2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/ctype.h>
31 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/list.h>
36 #include <linux/mutex.h>
37 #include <linux/mount.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/backing-dev.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/cgroupstats.h>
53 #include <linux/hash.h>
54 #include <linux/namei.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/eventfd.h>
59 #include <linux/poll.h>
61 #include <asm/atomic.h>
63 static DEFINE_MUTEX(cgroup_mutex
);
66 * Generate an array of cgroup subsystem pointers. At boot time, this is
67 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
68 * registered after that. The mutable section of this array is protected by
71 #define SUBSYS(_x) &_x ## _subsys,
72 static struct cgroup_subsys
*subsys
[CGROUP_SUBSYS_COUNT
] = {
73 #include <linux/cgroup_subsys.h>
76 #define MAX_CGROUP_ROOT_NAMELEN 64
79 * A cgroupfs_root represents the root of a cgroup hierarchy,
80 * and may be associated with a superblock to form an active
83 struct cgroupfs_root
{
84 struct super_block
*sb
;
87 * The bitmask of subsystems intended to be attached to this
90 unsigned long subsys_bits
;
92 /* Unique id for this hierarchy. */
95 /* The bitmask of subsystems currently attached to this hierarchy */
96 unsigned long actual_subsys_bits
;
98 /* A list running through the attached subsystems */
99 struct list_head subsys_list
;
101 /* The root cgroup for this hierarchy */
102 struct cgroup top_cgroup
;
104 /* Tracks how many cgroups are currently defined in hierarchy.*/
105 int number_of_cgroups
;
107 /* A list running through the active hierarchies */
108 struct list_head root_list
;
110 /* Hierarchy-specific flags */
113 /* The path to use for release notifications. */
114 char release_agent_path
[PATH_MAX
];
116 /* The name for this hierarchy - may be empty */
117 char name
[MAX_CGROUP_ROOT_NAMELEN
];
121 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
122 * subsystems that are otherwise unattached - it never has more than a
123 * single cgroup, and all tasks are part of that cgroup.
125 static struct cgroupfs_root rootnode
;
128 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
129 * cgroup_subsys->use_id != 0.
131 #define CSS_ID_MAX (65535)
134 * The css to which this ID points. This pointer is set to valid value
135 * after cgroup is populated. If cgroup is removed, this will be NULL.
136 * This pointer is expected to be RCU-safe because destroy()
137 * is called after synchronize_rcu(). But for safe use, css_is_removed()
138 * css_tryget() should be used for avoiding race.
140 struct cgroup_subsys_state __rcu
*css
;
146 * Depth in hierarchy which this ID belongs to.
148 unsigned short depth
;
150 * ID is freed by RCU. (and lookup routine is RCU safe.)
152 struct rcu_head rcu_head
;
154 * Hierarchy of CSS ID belongs to.
156 unsigned short stack
[0]; /* Array of Length (depth+1) */
160 * cgroup_event represents events which userspace want to recieve.
162 struct cgroup_event
{
164 * Cgroup which the event belongs to.
168 * Control file which the event associated.
172 * eventfd to signal userspace about the event.
174 struct eventfd_ctx
*eventfd
;
176 * Each of these stored in a list by the cgroup.
178 struct list_head list
;
180 * All fields below needed to unregister event when
181 * userspace closes eventfd.
184 wait_queue_head_t
*wqh
;
186 struct work_struct remove
;
189 /* The list of hierarchy roots */
191 static LIST_HEAD(roots
);
192 static int root_count
;
194 static DEFINE_IDA(hierarchy_ida
);
195 static int next_hierarchy_id
;
196 static DEFINE_SPINLOCK(hierarchy_id_lock
);
198 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
199 #define dummytop (&rootnode.top_cgroup)
201 /* This flag indicates whether tasks in the fork and exit paths should
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
206 static int need_forkexit_callback __read_mostly
;
208 #ifdef CONFIG_PROVE_LOCKING
209 int cgroup_lock_is_held(void)
211 return lockdep_is_held(&cgroup_mutex
);
213 #else /* #ifdef CONFIG_PROVE_LOCKING */
214 int cgroup_lock_is_held(void)
216 return mutex_is_locked(&cgroup_mutex
);
218 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
220 EXPORT_SYMBOL_GPL(cgroup_lock_is_held
);
222 /* convenient tests for these bits */
223 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
225 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
228 /* bits in struct cgroupfs_root flags field */
230 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
233 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
236 (1 << CGRP_RELEASABLE
) |
237 (1 << CGRP_NOTIFY_ON_RELEASE
);
238 return (cgrp
->flags
& bits
) == bits
;
241 static int notify_on_release(const struct cgroup
*cgrp
)
243 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
246 static int clone_children(const struct cgroup
*cgrp
)
248 return test_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
252 * for_each_subsys() allows you to iterate on each subsystem attached to
253 * an active hierarchy
255 #define for_each_subsys(_root, _ss) \
256 list_for_each_entry(_ss, &_root->subsys_list, sibling)
258 /* for_each_active_root() allows you to iterate across the active hierarchies */
259 #define for_each_active_root(_root) \
260 list_for_each_entry(_root, &roots, root_list)
262 /* the list of cgroups eligible for automatic release. Protected by
263 * release_list_lock */
264 static LIST_HEAD(release_list
);
265 static DEFINE_SPINLOCK(release_list_lock
);
266 static void cgroup_release_agent(struct work_struct
*work
);
267 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
268 static void check_for_release(struct cgroup
*cgrp
);
270 /* Link structure for associating css_set objects with cgroups */
271 struct cg_cgroup_link
{
273 * List running through cg_cgroup_links associated with a
274 * cgroup, anchored on cgroup->css_sets
276 struct list_head cgrp_link_list
;
279 * List running through cg_cgroup_links pointing at a
280 * single css_set object, anchored on css_set->cg_links
282 struct list_head cg_link_list
;
286 /* The default css_set - used by init and its children prior to any
287 * hierarchies being mounted. It contains a pointer to the root state
288 * for each subsystem. Also used to anchor the list of css_sets. Not
289 * reference-counted, to improve performance when child cgroups
290 * haven't been created.
293 static struct css_set init_css_set
;
294 static struct cg_cgroup_link init_css_set_link
;
296 static int cgroup_init_idr(struct cgroup_subsys
*ss
,
297 struct cgroup_subsys_state
*css
);
299 /* css_set_lock protects the list of css_set objects, and the
300 * chain of tasks off each css_set. Nests outside task->alloc_lock
301 * due to cgroup_iter_start() */
302 static DEFINE_RWLOCK(css_set_lock
);
303 static int css_set_count
;
306 * hash table for cgroup groups. This improves the performance to find
307 * an existing css_set. This hash doesn't (currently) take into
308 * account cgroups in empty hierarchies.
310 #define CSS_SET_HASH_BITS 7
311 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
312 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
314 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
318 unsigned long tmp
= 0UL;
320 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
321 tmp
+= (unsigned long)css
[i
];
322 tmp
= (tmp
>> 16) ^ tmp
;
324 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
326 return &css_set_table
[index
];
329 static void free_css_set_rcu(struct rcu_head
*obj
)
331 struct css_set
*cg
= container_of(obj
, struct css_set
, rcu_head
);
335 /* We don't maintain the lists running through each css_set to its
336 * task until after the first call to cgroup_iter_start(). This
337 * reduces the fork()/exit() overhead for people who have cgroups
338 * compiled into their kernel but not actually in use */
339 static int use_task_css_set_links __read_mostly
;
341 static void __put_css_set(struct css_set
*cg
, int taskexit
)
343 struct cg_cgroup_link
*link
;
344 struct cg_cgroup_link
*saved_link
;
346 * Ensure that the refcount doesn't hit zero while any readers
347 * can see it. Similar to atomic_dec_and_lock(), but for an
350 if (atomic_add_unless(&cg
->refcount
, -1, 1))
352 write_lock(&css_set_lock
);
353 if (!atomic_dec_and_test(&cg
->refcount
)) {
354 write_unlock(&css_set_lock
);
358 /* This css_set is dead. unlink it and release cgroup refcounts */
359 hlist_del(&cg
->hlist
);
362 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
364 struct cgroup
*cgrp
= link
->cgrp
;
365 list_del(&link
->cg_link_list
);
366 list_del(&link
->cgrp_link_list
);
367 if (atomic_dec_and_test(&cgrp
->count
) &&
368 notify_on_release(cgrp
)) {
370 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
371 check_for_release(cgrp
);
377 write_unlock(&css_set_lock
);
378 call_rcu(&cg
->rcu_head
, free_css_set_rcu
);
382 * refcounted get/put for css_set objects
384 static inline void get_css_set(struct css_set
*cg
)
386 atomic_inc(&cg
->refcount
);
389 static inline void put_css_set(struct css_set
*cg
)
391 __put_css_set(cg
, 0);
394 static inline void put_css_set_taskexit(struct css_set
*cg
)
396 __put_css_set(cg
, 1);
400 * compare_css_sets - helper function for find_existing_css_set().
401 * @cg: candidate css_set being tested
402 * @old_cg: existing css_set for a task
403 * @new_cgrp: cgroup that's being entered by the task
404 * @template: desired set of css pointers in css_set (pre-calculated)
406 * Returns true if "cg" matches "old_cg" except for the hierarchy
407 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
409 static bool compare_css_sets(struct css_set
*cg
,
410 struct css_set
*old_cg
,
411 struct cgroup
*new_cgrp
,
412 struct cgroup_subsys_state
*template[])
414 struct list_head
*l1
, *l2
;
416 if (memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
417 /* Not all subsystems matched */
422 * Compare cgroup pointers in order to distinguish between
423 * different cgroups in heirarchies with no subsystems. We
424 * could get by with just this check alone (and skip the
425 * memcmp above) but on most setups the memcmp check will
426 * avoid the need for this more expensive check on almost all
431 l2
= &old_cg
->cg_links
;
433 struct cg_cgroup_link
*cgl1
, *cgl2
;
434 struct cgroup
*cg1
, *cg2
;
438 /* See if we reached the end - both lists are equal length. */
439 if (l1
== &cg
->cg_links
) {
440 BUG_ON(l2
!= &old_cg
->cg_links
);
443 BUG_ON(l2
== &old_cg
->cg_links
);
445 /* Locate the cgroups associated with these links. */
446 cgl1
= list_entry(l1
, struct cg_cgroup_link
, cg_link_list
);
447 cgl2
= list_entry(l2
, struct cg_cgroup_link
, cg_link_list
);
450 /* Hierarchies should be linked in the same order. */
451 BUG_ON(cg1
->root
!= cg2
->root
);
454 * If this hierarchy is the hierarchy of the cgroup
455 * that's changing, then we need to check that this
456 * css_set points to the new cgroup; if it's any other
457 * hierarchy, then this css_set should point to the
458 * same cgroup as the old css_set.
460 if (cg1
->root
== new_cgrp
->root
) {
472 * find_existing_css_set() is a helper for
473 * find_css_set(), and checks to see whether an existing
474 * css_set is suitable.
476 * oldcg: the cgroup group that we're using before the cgroup
479 * cgrp: the cgroup that we're moving into
481 * template: location in which to build the desired set of subsystem
482 * state objects for the new cgroup group
484 static struct css_set
*find_existing_css_set(
485 struct css_set
*oldcg
,
487 struct cgroup_subsys_state
*template[])
490 struct cgroupfs_root
*root
= cgrp
->root
;
491 struct hlist_head
*hhead
;
492 struct hlist_node
*node
;
496 * Build the set of subsystem state objects that we want to see in the
497 * new css_set. while subsystems can change globally, the entries here
498 * won't change, so no need for locking.
500 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
501 if (root
->subsys_bits
& (1UL << i
)) {
502 /* Subsystem is in this hierarchy. So we want
503 * the subsystem state from the new
505 template[i
] = cgrp
->subsys
[i
];
507 /* Subsystem is not in this hierarchy, so we
508 * don't want to change the subsystem state */
509 template[i
] = oldcg
->subsys
[i
];
513 hhead
= css_set_hash(template);
514 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
515 if (!compare_css_sets(cg
, oldcg
, cgrp
, template))
518 /* This css_set matches what we need */
522 /* No existing cgroup group matched */
526 static void free_cg_links(struct list_head
*tmp
)
528 struct cg_cgroup_link
*link
;
529 struct cg_cgroup_link
*saved_link
;
531 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
532 list_del(&link
->cgrp_link_list
);
538 * allocate_cg_links() allocates "count" cg_cgroup_link structures
539 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
540 * success or a negative error
542 static int allocate_cg_links(int count
, struct list_head
*tmp
)
544 struct cg_cgroup_link
*link
;
547 for (i
= 0; i
< count
; i
++) {
548 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
553 list_add(&link
->cgrp_link_list
, tmp
);
559 * link_css_set - a helper function to link a css_set to a cgroup
560 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
561 * @cg: the css_set to be linked
562 * @cgrp: the destination cgroup
564 static void link_css_set(struct list_head
*tmp_cg_links
,
565 struct css_set
*cg
, struct cgroup
*cgrp
)
567 struct cg_cgroup_link
*link
;
569 BUG_ON(list_empty(tmp_cg_links
));
570 link
= list_first_entry(tmp_cg_links
, struct cg_cgroup_link
,
574 atomic_inc(&cgrp
->count
);
575 list_move(&link
->cgrp_link_list
, &cgrp
->css_sets
);
577 * Always add links to the tail of the list so that the list
578 * is sorted by order of hierarchy creation
580 list_add_tail(&link
->cg_link_list
, &cg
->cg_links
);
584 * find_css_set() takes an existing cgroup group and a
585 * cgroup object, and returns a css_set object that's
586 * equivalent to the old group, but with the given cgroup
587 * substituted into the appropriate hierarchy. Must be called with
590 static struct css_set
*find_css_set(
591 struct css_set
*oldcg
, struct cgroup
*cgrp
)
594 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
596 struct list_head tmp_cg_links
;
598 struct hlist_head
*hhead
;
599 struct cg_cgroup_link
*link
;
601 /* First see if we already have a cgroup group that matches
603 read_lock(&css_set_lock
);
604 res
= find_existing_css_set(oldcg
, cgrp
, template);
607 read_unlock(&css_set_lock
);
612 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
616 /* Allocate all the cg_cgroup_link objects that we'll need */
617 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
622 atomic_set(&res
->refcount
, 1);
623 INIT_LIST_HEAD(&res
->cg_links
);
624 INIT_LIST_HEAD(&res
->tasks
);
625 INIT_HLIST_NODE(&res
->hlist
);
627 /* Copy the set of subsystem state objects generated in
628 * find_existing_css_set() */
629 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
631 write_lock(&css_set_lock
);
632 /* Add reference counts and links from the new css_set. */
633 list_for_each_entry(link
, &oldcg
->cg_links
, cg_link_list
) {
634 struct cgroup
*c
= link
->cgrp
;
635 if (c
->root
== cgrp
->root
)
637 link_css_set(&tmp_cg_links
, res
, c
);
640 BUG_ON(!list_empty(&tmp_cg_links
));
644 /* Add this cgroup group to the hash table */
645 hhead
= css_set_hash(res
->subsys
);
646 hlist_add_head(&res
->hlist
, hhead
);
648 write_unlock(&css_set_lock
);
654 * Return the cgroup for "task" from the given hierarchy. Must be
655 * called with cgroup_mutex held.
657 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
658 struct cgroupfs_root
*root
)
661 struct cgroup
*res
= NULL
;
663 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
664 read_lock(&css_set_lock
);
666 * No need to lock the task - since we hold cgroup_mutex the
667 * task can't change groups, so the only thing that can happen
668 * is that it exits and its css is set back to init_css_set.
