2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
31 * RAID10 provides a combination of RAID0 and RAID1 functionality.
32 * The layout of data is defined by
35 * near_copies (stored in low byte of layout)
36 * far_copies (stored in second byte of layout)
37 * far_offset (stored in bit 16 of layout )
39 * The data to be stored is divided into chunks using chunksize.
40 * Each device is divided into far_copies sections.
41 * In each section, chunks are laid out in a style similar to raid0, but
42 * near_copies copies of each chunk is stored (each on a different drive).
43 * The starting device for each section is offset near_copies from the starting
44 * device of the previous section.
45 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
47 * near_copies and far_copies must be at least one, and their product is at most
50 * If far_offset is true, then the far_copies are handled a bit differently.
51 * The copies are still in different stripes, but instead of be very far apart
52 * on disk, there are adjacent stripes.
56 * Number of guaranteed r10bios in case of extreme VM load:
58 #define NR_RAID10_BIOS 256
60 static void allow_barrier(conf_t
*conf
);
61 static void lower_barrier(conf_t
*conf
);
63 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
66 int size
= offsetof(struct r10bio_s
, devs
[conf
->copies
]);
68 /* allocate a r10bio with room for raid_disks entries in the bios array */
69 return kzalloc(size
, gfp_flags
);
72 static void r10bio_pool_free(void *r10_bio
, void *data
)
77 /* Maximum size of each resync request */
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80 /* amount of memory to reserve for resync requests */
81 #define RESYNC_WINDOW (1024*1024)
82 /* maximum number of concurrent requests, memory permitting */
83 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
86 * When performing a resync, we need to read and compare, so
87 * we need as many pages are there are copies.
88 * When performing a recovery, we need 2 bios, one for read,
89 * one for write (we recover only one drive per r10buf)
92 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
101 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
105 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
106 nalloc
= conf
->copies
; /* resync */
108 nalloc
= 2; /* recovery */
113 for (j
= nalloc
; j
-- ; ) {
114 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
117 r10_bio
->devs
[j
].bio
= bio
;
120 * Allocate RESYNC_PAGES data pages and attach them
123 for (j
= 0 ; j
< nalloc
; j
++) {
124 bio
= r10_bio
->devs
[j
].bio
;
125 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
126 page
= alloc_page(gfp_flags
);
130 bio
->bi_io_vec
[i
].bv_page
= page
;
138 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
140 for (i
= 0; i
< RESYNC_PAGES
; i
++)
141 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
144 while ( ++j
< nalloc
)
145 bio_put(r10_bio
->devs
[j
].bio
);
146 r10bio_pool_free(r10_bio
, conf
);
150 static void r10buf_pool_free(void *__r10_bio
, void *data
)
154 r10bio_t
*r10bio
= __r10_bio
;
157 for (j
=0; j
< conf
->copies
; j
++) {
158 struct bio
*bio
= r10bio
->devs
[j
].bio
;
160 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
161 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
162 bio
->bi_io_vec
[i
].bv_page
= NULL
;
167 r10bio_pool_free(r10bio
, conf
);
170 static void put_all_bios(conf_t
*conf
, r10bio_t
*r10_bio
)
174 for (i
= 0; i
< conf
->copies
; i
++) {
175 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
176 if (*bio
&& *bio
!= IO_BLOCKED
)
182 static void free_r10bio(r10bio_t
*r10_bio
)
184 conf_t
*conf
= r10_bio
->mddev
->private;
187 * Wake up any possible resync thread that waits for the device
192 put_all_bios(conf
, r10_bio
);
193 mempool_free(r10_bio
, conf
->r10bio_pool
);
196 static void put_buf(r10bio_t
*r10_bio
)
198 conf_t
*conf
= r10_bio
->mddev
->private;
200 mempool_free(r10_bio
, conf
->r10buf_pool
);
205 static void reschedule_retry(r10bio_t
*r10_bio
)
208 mddev_t
*mddev
= r10_bio
->mddev
;
209 conf_t
*conf
= mddev
->private;
211 spin_lock_irqsave(&conf
->device_lock
, flags
);
212 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
214 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
216 /* wake up frozen array... */
217 wake_up(&conf
->wait_barrier
);
219 md_wakeup_thread(mddev
->thread
);
223 * raid_end_bio_io() is called when we have finished servicing a mirrored
224 * operation and are ready to return a success/failure code to the buffer
227 static void raid_end_bio_io(r10bio_t
*r10_bio
)
229 struct bio
*bio
= r10_bio
->master_bio
;
232 test_bit(R10BIO_Uptodate
, &r10_bio
->state
) ? 0 : -EIO
);
233 free_r10bio(r10_bio
);
237 * Update disk head position estimator based on IRQ completion info.
239 static inline void update_head_pos(int slot
, r10bio_t
*r10_bio
)
241 conf_t
*conf
= r10_bio
->mddev
->private;
243 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
244 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
247 static void raid10_end_read_request(struct bio
*bio
, int error
)
249 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
250 r10bio_t
*r10_bio
= bio
->bi_private
;
252 conf_t
*conf
= r10_bio
->mddev
->private;
255 slot
= r10_bio
->read_slot
;
256 dev
= r10_bio
->devs
[slot
].devnum
;
258 * this branch is our 'one mirror IO has finished' event handler:
260 update_head_pos(slot
, r10_bio
);
264 * Set R10BIO_Uptodate in our master bio, so that
265 * we will return a good error code to the higher
266 * levels even if IO on some other mirrored buffer fails.
268 * The 'master' represents the composite IO operation to
269 * user-side. So if something waits for IO, then it will
270 * wait for the 'master' bio.
272 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
273 raid_end_bio_io(r10_bio
);
278 char b
[BDEVNAME_SIZE
];
279 if (printk_ratelimit())
280 printk(KERN_ERR
"md/raid10:%s: %s: rescheduling sector %llu\n",
282 bdevname(conf
->mirrors
[dev
].rdev
->bdev
,b
), (unsigned long long)r10_bio
->sector
);
283 reschedule_retry(r10_bio
);
286 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
289 static void raid10_end_write_request(struct bio
*bio
, int error
)
291 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
292 r10bio_t
*r10_bio
= bio
->bi_private
;
294 conf_t
*conf
= r10_bio
->mddev
->private;
296 for (slot
= 0; slot
< conf
->copies
; slot
++)
297 if (r10_bio
->devs
[slot
].bio
== bio
)
299 dev
= r10_bio
->devs
[slot
].devnum
;
302 * this branch is our 'one mirror IO has finished' event handler:
305 md_error(r10_bio
->mddev
, conf
->mirrors
[dev
].rdev
);
306 /* an I/O failed, we can't clear the bitmap */
307 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
310 * Set R10BIO_Uptodate in our master bio, so that
311 * we will return a good error code for to the higher
312 * levels even if IO on some other mirrored buffer fails.
314 * The 'master' represents the composite IO operation to
315 * user-side. So if something waits for IO, then it will
316 * wait for the 'master' bio.
318 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
320 update_head_pos(slot
, r10_bio
);
324 * Let's see if all mirrored write operations have finished
327 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
328 /* clear the bitmap if all writes complete successfully */
329 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
331 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
333 md_write_end(r10_bio
->mddev
);
334 raid_end_bio_io(r10_bio
);
337 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
342 * RAID10 layout manager
343 * As well as the chunksize and raid_disks count, there are two
344 * parameters: near_copies and far_copies.
345 * near_copies * far_copies must be <= raid_disks.
346 * Normally one of these will be 1.
347 * If both are 1, we get raid0.
348 * If near_copies == raid_disks, we get raid1.
350 * Chunks are laid out in raid0 style with near_copies copies of the
351 * first chunk, followed by near_copies copies of the next chunk and
353 * If far_copies > 1, then after 1/far_copies of the array has been assigned
354 * as described above, we start again with a device offset of near_copies.
355 * So we effectively have another copy of the whole array further down all
356 * the drives, but with blocks on different drives.
357 * With this layout, and block is never stored twice on the one device.
359 * raid10_find_phys finds the sector offset of a given virtual sector
360 * on each device that it is on.
