now expects
535 * to be longer than allowed.
537 restore_bytes(s
, "alignment padding", POISON_INUSE
,
538 endobject
, object
+ s
->inuse
);
542 if (s
->flags
& SLAB_POISON
) {
543 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
544 (!check_bytes(p
, POISON_FREE
, s
->objsize
- 1) ||
545 p
[s
->objsize
- 1] != POISON_END
)) {
547 object_err(s
, page
, p
, "Poison check failed");
548 restore_bytes(s
, "Poison", POISON_FREE
,
549 p
, p
+ s
->objsize
-1);
550 restore_bytes(s
, "Poison", POISON_END
,
551 p
+ s
->objsize
- 1, p
+ s
->objsize
);
555 * check_pad_bytes cleans up on its own.
557 check_pad_bytes(s
, page
, p
);
560 if (!s
->offset
&& active
)
562 * Object and freepointer overlap. Cannot check
563 * freepointer while object is allocated.
567 /* Check free pointer validity */
568 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
569 object_err(s
, page
, p
, "Freepointer corrupt");
571 * No choice but to zap it and thus loose the remainder
572 * of the free objects in this slab. May cause
573 * another error because the object count maybe
576 set_freepointer(s
, p
, NULL
);
582 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
584 VM_BUG_ON(!irqs_disabled());
586 if (!PageSlab(page
)) {
587 slab_err(s
, page
, "Not a valid slab page flags=%lx "
588 "mapping=0x%p count=%d", page
->flags
, page
->mapping
,
592 if (page
->offset
* sizeof(void *) != s
->offset
) {
593 slab_err(s
, page
, "Corrupted offset %lu flags=0x%lx "
594 "mapping=0x%p count=%d",
595 (unsigned long)(page
->offset
* sizeof(void *)),
601 if (page
->inuse
> s
->objects
) {
602 slab_err(s
, page
, "inuse %u > max %u @0x%p flags=%lx "
603 "mapping=0x%p count=%d",
604 s
->name
, page
->inuse
, s
->objects
, page
->flags
,
605 page
->mapping
, page_count(page
));
608 /* Slab_pad_check fixes things up after itself */
609 slab_pad_check(s
, page
);
614 * Determine if a certain object on a page is on the freelist and
615 * therefore free. Must hold the slab lock for cpu slabs to
616 * guarantee that the chains are consistent.
618 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
621 void *fp
= page
->freelist
;
624 while (fp
&& nr
<= s
->objects
) {
627 if (!check_valid_pointer(s
, page
, fp
)) {
629 object_err(s
, page
, object
,
630 "Freechain corrupt");
631 set_freepointer(s
, object
, NULL
);
634 slab_err(s
, page
, "Freepointer 0x%p corrupt",
636 page
->freelist
= NULL
;
637 page
->inuse
= s
->objects
;
638 printk(KERN_ERR
"@@@ SLUB %s: Freelist "
639 "cleared. Slab 0x%p\n",
646 fp
= get_freepointer(s
, object
);
650 if (page
->inuse
!= s
->objects
- nr
) {
651 slab_err(s
, page
, "Wrong object count. Counter is %d but "
652 "counted were %d", s
, page
, page
->inuse
,
654 page
->inuse
= s
->objects
- nr
;
655 printk(KERN_ERR
"@@@ SLUB %s: Object count adjusted. "
656 "Slab @0x%p\n", s
->name
, page
);
658 return search
== NULL
;
662 * Tracking of fully allocated slabs for debugging
664 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
666 spin_lock(&n
->list_lock
);
667 list_add(&page
->lru
, &n
->full
);
668 spin_unlock(&n
->list_lock
);
671 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
673 struct kmem_cache_node
*n
;
675 if (!(s
->flags
& SLAB_STORE_USER
))
678 n
= get_node(s
, page_to_nid(page
));
680 spin_lock(&n
->list_lock
);
681 list_del(&page
->lru
);
682 spin_unlock(&n
->list_lock
);
685 static int alloc_object_checks(struct kmem_cache
*s
, struct page
*page
,
688 if (!check_slab(s
, page
))
691 if (object
&& !on_freelist(s
, page
, object
)) {
692 slab_err(s
, page
, "Object 0x%p already allocated", object
);
696 if (!check_valid_pointer(s
, page
, object
)) {
697 object_err(s
, page
, object
, "Freelist Pointer check fails");
704 if (!check_object(s
, page
, object
, 0))
709 if (PageSlab(page
)) {
711 * If this is a slab page then lets do the best we can
712 * to avoid issues in the future. Marking all objects
713 * as used avoids touching the remainder.
715 printk(KERN_ERR
"@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
717 page
->inuse
= s
->objects
;
718 page
->freelist
= NULL
;
719 /* Fix up fields that may be corrupted */
720 page
->offset
= s
->offset
/ sizeof(void *);
725 static int free_object_checks(struct kmem_cache
*s
, struct page
*page
,
728 if (!check_slab(s
, page
))
731 if (!check_valid_pointer(s
, page
, object
)) {
732 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
736 if (on_freelist(s
, page
, object
)) {
737 slab_err(s
, page
, "Object 0x%p already free", object
);
741 if (!check_object(s
, page
, object
, 1))
744 if (unlikely(s
!= page
->slab
)) {
746 slab_err(s
, page
, "Attempt to free object(0x%p) "
747 "outside of slab", object
);
751 "SLUB <none>: no slab for object 0x%p.\n",
756 slab_err(s
, page
, "object at 0x%p belongs "
757 "to slab %s", object
, page
->slab
->name
);
762 printk(KERN_ERR
"@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
763 s
->name
, page
, object
);
768 * Slab allocation and freeing
770 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
773 int pages
= 1 << s
->order
;
778 if (s
->flags
& SLAB_CACHE_DMA
)
782 page
= alloc_pages(flags
, s
->order
);
784 page
= alloc_pages_node(node
, flags
, s
->order
);
789 mod_zone_page_state(page_zone(page
),
790 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
791 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
797 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
800 if (PageError(page
)) {
801 init_object(s
, object
, 0);
802 init_tracking(s
, object
);
805 if (unlikely(s
->ctor
))
806 s
->ctor(object
, s
, SLAB_CTOR_CONSTRUCTOR
);
809 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
812 struct kmem_cache_node
*n
;
818 BUG_ON(flags
& ~(GFP_DMA
| GFP_LEVEL_MASK
));
820 if (flags
& __GFP_WAIT
)
823 page
= allocate_slab(s
, flags
& GFP_LEVEL_MASK
, node
);
827 n
= get_node(s
, page_to_nid(page
));
829 atomic_long_inc(&n
->nr_slabs
);
830 page
->offset
= s
->offset
/ sizeof(void *);
832 page
->flags
|= 1 << PG_slab
;
833 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
834 SLAB_STORE_USER
| SLAB_TRACE
))
835 page
->flags
|= 1 << PG_error
;
837 start
= page_address(page
);
838 end
= start
+ s
->objects
* s
->size
;
840 if (unlikely(s
->flags
& SLAB_POISON
))
841 memset(start
, POISON_INUSE
, PAGE_SIZE
<< s
->order
);
844 for (p
= start
+ s
->size
; p
< end
; p
+= s
->size
) {
845 setup_object(s
, page
, last
);
846 set_freepointer(s
, last
, p
);
849 setup_object(s
, page
, last
);
850 set_freepointer(s
, last
, NULL
);
852 page
->freelist
= start
;
855 if (flags
& __GFP_WAIT
)
860 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
862 int pages
= 1 << s
->order
;
864 if (unlikely(PageError(page
) || s
->dtor
)) {
865 void *start
= page_address(page
);
866 void *end
= start
+ (pages
<< PAGE_SHIFT
);
869 slab_pad_check(s
, page
);
870 for (p
= start
; p
<= end
- s
->size
; p
+= s
->size
) {
873 check_object(s
, page
, p
, 0);
877 mod_zone_page_state(page_zone(page
),
878 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
879 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
882 page
->mapping
= NULL
;
883 __free_pages(page
, s
->order
);
886 static void rcu_free_slab(struct rcu_head
*h
)
890 page
= container_of((struct list_head
*)h
, struct page
, lru
);
891 __free_slab(page
->slab
, page
);
894 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
896 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
898 * RCU free overloads the RCU head over the LRU
900 struct rcu_head
*head
= (void *)&page
->lru
;
902 call_rcu(head
, rcu_free_slab
);
904 __free_slab(s
, page
);
907 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
909 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
911 atomic_long_dec(&n
->nr_slabs
);
912 reset_page_mapcount(page
);
913 page
->flags
&= ~(1 << PG_slab
| 1 << PG_error
);
918 * Per slab locking using the pagelock
920 static __always_inline
void slab_lock(struct page
*page
)
922 bit_spin_lock(PG_locked
, &page
->flags
);
925 static __always_inline
void slab_unlock(struct page
*page
)
927 bit_spin_unlock(PG_locked
, &page
->flags
);
930 static __always_inline
int slab_trylock(struct page
*page
)
934 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
939 * Management of partially allocated slabs
941 static void add_partial_tail(struct kmem_cache_node
*n
, struct page
*page
)
943 spin_lock(&n
->list_lock
);
945 list_add_tail(&page
->lru
, &n
->partial
);
946 spin_unlock(&n
->list_lock
);
949 static void add_partial(struct kmem_cache_node
*n
, struct page
*page
)
951 spin_lock(&n
->list_lock
);
953 list_add(&page
->lru
, &n
->partial
);
954 spin_unlock(&n
->list_lock
);
957 static void remove_partial(struct kmem_cache
*s
,
960 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
962 spin_lock(&n
->list_lock
);
963 list_del(&page
->lru
);
965 spin_unlock(&n
->list_lock
);
969 * Lock page and remove it from the partial list
971 * Must hold list_lock
973 static int lock_and_del_slab(struct kmem_cache_node
*n
, struct page
*page
)
975 if (slab_trylock(page
)) {
976 list_del(&page
->lru
);
984 * Try to get a partial slab from a specific node
986 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
991 * Racy check. If we mistakenly see no partial slabs then we
992 * just allocate an empty slab. If we mistakenly try to get a
993 * partial slab then get_partials() will return NULL.