671 if (css
== &init_css_set
) {
672 res
= &root
->top_cgroup
;
674 struct cg_cgroup_link
*link
;
675 list_for_each_entry(link
, &css
->cg_links
, cg_link_list
) {
676 struct cgroup
*c
= link
->cgrp
;
677 if (c
->root
== root
) {
683 read_unlock(&css_set_lock
);
689 * There is one global cgroup mutex. We also require taking
690 * task_lock() when dereferencing a task's cgroup subsys pointers.
691 * See "The task_lock() exception", at the end of this comment.
693 * A task must hold cgroup_mutex to modify cgroups.
695 * Any task can increment and decrement the count field without lock.
696 * So in general, code holding cgroup_mutex can't rely on the count
697 * field not changing. However, if the count goes to zero, then only
698 * cgroup_attach_task() can increment it again. Because a count of zero
699 * means that no tasks are currently attached, therefore there is no
700 * way a task attached to that cgroup can fork (the other way to
701 * increment the count). So code holding cgroup_mutex can safely
702 * assume that if the count is zero, it will stay zero. Similarly, if
703 * a task holds cgroup_mutex on a cgroup with zero count, it
704 * knows that the cgroup won't be removed, as cgroup_rmdir()
707 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
708 * (usually) take cgroup_mutex. These are the two most performance
709 * critical pieces of code here. The exception occurs on cgroup_exit(),
710 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
711 * is taken, and if the cgroup count is zero, a usermode call made
712 * to the release agent with the name of the cgroup (path relative to
713 * the root of cgroup file system) as the argument.
715 * A cgroup can only be deleted if both its 'count' of using tasks
716 * is zero, and its list of 'children' cgroups is empty. Since all
717 * tasks in the system use _some_ cgroup, and since there is always at
718 * least one task in the system (init, pid == 1), therefore, top_cgroup
719 * always has either children cgroups and/or using tasks. So we don't
720 * need a special hack to ensure that top_cgroup cannot be deleted.
722 * The task_lock() exception
724 * The need for this exception arises from the action of
725 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
726 * another. It does so using cgroup_mutex, however there are
727 * several performance critical places that need to reference
728 * task->cgroup without the expense of grabbing a system global
729 * mutex. Therefore except as noted below, when dereferencing or, as
730 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
731 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
732 * the task_struct routinely used for such matters.
734 * P.S. One more locking exception. RCU is used to guard the
735 * update of a tasks cgroup pointer by cgroup_attach_task()
739 * cgroup_lock - lock out any changes to cgroup structures
742 void cgroup_lock(void)
744 mutex_lock(&cgroup_mutex
);
746 EXPORT_SYMBOL_GPL(cgroup_lock
);
749 * cgroup_unlock - release lock on cgroup changes
751 * Undo the lock taken in a previous cgroup_lock() call.
753 void cgroup_unlock(void)
755 mutex_unlock(&cgroup_mutex
);
757 EXPORT_SYMBOL_GPL(cgroup_unlock
);
760 * A couple of forward declarations required, due to cyclic reference loop:
761 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
762 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
766 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
);
767 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
768 static int cgroup_populate_dir(struct cgroup
*cgrp
);
769 static const struct inode_operations cgroup_dir_inode_operations
;
770 static const struct file_operations proc_cgroupstats_operations
;
772 static struct backing_dev_info cgroup_backing_dev_info
= {
774 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
777 static int alloc_css_id(struct cgroup_subsys
*ss
,
778 struct cgroup
*parent
, struct cgroup
*child
);
780 static struct inode
*cgroup_new_inode(mode_t mode
, struct super_block
*sb
)
782 struct inode
*inode
= new_inode(sb
);
785 inode
->i_ino
= get_next_ino();
786 inode
->i_mode
= mode
;
787 inode
->i_uid
= current_fsuid();
788 inode
->i_gid
= current_fsgid();
789 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
790 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
796 * Call subsys's pre_destroy handler.
797 * This is called before css refcnt check.
799 static int cgroup_call_pre_destroy(struct cgroup
*cgrp
)
801 struct cgroup_subsys
*ss
;
804 for_each_subsys(cgrp
->root
, ss
)
805 if (ss
->pre_destroy
) {
806 ret
= ss
->pre_destroy(ss
, cgrp
);
814 static void free_cgroup_rcu(struct rcu_head
*obj
)
816 struct cgroup
*cgrp
= container_of(obj
, struct cgroup
, rcu_head
);
821 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
823 /* is dentry a directory ? if so, kfree() associated cgroup */
824 if (S_ISDIR(inode
->i_mode
)) {
825 struct cgroup
*cgrp
= dentry
->d_fsdata
;
826 struct cgroup_subsys
*ss
;
827 BUG_ON(!(cgroup_is_removed(cgrp
)));
828 /* It's possible for external users to be holding css
829 * reference counts on a cgroup; css_put() needs to
830 * be able to access the cgroup after decrementing
831 * the reference count in order to know if it needs to
832 * queue the cgroup to be handled by the release
836 mutex_lock(&cgroup_mutex
);
838 * Release the subsystem state objects.
840 for_each_subsys(cgrp
->root
, ss
)
841 ss
->destroy(ss
, cgrp
);
843 cgrp
->root
->number_of_cgroups
--;
844 mutex_unlock(&cgroup_mutex
);
847 * Drop the active superblock reference that we took when we
850 deactivate_super(cgrp
->root
->sb
);
853 * if we're getting rid of the cgroup, refcount should ensure
854 * that there are no pidlists left.
856 BUG_ON(!list_empty(&cgrp
->pidlists
));
858 call_rcu(&cgrp
->rcu_head
, free_cgroup_rcu
);
863 static void remove_dir(struct dentry
*d
)
865 struct dentry
*parent
= dget(d
->d_parent
);
868 simple_rmdir(parent
->d_inode
, d
);
872 static void cgroup_clear_directory(struct dentry
*dentry
)
874 struct list_head
*node
;
876 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
877 spin_lock(&dcache_lock
);
878 node
= dentry
->d_subdirs
.next
;
879 while (node
!= &dentry
->d_subdirs
) {
880 struct dentry
*d
= list_entry(node
, struct dentry
, d_u
.d_child
);
883 /* This should never be called on a cgroup
884 * directory with child cgroups */
885 BUG_ON(d
->d_inode
->i_mode
& S_IFDIR
);
887 spin_unlock(&dcache_lock
);
889 simple_unlink(dentry
->d_inode
, d
);
891 spin_lock(&dcache_lock
);
893 node
= dentry
->d_subdirs
.next
;
895 spin_unlock(&dcache_lock
);
899 * NOTE : the dentry must have been dget()'ed
901 static void cgroup_d_remove_dir(struct dentry
*dentry
)
903 cgroup_clear_directory(dentry
);
905 spin_lock(&dcache_lock
);
906 list_del_init(&dentry
->d_u
.d_child
);
907 spin_unlock(&dcache_lock
);
912 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
913 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
914 * reference to css->refcnt. In general, this refcnt is expected to goes down
917 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
919 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq
);
921 static void cgroup_wakeup_rmdir_waiter(struct cgroup
*cgrp
)
923 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
)))
924 wake_up_all(&cgroup_rmdir_waitq
);
927 void cgroup_exclude_rmdir(struct cgroup_subsys_state
*css
)
932 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state
*css
)
934 cgroup_wakeup_rmdir_waiter(css
->cgroup
);
939 * Call with cgroup_mutex held. Drops reference counts on modules, including
940 * any duplicate ones that parse_cgroupfs_options took. If this function
941 * returns an error, no reference counts are touched.
943 static int rebind_subsystems(struct cgroupfs_root
*root
,
944 unsigned long final_bits
)
946 unsigned long added_bits
, removed_bits
;
947 struct cgroup
*cgrp
= &root
->top_cgroup
;
950 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
952 removed_bits
= root
->actual_subsys_bits
& ~final_bits
;
953 added_bits
= final_bits
& ~root
->actual_subsys_bits
;
954 /* Check that any added subsystems are currently free */
955 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
956 unsigned long bit
= 1UL << i
;
957 struct cgroup_subsys
*ss
= subsys
[i
];
958 if (!(bit
& added_bits
))
961 * Nobody should tell us to do a subsys that doesn't exist:
962 * parse_cgroupfs_options should catch that case and refcounts
963 * ensure that subsystems won't disappear once selected.
966 if (ss
->root
!= &rootnode
) {
967 /* Subsystem isn't free */
972 /* Currently we don't handle adding/removing subsystems when
973 * any child cgroups exist. This is theoretically supportable
974 * but involves complex error handling, so it's being left until
976 if (root
->number_of_cgroups
> 1)
979 /* Process each subsystem */
980 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
981 struct cgroup_subsys
*ss
= subsys
[i
];
982 unsigned long bit
= 1UL << i
;
983 if (bit
& added_bits
) {
984 /* We're binding this subsystem to this hierarchy */
986 BUG_ON(cgrp
->subsys
[i
]);
987 BUG_ON(!dummytop
->subsys
[i
]);
988 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
989 mutex_lock(&ss
->hierarchy_mutex
);
990 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
991 cgrp
->subsys
[i
]->cgroup
= cgrp
;
992 list_move(&ss
->sibling
, &root
->subsys_list
);
996 mutex_unlock(&ss
->hierarchy_mutex
);
997 /* refcount was already taken, and we're keeping it */
998 } else if (bit
& removed_bits
) {
999 /* We're removing this subsystem */
1001 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
1002 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
1003 mutex_lock(&ss
->hierarchy_mutex
);
1005 ss
->bind(ss
, dummytop
);
1006 dummytop
->subsys
[i
]->cgroup
= dummytop
;
1007 cgrp
->subsys
[i
] = NULL
;
1008 subsys
[i
]->root
= &rootnode
;
1009 list_move(&ss
->sibling
, &rootnode
.subsys_list
);
1010 mutex_unlock(&ss
->hierarchy_mutex
);
1011 /* subsystem is now free - drop reference on module */
1012 module_put(ss
->module
);
1013 } else if (bit
& final_bits
) {
1014 /* Subsystem state should already exist */
1016 BUG_ON(!cgrp
->subsys
[i
]);
1018 * a refcount was taken, but we already had one, so
1019 * drop the extra reference.
1021 module_put(ss
->module
);
1022 #ifdef CONFIG_MODULE_UNLOAD
1023 BUG_ON(ss
->module
&& !module_refcount(ss
->module
));
1026 /* Subsystem state shouldn't exist */
1027 BUG_ON(cgrp
->subsys
[i
]);
1030 root
->subsys_bits
= root
->actual_subsys_bits
= final_bits
;
1036 static int cgroup_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
1038 struct cgroupfs_root
*root
= vfs
->mnt_sb
->s_fs_info
;
1039 struct cgroup_subsys
*ss
;
1041 mutex_lock(&cgroup_mutex
);
1042 for_each_subsys(root
, ss
)
1043 seq_printf(seq
, ",%s", ss
->name
);
1044 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
1045 seq_puts(seq
, ",noprefix");
1046 if (strlen(root
->release_agent_path
))
1047 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
1048 if (clone_children(&root
->top_cgroup
))
1049 seq_puts(seq
, ",clone_children");
1050 if (strlen(root
->name
))
1051 seq_printf(seq
, ",name=%s", root
->name
);
1052 mutex_unlock(&cgroup_mutex
);
1056 struct cgroup_sb_opts
{
1057 unsigned long subsys_bits
;
1058 unsigned long flags
;
1059 char *release_agent
;
1060 bool clone_children
;
1062 /* User explicitly requested empty subsystem */
1065 struct cgroupfs_root
*new_root
;
1070 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1071 * with cgroup_mutex held to protect the subsys[] array. This function takes
1072 * refcounts on subsystems to be used, unless it returns error, in which case
1073 * no refcounts are taken.
1075 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1077 char *token
, *o
= data
;
1078 bool all_ss
= false, one_ss
= false;
1079 unsigned long mask
= (unsigned long)-1;
1081 bool module_pin_failed
= false;
1083 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
1085 #ifdef CONFIG_CPUSETS
1086 mask
= ~(1UL << cpuset_subsys_id
);
1089 memset(opts
, 0, sizeof(*opts
));
1091 while ((token
= strsep(&o
, ",")) != NULL
) {
1094 if (!strcmp(token
, "none")) {
1095 /* Explicitly have no subsystems */
1099 if (!strcmp(token
, "all")) {
1100 /* Mutually exclusive option 'all' + subsystem name */
1106 if (!strcmp(token
, "noprefix")) {
1107 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
1110 if (!strcmp(token
, "clone_children")) {
1111 opts
->clone_children
= true;
1114 if (!strncmp(token
, "release_agent=", 14)) {
1115 /* Specifying two release agents is forbidden */
1116 if (opts
->release_agent
)
1118 opts
->release_agent
=
1119 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1120 if (!opts
->release_agent
)
1124 if (!strncmp(token
, "name=", 5)) {
1125 const char *name
= token
+ 5;
1126 /* Can't specify an empty name */
1129 /* Must match [\w.-]+ */
1130 for (i
= 0; i
< strlen(name
); i
++) {
1134 if ((c
== '.') || (c
== '-') || (c
== '_'))
1138 /* Specifying two names is forbidden */
1141 opts
->name
= kstrndup(name
,
1142 MAX_CGROUP_ROOT_NAMELEN
- 1,
1150 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1151 struct cgroup_subsys
*ss
= subsys
[i
];
1154 if (strcmp(token
, ss
->name
))
1159 /* Mutually exclusive option 'all' + subsystem name */
1162 set_bit(i
, &opts
->subsys_bits
);
1167 if (i
== CGROUP_SUBSYS_COUNT
)
1172 * If the 'all' option was specified select all the subsystems,
1173 * otherwise 'all, 'none' and a subsystem name options were not
1174 * specified, let's default to 'all'
1176 if (all_ss
|| (!all_ss
&& !one_ss
&& !opts
->none
)) {
1177 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1178 struct cgroup_subsys
*ss
= subsys
[i
];
1183 set_bit(i
, &opts
->subsys_bits
);
1187 /* Consistency checks */
1190 * Option noprefix was introduced just for backward compatibility
1191 * with the old cpuset, so we allow noprefix only if mounting just
1192 * the cpuset subsystem.
1194 if (test_bit(ROOT_NOPREFIX
, &opts
->flags
) &&
1195 (opts
->subsys_bits
& mask
))
1199 /* Can't specify "none" and some subsystems */
1200 if (opts
->subsys_bits
&& opts
->none
)
1204 * We either have to specify by name or by subsystems. (So all
1205 * empty hierarchies must have a name).
1207 if (!opts
->subsys_bits
&& !opts
->name
)
1211 * Grab references on all the modules we'll need, so the subsystems
1212 * don't dance around before rebind_subsystems attaches them. This may
1213 * take duplicate reference counts on a subsystem that's already used,
1214 * but rebind_subsystems handles this case.
1216 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1217 unsigned long bit
= 1UL << i
;
1219 if (!(bit
& opts
->subsys_bits
))
1221 if (!try_module_get(subsys
[i
]->module
)) {
1222 module_pin_failed
= true;
1226 if (module_pin_failed
) {
1228 * oops, one of the modules was going away. this means that we
1229 * raced with a module_delete call, and to the user this is
1230 * essentially a "subsystem doesn't exist" case.