362 * raid10_find_virt does the reverse mapping, from a device and a
363 * sector offset to a virtual address
366 static void raid10_find_phys(conf_t
*conf
, r10bio_t
*r10bio
)
376 /* now calculate first sector/dev */
377 chunk
= r10bio
->sector
>> conf
->chunk_shift
;
378 sector
= r10bio
->sector
& conf
->chunk_mask
;
380 chunk
*= conf
->near_copies
;
382 dev
= sector_div(stripe
, conf
->raid_disks
);
383 if (conf
->far_offset
)
384 stripe
*= conf
->far_copies
;
386 sector
+= stripe
<< conf
->chunk_shift
;
388 /* and calculate all the others */
389 for (n
=0; n
< conf
->near_copies
; n
++) {
392 r10bio
->devs
[slot
].addr
= sector
;
393 r10bio
->devs
[slot
].devnum
= d
;
396 for (f
= 1; f
< conf
->far_copies
; f
++) {
397 d
+= conf
->near_copies
;
398 if (d
>= conf
->raid_disks
)
399 d
-= conf
->raid_disks
;
401 r10bio
->devs
[slot
].devnum
= d
;
402 r10bio
->devs
[slot
].addr
= s
;
406 if (dev
>= conf
->raid_disks
) {
408 sector
+= (conf
->chunk_mask
+ 1);
411 BUG_ON(slot
!= conf
->copies
);
414 static sector_t
raid10_find_virt(conf_t
*conf
, sector_t sector
, int dev
)
416 sector_t offset
, chunk
, vchunk
;
418 offset
= sector
& conf
->chunk_mask
;
419 if (conf
->far_offset
) {
421 chunk
= sector
>> conf
->chunk_shift
;
422 fc
= sector_div(chunk
, conf
->far_copies
);
423 dev
-= fc
* conf
->near_copies
;
425 dev
+= conf
->raid_disks
;
427 while (sector
>= conf
->stride
) {
428 sector
-= conf
->stride
;
429 if (dev
< conf
->near_copies
)
430 dev
+= conf
->raid_disks
- conf
->near_copies
;
432 dev
-= conf
->near_copies
;
434 chunk
= sector
>> conf
->chunk_shift
;
436 vchunk
= chunk
* conf
->raid_disks
+ dev
;
437 sector_div(vchunk
, conf
->near_copies
);
438 return (vchunk
<< conf
->chunk_shift
) + offset
;
442 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
444 * @bvm: properties of new bio
445 * @biovec: the request that could be merged to it.
447 * Return amount of bytes we can accept at this offset
448 * If near_copies == raid_disk, there are no striping issues,
449 * but in that case, the function isn't called at all.
451 static int raid10_mergeable_bvec(struct request_queue
*q
,
452 struct bvec_merge_data
*bvm
,
453 struct bio_vec
*biovec
)
455 mddev_t
*mddev
= q
->queuedata
;
456 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
458 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
459 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
461 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
462 if (max
< 0) max
= 0; /* bio_add cannot handle a negative return */
463 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
464 return biovec
->bv_len
;
470 * This routine returns the disk from which the requested read should
471 * be done. There is a per-array 'next expected sequential IO' sector
472 * number - if this matches on the next IO then we use the last disk.
473 * There is also a per-disk 'last know head position' sector that is
474 * maintained from IRQ contexts, both the normal and the resync IO
475 * completion handlers update this position correctly. If there is no
476 * perfect sequential match then we pick the disk whose head is closest.
478 * If there are 2 mirrors in the same 2 devices, performance degrades
479 * because position is mirror, not device based.
481 * The rdev for the device selected will have nr_pending incremented.
485 * FIXME: possibly should rethink readbalancing and do it differently
486 * depending on near_copies / far_copies geometry.
488 static int read_balance(conf_t
*conf
, r10bio_t
*r10_bio
)
490 const sector_t this_sector
= r10_bio
->sector
;
491 int disk
, slot
, nslot
;
492 const int sectors
= r10_bio
->sectors
;
493 sector_t new_distance
, current_distance
;
496 raid10_find_phys(conf
, r10_bio
);
499 * Check if we can balance. We can balance on the whole
500 * device if no resync is going on (recovery is ok), or below
501 * the resync window. We take the first readable disk when
502 * above the resync window.
504 if (conf
->mddev
->recovery_cp
< MaxSector
505 && (this_sector
+ sectors
>= conf
->next_resync
)) {
506 /* make sure that disk is operational */
508 disk
= r10_bio
->devs
[slot
].devnum
;
510 while ((rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
511 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
512 !test_bit(In_sync
, &rdev
->flags
)) {
514 if (slot
== conf
->copies
) {
519 disk
= r10_bio
->devs
[slot
].devnum
;
525 /* make sure the disk is operational */
527 disk
= r10_bio
->devs
[slot
].devnum
;
528 while ((rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
529 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
530 !test_bit(In_sync
, &rdev
->flags
)) {
532 if (slot
== conf
->copies
) {
536 disk
= r10_bio
->devs
[slot
].devnum
;
540 current_distance
= abs(r10_bio
->devs
[slot
].addr
-
541 conf
->mirrors
[disk
].head_position
);
543 /* Find the disk whose head is closest,
544 * or - for far > 1 - find the closest to partition beginning */
546 for (nslot
= slot
; nslot
< conf
->copies
; nslot
++) {
547 int ndisk
= r10_bio
->devs
[nslot
].devnum
;
550 if ((rdev
=rcu_dereference(conf
->mirrors
[ndisk
].rdev
)) == NULL
||
551 r10_bio
->devs
[nslot
].bio
== IO_BLOCKED
||
552 !test_bit(In_sync
, &rdev
->flags
))
555 /* This optimisation is debatable, and completely destroys
556 * sequential read speed for 'far copies' arrays. So only
557 * keep it for 'near' arrays, and review those later.
559 if (conf
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
)) {
565 /* for far > 1 always use the lowest address */
566 if (conf
->far_copies
> 1)
567 new_distance
= r10_bio
->devs
[nslot
].addr
;
569 new_distance
= abs(r10_bio
->devs
[nslot
].addr
-
570 conf
->mirrors
[ndisk
].head_position
);
571 if (new_distance
< current_distance
) {
572 current_distance
= new_distance
;
579 r10_bio
->read_slot
= slot
;
580 /* conf->next_seq_sect = this_sector + sectors;*/
582 if (disk
>= 0 && (rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
))!= NULL
)
583 atomic_inc(&conf
->mirrors
[disk
].rdev
->nr_pending
);
591 static int raid10_congested(void *data
, int bits
)
593 mddev_t
*mddev
= data
;
594 conf_t
*conf
= mddev
->private;
597 if (mddev_congested(mddev
, bits
))
600 for (i
= 0; i
< conf
->raid_disks
&& ret
== 0; i
++) {
601 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
602 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
603 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
605 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
612 static void flush_pending_writes(conf_t
*conf
)
614 /* Any writes that have been queued but are awaiting
615 * bitmap updates get flushed here.
617 spin_lock_irq(&conf
->device_lock
);
619 if (conf
->pending_bio_list
.head
) {
621 bio
= bio_list_get(&conf
->pending_bio_list
);
622 spin_unlock_irq(&conf
->device_lock
);
623 /* flush any pending bitmap writes to disk
624 * before proceeding w/ I/O */
625 bitmap_unplug(conf
->mddev
->bitmap
);
627 while (bio
) { /* submit pending writes */
628 struct bio
*next
= bio
->bi_next
;
630 generic_make_request(bio
);
634 spin_unlock_irq(&conf
->device_lock
);
638 * Sometimes we need to suspend IO while we do something else,
639 * either some resync/recovery, or reconfigure the array.
640 * To do this we raise a 'barrier'.
641 * The 'barrier' is a counter that can be raised multiple times
642 * to count how many activities are happening which preclude
644 * We can only raise the barrier if there is no pending IO.
645 * i.e. if nr_pending == 0.
646 * We choose only to raise the barrier if no-one is waiting for the
647 * barrier to go down. This means that as soon as an IO request
648 * is ready, no other operations which require a barrier will start
649 * until the IO request has had a chance.