995 if (!n
|| !n
->nr_partial
)
998 spin_lock(&n
->list_lock
);
999 list_for_each_entry(page
, &n
->partial
, lru
)
1000 if (lock_and_del_slab(n
, page
))
1004 spin_unlock(&n
->list_lock
);
1009 * Get a page from somewhere. Search in increasing NUMA
1012 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1015 struct zonelist
*zonelist
;
1020 * The defrag ratio allows to configure the tradeoffs between
1021 * inter node defragmentation and node local allocations.
1022 * A lower defrag_ratio increases the tendency to do local
1023 * allocations instead of scanning throught the partial
1024 * lists on other nodes.
1026 * If defrag_ratio is set to 0 then kmalloc() always
1027 * returns node local objects. If its higher then kmalloc()
1028 * may return off node objects in order to avoid fragmentation.
1030 * A higher ratio means slabs may be taken from other nodes
1031 * thus reducing the number of partial slabs on those nodes.
1033 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1034 * defrag_ratio = 1000) then every (well almost) allocation
1035 * will first attempt to defrag slab caches on other nodes. This
1036 * means scanning over all nodes to look for partial slabs which
1037 * may be a bit expensive to do on every slab allocation.
1039 if (!s
->defrag_ratio
|| get_cycles() % 1024 > s
->defrag_ratio
)
1042 zonelist
= &NODE_DATA(slab_node(current
->mempolicy
))
1043 ->node_zonelists
[gfp_zone(flags
)];
1044 for (z
= zonelist
->zones
; *z
; z
++) {
1045 struct kmem_cache_node
*n
;
1047 n
= get_node(s
, zone_to_nid(*z
));
1049 if (n
&& cpuset_zone_allowed_hardwall(*z
, flags
) &&
1050 n
->nr_partial
> MIN_PARTIAL
) {
1051 page
= get_partial_node(n
);
1061 * Get a partial page, lock it and return it.
1063 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1066 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1068 page
= get_partial_node(get_node(s
, searchnode
));
1069 if (page
|| (flags
& __GFP_THISNODE
))
1072 return get_any_partial(s
, flags
);
1076 * Move a page back to the lists.
1078 * Must be called with the slab lock held.
1080 * On exit the slab lock will have been dropped.
1082 static void putback_slab(struct kmem_cache
*s
, struct page
*page
)
1084 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1089 add_partial(n
, page
);
1090 else if (PageError(page
) && (s
->flags
& SLAB_STORE_USER
))
1095 if (n
->nr_partial
< MIN_PARTIAL
) {
1097 * Adding an empty page to the partial slabs in order
1098 * to avoid page allocator overhead. This page needs to
1099 * come after all the others that are not fully empty
1100 * in order to make sure that we do maximum
1103 add_partial_tail(n
, page
);
1107 discard_slab(s
, page
);
1113 * Remove the cpu slab
1115 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
, int cpu
)
1117 s
->cpu_slab
[cpu
] = NULL
;
1118 ClearPageActive(page
);
1120 putback_slab(s
, page
);
1123 static void flush_slab(struct kmem_cache
*s
, struct page
*page
, int cpu
)
1126 deactivate_slab(s
, page
, cpu
);
1131 * Called from IPI handler with interrupts disabled.
1133 static void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1135 struct page
*page
= s
->cpu_slab
[cpu
];
1138 flush_slab(s
, page
, cpu
);
1141 static void flush_cpu_slab(void *d
)
1143 struct kmem_cache
*s
= d
;
1144 int cpu
= smp_processor_id();
1146 __flush_cpu_slab(s
, cpu
);
1149 static void flush_all(struct kmem_cache
*s
)
1152 on_each_cpu(flush_cpu_slab
, s
, 1, 1);
1154 unsigned long flags
;
1156 local_irq_save(flags
);
1158 local_irq_restore(flags
);
1163 * slab_alloc is optimized to only modify two cachelines on the fast path
1164 * (aside from the stack):
1166 * 1. The page struct
1167 * 2. The first cacheline of the object to be allocated.
1169 * The only cache lines that are read (apart from code) is the
1170 * per cpu array in the kmem_cache struct.
1172 * Fastpath is not possible if we need to get a new slab or have
1173 * debugging enabled (which means all slabs are marked with PageError)
1175 static void *slab_alloc(struct kmem_cache
*s
,
1176 gfp_t gfpflags
, int node
, void *addr
)
1180 unsigned long flags
;
1183 local_irq_save(flags
);
1184 cpu
= smp_processor_id();
1185 page
= s
->cpu_slab
[cpu
];
1190 if (unlikely(node
!= -1 && page_to_nid(page
) != node
))
1193 object
= page
->freelist
;
1194 if (unlikely(!object
))
1196 if (unlikely(PageError(page
)))
1201 page
->freelist
= object
[page
->offset
];
1203 local_irq_restore(flags
);
1207 deactivate_slab(s
, page
, cpu
);
1210 page
= get_partial(s
, gfpflags
, node
);
1213 s
->cpu_slab
[cpu
] = page
;
1214 SetPageActive(page
);
1218 page
= new_slab(s
, gfpflags
, node
);
1220 cpu
= smp_processor_id();
1221 if (s
->cpu_slab
[cpu
]) {
1223 * Someone else populated the cpu_slab while we enabled
1224 * interrupts, or we have got scheduled on another cpu.
1225 * The page may not be on the requested node.
1228 page_to_nid(s
->cpu_slab
[cpu
]) == node
) {
1230 * Current cpuslab is acceptable and we
1231 * want the current one since its cache hot
1233 discard_slab(s
, page
);
1234 page
= s
->cpu_slab
[cpu
];
1238 /* Dump the current slab */
1239 flush_slab(s
, s
->cpu_slab
[cpu
], cpu
);
1244 local_irq_restore(flags
);
1247 if (!alloc_object_checks(s
, page
, object
))
1249 if (s
->flags
& SLAB_STORE_USER
)
1250 set_track(s
, object
, TRACK_ALLOC
, addr
);
1251 if (s
->flags
& SLAB_TRACE
) {
1252 printk(KERN_INFO
"TRACE %s alloc 0x%p inuse=%d fp=0x%p\n",
1253 s
->name
, object
, page
->inuse
,
1257 init_object(s
, object
, 1);
1261 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1263 return slab_alloc(s
, gfpflags
, -1, __builtin_return_address(0));
1265 EXPORT_SYMBOL(kmem_cache_alloc
);
1268 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1270 return slab_alloc(s
, gfpflags
, node
, __builtin_return_address(0));
1272 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1276 * The fastpath only writes the cacheline of the page struct and the first
1277 * cacheline of the object.