1232 for (i
--; i
>= CGROUP_BUILTIN_SUBSYS_COUNT
; i
--) {
1233 /* drop refcounts only on the ones we took */
1234 unsigned long bit
= 1UL << i
;
1236 if (!(bit
& opts
->subsys_bits
))
1238 module_put(subsys
[i
]->module
);
1246 static void drop_parsed_module_refcounts(unsigned long subsys_bits
)
1249 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1250 unsigned long bit
= 1UL << i
;
1252 if (!(bit
& subsys_bits
))
1254 module_put(subsys
[i
]->module
);
1258 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
1261 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1262 struct cgroup
*cgrp
= &root
->top_cgroup
;
1263 struct cgroup_sb_opts opts
;
1265 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
1266 mutex_lock(&cgroup_mutex
);
1268 /* See what subsystems are wanted */
1269 ret
= parse_cgroupfs_options(data
, &opts
);
1273 /* Don't allow flags or name to change at remount */
1274 if (opts
.flags
!= root
->flags
||
1275 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1277 drop_parsed_module_refcounts(opts
.subsys_bits
);
1281 ret
= rebind_subsystems(root
, opts
.subsys_bits
);
1283 drop_parsed_module_refcounts(opts
.subsys_bits
);
1287 /* (re)populate subsystem files */
1288 cgroup_populate_dir(cgrp
);
1290 if (opts
.release_agent
)
1291 strcpy(root
->release_agent_path
, opts
.release_agent
);
1293 kfree(opts
.release_agent
);
1295 mutex_unlock(&cgroup_mutex
);
1296 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
1300 static const struct super_operations cgroup_ops
= {
1301 .statfs
= simple_statfs
,
1302 .drop_inode
= generic_delete_inode
,
1303 .show_options
= cgroup_show_options
,
1304 .remount_fs
= cgroup_remount
,
1307 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1309 INIT_LIST_HEAD(&cgrp
->sibling
);
1310 INIT_LIST_HEAD(&cgrp
->children
);
1311 INIT_LIST_HEAD(&cgrp
->css_sets
);
1312 INIT_LIST_HEAD(&cgrp
->release_list
);
1313 INIT_LIST_HEAD(&cgrp
->pidlists
);
1314 mutex_init(&cgrp
->pidlist_mutex
);
1315 INIT_LIST_HEAD(&cgrp
->event_list
);
1316 spin_lock_init(&cgrp
->event_list_lock
);
1319 static void init_cgroup_root(struct cgroupfs_root
*root
)
1321 struct cgroup
*cgrp
= &root
->top_cgroup
;
1322 INIT_LIST_HEAD(&root
->subsys_list
);
1323 INIT_LIST_HEAD(&root
->root_list
);
1324 root
->number_of_cgroups
= 1;
1326 cgrp
->top_cgroup
= cgrp
;
1327 init_cgroup_housekeeping(cgrp
);
1330 static bool init_root_id(struct cgroupfs_root
*root
)
1335 if (!ida_pre_get(&hierarchy_ida
, GFP_KERNEL
))
1337 spin_lock(&hierarchy_id_lock
);
1338 /* Try to allocate the next unused ID */
1339 ret
= ida_get_new_above(&hierarchy_ida
, next_hierarchy_id
,
1340 &root
->hierarchy_id
);
1342 /* Try again starting from 0 */
1343 ret
= ida_get_new(&hierarchy_ida
, &root
->hierarchy_id
);
1345 next_hierarchy_id
= root
->hierarchy_id
+ 1;
1346 } else if (ret
!= -EAGAIN
) {
1347 /* Can only get here if the 31-bit IDR is full ... */
1350 spin_unlock(&hierarchy_id_lock
);
1355 static int cgroup_test_super(struct super_block
*sb
, void *data
)
1357 struct cgroup_sb_opts
*opts
= data
;
1358 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1360 /* If we asked for a name then it must match */
1361 if (opts
->name
&& strcmp(opts
->name
, root
->name
))
1365 * If we asked for subsystems (or explicitly for no
1366 * subsystems) then they must match
1368 if ((opts
->subsys_bits
|| opts
->none
)
1369 && (opts
->subsys_bits
!= root
->subsys_bits
))
1375 static struct cgroupfs_root
*cgroup_root_from_opts(struct cgroup_sb_opts
*opts
)
1377 struct cgroupfs_root
*root
;
1379 if (!opts
->subsys_bits
&& !opts
->none
)
1382 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1384 return ERR_PTR(-ENOMEM
);
1386 if (!init_root_id(root
)) {
1388 return ERR_PTR(-ENOMEM
);
1390 init_cgroup_root(root
);
1392 root
->subsys_bits
= opts
->subsys_bits
;
1393 root
->flags
= opts
->flags
;
1394 if (opts
->release_agent
)
1395 strcpy(root
->release_agent_path
, opts
->release_agent
);
1397 strcpy(root
->name
, opts
->name
);
1398 if (opts
->clone_children
)
1399 set_bit(CGRP_CLONE_CHILDREN
, &root
->top_cgroup
.flags
);
1403 static void cgroup_drop_root(struct cgroupfs_root
*root
)
1408 BUG_ON(!root
->hierarchy_id
);
1409 spin_lock(&hierarchy_id_lock
);
1410 ida_remove(&hierarchy_ida
, root
->hierarchy_id
);
1411 spin_unlock(&hierarchy_id_lock
);
1415 static int cgroup_set_super(struct super_block
*sb
, void *data
)
1418 struct cgroup_sb_opts
*opts
= data
;
1420 /* If we don't have a new root, we can't set up a new sb */
1421 if (!opts
->new_root
)
1424 BUG_ON(!opts
->subsys_bits
&& !opts
->none
);
1426 ret
= set_anon_super(sb
, NULL
);
1430 sb
->s_fs_info
= opts
->new_root
;
1431 opts
->new_root
->sb
= sb
;
1433 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
1434 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
1435 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
1436 sb
->s_op
= &cgroup_ops
;
1441 static int cgroup_get_rootdir(struct super_block
*sb
)
1443 struct inode
*inode
=
1444 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
1445 struct dentry
*dentry
;
1450 inode
->i_fop
= &simple_dir_operations
;
1451 inode
->i_op
= &cgroup_dir_inode_operations
;
1452 /* directories start off with i_nlink == 2 (for "." entry) */
1454 dentry
= d_alloc_root(inode
);
1459 sb
->s_root
= dentry
;
1463 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
1464 int flags
, const char *unused_dev_name
,
1467 struct cgroup_sb_opts opts
;
1468 struct cgroupfs_root
*root
;
1470 struct super_block
*sb
;
1471 struct cgroupfs_root
*new_root
;
1473 /* First find the desired set of subsystems */
1474 mutex_lock(&cgroup_mutex
);
1475 ret
= parse_cgroupfs_options(data
, &opts
);
1476 mutex_unlock(&cgroup_mutex
);
1481 * Allocate a new cgroup root. We may not need it if we're
1482 * reusing an existing hierarchy.
1484 new_root
= cgroup_root_from_opts(&opts
);
1485 if (IS_ERR(new_root
)) {
1486 ret
= PTR_ERR(new_root
);
1489 opts
.new_root
= new_root
;
1491 /* Locate an existing or new sb for this hierarchy */
1492 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, &opts
);
1495 cgroup_drop_root(opts
.new_root
);
1499 root
= sb
->s_fs_info
;
1501 if (root
== opts
.new_root
) {
1502 /* We used the new root structure, so this is a new hierarchy */
1503 struct list_head tmp_cg_links
;
1504 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1505 struct inode
*inode
;
1506 struct cgroupfs_root
*existing_root
;
1509 BUG_ON(sb
->s_root
!= NULL
);
1511 ret
= cgroup_get_rootdir(sb
);
1513 goto drop_new_super
;
1514 inode
= sb
->s_root
->d_inode
;
1516 mutex_lock(&inode
->i_mutex
);
1517 mutex_lock(&cgroup_mutex
);
1519 if (strlen(root
->name
)) {
1520 /* Check for name clashes with existing mounts */
1521 for_each_active_root(existing_root
) {
1522 if (!strcmp(existing_root
->name
, root
->name
)) {
1524 mutex_unlock(&cgroup_mutex
);
1525 mutex_unlock(&inode
->i_mutex
);
1526 goto drop_new_super
;
1532 * We're accessing css_set_count without locking
1533 * css_set_lock here, but that's OK - it can only be
1534 * increased by someone holding cgroup_lock, and
1535 * that's us. The worst that can happen is that we
1536 * have some link structures left over
1538 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1540 mutex_unlock(&cgroup_mutex
);
1541 mutex_unlock(&inode
->i_mutex
);
1542 goto drop_new_super
;
1545 ret
= rebind_subsystems(root
, root
->subsys_bits
);
1546 if (ret
== -EBUSY
) {
1547 mutex_unlock(&cgroup_mutex
);
1548 mutex_unlock(&inode
->i_mutex
);
1549 free_cg_links(&tmp_cg_links
);
1550 goto drop_new_super
;
1553 * There must be no failure case after here, since rebinding
1554 * takes care of subsystems' refcounts, which are explicitly
1555 * dropped in the failure exit path.
1558 /* EBUSY should be the only error here */
1561 list_add(&root
->root_list
, &roots
);
1564 sb
->s_root
->d_fsdata
= root_cgrp
;
1565 root
->top_cgroup
.dentry
= sb
->s_root
;
1567 /* Link the top cgroup in this hierarchy into all
1568 * the css_set objects */
1569 write_lock(&css_set_lock
);
1570 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1571 struct hlist_head
*hhead
= &css_set_table
[i
];
1572 struct hlist_node
*node
;
1575 hlist_for_each_entry(cg
, node
, hhead
, hlist
)
1576 link_css_set(&tmp_cg_links
, cg
, root_cgrp
);
1578 write_unlock(&css_set_lock
);
1580 free_cg_links(&tmp_cg_links
);
1582 BUG_ON(!list_empty(&root_cgrp
->sibling
));
1583 BUG_ON(!list_empty(&root_cgrp
->children
));
1584 BUG_ON(root
->number_of_cgroups
!= 1);
1586 cgroup_populate_dir(root_cgrp
);
1587 mutex_unlock(&cgroup_mutex
);
1588 mutex_unlock(&inode
->i_mutex
);
1591 * We re-used an existing hierarchy - the new root (if
1592 * any) is not needed
1594 cgroup_drop_root(opts
.new_root
);
1595 /* no subsys rebinding, so refcounts don't change */
1596 drop_parsed_module_refcounts(opts
.subsys_bits
);
1599 kfree(opts
.release_agent
);
1601 return dget(sb
->s_root
);
1604 deactivate_locked_super(sb
);
1606 drop_parsed_module_refcounts(opts
.subsys_bits
);
1608 kfree(opts
.release_agent
);
1610 return ERR_PTR(ret
);
1613 static void cgroup_kill_sb(struct super_block
*sb
) {
1614 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1615 struct cgroup
*cgrp
= &root
->top_cgroup
;
1617 struct cg_cgroup_link
*link
;
1618 struct cg_cgroup_link
*saved_link
;
1622 BUG_ON(root
->number_of_cgroups
!= 1);
1623 BUG_ON(!list_empty(&cgrp
->children
));
1624 BUG_ON(!list_empty(&cgrp
->sibling
));
1626 mutex_lock(&cgroup_mutex
);
1628 /* Rebind all subsystems back to the default hierarchy */
1629 ret
= rebind_subsystems(root
, 0);
1630 /* Shouldn't be able to fail ... */
1634 * Release all the links from css_sets to this hierarchy's
1637 write_lock(&css_set_lock
);
1639 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1641 list_del(&link
->cg_link_list
);
1642 list_del(&link
->cgrp_link_list
);
1645 write_unlock(&css_set_lock
);
1647 if (!list_empty(&root
->root_list
)) {
1648 list_del(&root
->root_list
);
1652 mutex_unlock(&cgroup_mutex
);
1654 kill_litter_super(sb
);
1655 cgroup_drop_root(root
);
1658 static struct file_system_type cgroup_fs_type
= {
1660 .mount
= cgroup_mount
,
1661 .kill_sb
= cgroup_kill_sb
,
1664 static struct kobject
*cgroup_kobj
;
1666 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
1668 return dentry
->d_fsdata
;
1671 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
1673 return dentry
->d_fsdata
;
1677 * cgroup_path - generate the path of a cgroup
1678 * @cgrp: the cgroup in question
1679 * @buf: the buffer to write the path into
1680 * @buflen: the length of the buffer
1682 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1683 * reference. Writes path of cgroup into buf. Returns 0 on success,
1686 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1689 struct dentry
*dentry
= rcu_dereference_check(cgrp
->dentry
,
1690 rcu_read_lock_held() ||
1691 cgroup_lock_is_held());
1693 if (!dentry
|| cgrp
== dummytop
) {
1695 * Inactive subsystems have no dentry for their root
1702 start
= buf
+ buflen
;
1706 int len
= dentry
->d_name
.len
;
1708 if ((start
-= len
) < buf
)
1709 return -ENAMETOOLONG
;
1710 memcpy(start
, dentry
->d_name
.name
, len
);
1711 cgrp
= cgrp
->parent
;
1715 dentry
= rcu_dereference_check(cgrp
->dentry
,
1716 rcu_read_lock_held() ||
1717 cgroup_lock_is_held());
1721 return -ENAMETOOLONG
;
1724 memmove(buf
, start
, buf
+ buflen
- start
);
1727 EXPORT_SYMBOL_GPL(cgroup_path
);
1730 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1731 * @cgrp: the cgroup the task is attaching to
1732 * @tsk: the task to be attached
1734 * Call holding cgroup_mutex. May take task_lock of
1735 * the task 'tsk' during call.
1737 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1740 struct cgroup_subsys
*ss
, *failed_ss
= NULL
;
1741 struct cgroup
*oldcgrp
;
1743 struct css_set
*newcg
;
1744 struct cgroupfs_root
*root
= cgrp
->root
;
1746 /* Nothing to do if the task is already in that cgroup */
1747 oldcgrp
= task_cgroup_from_root(tsk
, root
);
1748 if (cgrp
== oldcgrp
)
1751 for_each_subsys(root
, ss
) {
1752 if (ss
->can_attach
) {
1753 retval
= ss
->can_attach(ss
, cgrp
, tsk
, false);
1756 * Remember on which subsystem the can_attach()
1757 * failed, so that we only call cancel_attach()
1758 * against the subsystems whose can_attach()
1759 * succeeded. (See below)
1772 * Locate or allocate a new css_set for this task,
1773 * based on its final set of cgroups
1775 newcg
= find_css_set(cg
, cgrp
);
1783 if (tsk
->flags
& PF_EXITING
) {
1789 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1792 /* Update the css_set linked lists if we're using them */
1793 write_lock(&css_set_lock
);
1794 if (!list_empty(&tsk
->cg_list
)) {
1795 list_del(&tsk
->cg_list
);
1796 list_add(&tsk
->cg_list
, &newcg
->tasks
);
1798 write_unlock(&css_set_lock
);
1800 for_each_subsys(root
, ss
) {
1802 ss
->attach(ss
, cgrp
, oldcgrp
, tsk
, false);
1804 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1809 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1810 * is no longer empty.
1812 cgroup_wakeup_rmdir_waiter(cgrp
);
1815 for_each_subsys(root
, ss
) {
1816 if (ss
== failed_ss
)
1818 * This subsystem was the one that failed the
1819 * can_attach() check earlier, so we don't need
1820 * to call cancel_attach() against it or any
1821 * remaining subsystems.
1824 if (ss
->cancel_attach
)
1825 ss
->cancel_attach(ss
, cgrp
, tsk
, false);
1832 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1833 * @from: attach to all cgroups of a given task
1834 * @tsk: the task to be attached
1836 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
1838 struct cgroupfs_root
*root
;
1842 for_each_active_root(root
) {
1843 struct cgroup
*from_cg
= task_cgroup_from_root(from
, root
);
1845 retval
= cgroup_attach_task(from_cg
, tsk
);
1853 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
1856 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1857 * held. May take task_lock of task
1859 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
)
1861 struct task_struct
*tsk
;
1862 const struct cred
*cred
= current_cred(), *tcred
;
1867 tsk
= find_task_by_vpid(pid
);
1868 if (!tsk
|| tsk
->flags
& PF_EXITING
) {
1873 tcred
= __task_cred(tsk
);
1875 cred
->euid
!= tcred
->uid
&&
1876 cred
->euid
!= tcred
->suid
) {
1880 get_task_struct(tsk
);
1884 get_task_struct(tsk
);
1887 ret
= cgroup_attach_task(cgrp
, tsk
);
1888 put_task_struct(tsk
);
1892 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
1895 if (!cgroup_lock_live_group(cgrp
))
1897 ret
= attach_task_by_pid(cgrp
, pid
);
1903 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1904 * @cgrp: the cgroup to be checked for liveness
1906 * On success, returns true; the lock should be later released with
1907 * cgroup_unlock(). On failure returns false with no lock held.