651 * So: regular IO calls 'wait_barrier'. When that returns there
652 * is no backgroup IO happening, It must arrange to call
653 * allow_barrier when it has finished its IO.
654 * backgroup IO calls must call raise_barrier. Once that returns
655 * there is no normal IO happeing. It must arrange to call
656 * lower_barrier when the particular background IO completes.
659 static void raise_barrier(conf_t
*conf
, int force
)
661 BUG_ON(force
&& !conf
->barrier
);
662 spin_lock_irq(&conf
->resync_lock
);
664 /* Wait until no block IO is waiting (unless 'force') */
665 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
666 conf
->resync_lock
, );
668 /* block any new IO from starting */
671 /* Now wait for all pending IO to complete */
672 wait_event_lock_irq(conf
->wait_barrier
,
673 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
674 conf
->resync_lock
, );
676 spin_unlock_irq(&conf
->resync_lock
);
679 static void lower_barrier(conf_t
*conf
)
682 spin_lock_irqsave(&conf
->resync_lock
, flags
);
684 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
685 wake_up(&conf
->wait_barrier
);
688 static void wait_barrier(conf_t
*conf
)
690 spin_lock_irq(&conf
->resync_lock
);
693 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
699 spin_unlock_irq(&conf
->resync_lock
);
702 static void allow_barrier(conf_t
*conf
)
705 spin_lock_irqsave(&conf
->resync_lock
, flags
);
707 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
708 wake_up(&conf
->wait_barrier
);
711 static void freeze_array(conf_t
*conf
)
713 /* stop syncio and normal IO and wait for everything to
715 * We increment barrier and nr_waiting, and then
716 * wait until nr_pending match nr_queued+1
717 * This is called in the context of one normal IO request
718 * that has failed. Thus any sync request that might be pending
719 * will be blocked by nr_pending, and we need to wait for
720 * pending IO requests to complete or be queued for re-try.
721 * Thus the number queued (nr_queued) plus this request (1)
722 * must match the number of pending IOs (nr_pending) before
725 spin_lock_irq(&conf
->resync_lock
);
728 wait_event_lock_irq(conf
->wait_barrier
,
729 conf
->nr_pending
== conf
->nr_queued
+1,
731 flush_pending_writes(conf
));
733 spin_unlock_irq(&conf
->resync_lock
);
736 static void unfreeze_array(conf_t
*conf
)
738 /* reverse the effect of the freeze */
739 spin_lock_irq(&conf
->resync_lock
);
742 wake_up(&conf
->wait_barrier
);
743 spin_unlock_irq(&conf
->resync_lock
);
746 static int make_request(mddev_t
*mddev
, struct bio
* bio
)
748 conf_t
*conf
= mddev
->private;
749 mirror_info_t
*mirror
;
751 struct bio
*read_bio
;
753 int chunk_sects
= conf
->chunk_mask
+ 1;
754 const int rw
= bio_data_dir(bio
);
755 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
756 const unsigned long do_fua
= (bio
->bi_rw
& REQ_FUA
);
758 mdk_rdev_t
*blocked_rdev
;
761 if (unlikely(bio
->bi_rw
& REQ_FLUSH
)) {
762 md_flush_request(mddev
, bio
);
766 /* If this request crosses a chunk boundary, we need to
767 * split it. This will only happen for 1 PAGE (or less) requests.
769 if (unlikely( (bio
->bi_sector
& conf
->chunk_mask
) + (bio
->bi_size
>> 9)
771 conf
->near_copies
< conf
->raid_disks
)) {
773 /* Sanity check -- queue functions should prevent this happening */
774 if (bio
->bi_vcnt
!= 1 ||
777 /* This is a one page bio that upper layers
778 * refuse to split for us, so we need to split it.
781 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
783 /* Each of these 'make_request' calls will call 'wait_barrier'.
784 * If the first succeeds but the second blocks due to the resync
785 * thread raising the barrier, we will deadlock because the
786 * IO to the underlying device will be queued in generic_make_request
787 * and will never complete, so will never reduce nr_pending.
788 * So increment nr_waiting here so no new raise_barriers will
789 * succeed, and so the second wait_barrier cannot block.
791 spin_lock_irq(&conf
->resync_lock
);
793 spin_unlock_irq(&conf
->resync_lock
);
795 if (make_request(mddev
, &bp
->bio1
))
796 generic_make_request(&bp
->bio1
);
797 if (make_request(mddev
, &bp
->bio2
))
798 generic_make_request(&bp
->bio2
);
800 spin_lock_irq(&conf
->resync_lock
);
802 wake_up(&conf
->wait_barrier
);
803 spin_unlock_irq(&conf
->resync_lock
);
805 bio_pair_release(bp
);
808 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
809 " or bigger than %dk %llu %d\n", mdname(mddev
), chunk_sects
/2,
810 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
816 md_write_start(mddev
, bio
);
819 * Register the new request and wait if the reconstruction
820 * thread has put up a bar for new requests.
821 * Continue immediately if no resync is active currently.
825 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
827 r10_bio
->master_bio
= bio
;
828 r10_bio
->sectors
= bio
->bi_size
>> 9;
830 r10_bio
->mddev
= mddev
;
831 r10_bio
->sector
= bio
->bi_sector
;
836 * read balancing logic:
838 int disk
= read_balance(conf
, r10_bio
);
839 int slot
= r10_bio
->read_slot
;
841 raid_end_bio_io(r10_bio
);
844 mirror
= conf
->mirrors
+ disk
;
846 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
848 r10_bio
->devs
[slot
].bio
= read_bio
;
850 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
851 mirror
->rdev
->data_offset
;
852 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
853 read_bio
->bi_end_io
= raid10_end_read_request
;
854 read_bio
->bi_rw
= READ
| do_sync
;
855 read_bio
->bi_private
= r10_bio
;
857 generic_make_request(read_bio
);
864 /* first select target devices under rcu_lock and
865 * inc refcount on their rdev. Record them by setting
868 plugged
= mddev_check_plugged(mddev
);
870 raid10_find_phys(conf
, r10_bio
);
874 for (i
= 0; i
< conf
->copies
; i
++) {
875 int d
= r10_bio
->devs
[i
].devnum
;
876 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
877 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
878 atomic_inc(&rdev
->nr_pending
);
882 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
883 atomic_inc(&rdev
->nr_pending
);
884 r10_bio
->devs
[i
].bio
= bio
;
886 r10_bio
->devs
[i
].bio
= NULL
;
887 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
892 if (unlikely(blocked_rdev
)) {
893 /* Have to wait for this device to get unblocked, then retry */
897 for (j
= 0; j
< i
; j
++)
898 if (r10_bio
->devs
[j
].bio
) {
899 d
= r10_bio
->devs
[j
].devnum
;
900 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
903 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
908 atomic_set(&r10_bio
->remaining
, 1);
909 bitmap_startwrite(mddev
->bitmap
, bio
->bi_sector
, r10_bio
->sectors
, 0);
911 for (i
= 0; i
< conf
->copies
; i
++) {
913 int d
= r10_bio
->devs
[i
].devnum
;
914 if (!r10_bio
->devs
[i
].bio
)
917 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
918 r10_bio
->devs
[i
].bio
= mbio
;
920 mbio
->bi_sector
= r10_bio
->devs
[i
].addr
+
921 conf
->mirrors
[d
].rdev
->data_offset
;
922 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
923 mbio
->bi_end_io
= raid10_end_write_request
;
924 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
;
925 mbio
->bi_private
= r10_bio
;
927 atomic_inc(&r10_bio
->remaining
);
928 spin_lock_irqsave(&conf
->device_lock
, flags
);
929 bio_list_add(&conf
->pending_bio_list
, mbio
);
930 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
933 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
934 /* This matches the end of raid10_end_write_request() */
935 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
937 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
940 raid_end_bio_io(r10_bio
);
943 /* In case raid10d snuck in to freeze_array */
944 wake_up(&conf
->wait_barrier
);
946 if (do_sync
|| !mddev
->bitmap
|| !plugged
)
947 md_wakeup_thread(mddev
->thread
);
951 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
953 conf_t
*conf
= mddev
->private;
956 if (conf
->near_copies
< conf
->raid_disks
)
957 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
958 if (conf
->near_copies
> 1)
959 seq_printf(seq
, " %d near-copies", conf
->near_copies
);
960 if (conf
->far_copies
> 1) {
961 if (conf
->far_offset
)
962 seq_printf(seq
, " %d offset-copies", conf
->far_copies
);
964 seq_printf(seq
, " %d far-copies", conf
->far_copies
);
966 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
967 conf
->raid_disks
- mddev
->degraded
);
968 for (i
= 0; i
< conf
->raid_disks
; i
++)
969 seq_printf(seq
, "%s",
970 conf
->mirrors
[i
].rdev
&&
971 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
972 seq_printf(seq
, "]");
975 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
977 char b
[BDEVNAME_SIZE
];
978 conf_t
*conf
= mddev
->private;
981 * If it is not operational, then we have already marked it as dead
982 * else if it is the last working disks, ignore the error, let the
983 * next level up know.