1279 * No special cachelines need to be read
1281 static void slab_free(struct kmem_cache
*s
, struct page
*page
,
1282 void *x
, void *addr
)
1285 void **object
= (void *)x
;
1286 unsigned long flags
;
1288 local_irq_save(flags
);
1291 if (unlikely(PageError(page
)))
1294 prior
= object
[page
->offset
] = page
->freelist
;
1295 page
->freelist
= object
;
1298 if (unlikely(PageActive(page
)))
1300 * Cpu slabs are never on partial lists and are
1305 if (unlikely(!page
->inuse
))
1309 * Objects left in the slab. If it
1310 * was not on the partial list before
1313 if (unlikely(!prior
))
1314 add_partial(get_node(s
, page_to_nid(page
)), page
);
1318 local_irq_restore(flags
);
1324 * Slab on the partial list.
1326 remove_partial(s
, page
);
1329 discard_slab(s
, page
);
1330 local_irq_restore(flags
);
1334 if (!free_object_checks(s
, page
, x
))
1336 if (!PageActive(page
) && !page
->freelist
)
1337 remove_full(s
, page
);
1338 if (s
->flags
& SLAB_STORE_USER
)
1339 set_track(s
, x
, TRACK_FREE
, addr
);
1340 if (s
->flags
& SLAB_TRACE
) {
1341 printk(KERN_INFO
"TRACE %s free 0x%p inuse=%d fp=0x%p\n",
1342 s
->name
, object
, page
->inuse
,
1344 print_section("Object", (void *)object
, s
->objsize
);
1347 init_object(s
, object
, 0);
1351 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1355 page
= virt_to_head_page(x
);
1357 slab_free(s
, page
, x
, __builtin_return_address(0));
1359 EXPORT_SYMBOL(kmem_cache_free
);
1361 /* Figure out on which slab object the object resides */
1362 static struct page
*get_object_page(const void *x
)
1364 struct page
*page
= virt_to_head_page(x
);
1366 if (!PageSlab(page
))
1373 * kmem_cache_open produces objects aligned at "size" and the first object
1374 * is placed at offset 0 in the slab (We have no metainformation on the
1375 * slab, all slabs are in essence "off slab").
1377 * In order to get the desired alignment one just needs to align the
1380 * Notice that the allocation order determines the sizes of the per cpu
1381 * caches. Each processor has always one slab available for allocations.
1382 * Increasing the allocation order reduces the number of times that slabs
1383 * must be moved on and off the partial lists and therefore may influence
1386 * The offset is used to relocate the free list link in each object. It is
1387 * therefore possible to move the free list link behind the object. This
1388 * is necessary for RCU to work properly and also useful for debugging.
1392 * Mininum / Maximum order of slab pages. This influences locking overhead
1393 * and slab fragmentation. A higher order reduces the number of partial slabs
1394 * and increases the number of allocations possible without having to
1395 * take the list_lock.
1397 static int slub_min_order
;
1398 static int slub_max_order
= DEFAULT_MAX_ORDER
;
1401 * Minimum number of objects per slab. This is necessary in order to
1402 * reduce locking overhead. Similar to the queue size in SLAB.
1404 static int slub_min_objects
= DEFAULT_MIN_OBJECTS
;
1407 * Merge control. If this is set then no merging of slab caches will occur.
1409 static int slub_nomerge
;
1414 static int slub_debug
;
1416 static char *slub_debug_slabs
;
1419 * Calculate the order of allocation given an slab object size.
1421 * The order of allocation has significant impact on other elements
1422 * of the system. Generally order 0 allocations should be preferred
1423 * since they do not cause fragmentation in the page allocator. Larger
1424 * objects may have problems with order 0 because there may be too much
1425 * space left unused in a slab. We go to a higher order if more than 1/8th
1426 * of the slab would be wasted.
1428 * In order to reach satisfactory performance we must ensure that
1429 * a minimum number of objects is in one slab. Otherwise we may
1430 * generate too much activity on the partial lists. This is less a
1431 * concern for large slabs though. slub_max_order specifies the order
1432 * where we begin to stop considering the number of objects in a slab.
1434 * Higher order allocations also allow the placement of more objects
1435 * in a slab and thereby reduce object handling overhead. If the user
1436 * has requested a higher mininum order then we start with that one
1439 static int calculate_order(int size
)
1444 for (order
= max(slub_min_order
, fls(size
- 1) - PAGE_SHIFT
);
1445 order
< MAX_ORDER
; order
++) {
1446 unsigned long slab_size
= PAGE_SIZE
<< order
;
1448 if (slub_max_order
> order
&&
1449 slab_size
< slub_min_objects
* size
)
1452 if (slab_size
< size
)
1455 rem
= slab_size
% size
;
1457 if (rem
<= (PAGE_SIZE
<< order
) / 8)
1461 if (order
>= MAX_ORDER
)
1467 * Function to figure out which alignment to use from the
1468 * various ways of specifying it.
1470 static unsigned long calculate_alignment(unsigned long flags
,
1471 unsigned long align
, unsigned long size
)
1474 * If the user wants hardware cache aligned objects then
1475 * follow that suggestion if the object is sufficiently
1478 * The hardware cache alignment cannot override the
1479 * specified alignment though. If that is greater
1482 if ((flags
& SLAB_HWCACHE_ALIGN
) &&
1483 size
> L1_CACHE_BYTES
/ 2)
1484 return max_t(unsigned long, align
, L1_CACHE_BYTES
);
1486 if (align
< ARCH_SLAB_MINALIGN
)
1487 return ARCH_SLAB_MINALIGN
;
1489 return ALIGN(align
, sizeof(void *));
1492 static void init_kmem_cache_node(struct kmem_cache_node
*n
)
1495 atomic_long_set(&n
->nr_slabs
, 0);
1496 spin_lock_init(&n
->list_lock
);
1497 INIT_LIST_HEAD(&n
->partial
);
1498 INIT_LIST_HEAD(&n
->full
);
1503 * No kmalloc_node yet so do it by hand. We know that this is the first
1504 * slab on the node for this slabcache. There are no concurrent accesses
1507 * Note that this function only works on the kmalloc_node_cache
1508 * when allocating for the kmalloc_node_cache.
1510 static struct kmem_cache_node
* __init
early_kmem_cache_node_alloc(gfp_t gfpflags
,
1514 struct kmem_cache_node
*n
;
1516 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
1518 page
= new_slab(kmalloc_caches
, gfpflags
| GFP_THISNODE
, node
);
1519 /* new_slab() disables interupts */
1525 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
1527 kmalloc_caches
->node
[node
] = n
;
1528 init_object(kmalloc_caches
, n
, 1);
1529 init_kmem_cache_node(n
);
1530 atomic_long_inc(&n
->nr_slabs
);
1531 add_partial(n
, page
);
1535 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
1539 for_each_online_node(node
) {
1540 struct kmem_cache_node
*n
= s
->node
[node
];
1541 if (n
&& n
!= &s
->local_node
)
1542 kmem_cache_free(kmalloc_caches
, n
);
1543 s
->node
[node
] = NULL
;
1547 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
1552 if (slab_state
>= UP
)
1553 local_node
= page_to_nid(virt_to_page(s
));
1557 for_each_online_node(node
) {
1558 struct kmem_cache_node
*n
;
1560 if (local_node
== node
)
1563 if (slab_state
== DOWN
) {
1564 n
= early_kmem_cache_node_alloc(gfpflags
,
1568 n
= kmem_cache_alloc_node(kmalloc_caches
,
1572 free_kmem_cache_nodes(s
);
1578 init_kmem_cache_node(n
);
1583 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
1587 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
1589 init_kmem_cache_node(&s
->local_node
);
1595 * calculate_sizes() determines the order and the distribution of data within
1598 static int calculate_sizes(struct kmem_cache
*s
)
1600 unsigned long flags
= s
->flags
;
1601 unsigned long size
= s
->objsize
;
1602 unsigned long align
= s
->align
;
1605 * Determine if we can poison the object itself. If the user of
1606 * the slab may touch the object after free or before allocation
1607 * then we should never poison the object itself.