1909 bool cgroup_lock_live_group(struct cgroup
*cgrp
)
1911 mutex_lock(&cgroup_mutex
);
1912 if (cgroup_is_removed(cgrp
)) {
1913 mutex_unlock(&cgroup_mutex
);
1918 EXPORT_SYMBOL_GPL(cgroup_lock_live_group
);
1920 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1923 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
1924 if (strlen(buffer
) >= PATH_MAX
)
1926 if (!cgroup_lock_live_group(cgrp
))
1928 strcpy(cgrp
->root
->release_agent_path
, buffer
);
1933 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
1934 struct seq_file
*seq
)
1936 if (!cgroup_lock_live_group(cgrp
))
1938 seq_puts(seq
, cgrp
->root
->release_agent_path
);
1939 seq_putc(seq
, '\n');
1944 /* A buffer size big enough for numbers or short strings */
1945 #define CGROUP_LOCAL_BUFFER_SIZE 64
1947 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
1949 const char __user
*userbuf
,
1950 size_t nbytes
, loff_t
*unused_ppos
)
1952 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1958 if (nbytes
>= sizeof(buffer
))
1960 if (copy_from_user(buffer
, userbuf
, nbytes
))
1963 buffer
[nbytes
] = 0; /* nul-terminate */
1964 if (cft
->write_u64
) {
1965 u64 val
= simple_strtoull(strstrip(buffer
), &end
, 0);
1968 retval
= cft
->write_u64(cgrp
, cft
, val
);
1970 s64 val
= simple_strtoll(strstrip(buffer
), &end
, 0);
1973 retval
= cft
->write_s64(cgrp
, cft
, val
);
1980 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
1982 const char __user
*userbuf
,
1983 size_t nbytes
, loff_t
*unused_ppos
)
1985 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1987 size_t max_bytes
= cft
->max_write_len
;
1988 char *buffer
= local_buffer
;
1991 max_bytes
= sizeof(local_buffer
) - 1;
1992 if (nbytes
>= max_bytes
)
1994 /* Allocate a dynamic buffer if we need one */
1995 if (nbytes
>= sizeof(local_buffer
)) {
1996 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
2000 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
2005 buffer
[nbytes
] = 0; /* nul-terminate */
2006 retval
= cft
->write_string(cgrp
, cft
, strstrip(buffer
));
2010 if (buffer
!= local_buffer
)
2015 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
2016 size_t nbytes
, loff_t
*ppos
)
2018 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2019 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2021 if (cgroup_is_removed(cgrp
))
2024 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2025 if (cft
->write_u64
|| cft
->write_s64
)
2026 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2027 if (cft
->write_string
)
2028 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2030 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
2031 return ret
? ret
: nbytes
;
2036 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
2038 char __user
*buf
, size_t nbytes
,
2041 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2042 u64 val
= cft
->read_u64(cgrp
, cft
);
2043 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
2045 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2048 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
2050 char __user
*buf
, size_t nbytes
,
2053 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2054 s64 val
= cft
->read_s64(cgrp
, cft
);
2055 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
2057 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2060 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
2061 size_t nbytes
, loff_t
*ppos
)
2063 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2064 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2066 if (cgroup_is_removed(cgrp
))
2070 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2072 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2074 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2079 * seqfile ops/methods for returning structured data. Currently just
2080 * supports string->u64 maps, but can be extended in future.
2083 struct cgroup_seqfile_state
{
2085 struct cgroup
*cgroup
;
2088 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
2090 struct seq_file
*sf
= cb
->state
;
2091 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
2094 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
2096 struct cgroup_seqfile_state
*state
= m
->private;
2097 struct cftype
*cft
= state
->cft
;
2098 if (cft
->read_map
) {
2099 struct cgroup_map_cb cb
= {
2100 .fill
= cgroup_map_add
,
2103 return cft
->read_map(state
->cgroup
, cft
, &cb
);
2105 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
2108 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
2110 struct seq_file
*seq
= file
->private_data
;
2111 kfree(seq
->private);
2112 return single_release(inode
, file
);
2115 static const struct file_operations cgroup_seqfile_operations
= {
2117 .write
= cgroup_file_write
,
2118 .llseek
= seq_lseek
,
2119 .release
= cgroup_seqfile_release
,
2122 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
2127 err
= generic_file_open(inode
, file
);
2130 cft
= __d_cft(file
->f_dentry
);
2132 if (cft
->read_map
|| cft
->read_seq_string
) {
2133 struct cgroup_seqfile_state
*state
=
2134 kzalloc(sizeof(*state
), GFP_USER
);
2138 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
2139 file
->f_op
= &cgroup_seqfile_operations
;
2140 err
= single_open(file
, cgroup_seqfile_show
, state
);
2143 } else if (cft
->open
)
2144 err
= cft
->open(inode
, file
);
2151 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
2153 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2155 return cft
->release(inode
, file
);
2160 * cgroup_rename - Only allow simple rename of directories in place.
2162 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
2163 struct inode
*new_dir
, struct dentry
*new_dentry
)
2165 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
2167 if (new_dentry
->d_inode
)
2169 if (old_dir
!= new_dir
)
2171 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
2174 static const struct file_operations cgroup_file_operations
= {
2175 .read
= cgroup_file_read
,
2176 .write
= cgroup_file_write
,
2177 .llseek
= generic_file_llseek
,
2178 .open
= cgroup_file_open
,
2179 .release
= cgroup_file_release
,
2182 static const struct inode_operations cgroup_dir_inode_operations
= {
2183 .lookup
= simple_lookup
,
2184 .mkdir
= cgroup_mkdir
,
2185 .rmdir
= cgroup_rmdir
,
2186 .rename
= cgroup_rename
,
2190 * Check if a file is a control file
2192 static inline struct cftype
*__file_cft(struct file
*file
)
2194 if (file
->f_dentry
->d_inode
->i_fop
!= &cgroup_file_operations
)
2195 return ERR_PTR(-EINVAL
);
2196 return __d_cft(file
->f_dentry
);
2199 static int cgroup_create_file(struct dentry
*dentry
, mode_t mode
,
2200 struct super_block
*sb
)
2202 static const struct dentry_operations cgroup_dops
= {
2203 .d_iput
= cgroup_diput
,
2206 struct inode
*inode
;
2210 if (dentry
->d_inode
)
2213 inode
= cgroup_new_inode(mode
, sb
);
2217 if (S_ISDIR(mode
)) {
2218 inode
->i_op
= &cgroup_dir_inode_operations
;
2219 inode
->i_fop
= &simple_dir_operations
;
2221 /* start off with i_nlink == 2 (for "." entry) */
2224 /* start with the directory inode held, so that we can
2225 * populate it without racing with another mkdir */
2226 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2227 } else if (S_ISREG(mode
)) {
2229 inode
->i_fop
= &cgroup_file_operations
;
2231 dentry
->d_op
= &cgroup_dops
;
2232 d_instantiate(dentry
, inode
);
2233 dget(dentry
); /* Extra count - pin the dentry in core */
2238 * cgroup_create_dir - create a directory for an object.
2239 * @cgrp: the cgroup we create the directory for. It must have a valid
2240 * ->parent field. And we are going to fill its ->dentry field.
2241 * @dentry: dentry of the new cgroup
2242 * @mode: mode to set on new directory.
2244 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
2247 struct dentry
*parent
;
2250 parent
= cgrp
->parent
->dentry
;
2251 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
2253 dentry
->d_fsdata
= cgrp
;
2254 inc_nlink(parent
->d_inode
);
2255 rcu_assign_pointer(cgrp
->dentry
, dentry
);
2264 * cgroup_file_mode - deduce file mode of a control file
2265 * @cft: the control file in question
2267 * returns cft->mode if ->mode is not 0
2268 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2269 * returns S_IRUGO if it has only a read handler
2270 * returns S_IWUSR if it has only a write hander
2272 static mode_t
cgroup_file_mode(const struct cftype
*cft
)
2279 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
2280 cft
->read_map
|| cft
->read_seq_string
)
2283 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
2284 cft
->write_string
|| cft
->trigger
)
2290 int cgroup_add_file(struct cgroup
*cgrp
,
2291 struct cgroup_subsys
*subsys
,
2292 const struct cftype
*cft
)
2294 struct dentry
*dir
= cgrp
->dentry
;
2295 struct dentry
*dentry
;
2299 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
2300 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
2301 strcpy(name
, subsys
->name
);
2304 strcat(name
, cft
->name
);
2305 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
2306 dentry
= lookup_one_len(name
, dir
, strlen(name
));
2307 if (!IS_ERR(dentry
)) {
2308 mode
= cgroup_file_mode(cft
);
2309 error
= cgroup_create_file(dentry
, mode
| S_IFREG
,
2312 dentry
->d_fsdata
= (void *)cft
;
2315 error
= PTR_ERR(dentry
);
2318 EXPORT_SYMBOL_GPL(cgroup_add_file
);
2320 int cgroup_add_files(struct cgroup
*cgrp
,
2321 struct cgroup_subsys
*subsys
,
2322 const struct cftype cft
[],
2326 for (i
= 0; i
< count
; i
++) {
2327 err
= cgroup_add_file(cgrp
, subsys
, &cft
[i
]);
2333 EXPORT_SYMBOL_GPL(cgroup_add_files
);
2336 * cgroup_task_count - count the number of tasks in a cgroup.
2337 * @cgrp: the cgroup in question
2339 * Return the number of tasks in the cgroup.
2341 int cgroup_task_count(const struct cgroup
*cgrp
)
2344 struct cg_cgroup_link
*link
;
2346 read_lock(&css_set_lock
);
2347 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
2348 count
+= atomic_read(&link
->cg
->refcount
);
2350 read_unlock(&css_set_lock
);
2355 * Advance a list_head iterator. The iterator should be positioned at
2356 * the start of a css_set
2358 static void cgroup_advance_iter(struct cgroup
*cgrp
,
2359 struct cgroup_iter
*it
)
2361 struct list_head
*l
= it
->cg_link
;
2362 struct cg_cgroup_link
*link
;
2365 /* Advance to the next non-empty css_set */
2368 if (l
== &cgrp
->css_sets
) {
2372 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
2374 } while (list_empty(&cg
->tasks
));
2376 it
->task
= cg
->tasks
.next
;
2380 * To reduce the fork() overhead for systems that are not actually
2381 * using their cgroups capability, we don't maintain the lists running
2382 * through each css_set to its tasks until we see the list actually
2383 * used - in other words after the first call to cgroup_iter_start().
2385 * The tasklist_lock is not held here, as do_each_thread() and
2386 * while_each_thread() are protected by RCU.
2388 static void cgroup_enable_task_cg_lists(void)
2390 struct task_struct
*p
, *g
;
2391 write_lock(&css_set_lock
);
2392 use_task_css_set_links
= 1;
2393 do_each_thread(g
, p
) {
2396 * We should check if the process is exiting, otherwise
2397 * it will race with cgroup_exit() in that the list
2398 * entry won't be deleted though the process has exited.
2400 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
2401 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
2403 } while_each_thread(g
, p
);
2404 write_unlock(&css_set_lock
);
2407 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
2410 * The first time anyone tries to iterate across a cgroup,
2411 * we need to enable the list linking each css_set to its
2412 * tasks, and fix up all existing tasks.
2414 if (!use_task_css_set_links
)
2415 cgroup_enable_task_cg_lists();
2417 read_lock(&css_set_lock
);
2418 it
->cg_link
= &cgrp
->css_sets
;
2419 cgroup_advance_iter(cgrp
, it
);
2422 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
2423 struct cgroup_iter
*it
)
2425 struct task_struct
*res
;
2426 struct list_head
*l
= it
->task
;
2427 struct cg_cgroup_link
*link
;
2429 /* If the iterator cg is NULL, we have no tasks */
2432 res
= list_entry(l
, struct task_struct
, cg_list
);
2433 /* Advance iterator to find next entry */
2435 link
= list_entry(it
->cg_link
, struct cg_cgroup_link
, cgrp_link_list
);
2436 if (l
== &link
->cg
->tasks
) {
2437 /* We reached the end of this task list - move on to
2438 * the next cg_cgroup_link */
2439 cgroup_advance_iter(cgrp
, it
);
2446 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
2448 read_unlock(&css_set_lock
);
2451 static inline int started_after_time(struct task_struct
*t1
,
2452 struct timespec
*time
,
2453 struct task_struct
*t2
)
2455 int start_diff
= timespec_compare(&t1
->start_time
, time
);
2456 if (start_diff
> 0) {
2458 } else if (start_diff
< 0) {
2462 * Arbitrarily, if two processes started at the same
2463 * time, we'll say that the lower pointer value
2464 * started first. Note that t2 may have exited by now
2465 * so this may not be a valid pointer any longer, but
2466 * that's fine - it still serves to distinguish
2467 * between two tasks started (effectively) simultaneously.
2474 * This function is a callback from heap_insert() and is used to order
2476 * In this case we order the heap in descending task start time.
2478 static inline int started_after(void *p1
, void *p2
)
2480 struct task_struct
*t1
= p1
;
2481 struct task_struct
*t2
= p2
;
2482 return started_after_time(t1
, &t2
->start_time
, t2
);
2486 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2487 * @scan: struct cgroup_scanner containing arguments for the scan
2489 * Arguments include pointers to callback functions test_task() and
2491 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2492 * and if it returns true, call process_task() for it also.
2493 * The test_task pointer may be NULL, meaning always true (select all tasks).
2494 * Effectively duplicates cgroup_iter_{start,next,end}()
2495 * but does not lock css_set_lock for the call to process_task().
2496 * The struct cgroup_scanner may be embedded in any structure of the caller's
2498 * It is guaranteed that process_task() will act on every task that
2499 * is a member of the cgroup for the duration of this call. This
2500 * function may or may not call process_task() for tasks that exit
2501 * or move to a different cgroup during the call, or are forked or
2502 * move into the cgroup during the call.
2504 * Note that test_task() may be called with locks held, and may in some
2505 * situations be called multiple times for the same task, so it should
2507 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2508 * pre-allocated and will be used for heap operations (and its "gt" member will
2509 * be overwritten), else a temporary heap will be used (allocation of which
2510 * may cause this function to fail).
2512 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
2515 struct cgroup_iter it
;
2516 struct task_struct
*p
, *dropped
;
2517 /* Never dereference latest_task, since it's not refcounted */
2518 struct task_struct
*latest_task
= NULL
;
2519 struct ptr_heap tmp_heap
;
2520 struct ptr_heap
*heap
;
2521 struct timespec latest_time
= { 0, 0 };
2524 /* The caller supplied our heap and pre-allocated its memory */
2526 heap
->gt
= &started_after
;
2528 /* We need to allocate our own heap memory */
2530 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
2532 /* cannot allocate the heap */
2538 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2539 * to determine which are of interest, and using the scanner's
2540 * "process_task" callback to process any of them that need an update.
2541 * Since we don't want to hold any locks during the task updates,
2542 * gather tasks to be processed in a heap structure.
2543 * The heap is sorted by descending task start time.
2544 * If the statically-sized heap fills up, we overflow tasks that
2545 * started later, and in future iterations only consider tasks that
2546 * started after the latest task in the previous pass. This
2547 * guarantees forward progress and that we don't miss any tasks.