984 * else mark the drive as failed
986 if (test_bit(In_sync
, &rdev
->flags
)
987 && conf
->raid_disks
-mddev
->degraded
== 1)
989 * Don't fail the drive, just return an IO error.
990 * The test should really be more sophisticated than
991 * "working_disks == 1", but it isn't critical, and
992 * can wait until we do more sophisticated "is the drive
993 * really dead" tests...
996 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
998 spin_lock_irqsave(&conf
->device_lock
, flags
);
1000 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1002 * if recovery is running, make sure it aborts.
1004 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1006 set_bit(Faulty
, &rdev
->flags
);
1007 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1009 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1010 "md/raid10:%s: Operation continuing on %d devices.\n",
1011 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1012 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1015 static void print_conf(conf_t
*conf
)
1020 printk(KERN_DEBUG
"RAID10 conf printout:\n");
1022 printk(KERN_DEBUG
"(!conf)\n");
1025 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1028 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1029 char b
[BDEVNAME_SIZE
];
1030 tmp
= conf
->mirrors
+ i
;
1032 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1033 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1034 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1035 bdevname(tmp
->rdev
->bdev
,b
));
1039 static void close_sync(conf_t
*conf
)
1042 allow_barrier(conf
);
1044 mempool_destroy(conf
->r10buf_pool
);
1045 conf
->r10buf_pool
= NULL
;
1048 /* check if there are enough drives for
1049 * every block to appear on atleast one
1051 static int enough(conf_t
*conf
)
1056 int n
= conf
->copies
;
1059 if (conf
->mirrors
[first
].rdev
)
1061 first
= (first
+1) % conf
->raid_disks
;
1065 } while (first
!= 0);
1069 static int raid10_spare_active(mddev_t
*mddev
)
1072 conf_t
*conf
= mddev
->private;
1075 unsigned long flags
;
1078 * Find all non-in_sync disks within the RAID10 configuration
1079 * and mark them in_sync
1081 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1082 tmp
= conf
->mirrors
+ i
;
1084 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1085 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1087 sysfs_notify_dirent(tmp
->rdev
->sysfs_state
);
1090 spin_lock_irqsave(&conf
->device_lock
, flags
);
1091 mddev
->degraded
-= count
;
1092 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1099 static int raid10_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1101 conf_t
*conf
= mddev
->private;
1106 int last
= conf
->raid_disks
- 1;
1108 if (mddev
->recovery_cp
< MaxSector
)
1109 /* only hot-add to in-sync arrays, as recovery is
1110 * very different from resync
1116 if (rdev
->raid_disk
>= 0)
1117 first
= last
= rdev
->raid_disk
;
1119 if (rdev
->saved_raid_disk
>= 0 &&
1120 rdev
->saved_raid_disk
>= first
&&
1121 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1122 mirror
= rdev
->saved_raid_disk
;
1125 for ( ; mirror
<= last
; mirror
++)
1126 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
1128 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1129 rdev
->data_offset
<< 9);
1130 /* as we don't honour merge_bvec_fn, we must
1131 * never risk violating it, so limit
1132 * ->max_segments to one lying with a single
1133 * page, as a one page request is never in
1136 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
1137 blk_queue_max_segments(mddev
->queue
, 1);
1138 blk_queue_segment_boundary(mddev
->queue
,
1139 PAGE_CACHE_SIZE
- 1);
1142 p
->head_position
= 0;
1143 rdev
->raid_disk
= mirror
;
1145 if (rdev
->saved_raid_disk
!= mirror
)
1147 rcu_assign_pointer(p
->rdev
, rdev
);
1151 md_integrity_add_rdev(rdev
, mddev
);
1156 static int raid10_remove_disk(mddev_t
*mddev
, int number
)
1158 conf_t
*conf
= mddev
->private;
1161 mirror_info_t
*p
= conf
->mirrors
+ number
;
1166 if (test_bit(In_sync
, &rdev
->flags
) ||
1167 atomic_read(&rdev
->nr_pending
)) {
1171 /* Only remove faulty devices in recovery
1174 if (!test_bit(Faulty
, &rdev
->flags
) &&
1181 if (atomic_read(&rdev
->nr_pending
)) {
1182 /* lost the race, try later */
1187 err
= md_integrity_register(mddev
);
1196 static void end_sync_read(struct bio
*bio
, int error
)
1198 r10bio_t
*r10_bio
= bio
->bi_private
;
1199 conf_t
*conf
= r10_bio
->mddev
->private;
1202 for (i
=0; i
<conf
->copies
; i
++)
1203 if (r10_bio
->devs
[i
].bio
== bio
)
1205 BUG_ON(i
== conf
->copies
);
1206 update_head_pos(i
, r10_bio
);
1207 d
= r10_bio
->devs
[i
].devnum
;
1209 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1210 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1212 atomic_add(r10_bio
->sectors
,
1213 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1214 if (!test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
1215 md_error(r10_bio
->mddev
,
1216 conf
->mirrors
[d
].rdev
);
1219 /* for reconstruct, we always reschedule after a read.
1220 * for resync, only after all reads
1222 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1223 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1224 atomic_dec_and_test(&r10_bio
->remaining
)) {
1225 /* we have read all the blocks,
1226 * do the comparison in process context in raid10d
1228 reschedule_retry(r10_bio
);
1232 static void end_sync_write(struct bio
*bio
, int error
)
1234 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1235 r10bio_t
*r10_bio
= bio
->bi_private
;
1236 mddev_t
*mddev
= r10_bio
->mddev
;
1237 conf_t
*conf
= mddev
->private;
1240 for (i
= 0; i
< conf
->copies
; i
++)
1241 if (r10_bio
->devs
[i
].bio
== bio
)
1243 d
= r10_bio
->devs
[i
].devnum
;
1246 md_error(mddev
, conf
->mirrors
[d
].rdev
);
1248 update_head_pos(i
, r10_bio
);
1250 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1251 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1252 if (r10_bio
->master_bio
== NULL
) {
1253 /* the primary of several recovery bios */
1254 sector_t s
= r10_bio
->sectors
;
1256 md_done_sync(mddev
, s
, 1);
1259 r10bio_t
*r10_bio2
= (r10bio_t
*)r10_bio
->master_bio
;
1267 * Note: sync and recover and handled very differently for raid10
1268 * This code is for resync.
1269 * For resync, we read through virtual addresses and read all blocks.
1270 * If there is any error, we schedule a write. The lowest numbered
1271 * drive is authoritative.
1272 * However requests come for physical address, so we need to map.
1273 * For every physical address there are raid_disks/copies virtual addresses,
1274 * which is always are least one, but is not necessarly an integer.
1275 * This means that a physical address can span multiple chunks, so we may
1276 * have to submit multiple io requests for a single sync request.
1279 * We check if all blocks are in-sync and only write to blocks that
1282 static void sync_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1284 conf_t
*conf
= mddev
->private;
1286 struct bio
*tbio
, *fbio
;
1288 atomic_set(&r10_bio
->remaining
, 1);
1290 /* find the first device with a block */
1291 for (i
=0; i
<conf
->copies
; i
++)
1292 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1295 if (i
== conf
->copies
)
1299 fbio
= r10_bio
->devs
[i
].bio
;
1301 /* now find blocks with errors */
1302 for (i
=0 ; i
< conf
->copies
; i
++) {
1304 int vcnt
= r10_bio
->sectors
>> (PAGE_SHIFT
-9);
1306 tbio
= r10_bio
->devs
[i
].bio
;
1308 if (tbio
->bi_end_io
!= end_sync_read
)
1312 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1313 /* We know that the bi_io_vec layout is the same for
1314 * both 'first' and 'i', so we just compare them.