1609 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
1610 !s
->ctor
&& !s
->dtor
)
1611 s
->flags
|= __OBJECT_POISON
;
1613 s
->flags
&= ~__OBJECT_POISON
;
1616 * Round up object size to the next word boundary. We can only
1617 * place the free pointer at word boundaries and this determines
1618 * the possible location of the free pointer.
1620 size
= ALIGN(size
, sizeof(void *));
1623 * If we are redzoning then check if there is some space between the
1624 * end of the object and the free pointer. If not then add an
1625 * additional word, so that we can establish a redzone between
1626 * the object and the freepointer to be able to check for overwrites.
1628 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
1629 size
+= sizeof(void *);
1632 * With that we have determined how much of the slab is in actual
1633 * use by the object. This is the potential offset to the free
1638 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
1639 s
->ctor
|| s
->dtor
)) {
1641 * Relocate free pointer after the object if it is not
1642 * permitted to overwrite the first word of the object on
1645 * This is the case if we do RCU, have a constructor or
1646 * destructor or are poisoning the objects.
1649 size
+= sizeof(void *);
1652 if (flags
& SLAB_STORE_USER
)
1654 * Need to store information about allocs and frees after
1657 size
+= 2 * sizeof(struct track
);
1659 if (flags
& DEBUG_DEFAULT_FLAGS
)
1661 * Add some empty padding so that we can catch
1662 * overwrites from earlier objects rather than let
1663 * tracking information or the free pointer be
1664 * corrupted if an user writes before the start
1667 size
+= sizeof(void *);
1669 * Determine the alignment based on various parameters that the
1670 * user specified (this is unecessarily complex due to the attempt
1671 * to be compatible with SLAB. Should be cleaned up some day).
1673 align
= calculate_alignment(flags
, align
, s
->objsize
);
1676 * SLUB stores one object immediately after another beginning from
1677 * offset 0. In order to align the objects we have to simply size
1678 * each object to conform to the alignment.
1680 size
= ALIGN(size
, align
);
1683 s
->order
= calculate_order(size
);
1688 * Determine the number of objects per slab
1690 s
->objects
= (PAGE_SIZE
<< s
->order
) / size
;
1693 * Verify that the number of objects is within permitted limits.
1694 * The page->inuse field is only 16 bit wide! So we cannot have
1695 * more than 64k objects per slab.
1697 if (!s
->objects
|| s
->objects
> 65535)
1703 static int __init
finish_bootstrap(void)
1705 struct list_head
*h
;
1710 list_for_each(h
, &slab_caches
) {
1711 struct kmem_cache
*s
=
1712 container_of(h
, struct kmem_cache
, list
);
1714 err
= sysfs_slab_add(s
);
1720 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
1721 const char *name
, size_t size
,
1722 size_t align
, unsigned long flags
,
1723 void (*ctor
)(void *, struct kmem_cache
*, unsigned long),
1724 void (*dtor
)(void *, struct kmem_cache
*, unsigned long))
1726 memset(s
, 0, kmem_size
);
1735 * The page->offset field is only 16 bit wide. This is an offset
1736 * in units of words from the beginning of an object. If the slab
1737 * size is bigger then we cannot move the free pointer behind the
1740 * On 32 bit platforms the limit is 256k. On 64bit platforms
1741 * the limit is 512k.
1743 * Debugging or ctor/dtors may create a need to move the free
1744 * pointer. Fail if this happens.
1746 if (s
->size
>= 65535 * sizeof(void *)) {
1747 BUG_ON(flags
& (SLAB_RED_ZONE
| SLAB_POISON
|
1748 SLAB_STORE_USER
| SLAB_DESTROY_BY_RCU
));
1749 BUG_ON(ctor
|| dtor
);
1753 * Enable debugging if selected on the kernel commandline.
1755 if (slub_debug
&& (!slub_debug_slabs
||
1756 strncmp(slub_debug_slabs
, name
,
1757 strlen(slub_debug_slabs
)) == 0))
1758 s
->flags
|= slub_debug
;
1760 if (!calculate_sizes(s
))
1765 s
->defrag_ratio
= 100;
1768 if (init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
1771 if (flags
& SLAB_PANIC
)
1772 panic("Cannot create slab %s size=%lu realsize=%u "
1773 "order=%u offset=%u flags=%lx\n",
1774 s
->name
, (unsigned long)size
, s
->size
, s
->order
,
1778 EXPORT_SYMBOL(kmem_cache_open
);
1781 * Check if a given pointer is valid
1783 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
1788 page
= get_object_page(object
);
1790 if (!page
|| s
!= page
->slab
)
1791 /* No slab or wrong slab */
1794 addr
= page_address(page
);
1795 if (object
< addr
|| object
>= addr
+ s
->objects
* s
->size
)
1799 if ((object
- addr
) % s
->size
)
1800 /* Improperly aligned */
1804 * We could also check if the object is on the slabs freelist.
1805 * But this would be too expensive and it seems that the main
1806 * purpose of kmem_ptr_valid is to check if the object belongs
1807 * to a certain slab.
1811 EXPORT_SYMBOL(kmem_ptr_validate
);
1814 * Determine the size of a slab object
1816 unsigned int kmem_cache_size(struct kmem_cache
*s
)
1820 EXPORT_SYMBOL(kmem_cache_size
);
1822 const char *kmem_cache_name(struct kmem_cache
*s
)
1826 EXPORT_SYMBOL(kmem_cache_name
);
1829 * Attempt to free all slabs on a node
1831 static int free_list(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1832 struct list_head
*list
)
1834 int slabs_inuse
= 0;
1835 unsigned long flags
;
1836 struct page
*page
, *h
;
1838 spin_lock_irqsave(&n
->list_lock
, flags
);
1839 list_for_each_entry_safe(page
, h
, list
, lru
)
1841 list_del(&page
->lru
);
1842 discard_slab(s
, page
);
1845 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1850 * Release all resources used by slab cache
1852 static int kmem_cache_close(struct kmem_cache
*s
)
1858 /* Attempt to free all objects */
1859 for_each_online_node(node
) {
1860 struct kmem_cache_node
*n
= get_node(s
, node
);
1862 n
->nr_partial
-= free_list(s
, n
, &n
->partial
);
1863 if (atomic_long_read(&n
->nr_slabs
))
1866 free_kmem_cache_nodes(s
);
1871 * Close a cache and release the kmem_cache structure
1872 * (must be used for caches created using kmem_cache_create)
1874 void kmem_cache_destroy(struct kmem_cache
*s
)
1876 down_write(&slub_lock
);
1880 if (kmem_cache_close(s
))
1882 sysfs_slab_remove(s
);
1885 up_write(&slub_lock
);
1887 EXPORT_SYMBOL(kmem_cache_destroy
);
1889 /********************************************************************
1891 *******************************************************************/
1893 struct kmem_cache kmalloc_caches
[KMALLOC_SHIFT_HIGH
+ 1] __cacheline_aligned
;
1894 EXPORT_SYMBOL(kmalloc_caches
);
1896 #ifdef CONFIG_ZONE_DMA
1897 static struct kmem_cache
*kmalloc_caches_dma
[KMALLOC_SHIFT_HIGH
+ 1];
1900 static int __init
setup_slub_min_order(char *str
)
1902 get_option (&str
, &slub_min_order
);
1907 __setup("slub_min_order=", setup_slub_min_order
);
1909 static int __init
setup_slub_max_order(char *str
)
1911 get_option (&str
, &slub_max_order
);
1916 __setup("slub_max_order=", setup_slub_max_order
);
1918 static int __init
setup_slub_min_objects(char *str
)
1920 get_option (&str
, &slub_min_objects
);
1925 __setup("slub_min_objects=", setup_slub_min_objects
);
1927 static int __init
setup_slub_nomerge(char *str
)
1933 __setup("slub_nomerge", setup_slub_nomerge
);
1935 static int __init
setup_slub_debug(char *str
)
1937 if (!str
|| *str
!= '=')
1938 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1941 if (*str
== 0 || *str
== ',')
1942 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1944 for( ;*str
&& *str
!= ','; str
++)
1946 case 'f' : case 'F' :
1947 slub_debug
|= SLAB_DEBUG_FREE
;
1949 case 'z' : case 'Z' :
1950 slub_debug
|= SLAB_RED_ZONE
;
1952 case 'p' : case 'P' :
1953 slub_debug
|= SLAB_POISON
;
1955 case 'u' : case 'U' :
1956 slub_debug
|= SLAB_STORE_USER
;
1958 case 't' : case 'T' :
1959 slub_debug
|= SLAB_TRACE
;
1962 printk(KERN_ERR
"slub_debug option '%c' "
1963 "unknown. skipped\n",*str
);
1968 slub_debug_slabs
= str
+ 1;
1972 __setup("slub_debug", setup_slub_debug
);
1974 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
1975 const char *name
, int size
, gfp_t gfp_flags
)
1977 unsigned int flags
= 0;
1979 if (gfp_flags
& SLUB_DMA
)
1980 flags
= SLAB_CACHE_DMA
;
1982 down_write(&slub_lock
);
1983 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
1987 list_add(&s
->list
, &slab_caches
);
1988 up_write(&slub_lock
);
1989 if (sysfs_slab_add(s
))
1994 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
1997 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
1999 int index
= kmalloc_index(size
);
2004 /* Allocation too large? */
2007 #ifdef CONFIG_ZONE_DMA
2008 if ((flags
& SLUB_DMA
)) {
2009 struct kmem_cache
*s
;
2010 struct kmem_cache
*x
;
2014 s
= kmalloc_caches_dma
[index
];
2018 /* Dynamically create dma cache */
2019 x
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2021 panic("Unable to allocate memory for dma cache\n");
2023 if (index
<= KMALLOC_SHIFT_HIGH
)
2024 realsize
= 1 << index
;
2032 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2033 (unsigned int)realsize
);
2034 s
= create_kmalloc_cache(x
, text
, realsize
, flags
);
2035 kmalloc_caches_dma
[index
] = s
;
2039 return &kmalloc_caches
[index
];
2042 void *__kmalloc(size_t size
, gfp_t flags
)
2044 struct kmem_cache
*s
= get_slab(size
, flags
);
2047 return slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2050 EXPORT_SYMBOL(__kmalloc
);
2053 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2055 struct kmem_cache
*s
= get_slab(size
, flags
);
2058 return slab_alloc(s
, flags
, node
, __builtin_return_address(0));
2061 EXPORT_SYMBOL(__kmalloc_node
);
2064 size_t ksize(const void *object
)
2066 struct page
*page
= get_object_page(object
);
2067 struct kmem_cache
*s
;
2074 * Debugging requires use of the padding between object
2075 * and whatever may come after it.