2550 cgroup_iter_start(scan
->cg
, &it
);
2551 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
2553 * Only affect tasks that qualify per the caller's callback,
2554 * if he provided one
2556 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
2559 * Only process tasks that started after the last task
2562 if (!started_after_time(p
, &latest_time
, latest_task
))
2564 dropped
= heap_insert(heap
, p
);
2565 if (dropped
== NULL
) {
2567 * The new task was inserted; the heap wasn't
2571 } else if (dropped
!= p
) {
2573 * The new task was inserted, and pushed out a
2577 put_task_struct(dropped
);
2580 * Else the new task was newer than anything already in
2581 * the heap and wasn't inserted
2584 cgroup_iter_end(scan
->cg
, &it
);
2587 for (i
= 0; i
< heap
->size
; i
++) {
2588 struct task_struct
*q
= heap
->ptrs
[i
];
2590 latest_time
= q
->start_time
;
2593 /* Process the task per the caller's callback */
2594 scan
->process_task(q
, scan
);
2598 * If we had to process any tasks at all, scan again
2599 * in case some of them were in the middle of forking
2600 * children that didn't get processed.
2601 * Not the most efficient way to do it, but it avoids
2602 * having to take callback_mutex in the fork path
2606 if (heap
== &tmp_heap
)
2607 heap_free(&tmp_heap
);
2612 * Stuff for reading the 'tasks'/'procs' files.
2614 * Reading this file can return large amounts of data if a cgroup has
2615 * *lots* of attached tasks. So it may need several calls to read(),
2616 * but we cannot guarantee that the information we produce is correct
2617 * unless we produce it entirely atomically.
2622 * The following two functions "fix" the issue where there are more pids
2623 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2624 * TODO: replace with a kernel-wide solution to this problem
2626 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2627 static void *pidlist_allocate(int count
)
2629 if (PIDLIST_TOO_LARGE(count
))
2630 return vmalloc(count
* sizeof(pid_t
));
2632 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
2634 static void pidlist_free(void *p
)
2636 if (is_vmalloc_addr(p
))
2641 static void *pidlist_resize(void *p
, int newcount
)
2644 /* note: if new alloc fails, old p will still be valid either way */
2645 if (is_vmalloc_addr(p
)) {
2646 newlist
= vmalloc(newcount
* sizeof(pid_t
));
2649 memcpy(newlist
, p
, newcount
* sizeof(pid_t
));
2652 newlist
= krealloc(p
, newcount
* sizeof(pid_t
), GFP_KERNEL
);
2658 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2659 * If the new stripped list is sufficiently smaller and there's enough memory
2660 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2661 * number of unique elements.
2663 /* is the size difference enough that we should re-allocate the array? */
2664 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2665 static int pidlist_uniq(pid_t
**p
, int length
)
2672 * we presume the 0th element is unique, so i starts at 1. trivial
2673 * edge cases first; no work needs to be done for either
2675 if (length
== 0 || length
== 1)
2677 /* src and dest walk down the list; dest counts unique elements */
2678 for (src
= 1; src
< length
; src
++) {
2679 /* find next unique element */
2680 while (list
[src
] == list
[src
-1]) {
2685 /* dest always points to where the next unique element goes */
2686 list
[dest
] = list
[src
];
2691 * if the length difference is large enough, we want to allocate a
2692 * smaller buffer to save memory. if this fails due to out of memory,
2693 * we'll just stay with what we've got.
2695 if (PIDLIST_REALLOC_DIFFERENCE(length
, dest
)) {
2696 newlist
= pidlist_resize(list
, dest
);
2703 static int cmppid(const void *a
, const void *b
)
2705 return *(pid_t
*)a
- *(pid_t
*)b
;
2709 * find the appropriate pidlist for our purpose (given procs vs tasks)
2710 * returns with the lock on that pidlist already held, and takes care
2711 * of the use count, or returns NULL with no locks held if we're out of
2714 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
2715 enum cgroup_filetype type
)
2717 struct cgroup_pidlist
*l
;
2718 /* don't need task_nsproxy() if we're looking at ourself */
2719 struct pid_namespace
*ns
= current
->nsproxy
->pid_ns
;
2722 * We can't drop the pidlist_mutex before taking the l->mutex in case
2723 * the last ref-holder is trying to remove l from the list at the same
2724 * time. Holding the pidlist_mutex precludes somebody taking whichever
2725 * list we find out from under us - compare release_pid_array().
2727 mutex_lock(&cgrp
->pidlist_mutex
);
2728 list_for_each_entry(l
, &cgrp
->pidlists
, links
) {
2729 if (l
->key
.type
== type
&& l
->key
.ns
== ns
) {
2730 /* make sure l doesn't vanish out from under us */
2731 down_write(&l
->mutex
);
2732 mutex_unlock(&cgrp
->pidlist_mutex
);
2736 /* entry not found; create a new one */
2737 l
= kmalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
2739 mutex_unlock(&cgrp
->pidlist_mutex
);
2742 init_rwsem(&l
->mutex
);
2743 down_write(&l
->mutex
);
2745 l
->key
.ns
= get_pid_ns(ns
);
2746 l
->use_count
= 0; /* don't increment here */
2749 list_add(&l
->links
, &cgrp
->pidlists
);
2750 mutex_unlock(&cgrp
->pidlist_mutex
);
2755 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2757 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
2758 struct cgroup_pidlist
**lp
)
2762 int pid
, n
= 0; /* used for populating the array */
2763 struct cgroup_iter it
;
2764 struct task_struct
*tsk
;
2765 struct cgroup_pidlist
*l
;
2768 * If cgroup gets more users after we read count, we won't have
2769 * enough space - tough. This race is indistinguishable to the
2770 * caller from the case that the additional cgroup users didn't
2771 * show up until sometime later on.
2773 length
= cgroup_task_count(cgrp
);
2774 array
= pidlist_allocate(length
);
2777 /* now, populate the array */
2778 cgroup_iter_start(cgrp
, &it
);
2779 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2780 if (unlikely(n
== length
))
2782 /* get tgid or pid for procs or tasks file respectively */
2783 if (type
== CGROUP_FILE_PROCS
)
2784 pid
= task_tgid_vnr(tsk
);
2786 pid
= task_pid_vnr(tsk
);
2787 if (pid
> 0) /* make sure to only use valid results */
2790 cgroup_iter_end(cgrp
, &it
);
2792 /* now sort & (if procs) strip out duplicates */
2793 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
2794 if (type
== CGROUP_FILE_PROCS
)
2795 length
= pidlist_uniq(&array
, length
);
2796 l
= cgroup_pidlist_find(cgrp
, type
);
2798 pidlist_free(array
);
2801 /* store array, freeing old if necessary - lock already held */
2802 pidlist_free(l
->list
);
2806 up_write(&l
->mutex
);
2812 * cgroupstats_build - build and fill cgroupstats
2813 * @stats: cgroupstats to fill information into
2814 * @dentry: A dentry entry belonging to the cgroup for which stats have
2817 * Build and fill cgroupstats so that taskstats can export it to user
2820 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
2823 struct cgroup
*cgrp
;
2824 struct cgroup_iter it
;
2825 struct task_struct
*tsk
;
2828 * Validate dentry by checking the superblock operations,
2829 * and make sure it's a directory.
2831 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
2832 !S_ISDIR(dentry
->d_inode
->i_mode
))
2836 cgrp
= dentry
->d_fsdata
;
2838 cgroup_iter_start(cgrp
, &it
);
2839 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2840 switch (tsk
->state
) {
2842 stats
->nr_running
++;
2844 case TASK_INTERRUPTIBLE
:
2845 stats
->nr_sleeping
++;
2847 case TASK_UNINTERRUPTIBLE
:
2848 stats
->nr_uninterruptible
++;
2851 stats
->nr_stopped
++;
2854 if (delayacct_is_task_waiting_on_io(tsk
))
2855 stats
->nr_io_wait
++;
2859 cgroup_iter_end(cgrp
, &it
);
2867 * seq_file methods for the tasks/procs files. The seq_file position is the
2868 * next pid to display; the seq_file iterator is a pointer to the pid
2869 * in the cgroup->l->list array.
2872 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
2875 * Initially we receive a position value that corresponds to
2876 * one more than the last pid shown (or 0 on the first call or
2877 * after a seek to the start). Use a binary-search to find the
2878 * next pid to display, if any
2880 struct cgroup_pidlist
*l
= s
->private;
2881 int index
= 0, pid
= *pos
;
2884 down_read(&l
->mutex
);
2886 int end
= l
->length
;
2888 while (index
< end
) {
2889 int mid
= (index
+ end
) / 2;
2890 if (l
->list
[mid
] == pid
) {
2893 } else if (l
->list
[mid
] <= pid
)
2899 /* If we're off the end of the array, we're done */
2900 if (index
>= l
->length
)
2902 /* Update the abstract position to be the actual pid that we found */
2903 iter
= l
->list
+ index
;
2908 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
2910 struct cgroup_pidlist
*l
= s
->private;
2914 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
2916 struct cgroup_pidlist
*l
= s
->private;
2918 pid_t
*end
= l
->list
+ l
->length
;
2920 * Advance to the next pid in the array. If this goes off the
2932 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
2934 return seq_printf(s
, "%d\n", *(int *)v
);
2938 * seq_operations functions for iterating on pidlists through seq_file -
2939 * independent of whether it's tasks or procs
2941 static const struct seq_operations cgroup_pidlist_seq_operations
= {
2942 .start
= cgroup_pidlist_start
,
2943 .stop
= cgroup_pidlist_stop
,
2944 .next
= cgroup_pidlist_next
,
2945 .show
= cgroup_pidlist_show
,
2948 static void cgroup_release_pid_array(struct cgroup_pidlist
*l
)
2951 * the case where we're the last user of this particular pidlist will
2952 * have us remove it from the cgroup's list, which entails taking the
2953 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2954 * pidlist_mutex, we have to take pidlist_mutex first.
2956 mutex_lock(&l
->owner
->pidlist_mutex
);
2957 down_write(&l
->mutex
);
2958 BUG_ON(!l
->use_count
);
2959 if (!--l
->use_count
) {
2960 /* we're the last user if refcount is 0; remove and free */
2961 list_del(&l
->links
);
2962 mutex_unlock(&l
->owner
->pidlist_mutex
);
2963 pidlist_free(l
->list
);
2964 put_pid_ns(l
->key
.ns
);
2965 up_write(&l
->mutex
);
2969 mutex_unlock(&l
->owner
->pidlist_mutex
);
2970 up_write(&l
->mutex
);
2973 static int cgroup_pidlist_release(struct inode
*inode
, struct file
*file
)
2975 struct cgroup_pidlist
*l
;
2976 if (!(file
->f_mode
& FMODE_READ
))
2979 * the seq_file will only be initialized if the file was opened for
2980 * reading; hence we check if it's not null only in that case.
2982 l
= ((struct seq_file
*)file
->private_data
)->private;
2983 cgroup_release_pid_array(l
);
2984 return seq_release(inode
, file
);
2987 static const struct file_operations cgroup_pidlist_operations
= {
2989 .llseek
= seq_lseek
,
2990 .write
= cgroup_file_write
,
2991 .release
= cgroup_pidlist_release
,
2995 * The following functions handle opens on a file that displays a pidlist
2996 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2999 /* helper function for the two below it */
3000 static int cgroup_pidlist_open(struct file
*file
, enum cgroup_filetype type
)
3002 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
3003 struct cgroup_pidlist
*l
;
3006 /* Nothing to do for write-only files */
3007 if (!(file
->f_mode
& FMODE_READ
))
3010 /* have the array populated */
3011 retval
= pidlist_array_load(cgrp
, type
, &l
);
3014 /* configure file information */
3015 file
->f_op
= &cgroup_pidlist_operations
;
3017 retval
= seq_open(file
, &cgroup_pidlist_seq_operations
);
3019 cgroup_release_pid_array(l
);
3022 ((struct seq_file
*)file
->private_data
)->private = l
;
3025 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
3027 return cgroup_pidlist_open(file
, CGROUP_FILE_TASKS
);
3029 static int cgroup_procs_open(struct inode
*unused
, struct file
*file
)
3031 return cgroup_pidlist_open(file
, CGROUP_FILE_PROCS
);
3034 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
3037 return notify_on_release(cgrp
);
3040 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
3044 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
3046 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3048 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3053 * Unregister event and free resources.
3055 * Gets called from workqueue.
3057 static void cgroup_event_remove(struct work_struct
*work
)
3059 struct cgroup_event
*event
= container_of(work
, struct cgroup_event
,
3061 struct cgroup
*cgrp
= event
->cgrp
;
3063 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3065 eventfd_ctx_put(event
->eventfd
);
3071 * Gets called on POLLHUP on eventfd when user closes it.
3073 * Called with wqh->lock held and interrupts disabled.
3075 static int cgroup_event_wake(wait_queue_t
*wait
, unsigned mode
,
3076 int sync
, void *key
)
3078 struct cgroup_event
*event
= container_of(wait
,
3079 struct cgroup_event
, wait
);
3080 struct cgroup
*cgrp
= event
->cgrp
;
3081 unsigned long flags
= (unsigned long)key
;
3083 if (flags
& POLLHUP
) {
3084 __remove_wait_queue(event
->wqh
, &event
->wait
);
3085 spin_lock(&cgrp
->event_list_lock
);
3086 list_del(&event
->list
);
3087 spin_unlock(&cgrp
->event_list_lock
);
3089 * We are in atomic context, but cgroup_event_remove() may
3090 * sleep, so we have to call it in workqueue.
3092 schedule_work(&event
->remove
);
3098 static void cgroup_event_ptable_queue_proc(struct file
*file
,
3099 wait_queue_head_t
*wqh
, poll_table
*pt
)
3101 struct cgroup_event
*event
= container_of(pt
,
3102 struct cgroup_event
, pt
);
3105 add_wait_queue(wqh
, &event
->wait
);
3109 * Parse input and register new cgroup event handler.
3111 * Input must be in format '<event_fd> <control_fd> <args>'.
3112 * Interpretation of args is defined by control file implementation.
3114 static int cgroup_write_event_control(struct cgroup
*cgrp
, struct cftype
*cft
,
3117 struct cgroup_event
*event
= NULL
;
3118 unsigned int efd
, cfd
;
3119 struct file
*efile
= NULL
;
3120 struct file
*cfile
= NULL
;
3124 efd
= simple_strtoul(buffer
, &endp
, 10);
3129 cfd
= simple_strtoul(buffer
, &endp
, 10);
3130 if ((*endp
!= ' ') && (*endp
!= '\0'))
3134 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3138 INIT_LIST_HEAD(&event
->list
);
3139 init_poll_funcptr(&event
->pt
, cgroup_event_ptable_queue_proc
);
3140 init_waitqueue_func_entry(&event
->wait
, cgroup_event_wake
);
3141 INIT_WORK(&event
->remove
, cgroup_event_remove
);
3143 efile
= eventfd_fget(efd
);
3144 if (IS_ERR(efile
)) {
3145 ret
= PTR_ERR(efile
);
3149 event
->eventfd
= eventfd_ctx_fileget(efile
);
3150 if (IS_ERR(event
->eventfd
)) {
3151 ret
= PTR_ERR(event
->eventfd
);
3161 /* the process need read permission on control file */
3162 ret
= file_permission(cfile
, MAY_READ
);
3166 event
->cft
= __file_cft(cfile
);
3167 if (IS_ERR(event
->cft
)) {
3168 ret
= PTR_ERR(event
->cft
);
3172 if (!event
->cft
->register_event
|| !event
->cft
->unregister_event
) {
3177 ret
= event
->cft
->register_event(cgrp
, event
->cft
,
3178 event
->eventfd
, buffer
);
3182 if (efile
->f_op
->poll(efile
, &event
->pt
) & POLLHUP
) {
3183 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3189 * Events should be removed after rmdir of cgroup directory, but before
3190 * destroying subsystem state objects. Let's take reference to cgroup
3191 * directory dentry to do that.