1315 * All vec entries are PAGE_SIZE;
1317 for (j
= 0; j
< vcnt
; j
++)
1318 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1319 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1324 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1326 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1327 /* Don't fix anything. */
1329 /* Ok, we need to write this bio
1330 * First we need to fixup bv_offset, bv_len and
1331 * bi_vecs, as the read request might have corrupted these
1333 tbio
->bi_vcnt
= vcnt
;
1334 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1336 tbio
->bi_phys_segments
= 0;
1337 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1338 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1339 tbio
->bi_next
= NULL
;
1340 tbio
->bi_rw
= WRITE
;
1341 tbio
->bi_private
= r10_bio
;
1342 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1344 for (j
=0; j
< vcnt
; j
++) {
1345 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1346 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1348 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1349 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1352 tbio
->bi_end_io
= end_sync_write
;
1354 d
= r10_bio
->devs
[i
].devnum
;
1355 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1356 atomic_inc(&r10_bio
->remaining
);
1357 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1359 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1360 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1361 generic_make_request(tbio
);
1365 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1366 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1372 * Now for the recovery code.
1373 * Recovery happens across physical sectors.
1374 * We recover all non-is_sync drives by finding the virtual address of
1375 * each, and then choose a working drive that also has that virt address.
1376 * There is a separate r10_bio for each non-in_sync drive.
1377 * Only the first two slots are in use. The first for reading,
1378 * The second for writing.
1382 static void recovery_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1384 conf_t
*conf
= mddev
->private;
1386 struct bio
*bio
, *wbio
;
1389 /* move the pages across to the second bio
1390 * and submit the write request
1392 bio
= r10_bio
->devs
[0].bio
;
1393 wbio
= r10_bio
->devs
[1].bio
;
1394 for (i
=0; i
< wbio
->bi_vcnt
; i
++) {
1395 struct page
*p
= bio
->bi_io_vec
[i
].bv_page
;
1396 bio
->bi_io_vec
[i
].bv_page
= wbio
->bi_io_vec
[i
].bv_page
;
1397 wbio
->bi_io_vec
[i
].bv_page
= p
;
1399 d
= r10_bio
->devs
[1].devnum
;
1401 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1402 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
1403 if (test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
1404 generic_make_request(wbio
);
1406 bio_endio(wbio
, -EIO
);
1411 * Used by fix_read_error() to decay the per rdev read_errors.
1412 * We halve the read error count for every hour that has elapsed
1413 * since the last recorded read error.
1416 static void check_decay_read_errors(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1418 struct timespec cur_time_mon
;
1419 unsigned long hours_since_last
;
1420 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
1422 ktime_get_ts(&cur_time_mon
);
1424 if (rdev
->last_read_error
.tv_sec
== 0 &&
1425 rdev
->last_read_error
.tv_nsec
== 0) {
1426 /* first time we've seen a read error */
1427 rdev
->last_read_error
= cur_time_mon
;
1431 hours_since_last
= (cur_time_mon
.tv_sec
-
1432 rdev
->last_read_error
.tv_sec
) / 3600;
1434 rdev
->last_read_error
= cur_time_mon
;
1437 * if hours_since_last is > the number of bits in read_errors
1438 * just set read errors to 0. We do this to avoid
1439 * overflowing the shift of read_errors by hours_since_last.
1441 if (hours_since_last
>= 8 * sizeof(read_errors
))
1442 atomic_set(&rdev
->read_errors
, 0);
1444 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
1448 * This is a kernel thread which:
1450 * 1. Retries failed read operations on working mirrors.
1451 * 2. Updates the raid superblock when problems encounter.
1452 * 3. Performs writes following reads for array synchronising.
1455 static void fix_read_error(conf_t
*conf
, mddev_t
*mddev
, r10bio_t
*r10_bio
)
1457 int sect
= 0; /* Offset from r10_bio->sector */
1458 int sectors
= r10_bio
->sectors
;
1460 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
1461 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
1464 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1465 if (rdev
) { /* If rdev is not NULL */
1466 char b
[BDEVNAME_SIZE
];
1467 int cur_read_error_count
= 0;
1469 bdevname(rdev
->bdev
, b
);
1471 if (test_bit(Faulty
, &rdev
->flags
)) {
1473 /* drive has already been failed, just ignore any
1474 more fix_read_error() attempts */
1478 check_decay_read_errors(mddev
, rdev
);
1479 atomic_inc(&rdev
->read_errors
);
1480 cur_read_error_count
= atomic_read(&rdev
->read_errors
);
1481 if (cur_read_error_count
> max_read_errors
) {
1484 "md/raid10:%s: %s: Raid device exceeded "
1485 "read_error threshold "
1486 "[cur %d:max %d]\n",
1488 b
, cur_read_error_count
, max_read_errors
);
1490 "md/raid10:%s: %s: Failing raid "
1491 "device\n", mdname(mddev
), b
);
1492 md_error(mddev
, conf
->mirrors
[d
].rdev
);
1500 int sl
= r10_bio
->read_slot
;
1504 if (s
> (PAGE_SIZE
>>9))
1509 d
= r10_bio
->devs
[sl
].devnum
;
1510 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1512 test_bit(In_sync
, &rdev
->flags
)) {
1513 atomic_inc(&rdev
->nr_pending
);
1515 success
= sync_page_io(rdev
,
1516 r10_bio
->devs
[sl
].addr
+
1519 conf
->tmppage
, READ
, false);
1520 rdev_dec_pending(rdev
, mddev
);
1526 if (sl
== conf
->copies
)
1528 } while (!success
&& sl
!= r10_bio
->read_slot
);
1532 /* Cannot read from anywhere -- bye bye array */
1533 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
1534 md_error(mddev
, conf
->mirrors
[dn
].rdev
);
1539 /* write it back and re-read */
1541 while (sl
!= r10_bio
->read_slot
) {
1542 char b
[BDEVNAME_SIZE
];
1547 d
= r10_bio
->devs
[sl
].devnum
;
1548 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1550 test_bit(In_sync
, &rdev
->flags
)) {
1551 atomic_inc(&rdev
->nr_pending
);
1553 atomic_add(s
, &rdev
->corrected_errors
);
1554 if (sync_page_io(rdev
,
1555 r10_bio
->devs
[sl
].addr
+
1557 s
<<9, conf
->tmppage
, WRITE
, false)
1559 /* Well, this device is dead */
1561 "md/raid10:%s: read correction "
1563 " (%d sectors at %llu on %s)\n",
1565 (unsigned long long)(sect
+
1567 bdevname(rdev
->bdev
, b
));
1568 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
1571 bdevname(rdev
->bdev
, b
));
1572 md_error(mddev
, rdev
);
1574 rdev_dec_pending(rdev
, mddev
);
1579 while (sl
!= r10_bio
->read_slot
) {
1584 d
= r10_bio
->devs
[sl
].devnum
;
1585 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1587 test_bit(In_sync
, &rdev
->flags
)) {
1588 char b
[BDEVNAME_SIZE
];
1589 atomic_inc(&rdev
->nr_pending
);
1591 if (sync_page_io(rdev
,
1592 r10_bio
->devs
[sl
].addr
+
1594 s
<<9, conf
->tmppage
,
1595 READ
, false) == 0) {
1596 /* Well, this device is dead */
1598 "md/raid10:%s: unable to read back "
1600 " (%d sectors at %llu on %s)\n",
1602 (unsigned long long)(sect
+
1604 bdevname(rdev
->bdev
, b
));
1605 printk(KERN_NOTICE
"md/raid10:%s: %s: failing drive\n",
1607 bdevname(rdev
->bdev
, b
));
1609 md_error(mddev
, rdev
);
1612 "md/raid10:%s: read error corrected"
1613 " (%d sectors at %llu on %s)\n",
1615 (unsigned long long)(sect
+
1617 bdevname(rdev
->bdev
, b
));
1620 rdev_dec_pending(rdev
, mddev
);
1631 static void raid10d(mddev_t
*mddev
)
1635 unsigned long flags
;
1636 conf_t
*conf
= mddev
->private;
1637 struct list_head
*head
= &conf
->retry_list
;
1639 struct blk_plug plug
;
1641 md_check_recovery(mddev
);
1643 blk_start_plug(&plug
);
1645 char b
[BDEVNAME_SIZE
];
1647 flush_pending_writes(conf
);
1649 spin_lock_irqsave(&conf
->device_lock
, flags
);
1650 if (list_empty(head
)) {
1651 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1654 r10_bio
= list_entry(head
->prev
, r10bio_t
, retry_list
);
1655 list_del(head
->prev
);
1657 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1659 mddev
= r10_bio
->mddev
;
1660 conf
= mddev
->private;
1661 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
1662 sync_request_write(mddev
, r10_bio
);
1663 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
1664 recovery_request_write(mddev
, r10_bio
);
1667 /* we got a read error. Maybe the drive is bad. Maybe just
1668 * the block and we can fix it.