2077 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2081 * If we have the need to store the freelist pointer
2082 * back there or track user information then we can
2083 * only use the space before that information.
2085 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2089 * Else we can use all the padding etc for the allocation
2093 EXPORT_SYMBOL(ksize
);
2095 void kfree(const void *x
)
2097 struct kmem_cache
*s
;
2103 page
= virt_to_head_page(x
);
2106 slab_free(s
, page
, (void *)x
, __builtin_return_address(0));
2108 EXPORT_SYMBOL(kfree
);
2111 * kmem_cache_shrink removes empty slabs from the partial lists
2112 * and then sorts the partially allocated slabs by the number
2113 * of items in use. The slabs with the most items in use
2114 * come first. New allocations will remove these from the
2115 * partial list because they are full. The slabs with the
2116 * least items are placed last. If it happens that the objects
2117 * are freed then the page can be returned to the page allocator.
2119 int kmem_cache_shrink(struct kmem_cache
*s
)
2123 struct kmem_cache_node
*n
;
2126 struct list_head
*slabs_by_inuse
=
2127 kmalloc(sizeof(struct list_head
) * s
->objects
, GFP_KERNEL
);
2128 unsigned long flags
;
2130 if (!slabs_by_inuse
)
2134 for_each_online_node(node
) {
2135 n
= get_node(s
, node
);
2140 for (i
= 0; i
< s
->objects
; i
++)
2141 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2143 spin_lock_irqsave(&n
->list_lock
, flags
);
2146 * Build lists indexed by the items in use in
2147 * each slab or free slabs if empty.
2149 * Note that concurrent frees may occur while
2150 * we hold the list_lock. page->inuse here is
2153 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2154 if (!page
->inuse
&& slab_trylock(page
)) {
2156 * Must hold slab lock here because slab_free
2157 * may have freed the last object and be
2158 * waiting to release the slab.
2160 list_del(&page
->lru
);
2163 discard_slab(s
, page
);
2165 if (n
->nr_partial
> MAX_PARTIAL
)
2166 list_move(&page
->lru
,
2167 slabs_by_inuse
+ page
->inuse
);
2171 if (n
->nr_partial
<= MAX_PARTIAL
)
2175 * Rebuild the partial list with the slabs filled up
2176 * most first and the least used slabs at the end.
2178 for (i
= s
->objects
- 1; i
>= 0; i
--)
2179 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2182 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2185 kfree(slabs_by_inuse
);
2188 EXPORT_SYMBOL(kmem_cache_shrink
);
2191 * krealloc - reallocate memory. The contents will remain unchanged.
2193 * @p: object to reallocate memory for.
2194 * @new_size: how many bytes of memory are required.
2195 * @flags: the type of memory to allocate.
2197 * The contents of the object pointed to are preserved up to the
2198 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2199 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2200 * %NULL pointer, the object pointed to is freed.
2202 void *krealloc(const void *p
, size_t new_size
, gfp_t flags
)
2204 struct kmem_cache
*new_cache
;
2209 return kmalloc(new_size
, flags
);
2211 if (unlikely(!new_size
)) {
2216 page
= virt_to_head_page(p
);
2218 new_cache
= get_slab(new_size
, flags
);
2221 * If new size fits in the current cache, bail out.
2223 if (likely(page
->slab
== new_cache
))
2226 ret
= kmalloc(new_size
, flags
);
2228 memcpy(ret
, p
, min(new_size
, ksize(p
)));
2233 EXPORT_SYMBOL(krealloc
);
2235 /********************************************************************
2236 * Basic setup of slabs
2237 *******************************************************************/
2239 void __init
kmem_cache_init(void)
2245 * Must first have the slab cache available for the allocations of the
2246 * struct kmalloc_cache_node's. There is special bootstrap code in
2247 * kmem_cache_open for slab_state == DOWN.
2249 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2250 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2253 /* Able to allocate the per node structures */
2254 slab_state
= PARTIAL
;
2256 /* Caches that are not of the two-to-the-power-of size */
2257 create_kmalloc_cache(&kmalloc_caches
[1],
2258 "kmalloc-96", 96, GFP_KERNEL
);
2259 create_kmalloc_cache(&kmalloc_caches
[2],
2260 "kmalloc-192", 192, GFP_KERNEL
);
2262 for (i
= KMALLOC_SHIFT_LOW
; i
<= KMALLOC_SHIFT_HIGH
; i
++)
2263 create_kmalloc_cache(&kmalloc_caches
[i
],
2264 "kmalloc", 1 << i
, GFP_KERNEL
);
2268 /* Provide the correct kmalloc names now that the caches are up */
2269 for (i
= KMALLOC_SHIFT_LOW
; i
<= KMALLOC_SHIFT_HIGH
; i
++)
2270 kmalloc_caches
[i
]. name
=
2271 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
2274 register_cpu_notifier(&slab_notifier
);
2277 if (nr_cpu_ids
) /* Remove when nr_cpu_ids is fixed upstream ! */
2278 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
)
2279 + nr_cpu_ids
* sizeof(struct page
*);
2281 printk(KERN_INFO
"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2282 " Processors=%d, Nodes=%d\n",
2283 KMALLOC_SHIFT_HIGH
, L1_CACHE_BYTES
,
2284 slub_min_order
, slub_max_order
, slub_min_objects
,
2285 nr_cpu_ids
, nr_node_ids
);
2289 * Find a mergeable slab cache
2291 static int slab_unmergeable(struct kmem_cache
*s
)
2293 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
2296 if (s
->ctor
|| s
->dtor
)
2302 static struct kmem_cache
*find_mergeable(size_t size
,
2303 size_t align
, unsigned long flags
,
2304 void (*ctor
)(void *, struct kmem_cache
*, unsigned long),
2305 void (*dtor
)(void *, struct kmem_cache
*, unsigned long))
2307 struct list_head
*h
;
2309 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
2315 size
= ALIGN(size
, sizeof(void *));
2316 align
= calculate_alignment(flags
, align
, size
);
2317 size
= ALIGN(size
, align
);
2319 list_for_each(h
, &slab_caches
) {
2320 struct kmem_cache
*s
=
2321 container_of(h
, struct kmem_cache
, list
);
2323 if (slab_unmergeable(s
))
2329 if (((flags
| slub_debug
) & SLUB_MERGE_SAME
) !=
2330 (s
->flags
& SLUB_MERGE_SAME
))
2333 * Check if alignment is compatible.