3195 spin_lock(&cgrp
->event_list_lock
);
3196 list_add(&event
->list
, &cgrp
->event_list
);
3197 spin_unlock(&cgrp
->event_list_lock
);
3208 if (event
&& event
->eventfd
&& !IS_ERR(event
->eventfd
))
3209 eventfd_ctx_put(event
->eventfd
);
3211 if (!IS_ERR_OR_NULL(efile
))
3219 static u64
cgroup_clone_children_read(struct cgroup
*cgrp
,
3222 return clone_children(cgrp
);
3225 static int cgroup_clone_children_write(struct cgroup
*cgrp
,
3230 set_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
3232 clear_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
3237 * for the common functions, 'private' gives the type of file
3239 /* for hysterical raisins, we can't put this on the older files */
3240 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3241 static struct cftype files
[] = {
3244 .open
= cgroup_tasks_open
,
3245 .write_u64
= cgroup_tasks_write
,
3246 .release
= cgroup_pidlist_release
,
3247 .mode
= S_IRUGO
| S_IWUSR
,
3250 .name
= CGROUP_FILE_GENERIC_PREFIX
"procs",
3251 .open
= cgroup_procs_open
,
3252 /* .write_u64 = cgroup_procs_write, TODO */
3253 .release
= cgroup_pidlist_release
,
3257 .name
= "notify_on_release",
3258 .read_u64
= cgroup_read_notify_on_release
,
3259 .write_u64
= cgroup_write_notify_on_release
,
3262 .name
= CGROUP_FILE_GENERIC_PREFIX
"event_control",
3263 .write_string
= cgroup_write_event_control
,
3267 .name
= "cgroup.clone_children",
3268 .read_u64
= cgroup_clone_children_read
,
3269 .write_u64
= cgroup_clone_children_write
,
3273 static struct cftype cft_release_agent
= {
3274 .name
= "release_agent",
3275 .read_seq_string
= cgroup_release_agent_show
,
3276 .write_string
= cgroup_release_agent_write
,
3277 .max_write_len
= PATH_MAX
,
3280 static int cgroup_populate_dir(struct cgroup
*cgrp
)
3283 struct cgroup_subsys
*ss
;
3285 /* First clear out any existing files */
3286 cgroup_clear_directory(cgrp
->dentry
);
3288 err
= cgroup_add_files(cgrp
, NULL
, files
, ARRAY_SIZE(files
));
3292 if (cgrp
== cgrp
->top_cgroup
) {
3293 if ((err
= cgroup_add_file(cgrp
, NULL
, &cft_release_agent
)) < 0)
3297 for_each_subsys(cgrp
->root
, ss
) {
3298 if (ss
->populate
&& (err
= ss
->populate(ss
, cgrp
)) < 0)
3301 /* This cgroup is ready now */
3302 for_each_subsys(cgrp
->root
, ss
) {
3303 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3305 * Update id->css pointer and make this css visible from
3306 * CSS ID functions. This pointer will be dereferened
3307 * from RCU-read-side without locks.
3310 rcu_assign_pointer(css
->id
->css
, css
);
3316 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
3317 struct cgroup_subsys
*ss
,
3318 struct cgroup
*cgrp
)
3321 atomic_set(&css
->refcnt
, 1);
3324 if (cgrp
== dummytop
)
3325 set_bit(CSS_ROOT
, &css
->flags
);
3326 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
3327 cgrp
->subsys
[ss
->subsys_id
] = css
;
3330 static void cgroup_lock_hierarchy(struct cgroupfs_root
*root
)
3332 /* We need to take each hierarchy_mutex in a consistent order */
3336 * No worry about a race with rebind_subsystems that might mess up the
3337 * locking order, since both parties are under cgroup_mutex.
3339 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3340 struct cgroup_subsys
*ss
= subsys
[i
];
3343 if (ss
->root
== root
)
3344 mutex_lock(&ss
->hierarchy_mutex
);
3348 static void cgroup_unlock_hierarchy(struct cgroupfs_root
*root
)
3352 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3353 struct cgroup_subsys
*ss
= subsys
[i
];
3356 if (ss
->root
== root
)
3357 mutex_unlock(&ss
->hierarchy_mutex
);
3362 * cgroup_create - create a cgroup
3363 * @parent: cgroup that will be parent of the new cgroup
3364 * @dentry: dentry of the new cgroup
3365 * @mode: mode to set on new inode
3367 * Must be called with the mutex on the parent inode held
3369 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
3372 struct cgroup
*cgrp
;
3373 struct cgroupfs_root
*root
= parent
->root
;
3375 struct cgroup_subsys
*ss
;
3376 struct super_block
*sb
= root
->sb
;
3378 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
3382 /* Grab a reference on the superblock so the hierarchy doesn't
3383 * get deleted on unmount if there are child cgroups. This
3384 * can be done outside cgroup_mutex, since the sb can't
3385 * disappear while someone has an open control file on the
3387 atomic_inc(&sb
->s_active
);
3389 mutex_lock(&cgroup_mutex
);
3391 init_cgroup_housekeeping(cgrp
);
3393 cgrp
->parent
= parent
;
3394 cgrp
->root
= parent
->root
;
3395 cgrp
->top_cgroup
= parent
->top_cgroup
;
3397 if (notify_on_release(parent
))
3398 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3400 if (clone_children(parent
))
3401 set_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
3403 for_each_subsys(root
, ss
) {
3404 struct cgroup_subsys_state
*css
= ss
->create(ss
, cgrp
);
3410 init_cgroup_css(css
, ss
, cgrp
);
3412 err
= alloc_css_id(ss
, parent
, cgrp
);
3416 /* At error, ->destroy() callback has to free assigned ID. */
3417 if (clone_children(parent
) && ss
->post_clone
)
3418 ss
->post_clone(ss
, cgrp
);
3421 cgroup_lock_hierarchy(root
);
3422 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
3423 cgroup_unlock_hierarchy(root
);
3424 root
->number_of_cgroups
++;
3426 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
3430 /* The cgroup directory was pre-locked for us */
3431 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
3433 err
= cgroup_populate_dir(cgrp
);
3434 /* If err < 0, we have a half-filled directory - oh well ;) */
3436 mutex_unlock(&cgroup_mutex
);
3437 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
3443 cgroup_lock_hierarchy(root
);
3444 list_del(&cgrp
->sibling
);
3445 cgroup_unlock_hierarchy(root
);
3446 root
->number_of_cgroups
--;
3450 for_each_subsys(root
, ss
) {
3451 if (cgrp
->subsys
[ss
->subsys_id
])
3452 ss
->destroy(ss
, cgrp
);
3455 mutex_unlock(&cgroup_mutex
);
3457 /* Release the reference count that we took on the superblock */
3458 deactivate_super(sb
);
3464 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
3466 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
3468 /* the vfs holds inode->i_mutex already */
3469 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
3472 static int cgroup_has_css_refs(struct cgroup
*cgrp
)
3474 /* Check the reference count on each subsystem. Since we
3475 * already established that there are no tasks in the
3476 * cgroup, if the css refcount is also 1, then there should
3477 * be no outstanding references, so the subsystem is safe to
3478 * destroy. We scan across all subsystems rather than using
3479 * the per-hierarchy linked list of mounted subsystems since
3480 * we can be called via check_for_release() with no
3481 * synchronization other than RCU, and the subsystem linked
3482 * list isn't RCU-safe */
3485 * We won't need to lock the subsys array, because the subsystems
3486 * we're concerned about aren't going anywhere since our cgroup root
3487 * has a reference on them.
3489 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3490 struct cgroup_subsys
*ss
= subsys
[i
];
3491 struct cgroup_subsys_state
*css
;
3492 /* Skip subsystems not present or not in this hierarchy */
3493 if (ss
== NULL
|| ss
->root
!= cgrp
->root
)
3495 css
= cgrp
->subsys
[ss
->subsys_id
];
3496 /* When called from check_for_release() it's possible
3497 * that by this point the cgroup has been removed
3498 * and the css deleted. But a false-positive doesn't
3499 * matter, since it can only happen if the cgroup
3500 * has been deleted and hence no longer needs the
3501 * release agent to be called anyway. */
3502 if (css
&& (atomic_read(&css
->refcnt
) > 1))
3509 * Atomically mark all (or else none) of the cgroup's CSS objects as
3510 * CSS_REMOVED. Return true on success, or false if the cgroup has
3511 * busy subsystems. Call with cgroup_mutex held
3514 static int cgroup_clear_css_refs(struct cgroup
*cgrp
)
3516 struct cgroup_subsys
*ss
;
3517 unsigned long flags
;
3518 bool failed
= false;
3519 local_irq_save(flags
);
3520 for_each_subsys(cgrp
->root
, ss
) {
3521 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3524 /* We can only remove a CSS with a refcnt==1 */
3525 refcnt
= atomic_read(&css
->refcnt
);
3532 * Drop the refcnt to 0 while we check other
3533 * subsystems. This will cause any racing
3534 * css_tryget() to spin until we set the
3535 * CSS_REMOVED bits or abort
3537 if (atomic_cmpxchg(&css
->refcnt
, refcnt
, 0) == refcnt
)
3543 for_each_subsys(cgrp
->root
, ss
) {
3544 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3547 * Restore old refcnt if we previously managed
3548 * to clear it from 1 to 0
3550 if (!atomic_read(&css
->refcnt
))
3551 atomic_set(&css
->refcnt
, 1);
3553 /* Commit the fact that the CSS is removed */
3554 set_bit(CSS_REMOVED
, &css
->flags
);
3557 local_irq_restore(flags
);
3561 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
3563 struct cgroup
*cgrp
= dentry
->d_fsdata
;
3565 struct cgroup
*parent
;
3567 struct cgroup_event
*event
, *tmp
;
3570 /* the vfs holds both inode->i_mutex already */
3572 mutex_lock(&cgroup_mutex
);
3573 if (atomic_read(&cgrp
->count
) != 0) {
3574 mutex_unlock(&cgroup_mutex
);
3577 if (!list_empty(&cgrp
->children
)) {
3578 mutex_unlock(&cgroup_mutex
);
3581 mutex_unlock(&cgroup_mutex
);
3584 * In general, subsystem has no css->refcnt after pre_destroy(). But
3585 * in racy cases, subsystem may have to get css->refcnt after
3586 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3587 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3588 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3589 * and subsystem's reference count handling. Please see css_get/put
3590 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3592 set_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3595 * Call pre_destroy handlers of subsys. Notify subsystems
3596 * that rmdir() request comes.
3598 ret
= cgroup_call_pre_destroy(cgrp
);
3600 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3604 mutex_lock(&cgroup_mutex
);
3605 parent
= cgrp
->parent
;
3606 if (atomic_read(&cgrp
->count
) || !list_empty(&cgrp
->children
)) {
3607 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3608 mutex_unlock(&cgroup_mutex
);
3611 prepare_to_wait(&cgroup_rmdir_waitq
, &wait
, TASK_INTERRUPTIBLE
);
3612 if (!cgroup_clear_css_refs(cgrp
)) {
3613 mutex_unlock(&cgroup_mutex
);
3615 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3616 * prepare_to_wait(), we need to check this flag.
3618 if (test_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
))
3620 finish_wait(&cgroup_rmdir_waitq
, &wait
);
3621 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3622 if (signal_pending(current
))
3626 /* NO css_tryget() can success after here. */
3627 finish_wait(&cgroup_rmdir_waitq
, &wait
);
3628 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3630 spin_lock(&release_list_lock
);
3631 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
3632 if (!list_empty(&cgrp
->release_list
))
3633 list_del(&cgrp
->release_list
);
3634 spin_unlock(&release_list_lock
);
3636 cgroup_lock_hierarchy(cgrp
->root
);
3637 /* delete this cgroup from parent->children */
3638 list_del(&cgrp
->sibling
);
3639 cgroup_unlock_hierarchy(cgrp
->root
);
3641 spin_lock(&cgrp
->dentry
->d_lock
);
3642 d
= dget(cgrp
->dentry
);
3643 spin_unlock(&d
->d_lock
);
3645 cgroup_d_remove_dir(d
);
3648 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
3649 check_for_release(parent
);
3652 * Unregister events and notify userspace.
3653 * Notify userspace about cgroup removing only after rmdir of cgroup
3654 * directory to avoid race between userspace and kernelspace
3656 spin_lock(&cgrp
->event_list_lock
);
3657 list_for_each_entry_safe(event
, tmp
, &cgrp
->event_list
, list
) {
3658 list_del(&event
->list
);
3659 remove_wait_queue(event
->wqh
, &event
->wait
);
3660 eventfd_signal(event
->eventfd
, 1);
3661 schedule_work(&event
->remove
);
3663 spin_unlock(&cgrp
->event_list_lock
);
3665 mutex_unlock(&cgroup_mutex
);
3669 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
3671 struct cgroup_subsys_state
*css
;
3673 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
3675 /* Create the top cgroup state for this subsystem */
3676 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
3677 ss
->root
= &rootnode
;
3678 css
= ss
->create(ss
, dummytop
);
3679 /* We don't handle early failures gracefully */
3680 BUG_ON(IS_ERR(css
));
3681 init_cgroup_css(css
, ss
, dummytop
);
3683 /* Update the init_css_set to contain a subsys
3684 * pointer to this state - since the subsystem is
3685 * newly registered, all tasks and hence the
3686 * init_css_set is in the subsystem's top cgroup. */
3687 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
3689 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
3691 /* At system boot, before all subsystems have been
3692 * registered, no tasks have been forked, so we don't
3693 * need to invoke fork callbacks here. */
3694 BUG_ON(!list_empty(&init_task
.tasks
));
3696 mutex_init(&ss
->hierarchy_mutex
);
3697 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
3700 /* this function shouldn't be used with modular subsystems, since they
3701 * need to register a subsys_id, among other things */
3706 * cgroup_load_subsys: load and register a modular subsystem at runtime
3707 * @ss: the subsystem to load
3709 * This function should be called in a modular subsystem's initcall. If the
3710 * subsystem is built as a module, it will be assigned a new subsys_id and set
3711 * up for use. If the subsystem is built-in anyway, work is delegated to the
3712 * simpler cgroup_init_subsys.
3714 int __init_or_module
cgroup_load_subsys(struct cgroup_subsys
*ss
)
3717 struct cgroup_subsys_state
*css
;
3719 /* check name and function validity */
3720 if (ss
->name
== NULL
|| strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
||
3721 ss
->create
== NULL
|| ss
->destroy
== NULL
)
3725 * we don't support callbacks in modular subsystems. this check is
3726 * before the ss->module check for consistency; a subsystem that could
3727 * be a module should still have no callbacks even if the user isn't
3728 * compiling it as one.
3730 if (ss
->fork
|| ss
->exit
)
3734 * an optionally modular subsystem is built-in: we want to do nothing,
3735 * since cgroup_init_subsys will have already taken care of it.
3737 if (ss
->module
== NULL
) {
3738 /* a few sanity checks */
3739 BUG_ON(ss
->subsys_id
>= CGROUP_BUILTIN_SUBSYS_COUNT
);
3740 BUG_ON(subsys
[ss
->subsys_id
] != ss
);
3745 * need to register a subsys id before anything else - for example,
3746 * init_cgroup_css needs it.
3748 mutex_lock(&cgroup_mutex
);
3749 /* find the first empty slot in the array */
3750 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3751 if (subsys
[i
] == NULL
)
3754 if (i
== CGROUP_SUBSYS_COUNT
) {
3755 /* maximum number of subsystems already registered! */
3756 mutex_unlock(&cgroup_mutex
);
3759 /* assign ourselves the subsys_id */
3764 * no ss->create seems to need anything important in the ss struct, so
3765 * this can happen first (i.e. before the rootnode attachment).