1669 * We freeze all other IO, and try reading the block from
1670 * other devices. When we find one, we re-write
1671 * and check it that fixes the read error.
1672 * This is all done synchronously while the array is
1675 if (mddev
->ro
== 0) {
1677 fix_read_error(conf
, mddev
, r10_bio
);
1678 unfreeze_array(conf
);
1681 bio
= r10_bio
->devs
[r10_bio
->read_slot
].bio
;
1682 r10_bio
->devs
[r10_bio
->read_slot
].bio
=
1683 mddev
->ro
? IO_BLOCKED
: NULL
;
1684 mirror
= read_balance(conf
, r10_bio
);
1686 printk(KERN_ALERT
"md/raid10:%s: %s: unrecoverable I/O"
1687 " read error for block %llu\n",
1689 bdevname(bio
->bi_bdev
,b
),
1690 (unsigned long long)r10_bio
->sector
);
1691 raid_end_bio_io(r10_bio
);
1694 const unsigned long do_sync
= (r10_bio
->master_bio
->bi_rw
& REQ_SYNC
);
1696 rdev
= conf
->mirrors
[mirror
].rdev
;
1697 if (printk_ratelimit())
1698 printk(KERN_ERR
"md/raid10:%s: %s: redirecting sector %llu to"
1699 " another mirror\n",
1701 bdevname(rdev
->bdev
,b
),
1702 (unsigned long long)r10_bio
->sector
);
1703 bio
= bio_clone_mddev(r10_bio
->master_bio
,
1705 r10_bio
->devs
[r10_bio
->read_slot
].bio
= bio
;
1706 bio
->bi_sector
= r10_bio
->devs
[r10_bio
->read_slot
].addr
1707 + rdev
->data_offset
;
1708 bio
->bi_bdev
= rdev
->bdev
;
1709 bio
->bi_rw
= READ
| do_sync
;
1710 bio
->bi_private
= r10_bio
;
1711 bio
->bi_end_io
= raid10_end_read_request
;
1712 generic_make_request(bio
);
1717 blk_finish_plug(&plug
);
1721 static int init_resync(conf_t
*conf
)
1725 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
1726 BUG_ON(conf
->r10buf_pool
);
1727 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
1728 if (!conf
->r10buf_pool
)
1730 conf
->next_resync
= 0;
1735 * perform a "sync" on one "block"
1737 * We need to make sure that no normal I/O request - particularly write
1738 * requests - conflict with active sync requests.
1740 * This is achieved by tracking pending requests and a 'barrier' concept
1741 * that can be installed to exclude normal IO requests.
1743 * Resync and recovery are handled very differently.
1744 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1746 * For resync, we iterate over virtual addresses, read all copies,
1747 * and update if there are differences. If only one copy is live,
1749 * For recovery, we iterate over physical addresses, read a good
1750 * value for each non-in_sync drive, and over-write.
1752 * So, for recovery we may have several outstanding complex requests for a
1753 * given address, one for each out-of-sync device. We model this by allocating
1754 * a number of r10_bio structures, one for each out-of-sync device.
1755 * As we setup these structures, we collect all bio's together into a list
1756 * which we then process collectively to add pages, and then process again
1757 * to pass to generic_make_request.
1759 * The r10_bio structures are linked using a borrowed master_bio pointer.
1760 * This link is counted in ->remaining. When the r10_bio that points to NULL
1761 * has its remaining count decremented to 0, the whole complex operation
1766 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
1768 conf_t
*conf
= mddev
->private;
1770 struct bio
*biolist
= NULL
, *bio
;
1771 sector_t max_sector
, nr_sectors
;
1775 sector_t sync_blocks
;
1777 sector_t sectors_skipped
= 0;
1778 int chunks_skipped
= 0;
1780 if (!conf
->r10buf_pool
)
1781 if (init_resync(conf
))
1785 max_sector
= mddev
->dev_sectors
;
1786 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1787 max_sector
= mddev
->resync_max_sectors
;
1788 if (sector_nr
>= max_sector
) {
1789 /* If we aborted, we need to abort the
1790 * sync on the 'current' bitmap chucks (there can
1791 * be several when recovering multiple devices).
1792 * as we may have started syncing it but not finished.
1793 * We can find the current address in
1794 * mddev->curr_resync, but for recovery,
1795 * we need to convert that to several
1796 * virtual addresses.
1798 if (mddev
->curr_resync
< max_sector
) { /* aborted */
1799 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1800 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
1802 else for (i
=0; i
<conf
->raid_disks
; i
++) {
1804 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
1805 bitmap_end_sync(mddev
->bitmap
, sect
,
1808 } else /* completed sync */
1811 bitmap_close_sync(mddev
->bitmap
);
1814 return sectors_skipped
;
1816 if (chunks_skipped
>= conf
->raid_disks
) {
1817 /* if there has been nothing to do on any drive,
1818 * then there is nothing to do at all..
1821 return (max_sector
- sector_nr
) + sectors_skipped
;
1824 if (max_sector
> mddev
->resync_max
)
1825 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
1827 /* make sure whole request will fit in a chunk - if chunks
1830 if (conf
->near_copies
< conf
->raid_disks
&&
1831 max_sector
> (sector_nr
| conf
->chunk_mask
))
1832 max_sector
= (sector_nr
| conf
->chunk_mask
) + 1;
1834 * If there is non-resync activity waiting for us then
1835 * put in a delay to throttle resync.
1837 if (!go_faster
&& conf
->nr_waiting
)
1838 msleep_interruptible(1000);
1840 /* Again, very different code for resync and recovery.
1841 * Both must result in an r10bio with a list of bios that
1842 * have bi_end_io, bi_sector, bi_bdev set,
1843 * and bi_private set to the r10bio.
1844 * For recovery, we may actually create several r10bios
1845 * with 2 bios in each, that correspond to the bios in the main one.
1846 * In this case, the subordinate r10bios link back through a
1847 * borrowed master_bio pointer, and the counter in the master
1848 * includes a ref from each subordinate.
1850 /* First, we decide what to do and set ->bi_end_io
1851 * To end_sync_read if we want to read, and
1852 * end_sync_write if we will want to write.