2334 * Courtesy of Adrian Drzewiecki
2336 if ((s
->size
& ~(align
-1)) != s
->size
)
2339 if (s
->size
- size
>= sizeof(void *))
2347 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
2348 size_t align
, unsigned long flags
,
2349 void (*ctor
)(void *, struct kmem_cache
*, unsigned long),
2350 void (*dtor
)(void *, struct kmem_cache
*, unsigned long))
2352 struct kmem_cache
*s
;
2354 down_write(&slub_lock
);
2355 s
= find_mergeable(size
, align
, flags
, dtor
, ctor
);
2359 * Adjust the object sizes so that we clear
2360 * the complete object on kzalloc.
2362 s
->objsize
= max(s
->objsize
, (int)size
);
2363 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
2364 if (sysfs_slab_alias(s
, name
))
2367 s
= kmalloc(kmem_size
, GFP_KERNEL
);
2368 if (s
&& kmem_cache_open(s
, GFP_KERNEL
, name
,
2369 size
, align
, flags
, ctor
, dtor
)) {
2370 if (sysfs_slab_add(s
)) {
2374 list_add(&s
->list
, &slab_caches
);
2378 up_write(&slub_lock
);
2382 up_write(&slub_lock
);
2383 if (flags
& SLAB_PANIC
)
2384 panic("Cannot create slabcache %s\n", name
);
2389 EXPORT_SYMBOL(kmem_cache_create
);
2391 void *kmem_cache_zalloc(struct kmem_cache
*s
, gfp_t flags
)
2395 x
= slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2397 memset(x
, 0, s
->objsize
);
2400 EXPORT_SYMBOL(kmem_cache_zalloc
);
2403 static void for_all_slabs(void (*func
)(struct kmem_cache
*, int), int cpu
)
2405 struct list_head
*h
;
2407 down_read(&slub_lock
);
2408 list_for_each(h
, &slab_caches
) {
2409 struct kmem_cache
*s
=
2410 container_of(h
, struct kmem_cache
, list
);
2414 up_read(&slub_lock
);
2418 * Use the cpu notifier to insure that the slab are flushed
2421 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
2422 unsigned long action
, void *hcpu
)
2424 long cpu
= (long)hcpu
;
2427 case CPU_UP_CANCELED
:
2429 for_all_slabs(__flush_cpu_slab
, cpu
);
2437 static struct notifier_block __cpuinitdata slab_notifier
=
2438 { &slab_cpuup_callback
, NULL
, 0 };
2444 /*****************************************************************
2445 * Generic reaper used to support the page allocator
2446 * (the cpu slabs are reaped by a per slab workqueue).
2448 * Maybe move this to the page allocator?
2449 ****************************************************************/
2451 static DEFINE_PER_CPU(unsigned long, reap_node
);
2453 static void init_reap_node(int cpu
)
2457 node
= next_node(cpu_to_node(cpu
), node_online_map
);
2458 if (node
== MAX_NUMNODES
)
2459 node
= first_node(node_online_map
);
2461 __get_cpu_var(reap_node
) = node
;
2464 static void next_reap_node(void)
2466 int node
= __get_cpu_var(reap_node
);
2469 * Also drain per cpu pages on remote zones
2471 if (node
!= numa_node_id())
2472 drain_node_pages(node
);
2474 node
= next_node(node
, node_online_map
);
2475 if (unlikely(node
>= MAX_NUMNODES
))
2476 node
= first_node(node_online_map
);
2477 __get_cpu_var(reap_node
) = node
;
2480 #define init_reap_node(cpu) do { } while (0)
2481 #define next_reap_node(void) do { } while (0)
2484 #define REAPTIMEOUT_CPUC (2*HZ)
2487 static DEFINE_PER_CPU(struct delayed_work
, reap_work
);
2489 static void cache_reap(struct work_struct
*unused
)
2492 refresh_cpu_vm_stats(smp_processor_id());
2493 schedule_delayed_work(&__get_cpu_var(reap_work
),
2497 static void __devinit
start_cpu_timer(int cpu
)
2499 struct delayed_work
*reap_work
= &per_cpu(reap_work
, cpu
);
2502 * When this gets called from do_initcalls via cpucache_init(),
2503 * init_workqueues() has already run, so keventd will be setup
2506 if (keventd_up() && reap_work
->work
.func
== NULL
) {
2507 init_reap_node(cpu
);
2508 INIT_DELAYED_WORK(reap_work
, cache_reap
);
2509 schedule_delayed_work_on(cpu
, reap_work
, HZ
+ 3 * cpu
);
2513 static int __init
cpucache_init(void)
2518 * Register the timers that drain pcp pages and update vm statistics
2520 for_each_online_cpu(cpu
)
2521 start_cpu_timer(cpu
);
2524 __initcall(cpucache_init
);
2527 #ifdef SLUB_RESILIENCY_TEST
2528 static unsigned long validate_slab_cache(struct kmem_cache
*s
);
2530 static void resiliency_test(void)
2534 printk(KERN_ERR
"SLUB resiliency testing\n");
2535 printk(KERN_ERR
"-----------------------\n");
2536 printk(KERN_ERR
"A. Corruption after allocation\n");
2538 p
= kzalloc(16, GFP_KERNEL
);
2540 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
2541 " 0x12->0x%p\n\n", p
+ 16);
2543 validate_slab_cache(kmalloc_caches
+ 4);
2545 /* Hmmm... The next two are dangerous */
2546 p
= kzalloc(32, GFP_KERNEL
);
2547 p
[32 + sizeof(void *)] = 0x34;
2548 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
2549 " 0x34 -> -0x%p\n", p
);
2550 printk(KERN_ERR
"If allocated object is overwritten then not detectable\n\n");
2552 validate_slab_cache(kmalloc_caches
+ 5);
2553 p
= kzalloc(64, GFP_KERNEL
);
2554 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
2556 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2558 printk(KERN_ERR
"If allocated object is overwritten then not detectable\n\n");
2559 validate_slab_cache(kmalloc_caches
+ 6);
2561 printk(KERN_ERR
"\nB. Corruption after free\n");
2562 p
= kzalloc(128, GFP_KERNEL
);
2565 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
2566 validate_slab_cache(kmalloc_caches
+ 7);
2568 p
= kzalloc(256, GFP_KERNEL
);
2571 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
2572 validate_slab_cache(kmalloc_caches
+ 8);
2574 p
= kzalloc(512, GFP_KERNEL
);
2577 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
2578 validate_slab_cache(kmalloc_caches
+ 9);
2581 static void resiliency_test(void) {};
2585 * These are not as efficient as kmalloc for the non debug case.
2586 * We do not have the page struct available so we have to touch one
2587 * cacheline in struct kmem_cache to check slab flags.