3767 css
= ss
->create(ss
, dummytop
);
3769 /* failure case - need to deassign the subsys[] slot. */
3771 mutex_unlock(&cgroup_mutex
);
3772 return PTR_ERR(css
);
3775 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
3776 ss
->root
= &rootnode
;
3778 /* our new subsystem will be attached to the dummy hierarchy. */
3779 init_cgroup_css(css
, ss
, dummytop
);
3780 /* init_idr must be after init_cgroup_css because it sets css->id. */
3782 int ret
= cgroup_init_idr(ss
, css
);
3784 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
3785 ss
->destroy(ss
, dummytop
);
3787 mutex_unlock(&cgroup_mutex
);
3793 * Now we need to entangle the css into the existing css_sets. unlike
3794 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3795 * will need a new pointer to it; done by iterating the css_set_table.
3796 * furthermore, modifying the existing css_sets will corrupt the hash
3797 * table state, so each changed css_set will need its hash recomputed.
3798 * this is all done under the css_set_lock.
3800 write_lock(&css_set_lock
);
3801 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
3803 struct hlist_node
*node
, *tmp
;
3804 struct hlist_head
*bucket
= &css_set_table
[i
], *new_bucket
;
3806 hlist_for_each_entry_safe(cg
, node
, tmp
, bucket
, hlist
) {
3807 /* skip entries that we already rehashed */
3808 if (cg
->subsys
[ss
->subsys_id
])
3810 /* remove existing entry */
3811 hlist_del(&cg
->hlist
);
3813 cg
->subsys
[ss
->subsys_id
] = css
;
3814 /* recompute hash and restore entry */
3815 new_bucket
= css_set_hash(cg
->subsys
);
3816 hlist_add_head(&cg
->hlist
, new_bucket
);
3819 write_unlock(&css_set_lock
);
3821 mutex_init(&ss
->hierarchy_mutex
);
3822 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
3826 mutex_unlock(&cgroup_mutex
);
3829 EXPORT_SYMBOL_GPL(cgroup_load_subsys
);
3832 * cgroup_unload_subsys: unload a modular subsystem
3833 * @ss: the subsystem to unload
3835 * This function should be called in a modular subsystem's exitcall. When this
3836 * function is invoked, the refcount on the subsystem's module will be 0, so
3837 * the subsystem will not be attached to any hierarchy.
3839 void cgroup_unload_subsys(struct cgroup_subsys
*ss
)
3841 struct cg_cgroup_link
*link
;
3842 struct hlist_head
*hhead
;
3844 BUG_ON(ss
->module
== NULL
);
3847 * we shouldn't be called if the subsystem is in use, and the use of
3848 * try_module_get in parse_cgroupfs_options should ensure that it
3849 * doesn't start being used while we're killing it off.
3851 BUG_ON(ss
->root
!= &rootnode
);
3853 mutex_lock(&cgroup_mutex
);
3854 /* deassign the subsys_id */
3855 BUG_ON(ss
->subsys_id
< CGROUP_BUILTIN_SUBSYS_COUNT
);
3856 subsys
[ss
->subsys_id
] = NULL
;
3858 /* remove subsystem from rootnode's list of subsystems */
3859 list_del(&ss
->sibling
);
3862 * disentangle the css from all css_sets attached to the dummytop. as
3863 * in loading, we need to pay our respects to the hashtable gods.
3865 write_lock(&css_set_lock
);
3866 list_for_each_entry(link
, &dummytop
->css_sets
, cgrp_link_list
) {
3867 struct css_set
*cg
= link
->cg
;
3869 hlist_del(&cg
->hlist
);
3870 BUG_ON(!cg
->subsys
[ss
->subsys_id
]);
3871 cg
->subsys
[ss
->subsys_id
] = NULL
;
3872 hhead
= css_set_hash(cg
->subsys
);
3873 hlist_add_head(&cg
->hlist
, hhead
);
3875 write_unlock(&css_set_lock
);
3878 * remove subsystem's css from the dummytop and free it - need to free
3879 * before marking as null because ss->destroy needs the cgrp->subsys
3880 * pointer to find their state. note that this also takes care of
3881 * freeing the css_id.
3883 ss
->destroy(ss
, dummytop
);
3884 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
3886 mutex_unlock(&cgroup_mutex
);
3888 EXPORT_SYMBOL_GPL(cgroup_unload_subsys
);
3891 * cgroup_init_early - cgroup initialization at system boot
3893 * Initialize cgroups at system boot, and initialize any
3894 * subsystems that request early init.
3896 int __init
cgroup_init_early(void)
3899 atomic_set(&init_css_set
.refcount
, 1);
3900 INIT_LIST_HEAD(&init_css_set
.cg_links
);
3901 INIT_LIST_HEAD(&init_css_set
.tasks
);
3902 INIT_HLIST_NODE(&init_css_set
.hlist
);
3904 init_cgroup_root(&rootnode
);
3906 init_task
.cgroups
= &init_css_set
;
3908 init_css_set_link
.cg
= &init_css_set
;
3909 init_css_set_link
.cgrp
= dummytop
;
3910 list_add(&init_css_set_link
.cgrp_link_list
,
3911 &rootnode
.top_cgroup
.css_sets
);
3912 list_add(&init_css_set_link
.cg_link_list
,
3913 &init_css_set
.cg_links
);
3915 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
3916 INIT_HLIST_HEAD(&css_set_table
[i
]);
3918 /* at bootup time, we don't worry about modular subsystems */
3919 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
3920 struct cgroup_subsys
*ss
= subsys
[i
];
3923 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
3924 BUG_ON(!ss
->create
);
3925 BUG_ON(!ss
->destroy
);
3926 if (ss
->subsys_id
!= i
) {
3927 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
3928 ss
->name
, ss
->subsys_id
);
3933 cgroup_init_subsys(ss
);
3939 * cgroup_init - cgroup initialization
3941 * Register cgroup filesystem and /proc file, and initialize
3942 * any subsystems that didn't request early init.
3944 int __init
cgroup_init(void)
3948 struct hlist_head
*hhead
;
3950 err
= bdi_init(&cgroup_backing_dev_info
);
3954 /* at bootup time, we don't worry about modular subsystems */
3955 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
3956 struct cgroup_subsys
*ss
= subsys
[i
];
3957 if (!ss
->early_init
)
3958 cgroup_init_subsys(ss
);
3960 cgroup_init_idr(ss
, init_css_set
.subsys
[ss
->subsys_id
]);
3963 /* Add init_css_set to the hash table */
3964 hhead
= css_set_hash(init_css_set
.subsys
);
3965 hlist_add_head(&init_css_set
.hlist
, hhead
);
3966 BUG_ON(!init_root_id(&rootnode
));
3968 cgroup_kobj
= kobject_create_and_add("cgroup", fs_kobj
);
3974 err
= register_filesystem(&cgroup_fs_type
);
3976 kobject_put(cgroup_kobj
);
3980 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
3984 bdi_destroy(&cgroup_backing_dev_info
);
3990 * proc_cgroup_show()
3991 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3992 * - Used for /proc/<pid>/cgroup.
3993 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3994 * doesn't really matter if tsk->cgroup changes after we read it,
3995 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3996 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3997 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3998 * cgroup to top_cgroup.
4001 /* TODO: Use a proper seq_file iterator */
4002 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
4005 struct task_struct
*tsk
;
4008 struct cgroupfs_root
*root
;
4011 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4017 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
4023 mutex_lock(&cgroup_mutex
);
4025 for_each_active_root(root
) {
4026 struct cgroup_subsys
*ss
;
4027 struct cgroup
*cgrp
;
4030 seq_printf(m
, "%d:", root
->hierarchy_id
);
4031 for_each_subsys(root
, ss
)
4032 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
4033 if (strlen(root
->name
))
4034 seq_printf(m
, "%sname=%s", count
? "," : "",
4037 cgrp
= task_cgroup_from_root(tsk
, root
);
4038 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
4046 mutex_unlock(&cgroup_mutex
);
4047 put_task_struct(tsk
);
4054 static int cgroup_open(struct inode
*inode
, struct file
*file
)
4056 struct pid
*pid
= PROC_I(inode
)->pid
;
4057 return single_open(file
, proc_cgroup_show
, pid
);
4060 const struct file_operations proc_cgroup_operations
= {
4061 .open
= cgroup_open
,
4063 .llseek
= seq_lseek
,
4064 .release
= single_release
,
4067 /* Display information about each subsystem and each hierarchy */
4068 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
4072 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4074 * ideally we don't want subsystems moving around while we do this.
4075 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4076 * subsys/hierarchy state.
4078 mutex_lock(&cgroup_mutex
);
4079 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4080 struct cgroup_subsys
*ss
= subsys
[i
];
4083 seq_printf(m
, "%s\t%d\t%d\t%d\n",
4084 ss
->name
, ss
->root
->hierarchy_id
,
4085 ss
->root
->number_of_cgroups
, !ss
->disabled
);
4087 mutex_unlock(&cgroup_mutex
);
4091 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
4093 return single_open(file
, proc_cgroupstats_show
, NULL
);
4096 static const struct file_operations proc_cgroupstats_operations
= {
4097 .open
= cgroupstats_open
,
4099 .llseek
= seq_lseek
,
4100 .release
= single_release
,
4104 * cgroup_fork - attach newly forked task to its parents cgroup.
4105 * @child: pointer to task_struct of forking parent process.
4107 * Description: A task inherits its parent's cgroup at fork().
4109 * A pointer to the shared css_set was automatically copied in
4110 * fork.c by dup_task_struct(). However, we ignore that copy, since
4111 * it was not made under the protection of RCU or cgroup_mutex, so
4112 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4113 * have already changed current->cgroups, allowing the previously
4114 * referenced cgroup group to be removed and freed.
4116 * At the point that cgroup_fork() is called, 'current' is the parent
4117 * task, and the passed argument 'child' points to the child task.
4119 void cgroup_fork(struct task_struct
*child
)
4122 child
->cgroups
= current
->cgroups
;
4123 get_css_set(child
->cgroups
);
4124 task_unlock(current
);
4125 INIT_LIST_HEAD(&child
->cg_list
);
4129 * cgroup_fork_callbacks - run fork callbacks
4130 * @child: the new task
4132 * Called on a new task very soon before adding it to the
4133 * tasklist. No need to take any locks since no-one can
4134 * be operating on this task.
4136 void cgroup_fork_callbacks(struct task_struct
*child
)
4138 if (need_forkexit_callback
) {
4141 * forkexit callbacks are only supported for builtin
4142 * subsystems, and the builtin section of the subsys array is
4143 * immutable, so we don't need to lock the subsys array here.
4145 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4146 struct cgroup_subsys
*ss
= subsys
[i
];
4148 ss
->fork(ss
, child
);
4154 * cgroup_post_fork - called on a new task after adding it to the task list
4155 * @child: the task in question
4157 * Adds the task to the list running through its css_set if necessary.
4158 * Has to be after the task is visible on the task list in case we race
4159 * with the first call to cgroup_iter_start() - to guarantee that the
4160 * new task ends up on its list.
4162 void cgroup_post_fork(struct task_struct
*child
)
4164 if (use_task_css_set_links
) {
4165 write_lock(&css_set_lock
);
4167 if (list_empty(&child
->cg_list
))
4168 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
4170 write_unlock(&css_set_lock
);
4174 * cgroup_exit - detach cgroup from exiting task
4175 * @tsk: pointer to task_struct of exiting process
4176 * @run_callback: run exit callbacks?
4178 * Description: Detach cgroup from @tsk and release it.
4180 * Note that cgroups marked notify_on_release force every task in
4181 * them to take the global cgroup_mutex mutex when exiting.
4182 * This could impact scaling on very large systems. Be reluctant to
4183 * use notify_on_release cgroups where very high task exit scaling
4184 * is required on large systems.
4186 * the_top_cgroup_hack:
4188 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4190 * We call cgroup_exit() while the task is still competent to
4191 * handle notify_on_release(), then leave the task attached to the
4192 * root cgroup in each hierarchy for the remainder of its exit.
4194 * To do this properly, we would increment the reference count on
4195 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4196 * code we would add a second cgroup function call, to drop that
4197 * reference. This would just create an unnecessary hot spot on
4198 * the top_cgroup reference count, to no avail.
4200 * Normally, holding a reference to a cgroup without bumping its
4201 * count is unsafe. The cgroup could go away, or someone could
4202 * attach us to a different cgroup, decrementing the count on
4203 * the first cgroup that we never incremented. But in this case,
4204 * top_cgroup isn't going away, and either task has PF_EXITING set,
4205 * which wards off any cgroup_attach_task() attempts, or task is a failed
4206 * fork, never visible to cgroup_attach_task.
4208 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
4213 if (run_callbacks
&& need_forkexit_callback
) {
4215 * modular subsystems can't use callbacks, so no need to lock
4218 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4219 struct cgroup_subsys
*ss
= subsys
[i
];
4226 * Unlink from the css_set task list if necessary.
4227 * Optimistically check cg_list before taking
4230 if (!list_empty(&tsk
->cg_list
)) {
4231 write_lock(&css_set_lock
);
4232 if (!list_empty(&tsk
->cg_list
))
4233 list_del(&tsk
->cg_list
);
4234 write_unlock(&css_set_lock
);
4237 /* Reassign the task to the init_css_set. */
4240 tsk
->cgroups
= &init_css_set
;
4243 put_css_set_taskexit(cg
);
4247 * cgroup_clone - clone the cgroup the given subsystem is attached to
4248 * @tsk: the task to be moved
4249 * @subsys: the given subsystem
4250 * @nodename: the name for the new cgroup
4252 * Duplicate the current cgroup in the hierarchy that the given
4253 * subsystem is attached to, and move this task into the new
4256 int cgroup_clone(struct task_struct
*tsk
, struct cgroup_subsys
*subsys
,
4259 struct dentry
*dentry
;
4261 struct cgroup
*parent
, *child
;
4262 struct inode
*inode
;
4264 struct cgroupfs_root
*root
;
4265 struct cgroup_subsys
*ss
;
4267 /* We shouldn't be called by an unregistered subsystem */
4268 BUG_ON(!subsys
->active
);
4270 /* First figure out what hierarchy and cgroup we're dealing
4271 * with, and pin them so we can drop cgroup_mutex */
4272 mutex_lock(&cgroup_mutex
);
4274 root
= subsys
->root
;
4275 if (root
== &rootnode
) {
4276 mutex_unlock(&cgroup_mutex
);
4280 /* Pin the hierarchy */
4281 if (!atomic_inc_not_zero(&root
->sb
->s_active
)) {
4282 /* We race with the final deactivate_super() */
4283 mutex_unlock(&cgroup_mutex
);
4287 /* Keep the cgroup alive */
4289 parent
= task_cgroup(tsk
, subsys
->subsys_id
);
4294 mutex_unlock(&cgroup_mutex
);
4296 /* Now do the VFS work to create a cgroup */
4297 inode
= parent
->dentry
->d_inode
;
4299 /* Hold the parent directory mutex across this operation to
4300 * stop anyone else deleting the new cgroup */
4301 mutex_lock(&inode
->i_mutex
);
4302 dentry
= lookup_one_len(nodename
, parent
->dentry
, strlen(nodename
));
4303 if (IS_ERR(dentry
)) {
4305 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename
,
4307 ret
= PTR_ERR(dentry
);
4311 /* Create the cgroup directory, which also creates the cgroup */
4312 ret
= vfs_mkdir(inode
, dentry
, 0755);
4313 child
= __d_cgrp(dentry
);
4317 "Failed to create cgroup %s: %d\n", nodename
,
4322 /* The cgroup now exists. Retake cgroup_mutex and check
4323 * that we're still in the same state that we thought we
4325 mutex_lock(&cgroup_mutex
);
4326 if ((root
!= subsys
->root
) ||
4327 (parent
!= task_cgroup(tsk
, subsys
->subsys_id
))) {
4328 /* Aargh, we raced ... */
4329 mutex_unlock(&inode
->i_mutex
);
4332 deactivate_super(root
->sb
);
4333 /* The cgroup is still accessible in the VFS, but
4334 * we're not going to try to rmdir() it at this
4337 "Race in cgroup_clone() - leaking cgroup %s\n",
4342 /* do any required auto-setup */
4343 for_each_subsys(root
, ss
) {
4345 ss
->post_clone(ss
, child
);
4348 /* All seems fine. Finish by moving the task into the new cgroup */
4349 ret
= cgroup_attach_task(child
, tsk
);
4350 mutex_unlock(&cgroup_mutex
);
4353 mutex_unlock(&inode
->i_mutex
);
4355 mutex_lock(&cgroup_mutex
);
4357 mutex_unlock(&cgroup_mutex
);
4358 deactivate_super(root
->sb
);
4363 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4364 * @cgrp: the cgroup in question
4365 * @task: the task in question
4367 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4370 * If we are sending in dummytop, then presumably we are creating
4371 * the top cgroup in the subsystem.