1855 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
1856 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
1857 /* recovery... the complicated one */
1861 for (i
=0 ; i
<conf
->raid_disks
; i
++)
1862 if (conf
->mirrors
[i
].rdev
&&
1863 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
)) {
1864 int still_degraded
= 0;
1865 /* want to reconstruct this device */
1866 r10bio_t
*rb2
= r10_bio
;
1867 sector_t sect
= raid10_find_virt(conf
, sector_nr
, i
);
1869 /* Unless we are doing a full sync, we only need
1870 * to recover the block if it is set in the bitmap
1872 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1874 if (sync_blocks
< max_sync
)
1875 max_sync
= sync_blocks
;
1878 /* yep, skip the sync_blocks here, but don't assume
1879 * that there will never be anything to do here
1881 chunks_skipped
= -1;
1885 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1886 raise_barrier(conf
, rb2
!= NULL
);
1887 atomic_set(&r10_bio
->remaining
, 0);
1889 r10_bio
->master_bio
= (struct bio
*)rb2
;
1891 atomic_inc(&rb2
->remaining
);
1892 r10_bio
->mddev
= mddev
;
1893 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
1894 r10_bio
->sector
= sect
;
1896 raid10_find_phys(conf
, r10_bio
);
1898 /* Need to check if the array will still be
1901 for (j
=0; j
<conf
->raid_disks
; j
++)
1902 if (conf
->mirrors
[j
].rdev
== NULL
||
1903 test_bit(Faulty
, &conf
->mirrors
[j
].rdev
->flags
)) {
1908 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1909 &sync_blocks
, still_degraded
);
1911 for (j
=0; j
<conf
->copies
;j
++) {
1912 int d
= r10_bio
->devs
[j
].devnum
;
1913 if (conf
->mirrors
[d
].rdev
&&
1914 test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
)) {
1915 /* This is where we read from */
1916 bio
= r10_bio
->devs
[0].bio
;
1917 bio
->bi_next
= biolist
;
1919 bio
->bi_private
= r10_bio
;
1920 bio
->bi_end_io
= end_sync_read
;
1922 bio
->bi_sector
= r10_bio
->devs
[j
].addr
+
1923 conf
->mirrors
[d
].rdev
->data_offset
;
1924 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1925 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1926 atomic_inc(&r10_bio
->remaining
);
1927 /* and we write to 'i' */
1929 for (k
=0; k
<conf
->copies
; k
++)
1930 if (r10_bio
->devs
[k
].devnum
== i
)
1932 BUG_ON(k
== conf
->copies
);
1933 bio
= r10_bio
->devs
[1].bio
;
1934 bio
->bi_next
= biolist
;
1936 bio
->bi_private
= r10_bio
;
1937 bio
->bi_end_io
= end_sync_write
;
1939 bio
->bi_sector
= r10_bio
->devs
[k
].addr
+
1940 conf
->mirrors
[i
].rdev
->data_offset
;
1941 bio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1943 r10_bio
->devs
[0].devnum
= d
;
1944 r10_bio
->devs
[1].devnum
= i
;
1949 if (j
== conf
->copies
) {
1950 /* Cannot recover, so abort the recovery */
1953 atomic_dec(&rb2
->remaining
);
1955 if (!test_and_set_bit(MD_RECOVERY_INTR
,
1957 printk(KERN_INFO
"md/raid10:%s: insufficient "
1958 "working devices for recovery.\n",
1963 if (biolist
== NULL
) {
1965 r10bio_t
*rb2
= r10_bio
;
1966 r10_bio
= (r10bio_t
*) rb2
->master_bio
;
1967 rb2
->master_bio
= NULL
;
1973 /* resync. Schedule a read for every block at this virt offset */
1976 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
1978 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
1979 &sync_blocks
, mddev
->degraded
) &&
1980 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1981 /* We can skip this block */
1983 return sync_blocks
+ sectors_skipped
;
1985 if (sync_blocks
< max_sync
)
1986 max_sync
= sync_blocks
;
1987 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1989 r10_bio
->mddev
= mddev
;
1990 atomic_set(&r10_bio
->remaining
, 0);
1991 raise_barrier(conf
, 0);
1992 conf
->next_resync
= sector_nr
;
1994 r10_bio
->master_bio
= NULL
;
1995 r10_bio
->sector
= sector_nr
;
1996 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
1997 raid10_find_phys(conf
, r10_bio
);
1998 r10_bio
->sectors
= (sector_nr
| conf
->chunk_mask
) - sector_nr
+1;
2000 for (i
=0; i
<conf
->copies
; i
++) {
2001 int d
= r10_bio
->devs
[i
].devnum
;
2002 bio
= r10_bio
->devs
[i
].bio
;
2003 bio
->bi_end_io
= NULL
;
2004 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2005 if (conf
->mirrors
[d
].rdev
== NULL
||
2006 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
2008 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2009 atomic_inc(&r10_bio
->remaining
);
2010 bio
->bi_next
= biolist
;
2012 bio
->bi_private
= r10_bio
;
2013 bio
->bi_end_io
= end_sync_read
;
2015 bio
->bi_sector
= r10_bio
->devs
[i
].addr
+
2016 conf
->mirrors
[d
].rdev
->data_offset
;
2017 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
2022 for (i
=0; i
<conf
->copies
; i
++) {
2023 int d
= r10_bio
->devs
[i
].devnum
;
2024 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
2025 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
2033 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
2035 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
2037 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
2040 bio
->bi_phys_segments
= 0;
2045 if (sector_nr
+ max_sync
< max_sector
)
2046 max_sector
= sector_nr
+ max_sync
;
2049 int len
= PAGE_SIZE
;
2051 if (sector_nr
+ (len
>>9) > max_sector
)
2052 len
= (max_sector
- sector_nr
) << 9;
2055 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
2056 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2057 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2060 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2061 for (bio2
= biolist
; bio2
&& bio2
!= bio
; bio2
= bio2
->bi_next
) {
2062 /* remove last page from this bio */
2064 bio2
->bi_size
-= len
;
2065 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
2071 nr_sectors
+= len
>>9;
2072 sector_nr
+= len
>>9;
2073 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
2075 r10_bio
->sectors
= nr_sectors
;
2079 biolist
= biolist
->bi_next
;
2081 bio
->bi_next
= NULL
;
2082 r10_bio
= bio
->bi_private
;
2083 r10_bio
->sectors
= nr_sectors
;
2085 if (bio
->bi_end_io
== end_sync_read
) {
2086 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2087 generic_make_request(bio
);
2091 if (sectors_skipped
)
2092 /* pretend they weren't skipped, it makes
2093 * no important difference in this case
2095 md_done_sync(mddev
, sectors_skipped
, 1);
2097 return sectors_skipped
+ nr_sectors
;
2099 /* There is nowhere to write, so all non-sync
2100 * drives must be failed, so try the next chunk...
2102 if (sector_nr
+ max_sync
< max_sector
)
2103 max_sector
= sector_nr
+ max_sync
;
2105 sectors_skipped
+= (max_sector
- sector_nr
);
2107 sector_nr
= max_sector
;
2112 raid10_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
2115 conf_t
*conf
= mddev
->private;
2118 raid_disks
= conf
->raid_disks
;
2120 sectors
= conf
->dev_sectors
;
2122 size
= sectors
>> conf
->chunk_shift
;
2123 sector_div(size
, conf
->far_copies
);
2124 size
= size
* raid_disks
;
2125 sector_div(size
, conf
->near_copies
);
2127 return size
<< conf
->chunk_shift
;
2131 static conf_t
*setup_conf(mddev_t
*mddev
)
2133 conf_t
*conf
= NULL
;
2135 sector_t stride
, size
;
2138 if (mddev
->new_chunk_sectors
< (PAGE_SIZE
>> 9) ||
2139 !is_power_of_2(mddev
->new_chunk_sectors
)) {
2140 printk(KERN_ERR
"md/raid10:%s: chunk size must be "
2141 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2142 mdname(mddev
), PAGE_SIZE
);
2146 nc
= mddev
->new_layout
& 255;
2147 fc
= (mddev
->new_layout
>> 8) & 255;
2148 fo
= mddev
->new_layout
& (1<<16);
2150 if ((nc
*fc
) <2 || (nc
*fc
) > mddev
->raid_disks
||
2151 (mddev
->new_layout
>> 17)) {
2152 printk(KERN_ERR
"md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2153 mdname(mddev
), mddev
->new_layout
);
2158 conf
= kzalloc(sizeof(conf_t
), GFP_KERNEL
);
2162 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
2167 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2172 conf
->raid_disks
= mddev
->raid_disks
;
2173 conf
->near_copies
= nc
;
2174 conf
->far_copies
= fc
;
2175 conf
->copies
= nc
*fc
;
2176 conf
->far_offset
= fo
;
2177 conf
->chunk_mask
= mddev
->new_chunk_sectors
- 1;
2178 conf
->chunk_shift
= ffz(~mddev
->new_chunk_sectors
);
2180 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
2181 r10bio_pool_free
, conf
);
2182 if (!conf
->r10bio_pool
)
2185 size
= mddev
->dev_sectors
>> conf
->chunk_shift
;
2186 sector_div(size
, fc
);
2187 size
= size
* conf
->raid_disks
;
2188 sector_div(size
, nc
);
2189 /* 'size' is now the number of chunks in the array */
2190 /* calculate "used chunks per device" in 'stride' */
2191 stride
= size
* conf
->copies
;
2193 /* We need to round up when dividing by raid_disks to
2194 * get the stride size.