2589 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, void *caller
)
2591 struct kmem_cache
*s
= get_slab(size
, gfpflags
);
2596 return slab_alloc(s
, gfpflags
, -1, caller
);
2599 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
2600 int node
, void *caller
)
2602 struct kmem_cache
*s
= get_slab(size
, gfpflags
);
2607 return slab_alloc(s
, gfpflags
, node
, caller
);
2612 static int validate_slab(struct kmem_cache
*s
, struct page
*page
)
2615 void *addr
= page_address(page
);
2616 unsigned long map
[BITS_TO_LONGS(s
->objects
)];
2618 if (!check_slab(s
, page
) ||
2619 !on_freelist(s
, page
, NULL
))
2622 /* Now we know that a valid freelist exists */
2623 bitmap_zero(map
, s
->objects
);
2625 for(p
= page
->freelist
; p
; p
= get_freepointer(s
, p
)) {
2626 set_bit((p
- addr
) / s
->size
, map
);
2627 if (!check_object(s
, page
, p
, 0))
2631 for(p
= addr
; p
< addr
+ s
->objects
* s
->size
; p
+= s
->size
)
2632 if (!test_bit((p
- addr
) / s
->size
, map
))
2633 if (!check_object(s
, page
, p
, 1))
2638 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
)
2640 if (slab_trylock(page
)) {
2641 validate_slab(s
, page
);
2644 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
2647 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
2648 if (!PageError(page
))
2649 printk(KERN_ERR
"SLUB %s: PageError not set "
2650 "on slab 0x%p\n", s
->name
, page
);
2652 if (PageError(page
))
2653 printk(KERN_ERR
"SLUB %s: PageError set on "
2654 "slab 0x%p\n", s
->name
, page
);
2658 static int validate_slab_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2660 unsigned long count
= 0;
2662 unsigned long flags
;
2664 spin_lock_irqsave(&n
->list_lock
, flags
);
2666 list_for_each_entry(page
, &n
->partial
, lru
) {
2667 validate_slab_slab(s
, page
);
2670 if (count
!= n
->nr_partial
)
2671 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
2672 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
2674 if (!(s
->flags
& SLAB_STORE_USER
))
2677 list_for_each_entry(page
, &n
->full
, lru
) {
2678 validate_slab_slab(s
, page
);
2681 if (count
!= atomic_long_read(&n
->nr_slabs
))
2682 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
2683 "counter=%ld\n", s
->name
, count
,
2684 atomic_long_read(&n
->nr_slabs
));
2687 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2691 static unsigned long validate_slab_cache(struct kmem_cache
*s
)
2694 unsigned long count
= 0;
2697 for_each_online_node(node
) {
2698 struct kmem_cache_node
*n
= get_node(s
, node
);
2700 count
+= validate_slab_node(s
, n
);
2706 * Generate lists of locations where slabcache objects are allocated
2711 unsigned long count
;
2717 unsigned long count
;
2718 struct location
*loc
;
2721 static void free_loc_track(struct loc_track
*t
)
2724 free_pages((unsigned long)t
->loc
,
2725 get_order(sizeof(struct location
) * t
->max
));
2728 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
)
2734 max
= PAGE_SIZE
/ sizeof(struct location
);
2736 order
= get_order(sizeof(struct location
) * max
);
2738 l
= (void *)__get_free_pages(GFP_KERNEL
, order
);
2744 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
2752 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
2755 long start
, end
, pos
;
2763 pos
= start
+ (end
- start
+ 1) / 2;
2766 * There is nothing at "end". If we end up there
2767 * we need to add something to before end.
2772 caddr
= t
->loc
[pos
].addr
;
2773 if (addr
== caddr
) {
2774 t
->loc
[pos
].count
++;
2785 * Not found. Insert new tracking element
2787 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
))
2793 (t
->count
- pos
) * sizeof(struct location
));
2800 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
2801 struct page
*page
, enum track_item alloc
)
2803 void *addr
= page_address(page
);
2804 unsigned long map
[BITS_TO_LONGS(s
->objects
)];
2807 bitmap_zero(map
, s
->objects
);
2808 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
2809 set_bit((p
- addr
) / s
->size
, map
);
2811 for (p
= addr
; p
< addr
+ s
->objects
* s
->size
; p
+= s
->size
)
2812 if (!test_bit((p
- addr
) / s
->size
, map
)) {
2813 void *addr
= get_track(s
, p
, alloc
)->addr
;
2815 add_location(t
, s
, addr
);
2819 static int list_locations(struct kmem_cache
*s
, char *buf
,
2820 enum track_item alloc
)
2830 /* Push back cpu slabs */
2833 for_each_online_node(node
) {
2834 struct kmem_cache_node
*n
= get_node(s
, node
);
2835 unsigned long flags
;
2838 if (!atomic_read(&n
->nr_slabs
))
2841 spin_lock_irqsave(&n
->list_lock
, flags
);
2842 list_for_each_entry(page
, &n
->partial
, lru
)
2843 process_slab(&t
, s
, page
, alloc
);
2844 list_for_each_entry(page
, &n
->full
, lru
)
2845 process_slab(&t
, s
, page
, alloc
);
2846 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2849 for (i
= 0; i
< t
.count
; i
++) {
2850 void *addr
= t
.loc
[i
].addr
;
2852 if (n
> PAGE_SIZE
- 100)
2854 n
+= sprintf(buf
+ n
, "%7ld ", t
.loc
[i
].count
);
2856 n
+= sprint_symbol(buf
+ n
, (unsigned long)t
.loc
[i
].addr
);
2858 n
+= sprintf(buf
+ n
, "<not-available>");
2859 n
+= sprintf(buf
+ n
, "\n");
2864 n
+= sprintf(buf
, "No data\n");
2868 static unsigned long count_partial(struct kmem_cache_node
*n
)
2870 unsigned long flags
;
2871 unsigned long x
= 0;
2874 spin_lock_irqsave(&n
->list_lock
, flags
);
2875 list_for_each_entry(page
, &n
->partial
, lru
)
2877 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2881 enum slab_stat_type
{
2888 #define SO_FULL (1 << SL_FULL)
2889 #define SO_PARTIAL (1 << SL_PARTIAL)
2890 #define SO_CPU (1 << SL_CPU)
2891 #define SO_OBJECTS (1 << SL_OBJECTS)
2893 static unsigned long slab_objects(struct kmem_cache
*s
,
2894 char *buf
, unsigned long flags
)
2896 unsigned long total
= 0;
2900 unsigned long *nodes
;
2901 unsigned long *per_cpu
;
2903 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
2904 per_cpu
= nodes
+ nr_node_ids
;
2906 for_each_possible_cpu(cpu
) {
2907 struct page
*page
= s
->cpu_slab
[cpu
];
2911 node
= page_to_nid(page
);
2912 if (flags
& SO_CPU
) {
2915 if (flags
& SO_OBJECTS
)
2926 for_each_online_node(node
) {
2927 struct kmem_cache_node
*n
= get_node(s
, node
);
2929 if (flags
& SO_PARTIAL
) {
2930 if (flags
& SO_OBJECTS
)
2931 x
= count_partial(n
);
2938 if (flags
& SO_FULL
) {
2939 int full_slabs
= atomic_read(&n
->nr_slabs
)
2943 if (flags
& SO_OBJECTS
)
2944 x
= full_slabs
* s
->objects
;
2952 x
= sprintf(buf
, "%lu", total
);
2954 for_each_online_node(node
)
2956 x
+= sprintf(buf
+ x
, " N%d=%lu",
2960 return x
+ sprintf(buf
+ x
, "\n");
2963 static int any_slab_objects(struct kmem_cache
*s
)
2968 for_each_possible_cpu(cpu
)
2969 if (s
->cpu_slab
[cpu
])
2972 for_each_node(node
) {
2973 struct kmem_cache_node
*n
= get_node(s
, node
);
2975 if (n
->nr_partial
|| atomic_read(&n
->nr_slabs
))
2981 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
2982 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
2984 struct slab_attribute
{
2985 struct attribute attr
;
2986 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
2987 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
2990 #define SLAB_ATTR_RO(_name) \
2991 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
2993 #define SLAB_ATTR(_name) \
2994 static struct slab_attribute _name##_attr = \
2995 __ATTR(_name, 0644, _name##_show, _name##_store)
2997 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
2999 return sprintf(buf
, "%d\n", s
->size
);
3001 SLAB_ATTR_RO(slab_size
);
3003 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3005 return sprintf(buf
, "%d\n", s
->align
);
3007 SLAB_ATTR_RO(align
);
3009 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3011 return sprintf(buf
, "%d\n", s
->objsize
);
3013 SLAB_ATTR_RO(object_size
);
3015 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3017 return sprintf(buf
, "%d\n", s
->objects
);
3019 SLAB_ATTR_RO(objs_per_slab
);
3021 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3023 return sprintf(buf
, "%d\n", s
->order
);
3025 SLAB_ATTR_RO(order
);
3027 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3030 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3032 return n
+ sprintf(buf
+ n
, "\n");
3038 static ssize_t
dtor_show(struct kmem_cache
*s
, char *buf
)
3041 int n
= sprint_symbol(buf
, (unsigned long)s
->dtor
);
3043 return n
+ sprintf(buf
+ n
, "\n");
3049 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3051 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3053 SLAB_ATTR_RO(aliases
);