4373 * Called only by the ns (nsproxy) cgroup.
4375 int cgroup_is_descendant(const struct cgroup
*cgrp
, struct task_struct
*task
)
4378 struct cgroup
*target
;
4380 if (cgrp
== dummytop
)
4383 target
= task_cgroup_from_root(task
, cgrp
->root
);
4384 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
4385 cgrp
= cgrp
->parent
;
4386 ret
= (cgrp
== target
);
4390 static void check_for_release(struct cgroup
*cgrp
)
4392 /* All of these checks rely on RCU to keep the cgroup
4393 * structure alive */
4394 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
4395 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
4396 /* Control Group is currently removeable. If it's not
4397 * already queued for a userspace notification, queue
4399 int need_schedule_work
= 0;
4400 spin_lock(&release_list_lock
);
4401 if (!cgroup_is_removed(cgrp
) &&
4402 list_empty(&cgrp
->release_list
)) {
4403 list_add(&cgrp
->release_list
, &release_list
);
4404 need_schedule_work
= 1;
4406 spin_unlock(&release_list_lock
);
4407 if (need_schedule_work
)
4408 schedule_work(&release_agent_work
);
4412 /* Caller must verify that the css is not for root cgroup */
4413 void __css_put(struct cgroup_subsys_state
*css
, int count
)
4415 struct cgroup
*cgrp
= css
->cgroup
;
4418 val
= atomic_sub_return(count
, &css
->refcnt
);
4420 if (notify_on_release(cgrp
)) {
4421 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
4422 check_for_release(cgrp
);
4424 cgroup_wakeup_rmdir_waiter(cgrp
);
4427 WARN_ON_ONCE(val
< 1);
4429 EXPORT_SYMBOL_GPL(__css_put
);
4432 * Notify userspace when a cgroup is released, by running the
4433 * configured release agent with the name of the cgroup (path
4434 * relative to the root of cgroup file system) as the argument.
4436 * Most likely, this user command will try to rmdir this cgroup.
4438 * This races with the possibility that some other task will be
4439 * attached to this cgroup before it is removed, or that some other
4440 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4441 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4442 * unused, and this cgroup will be reprieved from its death sentence,
4443 * to continue to serve a useful existence. Next time it's released,
4444 * we will get notified again, if it still has 'notify_on_release' set.
4446 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4447 * means only wait until the task is successfully execve()'d. The
4448 * separate release agent task is forked by call_usermodehelper(),
4449 * then control in this thread returns here, without waiting for the
4450 * release agent task. We don't bother to wait because the caller of
4451 * this routine has no use for the exit status of the release agent
4452 * task, so no sense holding our caller up for that.
4454 static void cgroup_release_agent(struct work_struct
*work
)
4456 BUG_ON(work
!= &release_agent_work
);
4457 mutex_lock(&cgroup_mutex
);
4458 spin_lock(&release_list_lock
);
4459 while (!list_empty(&release_list
)) {
4460 char *argv
[3], *envp
[3];
4462 char *pathbuf
= NULL
, *agentbuf
= NULL
;
4463 struct cgroup
*cgrp
= list_entry(release_list
.next
,
4466 list_del_init(&cgrp
->release_list
);
4467 spin_unlock(&release_list_lock
);
4468 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4471 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
4473 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
4478 argv
[i
++] = agentbuf
;
4479 argv
[i
++] = pathbuf
;
4483 /* minimal command environment */
4484 envp
[i
++] = "HOME=/";
4485 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4488 /* Drop the lock while we invoke the usermode helper,
4489 * since the exec could involve hitting disk and hence
4490 * be a slow process */
4491 mutex_unlock(&cgroup_mutex
);
4492 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
4493 mutex_lock(&cgroup_mutex
);
4497 spin_lock(&release_list_lock
);
4499 spin_unlock(&release_list_lock
);
4500 mutex_unlock(&cgroup_mutex
);
4503 static int __init
cgroup_disable(char *str
)
4508 while ((token
= strsep(&str
, ",")) != NULL
) {
4512 * cgroup_disable, being at boot time, can't know about module
4513 * subsystems, so we don't worry about them.
4515 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4516 struct cgroup_subsys
*ss
= subsys
[i
];
4518 if (!strcmp(token
, ss
->name
)) {
4520 printk(KERN_INFO
"Disabling %s control group"
4521 " subsystem\n", ss
->name
);
4528 __setup("cgroup_disable=", cgroup_disable
);
4531 * Functons for CSS ID.
4535 *To get ID other than 0, this should be called when !cgroup_is_removed().
4537 unsigned short css_id(struct cgroup_subsys_state
*css
)
4539 struct css_id
*cssid
;
4542 * This css_id() can return correct value when somone has refcnt
4543 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4544 * it's unchanged until freed.
4546 cssid
= rcu_dereference_check(css
->id
,
4547 rcu_read_lock_held() || atomic_read(&css
->refcnt
));
4553 EXPORT_SYMBOL_GPL(css_id
);
4555 unsigned short css_depth(struct cgroup_subsys_state
*css
)
4557 struct css_id
*cssid
;
4559 cssid
= rcu_dereference_check(css
->id
,
4560 rcu_read_lock_held() || atomic_read(&css
->refcnt
));
4563 return cssid
->depth
;
4566 EXPORT_SYMBOL_GPL(css_depth
);
4569 * css_is_ancestor - test "root" css is an ancestor of "child"
4570 * @child: the css to be tested.
4571 * @root: the css supporsed to be an ancestor of the child.
4573 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4574 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4575 * But, considering usual usage, the csses should be valid objects after test.
4576 * Assuming that the caller will do some action to the child if this returns
4577 * returns true, the caller must take "child";s reference count.
4578 * If "child" is valid object and this returns true, "root" is valid, too.
4581 bool css_is_ancestor(struct cgroup_subsys_state
*child
,
4582 const struct cgroup_subsys_state
*root
)
4584 struct css_id
*child_id
;
4585 struct css_id
*root_id
;
4589 child_id
= rcu_dereference(child
->id
);
4590 root_id
= rcu_dereference(root
->id
);
4593 || (child_id
->depth
< root_id
->depth
)
4594 || (child_id
->stack
[root_id
->depth
] != root_id
->id
))
4600 static void __free_css_id_cb(struct rcu_head
*head
)
4604 id
= container_of(head
, struct css_id
, rcu_head
);
4608 void free_css_id(struct cgroup_subsys
*ss
, struct cgroup_subsys_state
*css
)
4610 struct css_id
*id
= css
->id
;
4611 /* When this is called before css_id initialization, id can be NULL */
4615 BUG_ON(!ss
->use_id
);
4617 rcu_assign_pointer(id
->css
, NULL
);
4618 rcu_assign_pointer(css
->id
, NULL
);
4619 spin_lock(&ss
->id_lock
);
4620 idr_remove(&ss
->idr
, id
->id
);
4621 spin_unlock(&ss
->id_lock
);
4622 call_rcu(&id
->rcu_head
, __free_css_id_cb
);
4624 EXPORT_SYMBOL_GPL(free_css_id
);
4627 * This is called by init or create(). Then, calls to this function are
4628 * always serialized (By cgroup_mutex() at create()).
4631 static struct css_id
*get_new_cssid(struct cgroup_subsys
*ss
, int depth
)
4633 struct css_id
*newid
;
4634 int myid
, error
, size
;
4636 BUG_ON(!ss
->use_id
);
4638 size
= sizeof(*newid
) + sizeof(unsigned short) * (depth
+ 1);
4639 newid
= kzalloc(size
, GFP_KERNEL
);
4641 return ERR_PTR(-ENOMEM
);
4643 if (unlikely(!idr_pre_get(&ss
->idr
, GFP_KERNEL
))) {
4647 spin_lock(&ss
->id_lock
);
4648 /* Don't use 0. allocates an ID of 1-65535 */
4649 error
= idr_get_new_above(&ss
->idr
, newid
, 1, &myid
);
4650 spin_unlock(&ss
->id_lock
);
4652 /* Returns error when there are no free spaces for new ID.*/
4657 if (myid
> CSS_ID_MAX
)
4661 newid
->depth
= depth
;
4665 spin_lock(&ss
->id_lock
);
4666 idr_remove(&ss
->idr
, myid
);
4667 spin_unlock(&ss
->id_lock
);
4670 return ERR_PTR(error
);
4674 static int __init_or_module
cgroup_init_idr(struct cgroup_subsys
*ss
,
4675 struct cgroup_subsys_state
*rootcss
)
4677 struct css_id
*newid
;
4679 spin_lock_init(&ss
->id_lock
);
4682 newid
= get_new_cssid(ss
, 0);
4684 return PTR_ERR(newid
);
4686 newid
->stack
[0] = newid
->id
;
4687 newid
->css
= rootcss
;
4688 rootcss
->id
= newid
;
4692 static int alloc_css_id(struct cgroup_subsys
*ss
, struct cgroup
*parent
,
4693 struct cgroup
*child
)
4695 int subsys_id
, i
, depth
= 0;
4696 struct cgroup_subsys_state
*parent_css
, *child_css
;
4697 struct css_id
*child_id
, *parent_id
;
4699 subsys_id
= ss
->subsys_id
;
4700 parent_css
= parent
->subsys
[subsys_id
];
4701 child_css
= child
->subsys
[subsys_id
];
4702 parent_id
= parent_css
->id
;
4703 depth
= parent_id
->depth
+ 1;
4705 child_id
= get_new_cssid(ss
, depth
);
4706 if (IS_ERR(child_id
))
4707 return PTR_ERR(child_id
);
4709 for (i
= 0; i
< depth
; i
++)
4710 child_id
->stack
[i
] = parent_id
->stack
[i
];
4711 child_id
->stack
[depth
] = child_id
->id
;
4713 * child_id->css pointer will be set after this cgroup is available
4714 * see cgroup_populate_dir()
4716 rcu_assign_pointer(child_css
->id
, child_id
);
4722 * css_lookup - lookup css by id
4723 * @ss: cgroup subsys to be looked into.
4726 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4727 * NULL if not. Should be called under rcu_read_lock()
4729 struct cgroup_subsys_state
*css_lookup(struct cgroup_subsys
*ss
, int id
)
4731 struct css_id
*cssid
= NULL
;
4733 BUG_ON(!ss
->use_id
);
4734 cssid
= idr_find(&ss
->idr
, id
);
4736 if (unlikely(!cssid
))
4739 return rcu_dereference(cssid
->css
);
4741 EXPORT_SYMBOL_GPL(css_lookup
);
4744 * css_get_next - lookup next cgroup under specified hierarchy.
4745 * @ss: pointer to subsystem
4746 * @id: current position of iteration.
4747 * @root: pointer to css. search tree under this.
4748 * @foundid: position of found object.
4750 * Search next css under the specified hierarchy of rootid. Calling under
4751 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4753 struct cgroup_subsys_state
*
4754 css_get_next(struct cgroup_subsys
*ss
, int id
,
4755 struct cgroup_subsys_state
*root
, int *foundid
)
4757 struct cgroup_subsys_state
*ret
= NULL
;
4760 int rootid
= css_id(root
);
4761 int depth
= css_depth(root
);
4766 BUG_ON(!ss
->use_id
);
4767 /* fill start point for scan */
4771 * scan next entry from bitmap(tree), tmpid is updated after
4774 spin_lock(&ss
->id_lock
);
4775 tmp
= idr_get_next(&ss
->idr
, &tmpid
);
4776 spin_unlock(&ss
->id_lock
);
4780 if (tmp
->depth
>= depth
&& tmp
->stack
[depth
] == rootid
) {
4781 ret
= rcu_dereference(tmp
->css
);
4787 /* continue to scan from next id */
4793 #ifdef CONFIG_CGROUP_DEBUG
4794 static struct cgroup_subsys_state
*debug_create(struct cgroup_subsys
*ss
,
4795 struct cgroup
*cont
)
4797 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
4800 return ERR_PTR(-ENOMEM
);
4805 static void debug_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4807 kfree(cont
->subsys
[debug_subsys_id
]);
4810 static u64
cgroup_refcount_read(struct cgroup
*cont
, struct cftype
*cft
)
4812 return atomic_read(&cont
->count
);
4815 static u64
debug_taskcount_read(struct cgroup
*cont
, struct cftype
*cft
)
4817 return cgroup_task_count(cont
);
4820 static u64
current_css_set_read(struct cgroup
*cont
, struct cftype
*cft
)
4822 return (u64
)(unsigned long)current
->cgroups
;
4825 static u64
current_css_set_refcount_read(struct cgroup
*cont
,
4831 count
= atomic_read(¤t
->cgroups
->refcount
);
4836 static int current_css_set_cg_links_read(struct cgroup
*cont
,
4838 struct seq_file
*seq
)
4840 struct cg_cgroup_link
*link
;
4843 read_lock(&css_set_lock
);
4845 cg
= rcu_dereference(current
->cgroups
);
4846 list_for_each_entry(link
, &cg
->cg_links
, cg_link_list
) {
4847 struct cgroup
*c
= link
->cgrp
;
4851 name
= c
->dentry
->d_name
.name
;
4854 seq_printf(seq
, "Root %d group %s\n",
4855 c
->root
->hierarchy_id
, name
);
4858 read_unlock(&css_set_lock
);
4862 #define MAX_TASKS_SHOWN_PER_CSS 25
4863 static int cgroup_css_links_read(struct cgroup
*cont
,
4865 struct seq_file
*seq
)
4867 struct cg_cgroup_link
*link
;
4869 read_lock(&css_set_lock
);
4870 list_for_each_entry(link
, &cont
->css_sets
, cgrp_link_list
) {
4871 struct css_set
*cg
= link
->cg
;
4872 struct task_struct
*task
;
4874 seq_printf(seq
, "css_set %p\n", cg
);
4875 list_for_each_entry(task
, &cg
->tasks
, cg_list
) {
4876 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
) {
4877 seq_puts(seq
, " ...\n");
4880 seq_printf(seq
, " task %d\n",
4881 task_pid_vnr(task
));
4885 read_unlock(&css_set_lock
);
4889 static u64
releasable_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4891 return test_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
4894 static struct cftype debug_files
[] = {
4896 .name
= "cgroup_refcount",
4897 .read_u64
= cgroup_refcount_read
,
4900 .name
= "taskcount",
4901 .read_u64
= debug_taskcount_read
,
4905 .name
= "current_css_set",
4906 .read_u64
= current_css_set_read
,
4910 .name
= "current_css_set_refcount",
4911 .read_u64
= current_css_set_refcount_read
,
4915 .name
= "current_css_set_cg_links",
4916 .read_seq_string
= current_css_set_cg_links_read
,
4920 .name
= "cgroup_css_links",
4921 .read_seq_string
= cgroup_css_links_read
,
4925 .name
= "releasable",
4926 .read_u64
= releasable_read
,
4930 static int debug_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4932 return cgroup_add_files(cont
, ss
, debug_files
,
4933 ARRAY_SIZE(debug_files
));
4936 struct cgroup_subsys debug_subsys
= {
4938 .create
= debug_create
,
4939 .destroy
= debug_destroy
,
4940 .populate
= debug_populate
,
4941 .subsys_id
= debug_subsys_id
,
4943 #endif /* CONFIG_CGROUP_DEBUG */