2196 stride
+= conf
->raid_disks
- 1;
2197 sector_div(stride
, conf
->raid_disks
);
2199 conf
->dev_sectors
= stride
<< conf
->chunk_shift
;
2204 sector_div(stride
, fc
);
2205 conf
->stride
= stride
<< conf
->chunk_shift
;
2208 spin_lock_init(&conf
->device_lock
);
2209 INIT_LIST_HEAD(&conf
->retry_list
);
2211 spin_lock_init(&conf
->resync_lock
);
2212 init_waitqueue_head(&conf
->wait_barrier
);
2214 conf
->thread
= md_register_thread(raid10d
, mddev
, NULL
);
2218 conf
->mddev
= mddev
;
2222 printk(KERN_ERR
"md/raid10:%s: couldn't allocate memory.\n",
2225 if (conf
->r10bio_pool
)
2226 mempool_destroy(conf
->r10bio_pool
);
2227 kfree(conf
->mirrors
);
2228 safe_put_page(conf
->tmppage
);
2231 return ERR_PTR(err
);
2234 static int run(mddev_t
*mddev
)
2237 int i
, disk_idx
, chunk_size
;
2238 mirror_info_t
*disk
;
2243 * copy the already verified devices into our private RAID10
2244 * bookkeeping area. [whatever we allocate in run(),
2245 * should be freed in stop()]
2248 if (mddev
->private == NULL
) {
2249 conf
= setup_conf(mddev
);
2251 return PTR_ERR(conf
);
2252 mddev
->private = conf
;
2254 conf
= mddev
->private;
2258 mddev
->thread
= conf
->thread
;
2259 conf
->thread
= NULL
;
2261 chunk_size
= mddev
->chunk_sectors
<< 9;
2262 blk_queue_io_min(mddev
->queue
, chunk_size
);
2263 if (conf
->raid_disks
% conf
->near_copies
)
2264 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->raid_disks
);
2266 blk_queue_io_opt(mddev
->queue
, chunk_size
*
2267 (conf
->raid_disks
/ conf
->near_copies
));
2269 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2270 disk_idx
= rdev
->raid_disk
;
2271 if (disk_idx
>= conf
->raid_disks
2274 disk
= conf
->mirrors
+ disk_idx
;
2277 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2278 rdev
->data_offset
<< 9);
2279 /* as we don't honour merge_bvec_fn, we must never risk
2280 * violating it, so limit max_segments to 1 lying
2281 * within a single page.
2283 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
2284 blk_queue_max_segments(mddev
->queue
, 1);
2285 blk_queue_segment_boundary(mddev
->queue
,
2286 PAGE_CACHE_SIZE
- 1);
2289 disk
->head_position
= 0;
2291 /* need to check that every block has at least one working mirror */
2292 if (!enough(conf
)) {
2293 printk(KERN_ERR
"md/raid10:%s: not enough operational mirrors.\n",
2298 mddev
->degraded
= 0;
2299 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2301 disk
= conf
->mirrors
+ i
;
2304 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2305 disk
->head_position
= 0;
2312 if (mddev
->recovery_cp
!= MaxSector
)
2313 printk(KERN_NOTICE
"md/raid10:%s: not clean"
2314 " -- starting background reconstruction\n",
2317 "md/raid10:%s: active with %d out of %d devices\n",
2318 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
,
2321 * Ok, everything is just fine now
2323 mddev
->dev_sectors
= conf
->dev_sectors
;
2324 size
= raid10_size(mddev
, 0, 0);
2325 md_set_array_sectors(mddev
, size
);
2326 mddev
->resync_max_sectors
= size
;
2328 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
2329 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2331 /* Calculate max read-ahead size.
2332 * We need to readahead at least twice a whole stripe....
2336 int stripe
= conf
->raid_disks
*
2337 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
2338 stripe
/= conf
->near_copies
;
2339 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
2340 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
2343 if (conf
->near_copies
< conf
->raid_disks
)
2344 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
2346 if (md_integrity_register(mddev
))
2352 md_unregister_thread(mddev
->thread
);
2353 if (conf
->r10bio_pool
)
2354 mempool_destroy(conf
->r10bio_pool
);
2355 safe_put_page(conf
->tmppage
);
2356 kfree(conf
->mirrors
);
2358 mddev
->private = NULL
;
2363 static int stop(mddev_t
*mddev
)
2365 conf_t
*conf
= mddev
->private;
2367 raise_barrier(conf
, 0);
2368 lower_barrier(conf
);
2370 md_unregister_thread(mddev
->thread
);
2371 mddev
->thread
= NULL
;
2372 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
2373 if (conf
->r10bio_pool
)
2374 mempool_destroy(conf
->r10bio_pool
);
2375 kfree(conf
->mirrors
);
2377 mddev
->private = NULL
;
2381 static void raid10_quiesce(mddev_t
*mddev
, int state
)
2383 conf_t
*conf
= mddev
->private;
2387 raise_barrier(conf
, 0);
2390 lower_barrier(conf
);
2395 static void *raid10_takeover_raid0(mddev_t
*mddev
)
2400 if (mddev
->degraded
> 0) {
2401 printk(KERN_ERR
"md/raid10:%s: Error: degraded raid0!\n",
2403 return ERR_PTR(-EINVAL
);
2406 /* Set new parameters */
2407 mddev
->new_level
= 10;
2408 /* new layout: far_copies = 1, near_copies = 2 */
2409 mddev
->new_layout
= (1<<8) + 2;
2410 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
2411 mddev
->delta_disks
= mddev
->raid_disks
;
2412 mddev
->raid_disks
*= 2;
2413 /* make sure it will be not marked as dirty */
2414 mddev
->recovery_cp
= MaxSector
;
2416 conf
= setup_conf(mddev
);
2417 if (!IS_ERR(conf
)) {
2418 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
2419 if (rdev
->raid_disk
>= 0)
2420 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
2427 static void *raid10_takeover(mddev_t
*mddev
)
2429 struct raid0_private_data
*raid0_priv
;
2431 /* raid10 can take over:
2432 * raid0 - providing it has only two drives
2434 if (mddev
->level
== 0) {
2435 /* for raid0 takeover only one zone is supported */
2436 raid0_priv
= mddev
->private;
2437 if (raid0_priv
->nr_strip_zones
> 1) {
2438 printk(KERN_ERR
"md/raid10:%s: cannot takeover raid 0"
2439 " with more than one zone.\n",
2441 return ERR_PTR(-EINVAL
);
2443 return raid10_takeover_raid0(mddev
);
2445 return ERR_PTR(-EINVAL
);
2448 static struct mdk_personality raid10_personality
=
2452 .owner
= THIS_MODULE
,
2453 .make_request
= make_request
,
2457 .error_handler
= error
,
2458 .hot_add_disk
= raid10_add_disk
,
2459 .hot_remove_disk
= raid10_remove_disk
,
2460 .spare_active
= raid10_spare_active
,
2461 .sync_request
= sync_request
,
2462 .quiesce
= raid10_quiesce
,
2463 .size
= raid10_size
,
2464 .takeover
= raid10_takeover
,
2467 static int __init
raid_init(void)
2469 return register_md_personality(&raid10_personality
);
2472 static void raid_exit(void)
2474 unregister_md_personality(&raid10_personality
);
2477 module_init(raid_init
);
2478 module_exit(raid_exit
);
2479 MODULE_LICENSE("GPL");
2480 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2481 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2482 MODULE_ALIAS("md-raid10");
2483 MODULE_ALIAS("md-level-10");