3055 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3057 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
);
3059 SLAB_ATTR_RO(slabs
);
3061 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3063 return slab_objects(s
, buf
, SO_PARTIAL
);
3065 SLAB_ATTR_RO(partial
);
3067 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3069 return slab_objects(s
, buf
, SO_CPU
);
3071 SLAB_ATTR_RO(cpu_slabs
);
3073 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3075 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
|SO_OBJECTS
);
3077 SLAB_ATTR_RO(objects
);
3079 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3081 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3084 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3085 const char *buf
, size_t length
)
3087 s
->flags
&= ~SLAB_DEBUG_FREE
;
3089 s
->flags
|= SLAB_DEBUG_FREE
;
3092 SLAB_ATTR(sanity_checks
);
3094 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3096 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3099 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3102 s
->flags
&= ~SLAB_TRACE
;
3104 s
->flags
|= SLAB_TRACE
;
3109 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3111 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3114 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3115 const char *buf
, size_t length
)
3117 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3119 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3122 SLAB_ATTR(reclaim_account
);
3124 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3126 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3128 SLAB_ATTR_RO(hwcache_align
);
3130 #ifdef CONFIG_ZONE_DMA
3131 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3133 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3135 SLAB_ATTR_RO(cache_dma
);
3138 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3140 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3142 SLAB_ATTR_RO(destroy_by_rcu
);
3144 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3146 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3149 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3150 const char *buf
, size_t length
)
3152 if (any_slab_objects(s
))
3155 s
->flags
&= ~SLAB_RED_ZONE
;
3157 s
->flags
|= SLAB_RED_ZONE
;
3161 SLAB_ATTR(red_zone
);
3163 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3165 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3168 static ssize_t
poison_store(struct kmem_cache
*s
,
3169 const char *buf
, size_t length
)
3171 if (any_slab_objects(s
))
3174 s
->flags
&= ~SLAB_POISON
;
3176 s
->flags
|= SLAB_POISON
;
3182 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
3184 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
3187 static ssize_t
store_user_store(struct kmem_cache
*s
,
3188 const char *buf
, size_t length
)
3190 if (any_slab_objects(s
))
3193 s
->flags
&= ~SLAB_STORE_USER
;
3195 s
->flags
|= SLAB_STORE_USER
;
3199 SLAB_ATTR(store_user
);
3201 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
3206 static ssize_t
validate_store(struct kmem_cache
*s
,
3207 const char *buf
, size_t length
)
3210 validate_slab_cache(s
);
3215 SLAB_ATTR(validate
);
3217 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
3222 static ssize_t
shrink_store(struct kmem_cache
*s
,
3223 const char *buf
, size_t length
)
3225 if (buf
[0] == '1') {
3226 int rc
= kmem_cache_shrink(s
);
3236 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
3238 if (!(s
->flags
& SLAB_STORE_USER
))
3240 return list_locations(s
, buf
, TRACK_ALLOC
);
3242 SLAB_ATTR_RO(alloc_calls
);
3244 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
3246 if (!(s
->flags
& SLAB_STORE_USER
))
3248 return list_locations(s
, buf
, TRACK_FREE
);
3250 SLAB_ATTR_RO(free_calls
);
3253 static ssize_t
defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
3255 return sprintf(buf
, "%d\n", s
->defrag_ratio
/ 10);
3258 static ssize_t
defrag_ratio_store(struct kmem_cache
*s
,
3259 const char *buf
, size_t length
)
3261 int n
= simple_strtoul(buf
, NULL
, 10);
3264 s
->defrag_ratio
= n
* 10;
3267 SLAB_ATTR(defrag_ratio
);
3270 static struct attribute
* slab_attrs
[] = {
3271 &slab_size_attr
.attr
,
3272 &object_size_attr
.attr
,
3273 &objs_per_slab_attr
.attr
,
3278 &cpu_slabs_attr
.attr
,
3283 &sanity_checks_attr
.attr
,
3285 &hwcache_align_attr
.attr
,
3286 &reclaim_account_attr
.attr
,
3287 &destroy_by_rcu_attr
.attr
,
3288 &red_zone_attr
.attr
,
3290 &store_user_attr
.attr
,
3291 &validate_attr
.attr
,
3293 &alloc_calls_attr
.attr
,
3294 &free_calls_attr
.attr
,
3295 #ifdef CONFIG_ZONE_DMA
3296 &cache_dma_attr
.attr
,
3299 &defrag_ratio_attr
.attr
,
3304 static struct attribute_group slab_attr_group
= {
3305 .attrs
= slab_attrs
,
3308 static ssize_t
slab_attr_show(struct kobject
*kobj
,
3309 struct attribute
*attr
,
3312 struct slab_attribute
*attribute
;
3313 struct kmem_cache
*s
;
3316 attribute
= to_slab_attr(attr
);
3319 if (!attribute
->show
)
3322 err
= attribute
->show(s
, buf
);
3327 static ssize_t
slab_attr_store(struct kobject
*kobj
,
3328 struct attribute
*attr
,
3329 const char *buf
, size_t len
)
3331 struct slab_attribute
*attribute
;
3332 struct kmem_cache
*s
;
3335 attribute
= to_slab_attr(attr
);
3338 if (!attribute
->store
)
3341 err
= attribute
->store(s
, buf
, len
);
3346 static struct sysfs_ops slab_sysfs_ops
= {
3347 .show
= slab_attr_show
,
3348 .store
= slab_attr_store
,
3351 static struct kobj_type slab_ktype
= {
3352 .sysfs_ops
= &slab_sysfs_ops
,
3355 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
3357 struct kobj_type
*ktype
= get_ktype(kobj
);
3359 if (ktype
== &slab_ktype
)
3364 static struct kset_uevent_ops slab_uevent_ops
= {
3365 .filter
= uevent_filter
,
3368 decl_subsys(slab
, &slab_ktype
, &slab_uevent_ops
);
3370 #define ID_STR_LENGTH 64
3372 /* Create a unique string id for a slab cache:
3374 * :[flags-]size:[memory address of kmemcache]
3376 static char *create_unique_id(struct kmem_cache
*s
)
3378 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
3385 * First flags affecting slabcache operations. We will only
3386 * get here for aliasable slabs so we do not need to support
3387 * too many flags. The flags here must cover all flags that
3388 * are matched during merging to guarantee that the id is
3391 if (s
->flags
& SLAB_CACHE_DMA
)
3393 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3395 if (s
->flags
& SLAB_DEBUG_FREE
)
3399 p
+= sprintf(p
, "%07d", s
->size
);
3400 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
3404 static int sysfs_slab_add(struct kmem_cache
*s
)
3410 if (slab_state
< SYSFS
)
3411 /* Defer until later */
3414 unmergeable
= slab_unmergeable(s
);
3417 * Slabcache can never be merged so we can use the name proper.
3418 * This is typically the case for debug situations. In that
3419 * case we can catch duplicate names easily.
3421 sysfs_remove_link(&slab_subsys
.kobj
, s
->name
);
3425 * Create a unique name for the slab as a target
3428 name
= create_unique_id(s
);
3431 kobj_set_kset_s(s
, slab_subsys
);
3432 kobject_set_name(&s
->kobj
, name
);
3433 kobject_init(&s
->kobj
);
3434 err
= kobject_add(&s
->kobj
);
3438 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
3441 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
3443 /* Setup first alias */
3444 sysfs_slab_alias(s
, s
->name
);
3450 static void sysfs_slab_remove(struct kmem_cache
*s
)
3452 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
3453 kobject_del(&s
->kobj
);
3457 * Need to buffer aliases during bootup until sysfs becomes
3458 * available lest we loose that information.
3460 struct saved_alias
{
3461 struct kmem_cache
*s
;
3463 struct saved_alias
*next
;
3466 struct saved_alias
*alias_list
;
3468 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
3470 struct saved_alias
*al
;
3472 if (slab_state
== SYSFS
) {
3474 * If we have a leftover link then remove it.
3476 sysfs_remove_link(&slab_subsys
.kobj
, name
);
3477 return sysfs_create_link(&slab_subsys
.kobj
,
3481 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
3487 al
->next
= alias_list
;
3492 static int __init
slab_sysfs_init(void)
3496 err
= subsystem_register(&slab_subsys
);
3498 printk(KERN_ERR
"Cannot register slab subsystem.\n");
3504 while (alias_list
) {
3505 struct saved_alias
*al
= alias_list
;
3507 alias_list
= alias_list
->next
;
3508 err
= sysfs_slab_alias(al
->s
, al
->name
);
3517 __initcall(slab_sysfs_init
);
3519 __initcall(finish_bootstrap
);